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Abstract

This thesis focuses on the modelling and identification for auto-stabilization of a quadrotor (AR
Drone 2) system through the implementation of a grey-box identification method for control
purpose, which covers the results of the project addressing the grey-box identification of the
nonlinear dynamic model for near-hover equilibrium. The methodology followed in this work
addresses the specific issues of system modelling, model parameter estimation, simulation and
bare-airframe system identification.

The nonlinear model of AR Drone 2 dynamics is derived from a Newton-Euler formulation
and presented in East, North, Up (ENU) coordinates under Matlab/Simulink environment.
Applying this model to real flight data requires obtaining the total thrust and torques as model
inputs in advance thereby leading to the measurements of engine dynamics and aerodynamic
coefficients of each propeller. The rest of the unknown parameters have been estimated by
weighing and dimensioning each part of AR Drone 2. Then the approximation of the mo-
ment of inertia can be used as initial guess for Extended and Unscented Kalman filters (EKF
and UKF) for parameter identification purposes. Meanwhile, the linearized partitioned system
model structures were used in the fitting of a model to the real flight data which were collected
with carefully devised experiments via Paparazzi. The prediction error method was used for
the Box-Jenkins (BJ) polynomial models fitting.

On the one hand, although the EKF approach for parameter identification differed significantly
when applied to real flight data and to simulation data, the UKF approach represented rela-
tively reasonable results. It can be concluded that the parameter estimation from EKF and UKF
is largely susceptible to the measurements of thrust and torque. In this project, the lack of or
inaccuracy of measurements results in the less satisfactory performance of EKF and UKF for pa-
rameter estimation. On the other hand, the coupling effects owing to the "X-type" configuration
did a disservice to roll and pitch channels. One simple solution is to change its configuration
to "cross-type".

Master of Science Thesis Qianying Li



ii

Qianying Li Master of Science Thesis



Acknowledgements

I am particularly grateful to the people for their timely help, otherwise there is no way to finish
this project in time. I would like to do my best to fit all those to whom I own my gratitude.

Firstly, I would like to thank my supervisor dr.ir. M. Mazo Jr. and prof.dr. R. Babuska for
their regularly assistance during this project. dr.ir. M. Mazo Jr. pointed out the right direction
for me when the progress of the project was not quite smooth and encouraged me a lot.

Secondly, I would like to thank Dr.ir. C.C. de Visser, Dr.ir. G.C.H.E. de Croon and Ir. B.D.W.
Remes for granting me the opportunity to study in Micro Air Vehicle Laboratory (MAVLab).
Without the AR Drones and experimental setups available in the MAVLab, this process would
have been extremely more difficult. Particularly, I would like to thank Erik van der Horst from
the MAVlab for his assistance throughout the entire project, especially for the overtime help at
night. Thanks to intern Clément Roblot and Ir. C. De Wagter at the MAVlab for their effort in
developing the RPM sensor. I also acknowledge PhD candidates Sophie Armanini and Hann
Woei Ho for their assistance during the whole flight tests. Without their help, I would have
not been able to fly the AR Drone 2 at arena. Msc student Eric Poppe, thank you for selflessly
sharing the experimental data with me when I had trouble in my own AR Drone 2. And of
course I owe a great deal of thanks to the rest of the lab, they accompanied and helped me to
get through the lonely hours of development in the lab.

Most of all I would like to thank my parents and family for their raising and being so sup-
portive throughout my life, always believing in me and inspiring me, I would love you all
forever.

Delft, University of Technology Qianying Li
August 20, 2014

Master of Science Thesis Qianying Li



iv Acknowledgements

Qianying Li Master of Science Thesis



Contents

Acknowledgements iii

Glossary xi
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1-1 Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Related work and proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 System Modelling 5
2-1 Nonlinear and linear Newton-Euler model for an X-type AR Drone . . . . . . . . . . 5
2-2 The state-space model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Experimental Setup 9
3-1 AR Drone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-2 MAV-Laboratory and Paparazzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3-2-1 MAV-Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-2-2 Paparazzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3-3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-3-1 RPM sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-3-2 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3-3-3 Vision system and GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3-4 Sensor fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Model Parameter Identification 15
4-1 Mass and Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4-1-1 Moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4-1-2 Rotor inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4-2 Engine dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4-3 Aerodynamic coefficients identification . . . . . . . . . . . . . . . . . . . . . . . . . 18

4-3-1 Thrust and torque measurement . . . . . . . . . . . . . . . . . . . . . . . . 18
4-3-2 Thrust and drag coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4-4 Battery consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Master of Science Thesis Qianying Li



vi Contents

5 Identification Algorithm 23
5-1 Extended and Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 23

5-1-1 Extented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5-1-2 Unscented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5-2 Nonlinear Multi-rate Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5-2-1 Multi-rate system description . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5-2-2 Multi-rate Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 27
5-2-3 Multi-rate Unscented Kalman Filer . . . . . . . . . . . . . . . . . . . . . . . 27

5-3 The Augmented State Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Simulation 29
6-1 Blocks implementation and 3D visualization . . . . . . . . . . . . . . . . . . . . . . 29
6-2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6-2-1 Simulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 System Identification 35
7-1 Linear Model Transfer Function Identification . . . . . . . . . . . . . . . . . . . . . 35

7-1-1 Throttle transfer function identification . . . . . . . . . . . . . . . . . . . . 36
7-1-2 Yaw transfer function identification . . . . . . . . . . . . . . . . . . . . . . . 37
7-1-3 Pitch and roll transfer function identification . . . . . . . . . . . . . . . . . 38

7-2 Kalman Filter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7-2-1 Flight tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7-2-2 Measurement noise variance matrix . . . . . . . . . . . . . . . . . . . . . . . 40
7-2-3 UKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7-2-4 EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7-3 Results Comparison and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusion and Future Work 47
8-1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8-2 Recommendations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A Data Sets for Model Parameter Estimation 49

B Transform Matrices 53
B-1 Plane rotation matrix R and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B-2 From ECEF to ENU coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C State Estimation 55

Bibliography 59

Qianying Li Master of Science Thesis



List of Figures

1-1 The block diagram of the identification procedure for nonlinear model . . . . . . . . 2

2-1 The quadrotor in an inertial frame. Ti and τi represent the thrust and torque of motor i 6

3-1 Parrot AR.Drone 2 without protective indoor hull . . . . . . . . . . . . . . . . . . . 9

3-2 Arduino Pro Mini - 5V/16MHz (ATMEGA328) . . . . . . . . . . . . . . . . . . . . 10

3-3 Navigation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3-4 The distribution of cameras in the flight arena . . . . . . . . . . . . . . . . . . . . . 12

3-5 Motion capture software: Motive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3-6 Connection between sensors and measurement matrix . . . . . . . . . . . . . . . . . 13

4-1 Block diagram of the thrust and torque generation process . . . . . . . . . . . . . . 15

4-2 Comparison of the real spin-up and spin-down and the corresponding modelled engine
dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4-3 The thrust measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4-4 Setup for rotor torque identification experiment . . . . . . . . . . . . . . . . . . . . 19

4-5 A series of thrust measurements compared to the estimated values based on the rotor
speeds, estimation 2 is the model with only quadratic term while estimation 1 is the
one including linear and constant term. . . . . . . . . . . . . . . . . . . . . . . . . . 20

4-6 Another set of thrust measurements as validation data compared to the estimated
values based on the rotor speeds, estimation 2 is the model with only quadratic term
while estimation 1 is the one including linear and constant term. . . . . . . . . . . . 20

4-7 A series of torque measurements compared to the estimated values based on the rotor
speeds, estimation 2 is the model with only quadratic term while estimation 1 is the
one including linear and constant term. . . . . . . . . . . . . . . . . . . . . . . . . . 21

4-8 Another set of torque measurements as validation data compared to the estimated
values based on the rotor speeds, estimation 2 is the model with only quadratic term
while estimation 1 is the one including linear and constant term. . . . . . . . . . . . 21

5-1 Propagation of distributions for EKF and UKF [25] . . . . . . . . . . . . . . . . . . 24

6-1 The block diagram of system structure . . . . . . . . . . . . . . . . . . . . . . . . . 29

6-2 3D animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6-3 Reconstruction of moment of inertia for three axes and rotor without process noise . 31

6-4 Reconstruction of moment of inertia for three axes and rotor with process noise . . 31

Master of Science Thesis Qianying Li



viii List of Figures

6-5 Reconstruction of moment of inertia for three axes and rotor with inconsistent esti-
mate of process noise matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6-6 Reconstruct of moment of inertia for three axes and rotor when the assumption for
MRUKF is T = 4T̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7-1 System identification procedure [19] . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7-2 Fit of 67.6% between BJ model output (dashed) and identification data (solid) . . . 37

7-3 Fit of 51.85% between BJ model output (dashed) and validation data (solid) . . . . 37

7-4 Fit of 88.29% between BJ model output (dashed) and identification data (solid) . . 38

7-5 Fit of 78.41% between BJ model output (dashed) and validation data (solid) . . . . 38

7-6 UKF state filtering: measured (blue) and estimated (red) for position and velocities
at x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7-7 UKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities at x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . . . . . . 41

7-8 Compare the reconstruct of moment of inertia (red) by UKF algorithm with calculated
value (dotted blue line) for x and y axes respectively. . . . . . . . . . . . . . . . . . 42

7-9 Compare the reconstruct of moment of inertia (red) for z axes and moment of initial
for each rotor (red) by UKF algorithm with calculated value (dotted blue line) . . . 42

7-10 EKF state filtering: measured (blue) and estimated (red) for position and velocities
at x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7-11 EKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities at x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . . . . . . 43

7-12 Compare the reconstruct of moment of inertia (red) by EKF algorithm with calculated
value (dotted blue line) for x, y and z axes respectively as well as the moment of inertia
of rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7-13 The red dotted line is near hover condition of three meters, the blue line is the real
flight altitude of AR Drone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B-1 Earth Centred Earth Fixed (ECEF) and East, North, Up (ENU) coordinates [1]. . . . 54

C-1 UKF state filtering: measured (blue) and estimated (red) for position and velocities
at x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

C-2 UKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities around the x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . 56

C-3 EKF state filtering: measured (blue) and estimated (red) for position and velocities
at x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C-4 EKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities at x, y, and z-axes respectively. . . . . . . . . . . . . . . . . . . . . . . . . 57

Qianying Li Master of Science Thesis



List of Tables

3-1 Specifications of the Flex cameras. FOV and FPS stand for Field Of View and for
frames per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4-1 The table illustrates the calculated and measured parameters of AR Drone 2. . . . . 16
4-2 Compare the measured load and rest voltages with the calculated voltage under load

of AR Drone 2, the estimated error 1, 2, 3 and 4 are relevant to Eq. 4-19, 4-20, 4-21
and 4-22, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5-1 Propagation procedure of UKF and EKF . . . . . . . . . . . . . . . . . . . . . . . . 24

6-1 Comparison between estimated and true parameters, the error is included as bracketed
points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6-2 The number of required iterations based on three algorithms . . . . . . . . . . . . . 33

7-1 Fits for the identification and validation data . . . . . . . . . . . . . . . . . . . . . 36
7-2 Fits for the identification and validation data . . . . . . . . . . . . . . . . . . . . . 38
7-3 Fits for the identification and validation data . . . . . . . . . . . . . . . . . . . . . 39
7-4 Fits for the identification and validation data . . . . . . . . . . . . . . . . . . . . . 39
7-5 The table illustrates the performance of the parameter estimation of UKF . . . . . . 42

A-1 Measurements of weight, dimensions and distance of the center of gravity, the moment
of inertial along x, y, z-axes can be computed . . . . . . . . . . . . . . . . . . . . . 49

A-2 Measurements of weight, dimensions and distance of the center of gravity, the moment
of inertial along x, y, z-axes can be computed . . . . . . . . . . . . . . . . . . . . . 50

A-3 Measurements of weight, dimensions and distance of the center of gravity, the moment
of inertial along x, y, z-axes can be computed . . . . . . . . . . . . . . . . . . . . . 50

A-4 Measurements of thrust by using the weighting scale and the corresponding thrust
command to each engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A-5 Measurements of torque by using the weighting scale and the corresponding thrust
command to each engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Master of Science Thesis Qianying Li



x List of Tables

Qianying Li Master of Science Thesis



Glossary

List of Acronyms

SIM Subspace Identification Method

PEM Prediction Error Method

FEM Filter Error Method

EEM Equation Error Method

LTI Linear Time-Invariant

MIMO Multiple Input Multiple Output

SISO Single Input Single Output

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

MREKF Multi-Rate Extended Kalman Filter

MRUKF Multi-Rate Unscented Kalman Filter

ENU East-North-Up

GCS Ground Control Station

RPM Revolutions Per Minute

IMU Inertial Measurement Unit

GPS Global Position System

ECEF Earth Center Earth Fixed

BJ Box-Jenkins

OEM Output Error Method

NASA National Aeronautics and Space Administration

Master of Science Thesis Qianying Li



xii Glossary

Qianying Li Master of Science Thesis



Chapter 1

Introduction

Micro aerial vehicles (MAVs) are small-scale aircraft which have been developing rapidly in
recent years and are known as the best vehicles for the civil applications in the fields of surveil-
lance, rescue missions, fire detection, agricultural spraying and reconnaissance. Thanks to their
structural simplicity, relatively low cost and extraordinary manoeuvrability, great fascination
and attention have been exerted on MAV design and control for development and research.

