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SUMMARY

In an inversion for the subsurface conductivity distribution

using frequency-domain Controlled-Source Electromagnetic

data, various amounts of horizontal components may be in-

cluded. We investigate which combination of components are

best suited to invert for a vertical transverse isotropic (VTI)

subsurface. We do this by probing the solutionspace using a

genetic algorithm. We found, by studying a simple horizon-

tally layered medium, that if only electric data are used, either

the horizontal or the vertical conductivity of a layer can be es-

timated properly, but not both. Including the crossline electric

field does not add additional information. In contrast, includ-

ing the two horizontal magnetic components along with the

two horizontal electric components allows to retrieve a bet-

ter estimate of some of the VTI parameters. For an isotropic

subsurface, the electric field is sufficient to invert for the sub-

surface conductivity.

INTRODUCTION

In most processing flows of Controlled-Source Electromag-

netic (CSEM) data, an inversion for the subsurface conduc-

tivity distribution is carried out. There are many ways to do

this inversion and, correspondingly, many publications about

the topic: 1D (e.g., Christensen and Dodds, 2007; Key, 2009)

or 3D (e.g., Grayver et al., 2014), constrained by seismic data

(e.g., Brown et al., 2012), combined with magnetotelluric (MT)

data (e.g., Sasaki, 2013; Wiik et al., 2013) or using CSEM data

only (e.g., Ray et al., 2013) just to name a few.

In this study, we are dealing with a synthetic 3D monochro-

matic frequency-domain CSEM survey above a horizontally

layered vertical transverse isotropic (VTI) subsurface. The lat-

ter means, that each layer is characterized by a vertical con-

ductivity σV and a horizontal conductivity σH . We aim to in-

vestigate which horizontal components of the electromagnetic

field (electric and magnetic) are required to successfully invert

for the subsurface conductivity distribution.

One can use only the inline electric field Ex for the inversion

(option 1). That is quite fast, because the forward problem is

reduced to one component, but possible information recorded

by the other three components remains unused. Another option

is to use the inline electric field Ex as well as the crossline elec-

tric field Ey in a joint inversion (option 2). How much informa-

tion does the magnetic field add to an inversion problem? This

question suggests to invert all four horizontal components Ex,

Ey, Hx and Hy in a joint inversion (option 3), which makes the

forward problem computationally intense, but uses all avail-

able information. All three inversion options are summarized

in Table 1.

The shape of the solutionspace around the global minimum is

Table 1: Overview of the three inversion strategies investi-

gated.

option number of components components

1 1 Ex

2 2 Ex, Ey

3 4 Ex, Ey, Hx, Hy

important for determining if an algorithm can find the correct

solution located at the center of the global minimum. Ideally,

the global minimum has a broad cone of attraction and ends

in a point at the correct solution. If the cone of attraction is

very small, it is unlikely to find the global minimum. A conju-

gate gradient scheme would need a starting model very close

to the correct solution and a search algorithm based on a ran-

dom search pattern would have a small chance to hit the global

minimum. If the global minimum is very broad at the bottom,

the correct solution will not be found even though the inver-

sion algorithm has converged into the global minimum. In that

case, any solution in the flat bottom of the global minimum

may be picked.

Because the solutionspace is n-dimensional, where n is the

amount of unknowns, plotting the solutionspace for a problem

with more than three unknowns is not practical. Therefore, we

aim to probe the solutionspace for the previously mentioned

three options using a genetic algorithm (e.g., Goldberg, 1989).

In contrast to, for example, a conjugate gradient method, which

can optimize a problem for thousands of unknown parameters,

a genetic algorithm only allows to invert for a few parameters.

Its big advantage is, that it can jump out of a local minimum

and, therefore, the starting model does not need to be as close

to the correct solution as for a conjugate gradient method. An-

other advantage of a genetic algorithm is, that for several runs

with the exact same input parameters it will always end up at a

slightly different result. Ideally all results of separate runs are

situated in the global minimum. It is this last property, which

makes the algorithm so interesting for our purpose, because

by running the code several times for the same parameters, the

global minimum can be probed. A narrow global minimum

will not be found by all the runs. A global minimum with a

flat bottom in one or more dimensions, meaning a poor sensi-

tivity with respect to that specific parameter, is reflected in a

large spread of all the solutions for this parameter.

