
Domain Specific Instruction Set Extensions

Adithya Pulli

Domain Specific Instruction Set Extensions

Master’s Thesis in Computer Engineering

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Adithya Pulli

22nd May 2014

Author
Adithya Pulli

Title
Domain Specific Instruction Set Extensions

MSc presentation
28th May 2014

Graduation Committee
prof. dr. ir. H. J. Sips Delft University of Technology
prof. dr. ir. G. N. Gaydadjiev Delft University of Technology &

Chalmers University of Technology
dr. ir. T. G. R. M. van Leuken Delft University of Technology
dr. C. Galuzzi Delft University of Technology

Abstract

Over the past years, a considerable amount of effort has been devoted to the defin-
ition and implementation of techniques for the optimization and acceleration of
applications on various computing platforms. Among these techniques, the exten-
sion of a given instruction-set architecture with custom instructions has become
a common approach. Custom instructions effectively reduce the dynamic instruc-
tion count, which, in turn, leads to increase in performance and reduction in power
consumption. Traditionally, existing techniques address Instruction-Set Extension
(ISE) on a per-application basis. Anyhow, when many applications have to be con-
sidered at the same time, ISE on a per-application basis is, clearly, less effective,
as the custom instructions have often limited re-utilization across applications. To
overcome this problem, we propose a new framework for the automatic generation
of domain-specific ISEs. Experimental results show that, the proposed framework,
evaluated on a number of applications from various domains, can effectively gen-
erate domain-specific instructions with high utilization factor across the targeted
applications. At the same time, the generated instructions reduce the instruction
count, 45% on average and upto 80% in special cases. This, in turn, can lead to
considerable improvements in performance and reduction of power consumption.

iv

Preface

The idea of identifying commonality across the applications emerged during a dis-
cussion with Prof S.K. Nandy at Indian Institute of Sciences in May 2012. The
discussion was about specializing a Coarse Grained Reconfigurable Array (CGRA)
for an application domain by replacing ALU operations with complex operations
in the Functional Units (FUs). Like any other researcher I was passionate about my
work and during my attempts to understand the problem in more detail, I ended up
in the website of Carlo. While glancing through his summary paper on Instruction
Set Extension (ISE), I understood that the problem of identifying domain-specific
FUs is equivalent to domain-specific ISE which is the central theme of this thesis.

The work presented in this thesis is the outcome of research performed as part of
my MSc program in Computer Engineering. Before I continue further, I would like
to mention that this piece of paper can neither capture the extent of my gratitude
nor the entire list of people who have directly or indirectly helped me in carrying
out this thesis.

I would like to thank my supervisor Prof. Georgi Gaydadjiev for giving me the
freedom to work on the topic of my choice. Despite his extremely busy schedule,
he managed to advice me at every stage of the project, right from problem formu-
lation to writing this thesis. I am also equally grateful to Dr Carlo Galuzzi, for
being my mentor and daily supervisor. I would like to thank him for sharing with
me his insights on graph theory based approach to ISE and for patiently correcting
and proof reading this thesis. I would like to thank Prof Henk Sips and Dr Rene
van Leuken for readily accepting to be members of my thesis committee.

I would like to thank Phani, Rajeev, Varun, Sriram, Vishu, Abhi, Sumedh, Har-
shitha, Arun and Manju for proving me the necessary and sufficient distraction
from the thesis. I would like to thank my parents for having confidence in me and
for supporting me to pursue a Masters degree away from home.

Adithya Pulli

Delft, The Netherlands
22nd May 2014

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem Description . 2
1.2 Contributions . 3
1.3 Organization . 4

2 Background and Related Work 5
2.1 The Instruction Set Extension Problem 5

2.1.1 Instruction Generation 7
2.1.2 Instruction Selection . 7

2.2 Application-Specific ISE . 8
2.2.1 Predefined Templates . 8
2.2.2 Exhaustive Search . 9
2.2.3 Incremental Clustering 9
2.2.4 Recurrence Aware ISE 10

2.3 Domain-specific ISE . 11
2.4 Discussion . 12
2.5 Summary . 13

3 Framework for Generating Domain Specific Custom Instructions 19
3.1 Motivational Example . 19
3.2 Problem Formulation . 21
3.3 Instruction Generation . 22

3.3.1 Convexity of Maximum Common Sub-graphs 23
3.3.2 Framework for Instruction Generation 23

3.4 Instruction Selection . 26
3.5 Summary . 28

4 Evaluation of the Framework 29
4.1 Experimental Set-up . 29

4.1.1 Base Processor . 29
4.1.2 Input data set . 30
4.1.3 Metrics for evaluation 30

vii

4.1.4 Merit Functions . 33
4.1.5 Implementation details 34

4.2 Results . 35
4.3 Summary . 37

5 Conclusions 41
5.1 Contributions . 41
5.2 Future Work . 42

viii

Chapter 1

Introduction

Traditionally, embedded processors have been specialized for single applications or
small set of applications. Anyhow, processor specialization has become a common
approach to deal with every increasing computational power required by software
applications. The trend in processor industry shows that, with the advent of het-
erogeneous computing, desktop and server processors will also contain specialized
cores [9].