1-1 Motivation and objective

As one of the hottest areas for MAVs, the development of the cutting edge control system is still
a challenging goal. To be a time-saving, cost effective approach, model-based control design is
indispensable to success in the high-tech industries owing to its working efficiency; therefore, a
model is required to synthesize the controller. The core of this work is to investigate the model
of a quadrotor based on the grey-box system identification techniques for the control purpose.
Grey-box system identification, the impetus behind the research presented in this thesis, is an
effective approach for estimating the model.

1-2 Related work and proposed methods

System identification modeling obtains the actual quadrotor dynamics by using real flight data.
In most cases, it is preferable to use black-box system identification methods due to the lack of
knowledge about the hardware and software running on the quadrotor, or the lack of or in-
accuracy of measurements. In Lotion’s MSc thesis [20], Subspace Identification Method (SIM)
was used under closed-loop conditions, but owing to the low fits, the model was considered
not suitable for off-line controller design. Prediction Error Method (PEM) is also available for
decoupled black-box submodels [10], the validation results seem valid for control purpose. In
addition to the black box identification methods, the grey-box system identification method
has become a popular approach to obtain practical Linear Time-Invariant (LTI) Multiple Input
Multiple Output (MIMO) parametric models for quadrotors. Yuan and Katupitiya [27] proved
Output Error Method (OEM) in SIDPAC as a useful tool for parameter estimation, and SID-
PAC has been successfully used at National Aeronautics and Space Administration (NASA)
Langley Research Center [27]; a model was identified in partitioned systems. Besides, an in-
teresting comparison among the modern methods of aircraft parameter estimation [22] was
investigated by using real flight data, which indicated that the performance of Filter Error
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2 Introduction

Method (FEM) prevailed over OEMs and Equation Error Method (EEM) in presence of turbu-
lence and noise. Thus, the proposed system identification Methods in this work are the two
Filter Error methods—Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), and
this work mainly focuses on the nonlinear model identification.

1-3 Overview

The block diagram below shows the procedure for nonlinear model identification.

Figure 1-1: The block diagram of the identification procedure for nonlinear model

The whole block diagram can be divided into three categories, they are the model parameter
identification, simulation and system identification, which are the main parts of this work and
will be described in this thesis in more detail.

1-4 Outline

This thesis is structured as follows:

• Chapters 2 introduces the modeling of the quadrotor and provides the derivation of the
nonlinear and linearized models based on Newton-Euler formalism, then followed by the
introduction of the main experimental setups in Chapter 3.

• Chapter 4 estimates the model parameters; special attention is given to the motor-rotor
system and basic measurements of AR Drone 2.
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1-4 Outline 3

• Chapter 5 focuses on the identification algorithms needed to estimate unknown parame-
ters. EKF and UKF as well as Multi-Rate Unscented Kalman Filter (MRUKF) are adopted
in this chapter. Next chapter illustrates the quadrotor simulator based on a nonlinear
model; the goal of this Matlab-Simulink program is to test the correctness and perfor-
mance of the algorithms for parameter identification purpose.

• Chapter 7 shows the implementation of the proposed algorithms on real flight data. The
experimental results of the identification algorithms are reported, and the constraints and
uncertainties are discussed in depth. Chapter 8 concludes with the performance and
the results of the work and proposes solutions to improve the accuracy of parameter
estimation, thereby obtaining a more precise model.

• More information on this work can be found in literature report [19].

Master of Science Thesis Qianying Li
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Chapter 2

System Modelling

Aero-elastic effects, internal dynamics of engine, flexibility of the wings and the whole set of
changing variables render the modelling of the complete dynamics of AR Drone 2 (the quadro-
tor used in this project) highly challenging and unmanageable. Moreover, since AR Drone 2
has four rotors, which can be considered even more nonlinear than other rotorcraft despite its
symmetrical mechanics. For the control purpose, a simplified model with main features must
be considered and formed by the substantially decreased states and inputs. In the literature
study, four models based on two different approaches (Euler-Lagrange and Newton-Euler) are
discussed in depth. Consequently, this chapter is concise and only encompasses the models
which are used in this project, more details on these can be found in [19].

2-1 Nonlinear and linear Newton-Euler model for an X-type AR
Drone

This project introduces an "X-type" AR Drone 2 flying configuration, considering two frontal
engines and two rear engines. The AR Drone 2 dynamical model equations are based on the
Newton-Euler formalism, where the nonlinear dynamics are obtained in body-fixed and East-
North-Up (ENU) inertial frames, see Fig. 2-1. The AR Drone 2 is controlled by the angular
speeds of four separate electric motors. Each motor produces a thrust and torque, and the com-
bination of these thrusts and torques generates the total thrust, the roll torque, the pitch torque
and the yaw torque. Given that the motors of AR Drone 2 can only turn in a fixed direction,
the produced thrust force Ti is always positive, the sub-index denotes the serial number of the
rotor in Fig. 2-1 . In trimmed flight (near-hover), with the rotation arrangement in Fig. 2-1,
both gyroscopic effects and aerodynamic torques have a tendency to cancel.
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6 System Modelling

Figure 2-1: The quadrotor in an inertial frame. Ti and τi represent the thrust and torque of motor
i

Let {X, Y, Z} describe the body-fixed frame and {E, N, U} represent the inertial reference frame.
The position vector of the center of mass of the AR Drone is representing the position coordi-
nates of the vehicle relative to the ENU, which is denoted by ξ =

(
x y z

)T, the orientation

vector with respect to the ENU is described as η =
(
φ θ ψ

)T, where φ, θ and ψ are the roll,
pitch, yaw Euler angles, respectively. The rotational speed of AR Drone relative to body-fixed
frame is expressed by Ω =

(
p q r

)T. Then the full nonlinear dynamics of the AR Drone is
given by [15]:

mξ̈ = −mgU + RF (2-1)
IΩ̇ = −Ω× IΩ + τ (2-2)

where m and g are the total mass and gravitational constant respectively, R is the plane rotation
matrix (see Appendix B) that associates the inertial frame with body-fixed one, F denotes the
total force applied to the quadrotor and has one component in the Z direction. I and τ denote
the inertia matrix and the total applied torque. The plane rotation matrix and the rotational
velocities matrix can be found in Appendix B. Let

(
T1 T2 T3 T4

)T represent the thrust gen-

erated by each rotor and
(
τ1 τ2 τ3 τ4

)T the corresponding torque. Assume the torque τi
generated by each rotor is proportional to its thrust: τi = CMTi. Then the input matrix for the
nonlinear system can be expressed as:

T
τφ

τθ

τψ

 =


1 1 1 1
L −L −L L
L L −L −L
−CM CM −CM CM




T1
T2
T3
T4

 (2-3)

Where L denotes the distance between the center of mass and the center of the rotor. The model
of AR Drone 2 is formed by considering all the significant effects and a minimum number
number of inputs and states, but the main features are reserved for designing the control laws.
The dynamical model of AR Drone 2 is formulated based on the following assumptions.

Assumptions:

1. The structure of AR Drone 2 is rigid and highly symmetrical.
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2-2 The state-space model description 7

2. The propellers are rigid, the thrust is parallel to the axis of the rotor, thus flexibility of the
propellers is neglected .

3. The centre of gravity of AR Drone 2 and the origin of the body frame (cross center) are
assumed to coincide.

4. No turbulence and airflow through the rotor indoors which guarantees that all the coef-
ficients are constant (static trust and torque).

5. AR Drone. 2.0 flies higher than one rotor diameter, which ensures that the ground effect
could not influence the flight data (in real flight tests, AR Drone 2 flies at an altitude of
more than 2 meters except take-off and landing).

6. Last but not least, the model holds for near hovering, and neglects the blade flapping,
change in advance ratio and effects of translational lift.

Using Eq. 2-1 to Eq. 2-3, the nonlinear dynamical model can be represented as:

ẋ = vx
ẏ = vy
ż = vz

v̇x = −(sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ)) T
m

v̇y = −(cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ)) T
m

v̇z = cos(θ) cos(φ) T
m − g

φ̇ = p + sin(φ) tan(θ)q + cos(φ) tan(θ)r
θ̇ = cos(φ)q− sin(φ)r
ψ̇ = sin(φ) sec(θ)q + cos(φ) sec(θ)r
ṗ =

Iy−Iz
Ix

qr + Ir
Ix

qΩ +
τφ

Ix

q̇ = Iz−Ix
Iy

pr− Ir
Iy

pΩ + τθ
Iy

ṙ =
Ix−Iy

Iz
qp +

τψ

Iz

(2-4)

where Ω = ωrot,2 + ωrot,4 − ωrot,1 − ωrot,3 is the counter clockwise residual Revolutions Per
Minute (RPM), resulting in rotor gyroscopic effect, especially, in the case of aggressive ma-
noeuvres. ωrot,i is the angular velocity for the i-th rotor. Linearising this model under the
hypothesis of small angular values gives the linearised model:

z̈ ≈ T
m − g

φ̈ ≈ τφ

Ix

θ̈ ≈ τθ
Iy

ψ̈ ≈ τψ

Iz

(2-5)

Both the nonlinear and linear models are formed in the equations. For the better understanding
of the dynamic system, the state-space models are introduced afterwards.

2-2 The state-space model description

The state-space structure of the AR Drone can be written as:

ẋ = Ax + Bu + Lw (2-6)
y = Cx + Mv (2-7)

where x is the system state and u is the control input, while w and v are the process and mea-
surement noise. The state vector x is x = [x y z vx vy vz φ θ ψ p q r]T and the control vector
is u = [T τφ τθ τψ]T . This leads to a state-space structure of the following dynamics, controller
matrices as well as measurement matrix representing the bare airframe model dynamics.
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8 System Modelling

Nonlinear state space model

ẋ =


03×3 13×3 03×3 03×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 L1
03×3 03×3 03×3 L2

 x +


03×1 03×3
L3 03×3

03×1 03×3
03×1 L4

 u− g


03×1
L5

03×1
03×1

 (2-8)

where

L1 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)

 , L2 =

 0 Iy−Iz
Ix

r + Ir
Ix

Ω 0
Iz−Ix

Iy
r− Ir

Iy
Ω 0 0

Ix−Iy
Iz

q 0 0

 (2-9)

L3 =

−(sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ)) 1
m

−(cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ)) 1
m

cos(θ) cos(φ) 1
m

 , L4 =


1
Ix

0 0
0 1

Iy
0

0 0 1
Iz

 , L5 =

0
0
1

(2-10)

For the measurement matrix, the responses of AR Drone for a sequence of flight, starting from
slow speed motors rotation to high speed motors rotation, followed by take-off, hover, doublet
(can be replaced by other manoeuvre) and landing are analyzed. The measurement data for
positions, velocities, Euler angles and angular velocities are read by sensors and then recorded.
The exhaustive illustration about the working principle of each sensor and the corresponding
measurement data can be found in the next chapter. Thus the measurement matrix is only a
twelve by twelve diagonal identity matrix.

x
y
z

vx
vy
vz
φ
θ
ψ
p
q
r



=



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1





x
y
z

vx
vy
vz
φ
θ
ψ
p
q
r



(2-11)

Linear state space model

According to Eq. 2-5, the linear state-space model can be obtained in a simple form; therefore,
this model is not described in this part.