In the next section we describe the genetic algorithm used for

this study in more detail. Then we show results for a very

simple experiment with just four unknown parameters. From

this experiment, we aim to conclude which of the three op-

tions described previously is best suited for an inversion for

the subsurface medium parameters of a VTI medium. We are

especially interested in investigating if the magnetic field adds

complementary information to the problem?
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METHOD

Our genetic algorithm starts with a population of random in-

dividuals of which each represents a possible solution to the

problem at hand. For example, if we are inverting for four

parameters, one individual consists of these four parameters

encoded as a string of characters. The basic idea of genetic

algorithms is to evolve these individuals according to evolu-

tionary theory to a solution very close to the correct one. For

each individual a misfit function is computed. We use the fol-

lowing least-squares-type misfit function:

N∑

i=1

[ℜ(di)−ℜ(di(m))]2 +[ℑ(di)−ℑ(di(m))]2

[ℜ(di)]
2 +[ℑ(di)]

2 + ε
, (1)

where ℜ is the real part, ℑ is the imaginary part and N is the

amount of samples in the data d. The forward modeled data for

a set of model parameters m are d(m). To compute the forward

modeled data, we use an efficient analytical modeling package

for layered VTI-media, which should become available as an

open-source resource this year (Hunziker et al., 2014). The

regularization parameter ε is set to 10−20. The normalization

is introduced into the misfit function in order to make the misfit

for the three different inversion options comparable.

Individuals with a smaller misfit are considered fitter in the

sense of evolutionary theory and, thus, have a larger chance

to be selected for the next generation. There is a predefined

chance, that an individual, which is selected to go to the next

generation, is altered by crossover or mutation. In the process

of crossover, the strings encoding the parameters of two in-

dividuals are cut at a random location and, subsequently, the

tails of the two strings are exchanged. This allows to recom-

bine different parameters. In the process of mutation, one sym-

bol in the string encoding the parameters of one individual is

exchanged with a random other symbol allowing to test a new

randomly chosen value for one of the encoded parameters. The

best solutions are also allowed to pass on to the next generation

unaltered (eliting) in order to ensure that a good solution is not

lost. Additionally, in each generation a set of random new in-

dividuals enter the population (migration). This increases the

chance to leave a local minimum.

RESULTS

For this study, we use a simple model depicted in Figure 1.

Although we invert for vertical conductivity σV as well as

for horizontal conductivity σH , the model itself is isotropic

(σV = σH ). Choosing the same value for σV and σH per

layer allows a fairer comparison of the relative sensitivity to

each other. We invert for the vertical and horizontal conduc-

tivity of the layer below the ocean bottom and of the reservoir

layer. These layers are marked with a question mark in Figure

1. Thus, we invert for four parameters. All other parameters,

including the thickness of the layers, are fixed. Note that this

setup is not intended for practical applications, but for testing

different inversion approaches.

We run the genetic algorithm for 150 generations with each

generation consisting of 560 individuals. The starting popula-

0 m

200 m

1200 m

1000 m

σ = 0 S/m (air)

σ = 3 S/m (water)

σ = 1 S/m (sediment) ?

σ = 1 S/m (sediment)

σ = 0.02 S/m (hydrocarbon reservoir) ?

150 m

receiver
source
parameter to invert?

Figure 1: The model used for the simulations. The isotropic

conductivity σ is given for each layer. Conductivities with a

question mark are inverted for.

tion consists of random values in the range of 10−4 and 101

S/m. The genetic algorithm was run nine times for each op-

tion. Figure 2 shows the misfit of the best solution of all nine

runs as a function of generations for all three inversion options.