Over the years, many techniques have been proposed and used in both industry
and academia to specialize general purpose processors for the required applica-
tion(s). One such technique consists in the augmentation of a processor core with
special-purpose hardware to improve the application performance. This special
purpose hardware can be in the form of either a custom functional unit, or a co-
processor subsystem, or an accelerator, and it is exposed to the programmer as a
custom instruction. The identification of these custom instructions constitutes a
major challenge, usually addressed in literature as the Instruction-Set Extension
(ISE) problem.

Traditionally, the ISE problem is addressed on per-application basis. The unique
combination of increasing demand for computational power and diversifying nature
of the applications makes application-specific custom instructions less favourable.
Custom instructions should shift from application-specific to domain-specific, in a
sense that each custom instruction should have high utilization across many applic-
ations (in a domain), while still delivering the required performance improvements.
This requirement for effective re-utilization of custom instructions leads to a new
challenge in the custom instruction generation process.

In this thesis we propose a framework to address the problem of automatically
identifying domain specific ISE. In the following, we first present an overview of
the problem studied in this thesis, after that, we outline our major contributions.
The chapter concludes with an overview of the thesis organization.

1

1.1 Problem Description

Over the years computational platforms have evolved according to the demands of
the market. Need for better performance (processing speeds) has been one of the
major drivers of growth in the processor industry. Frequency scaling provided an
easy and straight-forward method to scale performance upto the late 90s. At the
beginning of 21st century, industry moved towards multi-core systems after pro-
cessors hit a performance wall, due to saturation in the frequency scaling. Today,
multi-core systems have penetrated into all the major segments of the market, from
mobile phones to super computers.

Performance demands continue to grow across all segments of computing. In
computing systems catering for consumer markets, there is a demand to enable
compelling user experience. On the other end, in data-centres, there is an in-
creasing demand for performance due to the vast amount of data that needs to
be processed. Heterogeneity in the processing platforms is perceived as an an-
swer to providing performance scaling in processors for the next decade and more
[9]. Heterogeneous multi-core systems combine specialized processors and gen-
eral purpose processor, on a single die. These specialized processors (cores) are
optimized to efficiently support set of applications from a number of domains.

As mentioned earlier, supplementing a processor’s instruction set with custom
instructions is one of the many dimensions in which a processor can be specialized
for a set of applications. With custom instructions, a processor can approach bet-
ter performance levels compared to a GPP and can sustain this performance gain
for modest changes in the application(s), such as bug fixes or incremental modifica-
tions to the standard. Over the years, many researchers have shown that automation
is the key to make ISE successful [31, 4, 21, 16, 43, 20]. This ensures that the cost
of the system and the overall design time are lowered.

Figure 1.1 shows the steps involved in augmenting a processor with custom in-
struction. After profiling an input application code, the parts of application code
with high profile numbers are converted into graph representations. An ISE frame-
work takes these graph representations as input and, based on certain optimization
metric, identifies clusters of operations, which are sub-graphs of the input graph,
for hardware implementation. Later, these clusters (sub-graphs), which are the
custom instructions are synthesized (implemented) for a technology node. The im-
plemented custom instructions are then integrated into a processor core. Every step
shown in Figure 1.1 poses interesting research questions. The scope of this thesis
is restricted to the ISE as a graph problem.

Over the years, many frameworks have been proposed for the automatic identi-
fication of custom instructions [25][29]. Most of these frameworks identify com-
plex custom instruction(s) to improve the performance of a given application. Clearly,
these application-specific custom instructions cannot cater for the future demands
of specialized processors which, as mentioned before, are domain specific in nature.
In this thesis, we make an effort to solve this problem. The framework proposed
in this thesis takes a set of graphs, which correspond to the application hot-spots,

2

DIV

ADD

ADD SUB

MUL

ASR

XOR

ASR

AND

LSR

XOR

AND

MUL

ADD

MUL

ADD

MUL

Processor CFU

#include <stdio.h>

int main()
{
 int c, n, fact = 1;

 printf("Enter a number to calculate it's factorial\n");
 scanf("%d", &n);

 for (c = 1; c <= n; c++)
 fact = fact * c;

 printf("Factorial of %d = %d\n", n, fact);

 return 0;
}

Application

Code

Data Flow Graphs

Custom Instructions

Circuit Descriptions

Specialized

Processor

Identify hot-spots

ISE Framework

Instruction Synthesis

Processor Integration

Optimization

Metrics

Technology

Libraries

Base

Processor

Figure 1.1: A methodology for specializing a processor by using application-
specific custom instructions.1

along with an optimization metric, and identifies a set of custom instructions. A
formal description of the problem along with the algorithms involved in identifica-
tion of the custom instructions are described in the next chapter.