In this chapter, the AR Drone dynamical model equations are modelled based on a Newton-
Euler formalism. It is also possible to use the Euler-Lagrange approach to obtain the same set
of equations [21].
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Chapter 3

Experimental Setup

In this project, the AR Drone 2, the sensors and associated codes are supported by Micro Air
Vehicle laboratory (MAVlab). Due to the help of MAVlab, all the flight tests and measurement
can be accomplished in time. In this chapter, the AR Drone’s main sensors are presented,
which are fundamental to identify the robot’s position, rotational speed, translational speed
and attitude. Moreover, it is worth noting the importance of Paparazzi. Without this software,
the data cannot be read and logged.

3-1 AR Drone 2

Figure 3-1: Parrot AR.Drone 2 without protective indoor hull

The Parrot AR Drone 2 is one of the most widely used commercially available quadcopters
and represents the latest development of the renowned high tech quadcopter, which is eas-
ily controlled by Wi-Fi using a tablet or smartphone. It is a self-stabilising four bladed heli-
copter mounting two HD cameras on board through which the surrounding environment can
be viewed while flying in real-time. Depending on the Wi-Fi signal strength, the flying range
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10 Experimental Setup

is about 50 meters, and the lifetime of supplied lithium battery is of 16 minutes. For the further
reading about Parrot AR. Drone 2, the product specification can be found on [2].

3-2 MAV-Laboratory and Paparazzi

3-2-1 MAV-Laboratory

The MAV-Laboratory is part of the Delft Robotics Institute, the goal of which is to study and
create small autonomous air vehicles. MAVlab provided the AR Drone to do the flight test and
gave help in developing and performing the parameter estimation technically. All the available
measurement setups are created by MAVlab for the research purpose.

3-2-2 Paparazzi

Paparazzi is a free and open-source software and hardware project encompassing an excep-
tionally powerful and versatile autopilot system for fixed-wing aircraft as well as multicopters.
This powerful open source has already been adapted as an autopilot for use with the Parrot
AR Drone. Hence, it is able to perform GPS-based autonomous indoor and outdoor flight. Pa-
parazzi can set the airframe, create the personalized flight plan, and on top of that, the real-time
data can be logged, it is also free to add the sensors and write the scripts. Thanks to the con-
venience of Paparazzi, the project could be processed smoothly. In this work, the simple flight
plan is written for the flight test. Since the flight test is not very aggressive, this can be done
directly in Paparazzi Ground Control Station (GCS) by dragging the waypoint to the desired
place. The logged data in ’xml’ file format is in a Matlab friendly format which can be read
expediently. For more information about how to use Paparazzi, an official website is available
to learn [3].

3-3 Sensors

In our setup the exploited sensors are an accelerometer and a gyroscope, other sensors are a
Global Position System (GPS) module (connected with camera system), a RPM sensor (soldered
and used), and a magnetometer (soldered). The used sensors will be described explicitly in the
following subsections.

3-3-1 RPM sensor

Figure 3-2: Arduino Pro Mini - 5V/16MHz (ATMEGA328)
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3-3 Sensors 11

The Arduino microcontroller is used to measure the time between pulses caused by the rotation
of the engine, from which the RPM of the engine can be deduced. Specifically, the engines of
AR Drone are controlled by power, not by voltage. The voltage is constant and equal to the
battery voltage, but the power depends on how much of the time the engine is "on", which is
called pulse width modulation. These pulses are supplied to engines and can be tracked. The
way in this project to track the number of these pulses is simply to use a wire and connect it to
a pin of the engine controller that is read out by the Arduino microcontroller. The value read
out by Arduino microcontroller is a pulse that is measured once or several times during every
round of the engine. Essentially speaking, this value is the ticks of CPU, which runs at 8MHz.
By the calculation, the number of the pulses measured per round of engine is assumed to be
four, the reason is that the RPM computed by four then matches the specification of the AR
Drone, which is 28500 RPM in hover. Consequently, the relation between rotational speed and
the measured value is given by:

ωeng (rad/s) = 2000000/(value f rom RPM sensor) ∗ 2 ∗ pi (3-1)

with ωeng the engine speed.

3-3-2 IMU

Figure 3-3: Navigation board

IMU is the acronym of Inertial Measurement Unit (IMU), which identifies a sensor capable of
measuring the orientation of a body through inertial sensors [14]. In particular, fast and highly
dynamic motions can be precisely estimated over short periods of time by fusing rotational
velocity and linear acceleration measurements provided by IMU. The IMU provides measure-
ments of the airframe accelerations in body frame and angular rates (3 axis accelerometer +/-
50mg precision and 3 axis gyroscope 2000 degree/second precision). The IMU collects the ac-
celerometer data via a dedicated interface, while synchronizing data sampling at a user defined
rate [4].
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12 Experimental Setup

3-3-3 Vision system and GPS

Figure 3-4: The distribution of cameras in the flight arena

In the figures above is a large (10m*10m*7m) arena for heterogeneous autonomous robots, in-
cluding the flying and ground platforms. This space is equipped with twenty-four cameras
with a motion capture systems that cover almost the entire volumetric arena. From each flight
test, an enormous quantity of data can be collected, which includes the motion capture data
and the telemetry information from each robot, etc. The motion capture software used is
OptiTrack’s unified platform Motive, and the type of OptiTrack camera is Flex 13, which is
a medium volume motion capture camera with excellent precision . The table below shows the
specifications of Flex 13 [5].

Table 3-1: Specifications of the Flex cameras. FOV and FPS stand for Field Of View and for frames
per second.

Type Resolution Frame Rate
Horizontal

FOV
Filter Switcher Interface

No. of
LEDs

Flex 13 1280× 1024 120 FPS 42◦, 56◦ Optional USB 2.0 28

Figure 3-5: Motion capture software: Motive
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3-4 Sensor fusion 13

Getting accurate position of objects in the observable OptiTrack can be achieved as follows.
Using the attached twenty-eight infrared LEDs, the pulsed infrared light is sent out by Flex
13, and is then be reflected by markers (LED lights or reflexible markers) on AR Drone 2 and
detected by Flex 13. Afterwards, the 3D video of the objects will be streamed to Motive. It
should be noted that the bad quality and the small number of markers will do the tracking a
disservice. Even regardless of the reflection quality of markers, the tracking quality is largely
susceptible to the light from outdoors through the windows as well. Knowing the position of
those markers from the perspective of several cameras, the actual 3D position of the AR Drone
2 in the arena can be computed using triangulation. This information of 3D position is then
sent via multicast to Paparazzi by using the NatNet protocol, in this fashion, the GPS’s data is
collected .

3-4 Sensor fusion

Figure 3-6: Connection between sensors and measurement matrix

In chapter 2, it is noted that the measurement matrix is a twelve by twelve diagonal identity
matrix. In Fig. 3-6, ROTORCRAFT_FP, IMU_GYRO_SCALED, IMU_ACCEL_SCALED and
GPS_INT are the message names in the message bar in Paparazzi, which are the measurements
of the true position, attitude, translational speed and rotational speed of the AR Drone 2 with
measurement noise and bias at each time step . Moreover, the errors caused due to the integra-
tion of the bias and noise in the IMU can be significantly reduced by processing observations
to markers detected in camera system. In fact, the measurement noise in GPS_INT is much
smaller than that in ROTORCRAFT_FP. By using the transformation matrix, it is easy to trans-
form from Earth Center Earth Fixed (ECEF) coordinates to East-North-Up (ENU) coordinates.
In appendix B, one can find more information with regard to the transformation matrix and
ECEF coordinates. Summarily, the measurement needed for EKF and UKF by the sensors can
be described as:

• GPS: x’, y’, z’ (measured in ECEF coordinates)

• Gyro: p, q, r (measured in body-fixed coordinates)

• Sensor fusion information of IMU and extra: vx, vy, vz (measured in ENU coordinates),
φ, θ, ψ
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The measurement listed above are used for the nonlinear model Eq. 2-4.
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Chapter 4

Model Parameter Identification

The implementation of EKF and UKF requires a good initial guess of moment of inertia and ac-
curate inputs. The variables of the model are estimated using a ruler and weighting scale. Even
with all these variables, the inputs (thrust and torque) are unknown. Obtaining these inputs
requires identifying the motor-rotor system in advance, which leads to the preliminary identifi-
cation of engine dynamics and propeller aerodynamics. Some rudimentary measurements and
tests should be carried out before the real flight test. Fig. 4-1 accurately describes the relations
between the thrust command and thrust, thrust command and torque of each propeller.

Figure 4-1: Block diagram of the thrust and torque generation process

4-1 Mass and Moment of Inertia

4-1-1 Moment of inertia

For accuracy, AR Drone 2 is disassembled into small parts. Assuming each part as cylindrical
or bar shapes permits computing the local moments of inertia by weighing and dimensioning
each part, the equations below are used to calculate the disassembled parts. One can refer to
[14] for more specific information.

Icyl =
1
2

mir2
i (4-1)

Ibar =
1
12

mi(l2
i + w2

i ) (4-2)

with ri the radius of cylinder, li and wi the part length and width of the bar. By knowing the
inertia of each part as well as the distance to the central axis ri,c, the moment of inertia along
the x, y and z-axis can be easily calculated.

Ix = ∑ Ix,i + mir2
i,c (4-3)

Iy = ∑ Iy,i + mir2
i,c (4-4)

Iz = ∑ Iz,i + mir2
i,c (4-5)
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16 Model Parameter Identification

4-1-2 Rotor inertia

The nonlinear model also encompasses rotor gyroscopic effect when the residual rotor RPM is
not perfectly equal to zero, it is necessary to calculate the rotor inertia. Assuming the rotor as
point mass, a rod and a disc gives certain bounds to estimate the moment of inertia of the rotor.
The following parameters of each rotor have been computed in advance.

m = 3.55 · 10−3 kg, D = 198 · 10−3 m, R = 99 · 10−3 m

Modelling by point masses

The simplest model assumes the mass point of each blade is located at the center of gravity of
each blade. Cut a rotor into two pieces, the center of gravity of each piece is roughly at 40% of
the radius. Then the moment of inertia of each rotor can be determined as follows:

I = 2 · m
2
· (0.4R)2 = 3.55 · 10−3 · (0.4 · 99 · 10−3)2 = 5.566968 · 10−6 kg ·m2 (4-6)

Since the outer regions of the rotors are not modelled, the result obtained by this method gives
a lower bound of the true value [6].

Modelling by a rod

The rotor can also be replaced by a solid rod of equal mass. The result below gives the upper
bound on the grounds that the distribution of mass is not even along the radius.

I =
2
3
·m · R2 =

2
3
· 3.55 · 10−3 · (99 · 10−3)2 = 2.31957 · 10−5 kg ·m2 (4-7)

Modelling by a disc

Assuming the rotor mass is evenly distributed over the disc area, a solid thin disk of equal mass
can be used to replace the rotor.

I =
1
2
·m · R2 =

1
2
· 3.55 · 10−3 · (99 · 10−3)2 = 1.7396 · 10−5 kg ·m2 (4-8)

According to the accurate pendulum experiment [6], it is sufficient enough to take the mean
value of the rod and the disc model. The final estimated moment of inertia is:

Ir = 2.02 · 10−5 kg ·m2 (4-9)

Table 4-1: The table illustrates the calculated and measured parameters of AR Drone 2.

Parameters Value Unit Remark
g 9.80665 m/s2 Gravity acceleration
m 0.429 kg Mass of AR Drone 2

L 0.1785 m
Distance between the center of the mass and the

center of the rotor
Ix 0.002237568 kg ·m2 Moment of inertia for x-axes
Iy 0.002985236 kg ·m2 Moment of inertia for y-axes
Iz 0.00480374 kg ·m2 Moment of inertia for z-axes
Ir 2.029585 · 10−5 kg ·m2 Moment of inertia of each rotor

In the appendix A, Table A-1, A-2 and A-3 illustrate the masses and dimensions of all the
disassembled parts, one can refer to this table for the further reading.
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4-2 Engine dynamics 17

4-2 Engine dynamics

For simplicity, the engine model can be modelled in a reduced form, without losing its main
features. The back emf effect voltage and the output torque of engine can be described as:

vb = kvω

Te = ki

with kv the back emf constant, ω the angular velocity of engine and k the torque constant.
Leaving out the electromagnetic losses (magnetic field is constant) gives rise to the equivalence
between the mechanical power and the electrical power dissipated by back emf effect. In SI
units, the motor torque and back emf constants are same; therefore, k is used to represent both
the motor torque constant and the back emf constant. Neglecting the engine inductance l, the
dynamic equation of the engine is given by:

i =
V − kω

R
(4-10)

Te = J
dω

dt
+ bω + T (4-11)

where V is applied voltage, T is the torque, R and b are the armature resistance and damping
coefficient respectively, and J is the engine inertia. With further substitution, T is given by:

T =
k
R
(V − kω)− Jω̇− bω (4-12)

With Laplace transform, the equation is described in the form of transfer function.