If only the electric field is used (options 1 and 2) the best mis-

fit achieved is around 1. This is only the case for two out of

nine runs. This is in contrast to option 3 which includes the

magnetic field. In that case five out of nine runs have a misfit

below 1. This suggests, that the cone of attraction of the global

minimum is broadened by adding the magnetic field, such that

more solutions end up in the global minimum.

Figure 3 shows the solutions found by the nine runs (blue as-

terisk) for the first layer below the ocean bottom on the left and

for the second layer (reservoir) below the ocean bottom on the

right. The correct solution is indicated by a red circle. Consid-

ering Figure 2, it is not surprising that the plots for option 1 (Ex

only, Figure 3a and 3b) are quite similar to the plots of option 2

(Ex and Ey, Figure 3c and 3d). If only the electric field is used

in the inversion, σH of the first layer and σV of the reservoir

layer are well defined, but the two other parameters not. The

global minimum for the other two parameters must be flat and

long.

Note, that the electric field is a transverse field. That means

that a vertically diffusing signal is sensitive to the horizon-

tal medium parameter and a horizontally diffusing signal to

the vertical medium parameter. This indicates in a very sim-

plistic view, that most of the signal that is recorded at the re-

ceivers diffuses almost vertically down to the reservoir leading

to the strong sensitivity to the horizontal conductivity of the

first layer. At the reservoir, the signal is refracted and travels

horizontally along the reservoir resulting in the strong sensi-

tivity to the vertical conductivity of the reservoir. Finally, the

signal is emitted vertically back to the receivers contributing

again to the strong sensitivity to the horizontal conductivity of

the first layer.

Adding the two magnetic field components to the inversion

problem, thus inverting Ex, Ey, Hx and Hy jointly (option 3,

Figure 3e and 3f), significantly improves the estimate of σV

of the first layer below the ocean bottom. Also the spread of
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Figure 2: Convergence of the genetic algorithm for the differ-

ent options as indicated in the header of the plots. For each

run, the misfit of the best solution is plotted as a function of

generation. Note that the vertical axis is identical for all three

plots.

the estimate of σH of the reservoir layer is slightly reduced,

but the effect is much less compared to the improvement of the

estimates of the material parameters of the first layer. This in-

dicates again, that the magnetic field adds crucial information

to the inversion problem at hand.

DISCUSSION

This analysis was carried out on a very simple inversion prob-

lem. A more complicated medium, which includes reflectors

below the reservoir, might help estimating the medium param-

eters of the reservoir. For a future study, we would also like to

include layer thicknesses, noise and measurement errors.

At short offsets, CSEM data are dominated by the direct field

and at large offsets, especially in shallow water, by the airwave

(Amundsen et al., 2006). Suppressing these events alters the

solutionspace of an inversion problem and, thus, might make

it easier to find the subsurface conductivity distribution. The

benefit would be that fitting of events of large amplitude but

without any information about the subsurface can be avoided.

Interferometry allows to suppress these events (Hunziker et al.,

2013). Therefore, we plan to adapt our inversion code, such

that the output of interferometry can be used as well to invert

for the subsurface conductivity distribution, allowing to probe

the corresponding solutionspace.

Another option would be to invert decomposed fields instead

of full fields. Inverting only the upward decaying field also

suppresses the direct field and dramatically decreases the ef-

fects of the airwave (Amundsen et al., 2006).

CONCLUSIONS

An inversion that uses only electric data can find either the

horizontal or the vertical conductivity of a layer, but not both

in the medium tested. Adding the crossline electric field to

the inline electric field does not improve the inversion results.

However, magnetic data adds complementary information to

an EM inversion problem that inverts for the conductivity of a

VTI subsurface. This additional information alters the shape

of the solutionspace around the global minimum, firstly, in-

creasing the chance to end up close to the correct solution and,

secondly, allowing to retrieve more VTI parameters. In case

the medium under investigation is isotropic, the electric field

is sufficient to find the conductivity distribution.
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Figure 3: Results of the genetic algorithm for the three different options as indicated in the header of the plots. The parameters of

the first layer below the ocean bottom are shown on the left side and the parameters of the reservoir (second layer below the ocean

bottom) are shown on the right side.
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