1.2 Contributions

In this thesis, we present a methodology for the identification of custom domain-
specific instructions. The custom instruction identification involves two steps: first,
the candidate instructions which have better utilization across applications are enu-
merated. After that, based on a certain optimization metric, we select a sub-set of
the enumerated instructions for hardware implementation. The selection process
ensures that our instructions can produce maximum benefit for a given utilization

1The images are meant for illustrative purposes and they do not correspond to a real example.

3

factor.
More specifically the main contributions of this thesis are the following:

• the design and implementation of an ISE framework, which does not depend
on the base processor and implementation technology;

• the formulation of the instruction generation problem as the Maximum Com-
mon Sub-graph problem, which is solved by transforming the problem into
a maximum clique problem;

• the formulation of the instruction selection problem as a graph covering
problem, which is solved by using sub-graph isomorphism and exact cov-
ering of a set;

• A theoretical proof that an application utilizing the custom instructions gen-
erated by our framework can be scheduled;

• A set of experiments to show that the custom instructions generated by our
framework can reduce the dynamic instruction count, on average, by 45%.

1.3 Organization

The rest of this thesis is organized as follows.
In Chapter 2, we provide a formal definition of the ISE problem and we discuss

the two steps involved: instruction generation and instruction selection. After that,
we present a detailed overview of state-of-the-art in automatic ISE frameworks,
which address the ISE problem at both application-specific and domain specific
levels. We also provide an objective summary of some of the most popular ISE
frameworks on the basis of the techniques they employ for instruction generation
and instruction selection.

In Chapter 3, we extend our discussion on the ISE problem and we present our
framework for domain specific ISE. We provide a formal definition of domain spe-
cific ISE and, later, describe the algorithms used by our framework. We also prove
that custom instructions generated by our framework can be utilized by applica-
tions without any scheduling problem.

We evaluate the effectiveness of the custom instructions generated by our frame-
work in Chapter 4. We first describe the experimental set-up and, later, present the
experimental results. In this chapter we also present the drawbacks of evaluating
ISE frameworks on basis of conventional metrics and we propose the dynamic in-
struction count as an effective metric to evaluate ISE frameworks in an architecture
and technology independent way.

Finally, in Chapter 5, we provide concluding remarks. We outline the contribu-
tions of the thesis and we set direction for future research, which can be carried out
based on our framework.

4

Chapter 2

Background and Related Work

The augmentation of a processor core with special-purpose hardware has become
a common technique used to speed up the execution of applications. This special
purpose hardware can be in the form of either a custom functional unit, or a co-
processor subsystem, or an accelerator, and it is exposed to the programmer as a
custom instruction. Supplementing a processor’s instruction set with custom in-
structions has various advantages. These include, for example, reduced instruction
execution cycles, improved performance, and reduced power consumption [25].
The identification of these custom instructions constitutes a major challenge, usu-
ally addressed in literature as the Instruction-Set Extension (ISE) problem. This
chapter presents an overview of the ISE problem and briefly describes the existing
solutions to the problem. The chapter begins by defining the ISE problem and,
later, it introduces the two constituent sub-problems: custom instruction genera-
tion and custom instruction selection. The chapter continues with a description of
state-of-the-art frameworks, which address the ISE problem at application-specific
and domain-specific level. Finally, the chapter concludes with an overview of the
existing frameworks and an account of how the framework proposed in this thesis
stand against and complements the existing solutions.

2.1 The Instruction Set Extension Problem

Many applications have the property that most of their execution time is spent in
a small fraction of the source code. There is an informal rule, popularly known as
90-10 rule, which states that 90% of the execution time is spent in 10% of the code
[42]. Therefore, one of the best ways to speed up an application is to accelerate its
“hot spots”, the portions of the application in which most of the execution time is
spent.

ISE problem deals with the identification of custom instructions, which, usually,
reduce the execution time of the “hot spots”. Frameworks for automatic generation
of custom instructions usually work on graph representations of the applications,
called the Data Flow Graphs (DFGs). DFGs do not include control structures and,

5

hence, are derived from the basic blocks1 of the application code.

Definition 2.1. A DFG G(V,E) is a directed acyclic graph, where vertices repres-
ent basic operations and edges represent data dependencies.