ω

V
=

k
k2 + R(Js + b)

(4-13)

The inputs are the roll, pitch, yaw and thrust coefficients [3], Paparazzi has the set-point gen-
erator which computes and combines these inputs to the motor mixing commands. In order to
avoid using the input signal which is included in certain calculations by Paparazzi, the motor
mixing command is extracted from script, and is the input directly to each engine. The param-
eters of the engine dynamics model are identified by giving different step thrust input com-
mands to the motor controller and measuring the value of the rotation speed by using RPM
sensor. With the usage of Matlab command lsqnonlin based on the nonlinear least squares
method, the optimal value of the unknown parameters of the engine model results in the fol-
lowing parameters:

k = 1.3014, b = 3.7400, R = 0.6029[Ω] J = 0.1215[kg ·m2], ωen = ω + 1141.7[rad/s]

with ωen the engine speed. 1141.7 [rad/s] is engine minimum rotational speed when the engine
is "on". The measured and estimated responses can be compared in Fig. 4-2.
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18 Model Parameter Identification

Figure 4-2: Comparison of the real spin-up and spin-down and the corresponding modelled engine
dynamics

4-3 Aerodynamic coefficients identification

The thrust factor b and drag factor d of rotors are two important aerodynamic coefficients. From
Blade Element Theory, both the thrust and the torque created by a rotor with a linearly twisted
blade are proportional to rotor rotation speed squared [21].

Ti = bω2
i τi = dω2

i

The static thrust and torque can be measured by different methods, in which the wind tunnel
test is the most precise one. Due to the limitation of the time and experimental setup, two
simple experiment setups are created to compute the coefficients.

4-3-1 Thrust and torque measurement

Figure 4-3: The thrust measurement setup

AR Drone 2 is placed upside down on a scale while using a foam pillar to get rid of the ground
effect. To avoid the disturbance and noise as well as the inaccuracy of setup, five to ten sets of
data are measured for each step thrust command. The derived data set shows a high consis-
tency for each step thrust command. Same step thrust command is given to each engine, thus
the total thrust measured by weighing scale is divided by four, by means of which the thrust
for each rotor can be calculated. The data relative to the thrust measurement can be found in
appendix A, Table A-4.
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4-3 Aerodynamic coefficients identification 19

Figure 4-4: Setup for rotor torque identification experiment

In Fig. 4-4, the AR Drone 2 is placed on a rotating disk which is assumed without friction by
consequence guarantees the right measurement of the rotor torque. A rigid bar with length
d is attached to the AR Drone’s center of mass and the other end of the bar is applied to the
weighing scale, so that the torque M caused on the AR Drone’s airframe due to the rotation of
one rotor can be estimated as:

M =
mg

1000
sec(θ)d [N m] (4-14)

Compared with the rotor thrust measurement, a lower consistency of the different data sets for
each thrust command is observed. In order to make the torque measurement more reliable,
twenty-five sets of data for each thrust command are tested. The mean of 24 datasets for each
step command is used to fit the model, and the last set is used to validate the model. The huge
sets of measurement data can be found in appendix A, Table A-5.

4-3-2 Thrust and drag coefficients

For control purpose, the quadratic term should be sufficient to describe the relation between the
angular velocity of each rotor and the corresponding torque and thrust. However, a better fit
appears by adding a linear and constant term. Considering that the basis of the accurate iden-
tified model highly depends on the precision of the input and output data, both the quadratic
relation and the quadratic term with added linear and constant term relation are considered
and compared in details.

Thrust coefficient

By using the least square curve fitting method, the relation becomes:

T1,i = 8.048× 10−6ω2
rot,i (4-15)

T2,i = 8.386× 10−6ω2
rot,i − 3.723× 10−5ωrot,i − 0.03818 (4-16)

Fig. 4-5 gives the mean of measured thrust values of several data sets and the estimated thrust
values obtained by Eq. 4-15 and Eq. 4-16. It can be seen that adding a linear and constant term
does improve the fit in the range from minimum to maximum rotational speed. Thus for iden-
tification purpose, this model will be utilized for obtaining high identification performance.
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20 Model Parameter Identification

Figure 4-5: A series of thrust measurements compared to the estimated values based on the rotor
speeds, estimation 2 is the model with only quadratic term while estimation 1 is the one including
linear and constant term.

Figure 4-6: Another set of thrust measurements as validation data compared to the estimated values
based on the rotor speeds, estimation 2 is the model with only quadratic term while estimation 1 is
the one including linear and constant term.

Drag coefficient

The same method is implemented to derive the drag coefficient, the relation is given by:

τ1,i = 2.423× 10−7ω2
rot,i (4-17)

τ2,i = 2.903× 10−7ω2
rot,i − 3.035× 10−5ωrot,i + 0.04466 (4-18)

Figure 4-7 gives the mean of the measured torque values of twenty-four data sets and the esti-
mated torque values obtained by the above equations. In stark contrast to the thrust estimation
it can be found that the torque estimation is relatively imprecise due to the inaccurate and
rough measurement instrument, though the error has already been decreased significantly by
taking the mean of numerous sets of data. Similarly, it can be also seen that adding a linear and
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4-4 Battery consumption 21

constant term does improve the fit in the range from minimum to maximum rotational speed,
thus for identification purpose, this model will be utilized for high identification performance.

Figure 4-7: A series of torque measurements compared to the estimated values based on the rotor
speeds, estimation 2 is the model with only quadratic term while estimation 1 is the one including
linear and constant term.

Figure 4-8: Another set of torque measurements as validation data compared to the estimated values
based on the rotor speeds, estimation 2 is the model with only quadratic term while estimation 1 is
the one including linear and constant term.

Observe that the maximum rotor speed is highly susceptible to the battery voltage under load,
apparently in Fig. 4-6 and 4-8. The voltage drops while flying; therefore, the estimation of rotor
aerodynamics for high rotor speed is invariably less accurate. However, this issue poses no
effect on identification since the flight test of AR Drone is not aggressive.

4-4 Battery consumption

The full battery voltage in rest is 12.65 Volts, the minimum voltage under load to maintain
the normal flight is 10 Volts theoretically; nevertheless, the AR Drone shuts down the engine
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22 Model Parameter Identification

somewhere between 10 to 10.5 Volts. For the sake of safety, low battery pack is not suitable
to do the flight test. Meanwhile, considering the influence of the maximum rotor speed, it
is also important to identify the relation between the voltage under load and voltage in rest.
The relation is assumed to be quadratic and static and is identified by logging the measured
battery voltage after it has settled when the series of step inputs are applied to AR Drone. Four
different relations are calculated as,

Vload = Vrest − 8.089× 10−9U2 − 1.649× 10−5U (4-19)
Vload = Vrest − 8.104× 10−9U2 − 1.416× 10−6UVrest (4-20)
Vload = Vrest − 1.022× 10−8U2 − 0.001817Vrest (4-21)
Vload = 0.9996Vrest − 8.342× 10−9U2 − 1.231× 10−6UVrest (4-22)

where U is the average thrust command to four engine, Vload and Vrest are the voltage under
load and in rest respectively. The table below shows the results by applying Eq. 4-19, 4-20, 4-21
and 4-22, where the data set is randomly selected among several battery and input levels.

Table 4-2: Compare the measured load and rest voltages with the calculated voltage under load
of AR Drone 2, the estimated error 1, 2, 3 and 4 are relevant to Eq. 4-19, 4-20, 4-21 and 4-22,
respectively.

Rest voltage
[V]

Load Voltage
[V]

Estimated
Error 1 [V]

Estimated
error 2 [V]

Estimated
error 3 [V]

Estimated
error 4 [V]

11.15 11.15 0 0 0.0203 0.0039
11.15 11.10 -0.0254 -0.0261 -0.0195 -0.0240
11.15 11.10 0.0153 0.0140 0.0112 0.0147
11.15 11.00 -0.0277 -0.0297 -0.0377 -0.0298
11.15 10.95 -0.0046 -0.0072 -0.0162 -0.0077
11.10 10.85 0.0347 0.0312 0.0257 0.0308
11.10 10.70 -0.0100 -0.0319 -0.0118 -0.0138
11.00 10.50 0.0118 0.0061 0.0209 0.0074

Eq. 4-19 gives the smallest sum of the absolute value of estimated error, which signals that this
model is the most suitable model to describe the relation.
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Chapter 5

Identification Algorithm

The identification algorithms tested in this project are presented in this chapter. The unscented
Kalman filter (UKF) was first published in 1995 and proposed by Julier and Ulhman [16][23][17].
The early attempt to adapt this Kalman filter to nonlinear models was accomplished using the
Extended Kalman Filter (EKF) [18]. In terms of the state estimation, both of them are able to
track the state successfully for aircraft [9], [8] and [25]. However, it is also interesting to explore
their application for the parameter estimation, since the calculated moments of inertia in chap-
ter 4 are not accurate. In contrast with state estimation, less literature can be found relative to
the parameter estimation for the quadrotor [8]. In addition to EKF and UKF, multi-rate Kalman
filter is another interesting algorithm to explore, especially in the case of the multi-sensor prob-
lem with different sampling rates. This chapter is organized as follows. Section 5.1 gives a
general description of EKF and UKF, respectively, section 5.2 discusses the multi-rate Kalman
filter in depth, including the nonlinear multi-rate model description described by input-hold
mechanism, Multi-Rate Extended Kalman Filter (MREKF) and multi-rate unscented Kalman
filter concisely. Next,the augmented state description for parameter estimation is discussed.

5-1 Extended and Unscented Kalman Filter

Both EKF and UKF have already been described at large in the literature report [19] and thus
will be introduced concisely in this section.
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Figure 5-1: Propagation of distributions for EKF and UKF [25]

The basic idea for UKF is based on the principle that it is easier to approximate through a
probability distribution than through a nonlinear transformation. Table 5-1 lists the comparison
of the working procedure between EKF and UKF.

Table 5-1: Propagation procedure of UKF and EKF

UKF EKF

1. UT transform and create sigma points
1. Linearize the model by computing

the Jacobin matrix
2. Propagate the sigma points through

process model
2. Compute the predicted mean and
covariance of the linearized model

3. Calculate the transformed mean and
covariance

3. Compute the Kalman gain

4. Compute the Kalman gain
4. Update the state estimate with

measurements

5.
Update the state estimate with

measurements

Unlike its linear counterpart, EKF is more sensitive to the initial estimate of the state and co-
variance matrix, and is found not to be an optimal estimator. If one of the initial estimates is
incorrect, the filter is not able to converge and track the state. On the contrary, as an improve-
ment over EKF, UKF tends to have the better performance in terms of accuracy and robustness.
For a deep understanding of the working principle, the algorithms of EKF and UKF are de-
scribed in the following subsections.

5-1-1 Extented Kalman filter

The system model and measurement model of continuous-discrete filtering problem are ex-
pressed as [7]:

ẋ(t) = f (x(t), u(t)) + w(t), w(t) ∼ N(0, Q(t))
zk = h(xk) + vk, vk ∼ N(0, Rk)
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5-1 Extended and Unscented Kalman Filter 25

Where xk = x(tk), w(t) and vk are the process and measurement zero mean Gaussian noises
with covariance Q(t) and Rk respectively.

Initialize

x̂0|0 = E[x(t0)]

P0|0 = Var[x(t0)]

Predict

Predicted state estimate:
{ ˙̂x(t) = f (x̂(t), u(t))

x̂(tk−1) = x̂k−1|k−1
, thus x̂k|k−1 = x̂(tk)

Predicted covariance estimate:
{

Ṗ(t) = F(t)P(t)+P(t)F(t)T+Q(t)
P(tk−1) = Pk−1|k−1

, thus Pk|k−1 = P(tk)

where F(t) = ∂ f
∂x |x̂(t),u(t) is the Jacobian matrix of f.