To understand the notion of complex custom instructions, we have to introduce
two concepts: the induced sub-graphs and the convexity of a sub-graph. A sub-
graph G′(V ′, E′) of a graph G(V,E) is said to be an induced sub-graph, if ∀u, v ∈
V ′, e = (u, v) ∈ E iff e ∈ E′. This means that an induced sub-graph G′ contains
all the edges over its vertex-set that appear in G, and only those. Figure 2.1b shows
an example of an induced sub-graph.

a2

a5

a4

a1

a3

(a) G(V,E).

a2

a5

a4a3

(b) G′(V ′, E′).

a2

a5

a4a3

(c) G′′(V ′′, E′′).

Figure 2.1: G′ is an induced sub-graph of G. Anyhow, G′′ is not a induced sub-
graph of G as (a2, a4) ∈ E \ E′′

Given a graph G(V,E), a sub-graph G′(V ′, E′) is called convex if there exists
no path from a node u ∈ V ′ to another node v ∈ V ′, which involves a node
w ∈ V \V ′. For example, the sub-graph shown in Figure 2.2 is not convex as there
exists a path from a1 to a4, which includes node a3 ∈ V \ V ′, by itself, is not part
of the sub-graph.

a1

a4

a3a2

G

G’

Figure 2.2: A non-convex sub-graph. G′(V ′, E′) ⊂ G(V,E)

1Portions of the source code, which have only one entry point and one exit point [7].

6

Definition 2.2. Let G be a DFG of a given application. A custom instruction is
represented by a convex induced sub-graph G′ ⊆ G.

It can be observed from Def. 2.2 that a custom instruction, in certain cases, can
be the DFG itself (G′ = G). Although, this is a possible scenario, it’s occurrence
is very rare as memory operations and branch instructions are excluded from the
custom instructions2. The identification of the convex induced sub-graphs which,
together, can maximize a certain metric (e.g, performance), for a given application
is a possible solutions to the ISE problem. Existing methodologies for ISE usually
address the customization (extension) problem in two steps: first,they generate a
suitable number of custom instructions; after that, they select, among the pool of
candidate custom instructions a subset, which optimizes a given metric [25]. These
steps are commonly addressed as instruction generation and instruction selection
and they will be analysed in more detail in the following.

2.1.1 Instruction Generation

Instruction generation consists in the enumeration of a number of custom instruc-
tions (clusters of basic operations from the available instruction-set), which are
either application- or domain-specific. This enumeration process is a design space
exploration [24] which aims at identifying instruction that can be selected for hard-
ware implementation. If the vertex set of a DFG has order n, then the total search
space for identification of custom instructions is in the order of O(2n). Several
techniques have been proposed to efficiently handle this complexity. The most
common one involves efficient pruning of the search space by introducing specific
constraints.

2.1.2 Instruction Selection

Once a pool of candidate instructions is available, instruction selection narrows
them down by selecting a subset of instructions, which optimize (maximize/ min-
imize) specific metrics. These may include, for example, a reduction in the applic-
ation execution time and/or a reduction in power consumption.

Usually, instruction selection is addressed as a covering problem or a 0/1 knap-
sack problem, which are widely known to be NP-complete [23]. The proposed
solutions are either exact, whenever possible, or heuristics when a solution cannot
be computed in a feasible time. In the next sections, an overview of the current
state-of-the-art in ISE is described in more detail.

Traditionally, ISE problem has been addressed on a per-application basis. The
analysis is done on one application at a time and one or more instructions are identi-
fied to improve the performance of execution of the application. This approach for
ISE is categorized as application-specific ISE in the rest of this thesis. As outlined

2Though, techniques for including memory operations in custom instructions exist in literature
[15], they are are seldom used in the frameworks

7

in Chapter 1, application-specific ISE is not a scalable approach, if the number
of applications that needs to be accelerated grows. Domain-specific ISE aims at
maximizing the utilization of custom instructions across a set of applications (in
a domain), while still delivering required performance improvements. Some ex-
isting frameworks for ISE consider re-utilization of custom instructions as a goal.
Anyhow, they only deal with instruction reuse within an application.

In the next sections, various application-specific and domain-specific ISE frame-
works are investigated in more detail. The main objective of the rest of the chapter
is to provide an overview of some common approaches adopted by researchers to
tackle the complexity of the ISE problem and provide solutions. It does not try
to present every existing technique in ISE. Extensive overviews of the different
methodologies developed over the past years are presented in [29] and [25].

2.2 Application-Specific ISE

As mentioned earlier, automatic application-specific ISE frameworks identify cus-
tom instructions, which can improve the performance of execution of a given ap-
plication. Some of the widely adopted approaches for application-specific ISE are
presented in the following. While the early research in ISE only addressed instruc-
tion selection from a predefined set of templates, state-of-the-art ISE frameworks
address both instruction generation and selection. These frameworks are based on
either exhaustive search of the design space or incremental clustering of nodes to
generate instructions.

2.2.1 Predefined Templates

A template is a cluster of simple ALU operations such as, for example, Multiply
ACcumulate (MAC) operation, which is a very common operation in signal pro-
cessing applications. Early work in automatic ISE totally side stepped the instruc-
tion generation by assuming the existence of template library [34, 8]. These frame-
works require the designer to enumerate a superset of useful custom instruction
candidates. Only the instruction selection phase is automated. This approach has
severe limitations due to the manual design effort required for the instruction gener-
ation. The quality of the results is often determined by the expertise of the designer.
Additionally, the design time is very large and, hence, is not scalable when we con-
sider multiple applications. Most of the recent works in ISE consider automatic
instruction generation and, hence, unlike the previous works, custom templates are
generated after analysis of the application. Some of the most common approaches
adopted by the researchers for automatic instruction generation are described later
in the chapter.

8

2.2.2 Exhaustive Search

This process involves the exploration of the entire design space. As an exhaust-
ive enumeration of all the sub-graphs is computationally impractical3, researchers
introduce constraints, which usually represent architectural limitations of the pro-
cessor(s) targeted in their work.

In [13], Atasu et al. proposed a single-cut identification algorithm, which max-
imize the gain per custom instruction. They used a branch-and-bound algorithm
with an efficient pruning technique based on the input/output (I/O) constraints for
the identification of custom instructions. The constraints on the I/O degree of the
sub-graphs is based on the assumption that a register file in the processor core can
only have limited I/O ports. The authors also proposed an iterative selection al-
gorithms with linear time complexity to choose a subset of identified instructions
with maximum benefit.

Single-cut identification algorithm has exponential computational complexity
and, hence, is not scalable. In [44], Yu et al. proposed a exhaustive enumeration
algorithm similar to [13]. Anyhow the approach presented in [44] is quite scal-
able and can be applied to large data-flow graphs with relaxed micro-architectural
constraints. The limitation of this approach is that the instruction generation can
only identify connected sub-graphs. Additionally, the selection problem is not ad-
dressed in [44]. To reduce the run-time of the algorithms, Atasu et al. formulated
the instruction generation as a Integer Linear Programming (ILP) problem [11].
Since ILP solvers use efficient heuristics, the run time is reduced.

All these approaches are restricted by the number of register ports in a re-
gister file. To overcome this limitation, Pozzi et al. [39] presented a framework,
which performs I/O serialization of the instructions, with higher I/O degree than
the I/O degree of the register file in a processor. In their framework, instruc-
tion identification is performed using the single-cut identification algorithm from
[13] with relaxed I/O constraints. This approach for instruction identification has
two major drawbacks. Firstly, the runtime increases significantly because relaxing
I/O constraints also relaxes the bounds on the single-cut identification algorithm.
Secondly, it is hard to determine a relaxation factor that produces optimal results.
For instance, Pozzi et al. propose a relaxation of the I/O degree to 10 inputs and
5 outputs for the single-cut identification algorithm. Anyhow, custom instructions
with a higher I/O degree can exist in the considered applications.

2.2.3 Incremental Clustering

In incremental clustering, a node is selected as a seed and, iteratively, nodes are
merged together until certain constraints are satisfied. A guide function guides the
clustering process by heuristically removing a number of edges during the explor-
ation.

3We remind that given a graph with n nodes, there are upto 2n possible sub-graphs (custom
instructions), which can be enumerated.

9

In [21], Clark et al. proposed a framework for the identification and utilization
of custom instructions. The instruction identification is based on incremental clus-
tering under I/O and area constraints. The authors use a guide function which ranks
desirability of edges based on three parameters: criticality, latency and area. The
edges with smaller score are not considered during the generation of the sub-graph
thus reducing the search space of the algorithm. Instruction selection is formulated
as a 0/1 knapsack problem. The goal is to maximize the total value (performance
gain) of a set of resources (identified custom instructions) for a given cost (area).

In [5], Alippi et al. described the MAXMISO partitioning. A MAXMISO is
a MAXimal, Multiple Input and, Single Output sub-graph of a DFG, which is
suitable for hardware implementation. Unlike the frameworks in [13, 21], their
MAXMISO partitioning does not constrain the number of inputs an instruction
can have and MAXMISOs are identified by recursively adding nodes to the parent
node [38, 27]. Galuzzi et al. extended the notion of MISO clustering [24] of DFGs
and presented various linear time clustering algorithms, which can identify MIMO
(Multiple Input Multiple Output) clusters [26] in a DFG.