Update

Kalman gain: Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

Updated state estimate: x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1))
Updated covariance estimate: Pk|k = (I − Kk Hk)Pk|k−1

where Hk =
∂h
∂x |x̂k|k−1 .

5-1-2 Unscented Kalman filter

The standard UKF algorithm can be summarized in the following steps:

1. Initialization with:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
T]

x̂a
0 = E[xa] =

[
x̂T

0 0 0
]T

Pa
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)

T] =

P0 0 0
0 Q 0
0 0 R



2. Update
Calculate the (2L + 1) sigma points, where L is the dimension of state.

X a
k−1 =

[
x̂a

k−1 x̂a
k−1 ±

√
(L + λ)Pa

k−1

]
Time update:
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X x
k|k−1 = f (X x

k−1,X v
k−1)

x̂k|k−1 =
2L

∑
i=0

W(m)
i X x

i,t|t−1

Pk|k−1 =
2L

∑
i=0

W(c)
i [X x

i,k|k−1 − x̂k|k−1][X x
i,k|k−1 − x̂k|k−1]

T

Yk|k−1 = h(X x
k|k−1,X n

k−1)

ŷk|k−1 =
2L

∑
i=0

W(m)
i Yi,k|k−1

Measurement update:

Pỹk ỹk =
2L

∑
i=0

W(c)
i [Yi,k|k−1 − ŷk|k−1][Yi,k|k−1 − ŷk|k−1]

T

Pxkyk =
2L

∑
i=0

W(c)
i [Xi,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk|k−1]

T

Kk = Pxkyk P−1
ỹk ỹk

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1)

Pk = Pk|k−1 − KkPỹk ỹk KT
k

where λ is scaling parameter, Q and R are the process covariance and measurement covariance
matrices respectively, K is the Kalman gain and W are the weights. The augmented state is
expressed as: xa =

[
xT vT nT]T, vT and nT are the mean of the process and measurement

noise. And more remarkably, these two algorithms deal with the problem when all the data
have the same sampling rate. If the condition is getting complex and more than two sampling
rates appear, the multi-rate Kalman filter is then taken into account.

5-2 Nonlinear Multi-rate Kalman Filter

Tracking is utilized in many important applications especially in "real-time" systems. For the
accurate tracking purpose, numerous sensors have been used such as GPS, vision system sen-
sors, IMU, etc.

In this project, in order to obtain more accurate data, the multi-rate Kalman filter (MRKF) is
used to fuse the complementary characteristics of visual and inertial sensors in simulation, as
it is suitable to integrate the high number of sensors. On the one hand, at fast motions, inertial
sensing is able to track precisely and at the same time drift to some extent at slow motions.
On the other hand, visual sensing tracks accurately at low velocities, which makes them the
perfect combination for accurate data. Although the sampling period for each sensor can be
random and asynchronous, for a discrete system a periodicity can be extracted between input
and output sampling. From a sequence of inputs sampled at a slow sampling rate T̂ (known as
frame-period), a continuous signal is discretized at a high sampling rate (commonly known as
base period) T. The base-period is N times faster than the frame-period, which is:

T = NT̂
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5-2 Nonlinear Multi-rate Kalman Filter 27

The multi-rate system can be described using an output-hold mechanism or input-hold mech-
anism. The output-hold mechanism is defined when an output is not measured and the aux-
iliary state vector is used to hold the value of the last measured output while the input-hold
mechanism is corresponding to the case when an input is not measured [12].

5-2-1 Multi-rate system description

The multi-rate system description based on a size-varying output equation and input-hold
mechanism is proposed. The non-linear multi-rate inputs are described as [12],

vu(k) = [1− ∆u(k− 1)]vu(k− 1) + ∆u(k− 1)u(k− 1)
û(k− 1) = [1− ∆u(k− 1)]vu(k− 1) + ∆u(k− 1)u(k− 1)

where vu(k) is the slack variable. The estimated inputs û(k − 1) take the value of the slack
variables or the updated input u(k − 1) (∆u(k − 1) = 0 if not updated). Accordingly, a non-
linear multi-rate model is described as,

x(k) = f [x(k− 1)] + g[x(k− 1)]û(k− 1) + γ[x(k− 1)]w(k− 1)
y∆y(k) = h∆y [x(k)] + v∆y(k)

5-2-2 Multi-rate Extended Kalman Filter

Based on the non-linear multi-rate model, the multi-rate Extended Kalman filter is obtained
[12],

x̂(k|k− 1) = f [x̂(k− 1|k− 1)] + g[x(k− 1)]û(k− 1)
P(k|k− 1) = F(k− 1)P(k− 1|k− 1)FT(k− 1) + Γ(k− 1)Q(k)ΓT(k− 1)

S∆y(k|k− 1) = H∆y(k)P(k|k− 1)HT
∆y
(k) + R∆y(k)

K∆y(k) = P(k|k− 1)HT
∆y
(k)S−1

∆y
(k|k− 1)

z∆y(k) = y∆y(k)− h∆y [x̂(k|k− 1)]
x̂(k|k) = x̂(k|k− 1) + K∆y(k)z∆y(k)
P(k|k) = P(k|k− 1)− K∆y(k)H∆y(k)P(k|k− 1)

The working principle is the same as for the normal EKF, note that the size of the vectors and
matrices with sub-index ∆y varies depending on the multi-rate sampling of the output vector,
which shows the periodic change.

5-2-3 Multi-rate Unscented Kalman Filer

The sample set (sigma points) is chosen to have the same mean and covariance as the distri-
bution of x(k), which is computed with the Unscented Transform. The detailed steps are not
shown in this subsection. The only difference between the MRUKF and normal UKF is the
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estimated output equations, which depend heavily on the multi-rate sampling [12].

Xi(k|k−1) = f [Xi(k−1|k−1)]+g[Xi(k−1|k−1)]û(k−1)+γ[Xi(k−1|k−1)]Wi(k−1)

x̂(k|k− 1) =
2n

∑
i=0

WiXi(k|k− 1)

P(k|k− 1) =
2n

∑
i=0

Wi
{
Xi(k|k− 1)− x̂(k|k− 1)

} {
Xi(k|k− 1)− x̂(k|k− 1)

}T

Y∆y,i(k|k− 1) = h∆y [Xi(k|k− 1)] + Ψ∆y,i(k)

ŷ∆y(k|k− 1) =
2n

∑
i=0

WiY∆y,i(k|k− 1)

P∆y,yy(k|k− 1) =
2n

∑
i=0

Wi
{
Y∆y,i(k|k− 1)− ŷ∆y(k|k− 1)

} {
Y∆y,i(k|k− 1)− ŷ∆y(k|k− 1)

}T

P∆y,xy(k|k− 1) =
2n

∑
i=0

Wi
{
Xi(k|k− 1)− x̂(k|k− 1)

} {
Y∆y,i(k|k− 1)− ŷ∆y(k|k− 1)

}T

where P∆y,yy(k|k− 1) denotes the output covariance matrix which is equivalent to S∆y(k|k− 1)
in Extended Kalman filter. The state estimation and the corresponding covariance are described
using the subset of the sampled outputs which are given by:

K∆y(k) = P∆y,xy(k|k− 1) · P−1
∆y,yy(k|k− 1)

x̂(k|k) = x̂(k|k− 1) + K∆y(k) · (y∆y(k)− ŷ∆y(k|k− 1))

P(k|k) = P(k|k− 1)− K∆y(k) · P∆y,yy(k|k− 1) · KT
∆y
(k)

5-3 The Augmented State Description

As stated before, the object of this project is the state and parameter estimation of nonlinear
models for control purpose. Thus, it is of great significance to investigate how to incorporate
unknown parameters into Kalman filter. The Eq. 5-1 represents the system dynamics of the
continuous-discrete filtering problem [16].

ẋ(t) = f [x(t), u(t), β] + Fw(t), x(t0) = x0

y(t) = g[x(t), u(t), β]

z(k) = y(k) + Gvk)

with F the time-invariant additive state matrix and G the time-invariant measurement noise
matrix. The unknown parameter vector β is considered to be constant and then the augmented
state vector is defined as:

xa =

[
x
β

]
β̇ = 0

The extended system dynamics are then given by:

ẋa(t) = fa[xa(t), u(t)] + FaWa(t)

=

[
f [x(t), u(t), β]

0

]
+

[
F 0
0 0

] [
w(t)

0

]
y(t) = ga[xa(t), u(t)]
z(k) = y(k) + Gv(k)

where the subscript "a" denotes the augmented variables. Applying this dynamical model to
a Kalman filter, the dimensions of the observation vector y and the measurement vector z are
unchanged. The changed parts in the Kalman filter are, obviously, the state vector, covariance
matrix P and process noise matrix Q, and the size of these vector and matrices are increased
accordingly after adding the unknown parameter vector.
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Chapter 6

Simulation

In this chapter, the algorithms listed in chapter 5 will be tested by implementing an AR Drone
simulator. The simulator has been modelled with Matlab tool Simulink before the model pa-
rameter estimation experiment, so the motor dynamics and control inputs, in Fig. 6-1, used
in Simulink are reasonably cited from references, the bare-airframe in simulator is, however,
identical to the one in chapter 2. Owing to the constraint of time, the simulation results will
not be used as real-time simulator and compared with the real-time flight data afterwards.
The purpose in simulation is to verify the applicability of the algorithms, and simultaneously,
gives some clues how to tune the EKF and UKF, and to what extent the initial guess and noise
matrices could influence the simulation results for each algorithm.

6-1 Blocks implementation and 3D visualization

Figure 6-1: The block diagram of system structure

Fig. 6-1 shows the block diagram of the system dynamics, where different input signals are
given to sufficiently excite the system. In the block diagram, the input variables are the un-
known parameters measured in chapter 4. It should be noted that in the simulation the inputs
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are the voltage signals given to the motors, whereas in reality the engines of the AR Drone
are controlled by power, not voltage. Nevertheless, this is by no means affecting the validity
of the simulation results. Furthermore, the noise block represents the process noise added to
each state. In contrast to measurement noise, the most different part of tuning Kalman filter is
to tune the process noise matrix and initial covariance matrix. Normally, both of them can be
tuned by trial and error, and to the best of the author’s knowledge, there is no way to symmet-
rically or empirically tune them; therefore, more attention is given to process noise so as to gain
more insight into the world of Kalman filter. The last one is the initial state; indeed, it suffices
to set all states to 0.

Figure 6-2: 3D animation

Fig. 6-2 demonstrates the 3D animation for the quadrotor and allows to check the trajectory
and analyze the position and attitude of the quadrotor. Now the simulator is ready and the
data from simulator is available to test the algorithms and compare the performance.

6-2 Simulation results

6-2-1 Simulation Analysis

The UKF, MRUKF, EKF and MREKF are examined and compared for parameter and state es-
timation. Noted that the multi-rate Kalman filter can be used under the assumption that, for
simplicity, the sampling time for MREKF and MRUKF is T = 2T̂ without losing generality. The
period (base-period) of IMU and the input sampled period are half of GPS period. Of course, it
is possible to set the common multiple period for the sensors as any value. Fig. 6-3, 6-4 and 6-5
represent the results of the reconstruction of the moment of inertia by UKF, MRUKF and EKF
algorithms along three axes as well as the moment of inertia for the rotor.
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Figure 6-3: Reconstruction of moment of inertia for three axes and rotor without process noise

Figure 6-4: Reconstruction of moment of inertia for three axes and rotor with process noise
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Figure 6-5: Reconstruction of moment of inertia for three axes and rotor with inconsistent estimate
of process noise matrix.

It can be observed that UKF and EKF show a virtually identical performance under the con-
dition of the consistency in initial guess and noise matrix between the simulator and Kalman
filter. What is more, the convergence speed of the EKF in Fig. 6-3 along the x axis goes so far as
to prevail over that of the UKF; however, if the process noise matrix of the Kalman filter is in-
consistent with that in simulator, in Fig. 6-5, the performance of UKF is largely superior to EKF.
From the analysis above it can be seen that the EKF is more sensitive to the initial estimate of
the state or process noise owing to its linearization. The following subsections give the details
of the analysis based on the Fig. 6-3.

Precision

MREKF is not shown in the plots since MREKF is not able to converge to the true value. The
error caused by the proposed input-hold mechanism propagates through the linearized model
and accumulates during the time. The estimation results are shown in Table 6-1.