In [43], Verma et al. proposed a processor-agnostic approach to ISE without
considering I/O degree during instruction identification. The authors formulated
instruction identification as an identification of maximum cliques in a cluster graph.
This approach is similar to incremental clustering. The nodes in the cluster graph
represent a set of vertices of the DFG, which belong to a consistent set (see [43] for
more details). The custom instructions identified using this approach are maximal
convex sub-graphs in the given DFG. These custom instructions, usually, have a
very high I/O degree. The authors formulate I/O serialization as a matrix problem
to tackle the high I/O degree of the custom instructions.

2.2.4 Recurrence Aware ISE

All the ISE approaches mentioned before lead to the identification of large clusters
of operations (custom instructions), which can provide maximum benefit for a
given application. The goal of recurrence aware ISE is to increase the utilization of
the identified instructions, which, in turn, leads to a reduction of the overall area.
Recurrence aware ISE frameworks use either exhaustive search or incremental
clustering techniques in conjunction with the recurrence criteria. Recurrence aware
ISE by-itself is not a totally different technique and it can be considered as an ex-
tension of the earlier mentioned ISE techniques. While some authors [20][16]
tackle recurrence problem during instruction selection, others [31, 17, 4] consider
recurrence as a goal during instruction identification.

In [16], Bonzini et al. address the generation of custom instructions by con-
sidering high utilization and better gain of the custom instructions. Instruction
selection is formulated as a covering problem, which aims at selecting a set of non-
overlapping and recurrent custom instructions. The authors proposed both exact
and approximate algorithms to solve the covering problem in conjunction with the
recurrence of candidate instructions. Anyhow, they only consider the selection of

10

custom instructions and leave their identification to the user. The covering problem
is widely known to be NP-complete and, hence, the exact solution has a exponen-
tial time complexity in terms of number of custom instructions identified in the
instruction generation stage.

Kastner et al. [31] were the first to consider recurrence in the instruction genera-
tion stage. Their algorithm performs simultaneous template generation and match-
ing for the given application. At each step, the algorithm selects most common
edges and clusters them into super-nodes. The algorithm stops when a sufficient
number of templates to maximally cover the graph are generated.

In [4], Ahn et al. proposed an isomorphism aware instruction identification tech-
nique, which can improve the utilization of custom instructions. Their work is sim-
ilar to that of Kastner et al., although the instruction generation in [4] can proceed
with an arbitrary fitness function. Furthermore, they use a canonical representa-
tion of graphs to perform more efficiently the isomorphism test. Their incremental
template generation algorithm identifies connected sub-graphs with high utilization
factor in the given DFG. This leads to the identification of one instruction at-a-time
for a given DFG.

An interesting aspect of recurrence aware ISE is that, its goals are in line with
those of domain-specific ISE. Anyhow, all the frameworks mentioned so far only
apply the recurrence criteria for instruction identification within a DFG. Although
the work of Ahn et al. in [4] considers recurrence across DFGs, their framework is
limited to the identification of connected sub-graphs one-at-a-time.

2.3 Domain-specific ISE

Domain-specific ISE deals with identification of custom instructions, which can
improve the performance of a set of applications. A naive approach towards domain-
specific ISE is to separately identify custom instructions for each application and,
finally, collate them into a set of domain-specific custom instructions. One can
immediately notice that this approach is not scalable when the number of input ap-
plications increases. One of the major requirements in domain-specific ISE is the
re-utilization of the custom instructions across applications.

In [10], Arnold et al. presented a semi automated method for the detection
and exploitation of domain-specific ISE for VLIW processors. The authors first
detect frequently occurring operations and, later, group them into custom instruc-
tions. The pattern library construction is similar to recurrence aware ISE and it is
performed using incremental clustering. However, the number of operations per
constructed pattern is restricted to three.

In [21], Clark et al. presented a framework for automatic domain-specific in-
struction set extension. The authors initially identify application-specific custom
instructions and, later, use the techniques of wild-carding and graph subsuming to
generalize the identified instructions across the applications. application-specific
instructions are identified using incremental clustering. This technique of identi-

11

fying application-specific instructions and later generalizing them to suit a domain
seldom gives optimal results. In some cases, these over-engineered custom instruc-
tions lead to limited performance benefits at the cost of a significant die area use.

Clearly, the existing frameworks for automatic ISE cannot efficiently generate
optimal domain-specific custom instructions. The framework presented in this
thesis is an effort towards automatic generation of custom instructions, which can
be utilized by a set of applications while still delivering the required performance
gain. An objective summary of the existing frameworks investigated in this thesis
along with how they differ from our framework is presented next.

2.4 Discussion

Table 2.1 shows an overview of some of the existing ISE frameworks and their cor-
responding instruction generation and selection techniques. The ISE approaches
presented in [6, 5, 13, 11, 12, 26, 27, 38, 39, 44, 45] lead to the identification of
large clusters of operations (custom instructions), which drastically increase the
area if more than one application is considered at a time. The goal of the frame-
work presented in this thesis is to improve utilization of the identified instructions,
which, in turn, leads to a reduction of the overall die area and, potentially, power
reduction.

Unlike generalizing application-specific custom instructions [21] to improve their
utilization across applications, the framework presented here considers the reutil-
ization of the custom instructions as a goal in the instruction identification stage.
Instead of growing the custom instruction from a seed node, the instruction identi-
fication is formulated as a Maximum Common Sub-graph problem.

The isomorphism aware identification of custom instructions proposed by Ahn
et al. in [4] can be used to identify custom instructions in multiple basic blocks.
By combining given set of DFGs into one DFG, the authors use their basic instruc-
tion identification technique to identify recurring custom instructions across ap-
plication, one at a time. Our methodology is rather different, as our identification
algorithm simultaneously works with multiple applications and, in each iteration,
identifies a set of custom instructions.

The goals of recurrence aware instruction selection in [16] are inline with the
goals of the domain-specific ISE described in this thesis. While [16] presents only
instruction selection, this thesis addresses the full problem of ISE and also pro-
poses an efficient instruction generation methodology, which identifies only the
most “suitable” custom instructions available for the following instruction selec-
tion. As instruction selection is, in the general case, a well known NP-complete
problem, by limiting the number of candidate instructions available for selection,
the framework achieves an increase in scalability and, hence, it can deal with much
larger applications.

Work in data path merging [18, 35, 40] is sometimes in-line with instruction
identification technique presented in this thesis. One of the main steps in data-path

12

merging is to identify the common part that can be shared across applications. The
instruction identification technique used in this thesis is partly influenced by the
data path merging algorithm proposed by Moreano et al. in [35]. Their algorithm
merges a set of input graphs into a super-graph. Unlike their algorithm, we identify
the maximum common sub-graph between every pair of graphs and use these sub-
graphs as potential custom instructions.

2.5 Summary

In this chapter we presented an overview of various steps involved in custom-
ization of instruction-set with a set of specialized instructions. We presented a
formal definition for ISE and introduced the two steps involved in ISE: instruction
generation and instruction selection. The most common approaches towards ISE
are analysed with the help of state-of-the-art automatic ISE frameworks. We also
presented an objective summary of some of the existing ISE frameworks and qual-
itatively compared them against our framework. In the next chapter, the framework
for generating domain-specific custom instructions is described in more detail.

13

IS
E

Fr
am

e-
w

or
k

In
st

ru
ct

io
n

G
en

er
a-

tio
n

In
st

ru
ct

io
n

Se
le

ct
io

n
C

om
pl

ex
ity

M
et

ri
cs

R
em

ar
ks

A
hn

[4
]

R
ec

ur
re

nc
e

aw
ar

e
in

cr
em

en
ta

l
cl

us
te

ri
ng

w
ith

IO
se

ri
al

iz
at

io
n

It
er

at
iv

e
se

le
ct

io
n

al
-

go
ri

th
m

E
xp

on
en

tia
l

U
se

rd
efi

ne
d

fit
ne

ss
fu

nc
tio

n
fo

r
se

le
c-

tio
n.

U
se

s
ca

no
ni

ca
lr

ep
re

se
nt

-
at

io
n

of
gr

ap
hs

to
m

or
e

ef
fic

ie
nt

ly
pe

rf
or

m
is

o-
m

or
ph

is
m

du
ri

ng
in

st
ru

c-
tio

n
ge

ne
ra

tio
n.

A
lip

pi
[6

]
M

A
X

(E
)M

IS
O

en
u-

m
er

at
io

n
by

a
he

ur
is

tic
G

en
et

ic
A

lg
or

ith
m

s
L

in
ea

r

Sp
ee

d-
up

,
nu

m
be

r
of

ou
tp

ut
s,

po
w

er
co

ns
um

pt
io

n,
FP

G
A

re
co

nfi
gu

ra
-

tio
n

tim
e

M
A

X
E

M
IS

O
st

or
es

st
at

e
in

fo
rm

at
io

n
an

d
he

nc
e

ca
n

su
pp

or
ts

ta
tic

lo
op

s

A
lip

pi
[5

]
M

ax
M

IS
O

id
en

tifi
ca

-
tio

n
in

a
D

FG
N

ot
ad

dr
es

se
d

L
in

ea
r

O
ut

pu
t

de
gr

ee
of

th
e

cu
st

om
in

st
ru

c-
tio

n.