Table 6-1: Comparison between estimated and true parameters, the error is included as bracketed
points

Approach UKF MRUKF EKF

Ix
0.002238347
(7.8 ∗ 10−7)

0.002238313
(7.45 ∗ 10−7)

0.002238332
(7.64 ∗ 10−7)

Iy
0.002985760
(5.24 ∗ 10−7)

0.002985782
(5.46 ∗ 10−7)

0.002985745
(5.09 ∗ 10−7)

Iz
0.004834382

(5.364 ∗ 10−6)
0.004833439

(5.421 ∗ 10−6)
0.004834336

(5.318 ∗ 10−6)

Ir
0.00002031540
(1.955 ∗ 10−8)

0.00002032108
(2.523 ∗ 10−8)

0.00002031713
(2.128 ∗ 10−8)

Convergence issue

Convergence properties of the three methods can be judged according to the number of iter-
ations required to arrive to the same tolerance criteria. ±5% is selected as the tolerance level.
Table 6-2 shows the iteration numbers of the three approaches.
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Table 6-2: The number of required iterations based on three algorithms

Approach UKF MRUKF EKF
Ix 987 822 784
Iy 442 372 324
Iz 3157 2946 3145
Ir 438 408 355

Computation load

The EKF based method requires less computational power than UKF since UKF needs to prop-
agate (2n + 1) sigma points through nonlinear model. Compared with MRUKF, UKF is also
computationally expensive.

Conclusion

From precision and convergence perspective, the three algorithms show more or less same per-
formance, it goes without saying that EKF is more efficient than UKF and MRUKF to some
extent especially for computation load. However, EKF is more sensitive to the initial guess,
noise and disturbance. For instance, if the estimated process noise in Kalman filer is inconsis-
tent with the one in simulator to a certain extent, EKF is no longer able to estimate parameters
and state due to the error accumulation, while UKF is more robust to the wrong initial guess
of the state and process noise. Thus UKF is proposed as good backup plans. However, it is
unrealistic to have such a high consistency for the model, the estimate of initial guess and noise
matrix in practice. For this reason, this analysis has mostly a theoretical value. However, it
gives a meaningful hint on how to tune the Kalman filter practically, and paves the way for a
real-life implementation, as presented in the next chapter.

On the other hand, MRUKF outperforms UKF in almost every aspect. Obviously, MRUKF
needs less computational power and converges fast, though it is ambiguous to compare the
precision. On the top of that, MRUKF permits to effectively use different sensors and to im-
plement sensor fusion. Undoubtedly, it clearly benefits from the assumption (T = 2T̂) for the
multi-rate Kalman filter, and the performance will be definitely changed with the change of
this assumption. Assume T = 4T̂, the performance of MRUKF is then expressed as:
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Figure 6-6: Reconstruct of moment of inertia for three axes and rotor when the assumption for
MRUKF is T = 4T̂

Obviously, under this assumption, the performance of MRUKF is drastically changed and not
able to converge. Due to this limitation, MRUKF will not be tested for parameter estimation on
the real flight test.
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Chapter 7

System Identification

The unknown parameters of the bare-airframe can be obtained using different approaches. In
chapter 4, the unknown parameters have been calculated and thereby used as initial guess for
Kalman filter. In this chapter, the proposed Kalman filter will be applied to real flight data. The
linear input-output transfer function can be considered as a fair approximation as long as under
the small angle perturbation assumption, which will be analyzed in section 7-1. Sect. 7-2 intro-
duces the core of how to implement the Kalman filter for the real flight test. For the purpose
of understanding the constraints of implementing the Kalman filter, the corresponding flight
test will be described, and the analysis based on the identification results will be described in
section 7-3 . It is noteworthy that due to the high nonlinearities of the real flight test data, the
nonlinear model identification is the main part of this work.

Figure 7-1: System identification procedure [19]

7-1 Linear Model Transfer Function Identification

The proposed approach for linear model identification in literature study in this project is the
two-stage method, a combination of the subspace identification method and prediction error
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method. The advantages of this approach have been analysized in literature report [19] and the
approach has been applied successfully to sample data to verify the validity of the method [24].
However, the unsuccessful implementation for a linear state-space model using the simulated
and real flight data proves the impracticable usage of the proposed method; the fit percentage
is too low, even negative for the majority of the channels, owing to the coupling effect and
nonlinearity of the model in the simulator. In practice, the nonlinear factors far surpass those
in simulator, the aero-elastic effects and flexibility of the wings render the nonlinearity more
complex. Considering all the factors mentioned above, the proposed method is not an optimal
choice for linear state-space model identification. Consequently, the linear input-output trans-
fer function is considered as a backup plan for linear model identification. For each transfer
function, the procedure of identification is expressed as:

• The real flight data have been divided into identification and validation data, and a
fourth-order low pass Butterworth filter is used to get rid of the noise;

• A Box-Jenkins (BJ) polynomial model based on the prediction error minimization method
(PEM) which minimizes the prediction errors by estimate of the parameters of the BJ
model. For more information relative to the PEM method and BJ model in details, see
[26];

• The obtained transfer function is tested on the different sets of validation data using the
system identification toolbox;

• The order of the transfer function is changed if the validation results are not satisfactory
until the best numerical fit appears.

The identification for the four transfer functions will be reported and discussed as follows.

7-1-1 Throttle transfer function identification

The BJ polynomial model is given by:

y(t) =
B(q−1)

F(q−1)
u(t) +

C(q−1)

D(q−1)
e(t) (7-1)

where
[
nb nc nd n f nk

]
defines the order of the polynomials used for estimation. Based

on Eq. 2-5, the initial guess of the system is assumed to be a 2th order system. After testing
2th, 3th, 4th order BJ models with various samples delay, a second order discrete-time transfer
function with one sample delay is obtained in the following equations:

B(z) = −6.632e−5z−1 − 2.395e−5z−2

C(z) = 1 + 1.988z−1 + z−2

D(z) = 1− 1.989z−1 + 0.989z−2

F(z) = 1− 1.979z−1 + 0.9788z−2

The table lists the fits between the identified transfer function output and the identification
data, and identified transfer function output and the validation data.

Table 7-1: Fits for the identification and validation data

BJ22221 Identification data Validation data
Fits 67.6% 50% ∼ 65%
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Figure 7-2: Fit of 67.6% between BJ model output (dashed) and identification data (solid)

Figure 7-3: Fit of 51.85% between BJ model output (dashed) and validation data (solid)

BJ22221 is the best polynomial model obtained. Trials with higher order BJ, OE and ARMAX
models are conducted, however, it does not yield more desirable outcomes. Same trials are con-
ducted for the rest of the transfer function identification as well to obtain the most satisfactory
result.

7-1-2 Yaw transfer function identification

A second order discrete-time transfer function with one sample delay provides a visible con-
cordance between inputs and outputs. Even though the third order BJ model shows somewhat
improvement over the second order model, a lower order system is better than a higher order
system when it comes to the more or less same best fits results.

B(z) = −91.99z−1 + 272.6z−2 − 269.5z−3 + 88.84z−4

C(z) = 1− 0.9363z−1 + 0.01623z−2

D(z) = 1− 1.994z−1 + 0.9939z−2

F(z) = 1− 1.986z−1 + 0.9857z−2

The table lists the fits between the identified transfer function output and the identification
data, and identified transfer function output and the validation data.
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Table 7-2: Fits for the identification and validation data

BJ42221 Identification data Validation data
Fits 88.29% 70% ∼ 88%

Figure 7-4: Fit of 88.29% between BJ model output (dashed) and identification data (solid)

Figure 7-5: Fit of 78.41% between BJ model output (dashed) and validation data (solid)

BJ42221 is the best polynomial model obtained with excellent concordance between inputs and
outputs, owing to the smaller coupling effect existing in yaw channel.

7-1-3 Pitch and roll transfer function identification

Due to the X-type quadrotor configuration, the coupling effect of pitch and roll channels plays
the pivotal role in the transfer function identification, which gives rise to the less accurate esti-
mation results since the coupling effect has been overlooked under the small angle assumption.
Tables 7.3 and 7.4 illustrate the fits of the pitch and roll channels between the identified transfer
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function output and the identification data, identified transfer function output and the valida-
tion data, respectively.

The pitch channel equations may be presented as:

B(z) = 0.005255z−1 − 0.01175z−2 + 0.00658z−3

C(z) = 1 + 0.6075z−1 + 0.999z−2

D(z) = 1− 1.998z−1 + 1.001z−2

F(z) = 1− 1.993z−1 + 0.9934z−2

Table 7-3: Fits for the identification and validation data

BJ32221 Identification data Validation data
Fits 45.3% 10% ∼ 45%

The roll channel equations may be presented as:

B(z) = 0.001148z−1 − 0.00116z−2

C(z) = 1 + 0.7265z−1 − 0.2721z−2

D(z) = 1− 1.995z−1 + 0.9947z−2

F(z) = 1− 1.991z−1 + 0.9908z−2

Table 7-4: Fits for the identification and validation data

BJ22221 Identification data Validation data
Fits 43.67% 8.518% ∼ 43%

Obviously, the fits of these two channels show the relatively poor performance in marked con-
trast to the throttle and yaw channels. Besides, the value of the fits between the output of the
identified BJ polynomial model and the validation data to a large extent depend on the choice
of validation data set and fluctuates strongly. This can be fixed in essence by changing the con-
figuration of AR Drone from X-type to cross-type configuration, thereby reducing the coupling
effect.

7-2 Kalman Filter Estimation

In simulation, both EKF and UKF are easy to tune as long as there is a guarantee of the concor-
dance between the simulator and the model in Kalman filter, including the initial guess, noise
matrices and the model structure. But in reality, there is no guarantee for tuning them correctly
except for the measurement covariance matrix and the initial guess for the state. Besides, it can
be found that too many uncertainties and constraints appear, which render the parameter esti-
mation extremely complex. All these constraints and uncertainties will be explained in detail
in Sect. 7-3. To begin with, all the relevant flight tests, the corresponding noise matrices and
initial guess are introduced, in the next, the performance of EKF and UKF are presented.

7-2-1 Flight tests

The flight tests have been done by stages.
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1. First stage: the data has been collected only at hover.
Problem: there is no excitation; the parameter is not able to be estimated under such
circumstance (p, q, r are basically equal to zero).

2. Second stage: enlightened by the failure of the parameter estimation at first stage, the ex-
citation for the system is required: in the meantime, hovering is a matter of great account
since the nonlinear model is described under the near-hover assumption. Therefore, the
most commonly used flight test manoeuvre for rotorcrafts, the "doublet" is proposed,
which refers to two opposing movements in quick succession.
Problem: no sufficient excitation.

3. Third stage: unfortunately, a doublet was not sufficient enough to excite all the channels.
It can be observed, in Eq. 7-2, that for the good estimation of parameters, the excitation
of angular rate is important. Thus the third flight test is to excite the roll, pitch, and yaw
one after another. Noted that there is no direct method to give the explicit roll, pitch,
yaw commands in Paparazzi, changing the control law is one way to obtain the relatively
aggressive angular rate. The full flight test encompasses a sequence of flight missions,
including take-off, hover, roll, pitch, yaw movement, doublet, and landing. The sampling
rate is 100 Hz with near 400 seconds full flight test, 40000 iterations can be obtained to
make a good implementation of the algorithms.


ṗ =

Iy−Iz
Ix

qr + Ir
Ix

qΩ +
τφ

Ix

q̇ = Iz−Ix
Iy

pr− Ir
Iy

pΩ + τθ
Iy

ṙ =
Ix−Iy

Iz
pq + τψ

Iz

(7-2)

7-2-2 Measurement noise variance matrix

The measurement noise variance matrix is derived by computing the variance of each sensor,
the matrix is expressed as:

R = diag[1.0407× 10−3 1.1986× 10−3 1.5536× 10−3 7.2926× 10−4 1.938× 10−4

5.3423× 10−42.7063× 10−5 3.1965× 10−5 1.4916× 10−4 3.5826× 10−2

2.8408× 10−2 8.0080× 10−2]

(7-3)

For the better performance, a little adjustment over the calculated measurement noise variance
matrix has been tuned based on the same order of magnitude and fluctuating around the cal-
culated matrix. In terms of the initial state, the calculated moment of inertia can be regarded as
a good initial guess. Last but not least, there is still no practical or theoretical guidance to tune
the process noise variance matrix Q and the initial covariance matrix P0, trial and error method
is the only way to achieve the goal.

7-2-3 UKF

Since UKF tends to be more robust while EKF is different to implement and tune, it is more
preferable to start from tuning UKF in the first place. The initial state is selected unchangeably;
hence, the core of tuning lies in the trade-off between the noise matrices and the initial covari-
ance matrix. Although, theoretically speaking, it is not difficult to tune, the state estimation can
be obtained fairly easy while the parameter estimation is extremely hard, and the reason will
be analyzed at length afterwards.
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Figure 7-6: UKF state filtering: measured (blue) and estimated (red) for position and velocities at
x, y, and z-axes respectively.

Figure 7-7: UKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities at x, y, and z-axes respectively.
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Figure 7-8: Compare the reconstruct of moment of inertia (red) by UKF algorithm with calculated
value (dotted blue line) for x and y axes respectively.

Figure 7-9: Compare the reconstruct of moment of inertia (red) for z axes and moment of initial
for each rotor (red) by UKF algorithm with calculated value (dotted blue line)

The state filtering performance of UKF is shown in Fig. 7-6, 7-7, 7-8 and 7-9, showing that the
reconstruction values for moment of inertia around the x and z-axes represent a high concor-
dance with the calculated data in Table 4-1 while the reconstruction values for the moment of
inertia around the y-axes and the moment of inertia of the rotor represent a relatively low con-
cordance.

The Table illustrates the performance of the parameter estimation of UKF and the error of the
estimation.

Table 7-5: The table illustrates the performance of the parameter estimation of UKF

Parameters Unit Calculated value Reconstructed value Mean square error
Ix kg ·m2 2.238 · 10−3 2.619 · 10−3 9.5581 · 10−7

Iy kg ·m2 2.985 · 10−3 7.589 · 10−3 6.7202 · 10−6

Iz kg ·m2 4.805 · 10−3 4.815 · 10−3 8.0534 · 10−8

Ir kg ·m2 2.0296 · 10−5 0.9788 · 10−7 3.3682 · 10−8
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The reconstructed values in Table 7-5 are the mean of the moments of inertia when they are
stable. The calculated values can be treated as the close approximation of the true values,
thereupon the estimation of Ix and Iz is considered to be reasonable. Accordingly, the estima-
tion of Ir seems not valid due to the wrong order of magnitude, which is even smaller than
one hundredth of the calculated one. As for Iy, the estimation is imprecise as well owing to the
coupling effect of Ir and Iy. Even so, it can be also concluded that UKF is a practical tool for the
parameter estimation under the condition of the appropriate identification model and accurate
data.

7-2-4 EKF

Due to the sensitivity to the initial guess and noise covariance matrix, EKF is much harder
to tune. Furthermore, it is less robust to model uncertainty and disturbance from the outside
world; therefore, more strict requirements for the concordance between the nonlinear model
and AR Drone as well as for the measurement of sensors are necessary for EKF.

Figure 7-10: EKF state filtering: measured (blue) and estimated (red) for position and velocities
at x, y, and z-axes respectively.

Figure 7-11: EKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities at x, y, and z-axes respectively.
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Figure 7-12: Compare the reconstruct of moment of inertia (red) by EKF algorithm with calculated
value (dotted blue line) for x, y and z axes respectively as well as the moment of inertia of rotor

The performances of EKF for system identification purposes applied on a AR Drone 2 have
been illustrated in Fig. 7-10, 7-11 and 7-12. Obviously, EKF is unable to converge, let alone
converge to the true values. The attempts of using the linear Kalman filter to predict the next
estimation may cause the filter to quickly diverge, which is clearly shown in Fig. 7-12.

7-3 Results Comparison and Analysis

In conclusion, it is clear that the performance of both EKF and UKF allows them to be practical
tool for state estimation, which is manifest in chapter 5 and 6 theoretically. When applying
these algorithms on the real flight data, EKF shows less computational cost, whereas less robust
and accurate than the UKF in terms of parameter estimation. As an improvement over EKF, the
performance of UKF proves itself to be one of the practical tools for parameter estimation using
the real-time flight data. Although parts of the results are not satisfactory, this is reasonable and
can be explained by the following constraints and uncertainties:

• Lack of or inaccuracy of measurements of the thrust and torque;

In chapter 4, the relations between the rotor speed and thrust, the rotor speed and torque,
are identified by using the setups in the Fig. 4-3 and 4-4. Theoretically, the static weight-
ing scale readings are used as the measured static torque and thrust values. But in prac-
tice, the values are not settled during manual recording, the fluctuation of the weight-
ing scale reading is particularly apparent for the torque measurement due to the small
weighting scale reading (normally less than 10 grams). Take a look on the following
equation,

ṗ =
Iy − Iz

Ix
qr +

Ir

Ix
qΩ +

τφ

Ix

q̇ =
Iz − Ix

Iy
pr− Ir

Iy
pΩ +

τθ

Iy

ṙ =
Ix − Iy

Iz
pq +

τψ

Iz

Obviously, according to the equations above, it is theorized with a high degree of proba-
bility that the estimation of τφ, τθ and τψ might be imprecise, which leads to the inaccu-
racy of parameter estimation of Iy and Ir. To be more specific, if one of the parameters
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cannot be estimated correctly, the rest of the unknown parameters cannot be identified
either owing to the coupling effect. In summary, based on all the analysis above, both
EKF and UKF can be used as a practical tool for parameter estimation. UKF can be a
better algorithm since it is more robust and easier to tune with appropriate model and
data. In this work, the input data is deemed to be less precise as a result of the inaccurate
measurement of experimental instruments.

• Sensor bias drift;

The bias drift refers to the variation of the bias over time. This drift is basically caused
by the self heating of the sensors (especially for gyro), and their associated electrical and
mechanical components.

• The assumption of near-hover is not true;

The nonlinear dynamical model is based on several assumptions; the near hover assump-
tion is the most important one since the model neglects the aerodynamics effect, for in-
stance the hub force when the AR Drone undergoes the translational movement; in the
point of fact, this assumption is not true.

Figure 7-13: The red dotted line is near hover condition of three meters, the blue line is the real
flight altitude of AR Drone 2

Fig. 7-13 represents the altitude of the real flight data of AR Drone 2 which is randomly
picked from massive data sets. The height of hovering is set as three meters; it can be
observed that the fluctuation of the hovering height appears throughout the whole flight
test. By calculating, the error fluctuates and can be even largely up to 0.2 meters. Thus
this assumption has been shown to be not accurate enough.

• Different AR Drone 2 is used throughout the whole project.

There is no fixed AR Drone 2 available in MAVLab, the platforms used for engine test,
thrust and torque experiment and the real flight tests are not same. Seeing that the AR
Drone 2 was broken or being used by others, even for the real flight tests, a different AR
Drone 2 was used during different time periods. This will lead to inconsistencies of the
physical parameters of AR Drone 2 for each flight test and experiment. As the matter
of fact, the AR Drone 2 can be used and changed by anyone in MAVLab, however, it is
unpractical to do the model parameter estimation ( the same procedure as in chapter 4)
after the new AR Drone 2 is available. Based on all the factors mentioned above, there is
no definite way to assure the concordance of the model and estimated parameters for the
different AR Drone 2.
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In general, the implementation of UKF and EKF for parameter identification purposes apply-
ing on an AR Drone 2 requires the appropriate identification model and identification data.
The main factors which might be the reason of the less satisfactory performance for parameter
identification have been discussed at large, according to which, it is most likely that the inac-
curate measurement of the thrust and torque of each rotor gives rise to the inexact inputs for
the nonlinear dynamical model, thereby leading to an imprecise calculation of the moment of
inertia. In addition to the main factors, many assumptions seem to be not quite realistic, for
instance, the AR Drone 2 is assumed to be structurally symmetrical and rigid, however, it turns
out that the AR Drone 2 is only symmetrical about xz panel and the components of AR Drone
2 are not rigid apparently.

As for the linear transfer function identification, changing the configuration of AR Drone will
largely improve the accuracy of identification performance for roll, pitch channels. After re-
gathering the flight data, there is a high probability that it will be possible to implement con-
trollers for this linear model.
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Chapter 8

Conclusion and Future Work

The previous chapters have described the dynamics of the AR Drone, the results of modelling,
parameter estimation, simulation and identification of AR Drone 2, it can be concluded that,
according to the simulation results, EKF, UKF and MRUKF can be treated as the practical tools
for system identification. However, the model uncertainty and inaccuracy of measurements
make it more difficult to tune and severely impact the performance of EKF and UKF. The main
conclusions and recommendations in this work are discussed in this chapter in more detail.

8-1 Concluding Remarks

In chapter 2, the nonlinear dynamical model and the linearized model are discussed, how-
ever, the model inputs, the total thrust and roll, pitch and yaw movement, cannot be measured
directly, which gives rise to parameter estimation of the engines and rotor aerodynamics in
chapter 4. Constrained by the experimental setups, the measurement of thrust and torque for
each rotor is imprecise and it is hard to compensate the error. This will lead to the inaccurate
inputs for the nonlinear dynamical model; it is especially recommended that the engine dy-
namics and the aerodynamics should be investigated precisely.

Next, the algorithms of proposed methods are introduced and the simulator is designed (before
the model parameter estimation) to verify the effectiveness of EKF, UKF, MREKF and MRUKF
for parameter identification purposes. In addition to MREKF, the rest of algorithms manage to
identify parameters precisely when the same initial guess and noise matrices are given. They
have proved themselves to be practical tools in the field of system identification theoretically.
Additional information on the successful implementation of the algorithms emphasizes that
the performance of EKF, UKF and MRUKF state filtering for parameter identification purpose
applied on AR Drone 2 largely depends on consistency of the model (including appropriate
model, precise initial estimate of the state and covariance matrix, noise covariance matrices)
and accuracy of input-output data. An inappropriate model or data will end up with the incor-
rect estimation of parameters.

As for linear model identification, this work approximates the system as decoupled Single
Input Single Output (SISO) systems rather than identifying a Multiple Input Multiple Out-
put (MIMO) system. The coupling effects between the systems are assumed to be the distur-
bances acting on those systems. The BJ polynomial models have been identified based on the
prediction error minimization method, and the low fits for roll and pitch channels indicate
that the coupling effects are severely significant by virtue of the X-type configuration. These
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coupling effects can be successfully rejected to some extent by changing the AR Drone config-
uration to cross-type in theory. However, this has not yet been verified.

As the core of this work, the nonlinear system identification based on the EKF and UKF is
tested by using the recorded real flight data. It can be found that EKF is more sensitive to the
initial guess of the state and noise matrices; therefore, it is unable to converge, let alone con-
verge closely to the calculated value. On the contrary, as an improvement over EKF, UKF is
capable of converging, it proves itself as a more robust and accurate tool of system identifica-
tion than EKF. Despite all this, the estimation of rotor inertia seems to be incorrect apparently
owing to the wrong measurements of thrust and torque. The wrong measurements of thrust
and torque result in the wrong estimation of the input data, thereby computing the imprecise
Ir and Iy .

In conclusion, with appropriate identification model and data, both EKF and UKF can be used
as practical tools for system identification, at mean time, UKF tends to be more robust and ac-
curate in contrast to EKF. In this work, constraint of experimental instruments led to the less
satisfying performance of system identification. This means the implementation of EKF and
UKF for system identification purposes calls for the more accurate measurements and setups.
If there is no guarantee for the accuracy, the tuning of EKF and UKF tends to be more time-
consuming and less reliable. Under this circumstance, it is highly recommended to implement
other identification techniques.

8-2 Recommendations and future work

The following future works are recommended;

1. Specialized equipment (for instance, wind tunnel) can be utilized to correctly measure
the thrust and torque, which assures the appropriate input data for the nonlinear model.

2. Since the near hover condition is not satisfied in practice, the more complex model is
taken into account (please refer to model 1 [19]), which considers all the aerodynamics
and friction. It might be a big challenge to identify this model due to its complexity, and
this model has been proposed for principle analysis and simulation[13].

3. As AR Drone 2 is neither rigid nor symmetrical; it is more preferable and applicable to
identify the moment of inertia by using professional software, for instance AutoCAD.

4. In terms of system identification, it is always recommended to use the same machine, on
the ground that, even different machines of the same type are unlikely to have identical
unknown parameters.

5. It is also recommended to tune EKF on line.
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Appendix A

Data Sets for Model Parameter
Estimation

This appendix presents the data sets collected with the designed experimental setups for model
parameter estimation purposes.

Table A-1: Measurements of weight, dimensions and distance of the center of gravity, the moment
of inertial along x, y, z-axes can be computed

Part Number Weight (g) X-distance [m] Y-distance [m] Z-distance [m]
Propeller gear 4 2.36 0.1262 0.1262 -0.0125

Propeller 4 3.55 0.1262 0.1262 -0.024
Engine 4 17.7 0.1128 0.1128 0.008

Propeller axis 4 0.88 0.1128 0.1128 -0.014
Carbon rod 4 10.7 0.1146 0.1146 0

Engine holder 4 4.3 0.0668 0.0668 0
Engine cable 4 1.9 0.0495 0.0495 0
Center cross 4 8.775 0.0160 0.0160 0

Battery 1 119.1 -0.0120 0 -0.0290
Main board 1 32 -0.0245 0 0.0125

Sonar 1 8.34 0.0500 0 0.0190
Camera 1 2.92 0.1900 0 -0.0150

Front board 1 6.36 0.0110 0 0.0125
Cover sheet 1 6.34 0 0 0.0270

Top foam 1 30.8 0.0270 0 -0.0350
Plastic square 1 2.06 -0.0125 0 0.0090
Battery holder 1 19.5 -0.0120 0 0.0160
Bottom loam 1 23.24 0.0490 0 0
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Table A-2: Measurements of weight, dimensions and distance of the center of gravity, the moment
of inertial along x, y, z-axes can be computed

Part Shape
X-dimension/

radius[m]
Y-dimension/

radius[m]
Z-dimension/

height[m]
Propeller gear Circle plate 0.0350 0 0.0025

Propeller Circle plate 0.1980 0 0.0100
Engine Cylinder 0.0120 0 0.0300

Propeller axis Line 0 0 0.0360
Carbon rod Bar 0.1050 0 0

Engine holder Box 0.0400 0.0150 0.0200
Engine cable Line 0.1400 0 0
Center cross Bar 0.0370 0 0

Battery Bar 0.0720 0.0390 0.0240
Main board Square plate 0.0590 0.0450 0.0050

Sonar Bar 0.0160 0.0450 0.0150
Camera Point 0 0 0

Front board Square plate 0.0240 0.0510 0.0050
Cover sheet Square plate 0.1200 0.0850 0

Top foam Bar 0.3500 0.0550 0.0700
Plastic square Line square 0.0710 0.0590 0
Battery holder Bar 0.0970 0.0200 0.0200
Bottom loam Bar 0.2700 0.0250 0.0250

Table A-3: Measurements of weight, dimensions and distance of the center of gravity, the moment
of inertial along x, y, z-axes can be computed

Part
Ix (local)
[kg ·m2]

Iy (local)
[kg ·m2]

Iz (local)
[kg ·m2]

Propeller gear 1.8192E-07 1.8192E-07 3.6138E-07
Propeller 8.7280E-06 8.7280E-06 1.7397E-05
Engine 1.4868E-06 1.4868E-06 3.1860E-07

Propeller axis 9.5040E-08 9.5040E-08 0
Carbon rod 6.9513E-06 6.9513E-06 9.8306E-06

Engine cable 2.1944E-06 2.1944E-06 3.1033E-06
Center cross 7.0787E-07 7.0787E-07 1.0011E-06

Battery 2.0813E-05 5.7168E-05 6.65471E-05
Main board 5.4667E-06 9.3493E-06 1.4683E-05

Sonar 1.5638E-06 3.3430E-07 1.5853E-06
Camera - - -

Front board 1.3918E-06 3.1853E-07 1.6838E-06
Cover sheet 3.81721E-06 7.6080E-06 1.1425E-05

Top foam 2.0341E-05 3.2699E-04 3.2218E-04
Battery holder 1.300E-06 1.59340E-05 1.5940E-05
Bottom loam 2.4208E-06 1.4239E-04 1.4239E-04
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Table A-4: Measurements of thrust by using the weighting scale and the corresponding thrust
command to each engine

Input
[-]

Thrust tests [grams]

1 2 2 4 5 6 7 8 9 10
0 48.1 49 47 48 49 48 47 - 48 -

500 63.3 65 63 64 - - - - - -
1000 82.5 82 82 85 81 83 81 85 82 83
1500 102.5 105 103 105 - - - - - -
2000 128.6 130 127 131 128 133 128 125 126 125
2500 151 156 157 155 - - - - - -
3000 186 185 187 184 186 190 182 185 185 182
3500 220 215 220 215 - - - - - -
4000 252 256 255 251 256 250 251 261 253 249
4500 291 285 295 292 - - - - - -
5000 343 335 328 335 335 333 - 335 336 330
5500 378 382 374 370 - - 376 - - -
6000 423 430 420 435 430 431 428 425 433 423
6500 480 485 478 478 - - - - - -
7000 528 540 535 535 530 530 532 535 529 525
7500 580 570 590 581 - - - 585 - 580
8000 651 635 645 635 650 - 645 655 628 640
8500 710 710 690 710 - 720 - 710 - 710
9000 780 745 765 775 730 746 729 740 - 735
9500 790 785 812 785 - 785 - 760 - 755
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Table A-5: Measurements of torque by using the weighting scale and the corresponding thrust
command to each engine

Input
[-]

Thrust tests [grams]

1 2 2 4 5 6 7 8 9 10 11 12 13
0 1.1 0.9 0.9 0.9 0.9 1.2 1.2 0.9 0.9 0.9 0.9 0.8 0.8

500 1.5 1.5 1.6 1.6 1.4 1.6 1.5 1.6 1.45 1.4 1.35 1.3 1.3
1000 2.1 1.8 2.0 2.1 2.0 2.3 2.4 2.2 1.8 2.0 1.7 1.7 1.8
1500 2.4 2.4 2.3 2.4 2.3 2.5 2.6 2.4 2.2 2.4 2.1 2.1 2.0
2000 2.7 2.6 2.7 2.7 2.8 2.6 2.7 2.8 2.3 2.4 2.5 2.3 2.4
2500 3.2 2.7 2.8 2.9 2.9 3.0 2.9 3.2 3.0 3.1 2.8 2.7 2.8
3000 3.4 3.1 3.2 3.5 3.2 3.4 3.4 3.6 3.2 3.5 3.0 3.3 3.3
3500 3.8 3.4 3.4 3.7 3.4 3.5 3.6 3.8 3.4 4.0 3.5 3.5 3.5
4000 4.1 4.1 3.8 4.1 3.8 4.0 4.0 4.4 4.0 4.3 3.8 3.9 4.1
4500 4.5 5.0 4.8 5.1 4.3 4.6 4.7 5.0 4.4 5.2 4.6 4.8 4.8
5000 6.1 5.5 6.0 5.4 6.0 6.1 6.1 6.2 6.3 5.7 6.2 5.0 6.4
5500 6.5 5.8 6.2 6.0 6.1 6.4 6.3 6.5 6.5 6.0 6.4 6.2 6.8
6000 7.0 6.8 6.8 6.2 6.8 6.9 7.3 7.3 7.5 6.9 7.7 7.4 7.3
6500 7.4 7.2 7.9 7.5 7.4 8.0 8.0 8.2 7.8 7.9 8.1 8.0 7.7
7000 7.8 7.7 8.2 8.2 8.3 8.4 9.2 8.8 8.2 8.4 9.0 8.5 8.2
7500 8.6 8.3 8.8 9.7 9.8 9.3 9.7 9.9 9.4 9.5 9.9 9.4 9.6
8000 10.0 10.0 10.5 10.5 10.8 10.8 11.0 11.0 10.7 10.7 11.0 11.0 11.3

Input
[-]

Thrust tests [grams]

1 2 2 4 5 6 7 8 9 10 11 12
0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.9

500 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.4 1.5 1.4 1.5 1.5
1000 2.2 1.9 1.8 1.9 2.2 1.9 2.0 1.9 2.1 1.9 2.1 2.1
1500 2.3 2.0 2.4 2.1 2.5 2.3 2.3 2.3 2.3 2.2 2.3 2.4
2000 2.5 2.2 2.6 2.5 2.8 2.4 2.5 2.3 2.5 2.7 2.8 2.6
2500 2.8 2.7 2.9 2.9 3.1 3.2 2.9 2.9 2.8 2.9 3.2 3.1
3000 3.1 3.2 3.3 3.5 3.3 3.6 3.3 3.4 3.2 3.2 3.6 3.5
3500 3.6 3.7 3.7 3.9 3.8 4.0 3.7 3.7 3.7 3.9 3.8 3.7
4000 4.2 4.6 4.0 4.2 4.4 4.8 4.2 4.3 4.2 4.1 4.2 4.0
4500 4.9 5.0 4.8 5.1 5.4 5.3 5.2 5.4 4.9 5.1 5.2 5.0
5000 5.8 5.9 6.1 5.9 6.1 6.2 6.1 6.0 6.2 6.2 6.2 6.2
5500 6.5 6.1 6.5 6.3 6.4 6.4 6.7 6.6 6.6 6.9 6.9 6.5
6000 7.2 7.0 7.1 7.1 7.0 7.4 7.5 7.3 7.1 7.5 7.6 7.3
6500 8.0 7.8 7.9 7.7 7.6 8.1 7.8 8.2 7.9 8.3 8.1 8.0
7000 8.8 8.4 8.7 8.3 8.8 8.7 8.6 9.2 8.5 9.3 8.9 8.8
7500 9.5 10.1 10.0 10.3 10.1 9.9 10.0 9.8 9.8 9.9 10.0 9.7
8000 10.6 1.6 11.2 11.2 10.9 10.9 11.1 11.1 11.1 11.6 11.6 11.3
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Appendix B

Transform Matrices

B-1 Plane rotation matrix R and T

The plane rotation matrix R associates the inertial frame with body-fixed frame and transforms
from body-fixed frame to inertial frame.

R =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1


=

cosψcosθ (−sinψcosφ+cosψsinφsinθ) (sinψsinφ+cosψsinθcosφ)
sinψcosθ (cosψcosφ+sinψsinθsinφ) (−cosψsinφ+sinψsinθcosφ)
−sinθ cosθsinφ cosθcosφ

 (B-1)

If the Euler angles φ, θ and ψ of AR Drone 2 are given, the conversion of a velocity or accelera-
tion vector in the body-fixed frame to inertial frame can be fulfilled by multiplying it with the
rotation matrix R and vice versa. The transform matrix T for rotational velocities which links
the two frames is given by:

φ̇
θ̇
ψ̇

 = T

p
q
r

 =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

p
q
r

 (B-2)
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B-2 From ECEF to ENU coordinates

Figure B-1: Earth Centred Earth Fixed (ECEF) and East, North, Up (ENU) coordinates [1].

From the figure, it follows that the ENU coordinates can be transformed to the
[
x y z

]
ECEF

by the two rotations:

1. A clockwise rotation over east-axis by an angle (90◦− ϕ) (here ϕ is latitude of the location
of flight arena) to align the up-axis with the z-axis.

2. A clockwise rotation over the z-axis by an angle (90◦ + λ) (λ is the longitude of the loca-
tion of flight arena) to align the east-axis with the x-axis.

Then the transformation matrix from ECEF to ENU coordinates is given by [11];E
N
U

 =

 − sin λ cos λ 0
− cos λ sin ϕ − sin λ sin ϕ cos ϕ
cos λ cos ϕ sin λ cos ϕ sin ϕ

x
y
z

 (B-3)
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Appendix C

State Estimation

Without tuning, another data set is randomly selected to test the performance of UKF and EKF.

Figure C-1: UKF state filtering: measured (blue) and estimated (red) for position and velocities at
x, y, and z-axes respectively.
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Figure C-2: UKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities around the x, y, and z-axes respectively.

Figure C-3: EKF state filtering: measured (blue) and estimated (red) for position and velocities at
x, y, and z-axes respectively.
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Figure C-4: EKF state filtering: measured (blue) and estimated (red) for Euler angles and angular
velocities at x, y, and z-axes respectively.

Regardless of the small bias, the state estimation can be treated as accurate without changing
Q, R, X0 and P0. From this point of view, the on-line or off-line controller can be designed based
on Kalman filter.
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