O
nl

y
id

en
tifi

es
co

nn
ec

te
d

M
A

X
M

IS
O

s

A
rn

ol
d

[1
0]

D
yn

am
ic

pa
tte

rn
lib

-
ra

ry
co

ns
tr

uc
tio

n
an

d
m

at
ch

in
g

G
ra

ph
co

ve
ri

ng
us

in
g

dy
na

m
ic

pr
og

ra
m

m
in

g
E

xp
on

en
tia

l
Im

pl
em

en
ta

tio
n

co
st

(A
re

a)

Fi
rs

tw
or

k
to

co
ns

id
er

re
-

cu
rr

en
ce

ac
ro

ss
ap

pl
ic

a-
tio

ns

A
ta

su
[1

3]
B

ra
nc

h
an

d
bo

un
d

ba
se

d
en

um
er

at
io

n
of

co
nv

ex
su

b-
gr

ap
hs

It
er

at
iv

e
se

le
ct

io
n

al
-

go
ri

th
m

E
xp

on
en

tia
l

(g
en

er
at

io
n)

,
L

in
ea

r
(s

el
ec

-
tio

n)

I/
O

de
gr

ee
of

th
e

D
FG

,
im

pl
em

en
ta

-
tio

n
co

st
(a

re
a)

A
ls

o
pr

op
os

ed
a

op
tim

al
se

le
ct

io
n

al
go

ri
th

m
.

14

A
ta

su
[1

1]
IL

P
ba

se
d

te
m

pl
at

e
ge

ne
ra

tio
n

Is
om

or
ph

is
m

te
st

-
in

g
an

d
po

te
nt

ia
l

ev
al

ua
tio

n
fu

nc
tio

n
E

xp
on

en
tia

l
I/

O
de

gr
ee

of
th

e
D

FG
,

im
pl

em
en

ta
-

tio
n

co
st

(a
re

a)

R
un

tim
e

of
th

e
fr

am
e-

w
or

k
is

le
ss

du
e

to
ef

-
fic

ie
nt

he
ur

is
tic

s
im

pl
e-

m
en

te
d

in
th

e
IL

P
so

lv
er

s

A
ta

su
[1

2]

M
ax

im
al

co
nv

ex
su

b
gr

ap
h

en
um

er
at

io
n

by
in

cr
em

en
ta

l
cl

us
te

ri
ng

an
d

se
le

ct
iv

e
pr

un
in

g

0/
1

K
na

ps
ac

k
pr

ob
le

m
E

xp
on

en
tia

l
Sc

he
du

le
le

ng
th

of
cu

st
om

in
st

ru
ct

io
n

Pr
op

os
ed

a
tig

ht
er

up
pe

r-
bo

un
d

on
th

e
si

ze
of

m
ax

-
im

al
co

nv
ex

su
b-

gr
ap

h

B
on

zi
ni

[1
6]

N
ot

ad
dr

es
se

d

E
xa

ct
an

d
ap

pr
ox

im
-

at
e

al
go

ri
th

m
s

to
so

lv
e

re
cu

rr
en

ce
aw

ar
e

co
v-

er
in

g

E
xp

on
en

tia
l

(o
pt

im
al

),
lin

ea
r

(a
pp

ro
xi

m
at

e)

M
ax

im
iz

es
us

er
de

fin
ed

m
er

it
fu

nc
tio

n

U
se

s
in

st
ru

ct
io

n
ge

ne
ra

-
tio

n
te

ch
ni

qu
es

fr
om

[1
3]

B
ri

sk
[1

7]
R

ec
ur

re
nc

e
ba

se
d

se
-

qu
en

tia
l

an
d

pa
ra

lle
l

cl
us

te
ri

ng
.

N
o

ex
pl

ic
it

se
le

ct
io

n
st

ag
e

Q
ua

dr
at

ic
in

th
e

nu
m

be
r

of
ed

ge
s

C
lu

st
er

in
g

st
op

s
w

he
n

a
st

op
co

nd
iti

on
is

m
et

U
se

s
A

ll
Pa

ir
C

om
m

on
Sl

ac
k

G
ra

ph
to

pe
rf

or
m

pa
ra

lle
l

cl
us

te
ri

ng
.

Se
-

qu
en

tia
l

cl
us

te
ri

ng
is

sa
m

e
as

[3
1]

C
ho

i[
20

]
E

xt
en

de
d

su
b-

se
t

su
m

pr
ob

le
m

N
o

ex
pl

ic
it

se
le

ct
io

n
st

ag
e

L
in

ea
r/

ex
-

po
ne

nt
ia

l
(d

ep
en

di
ng

on
th

e
su

bs
et

su
m

so
lv

er
)

N
um

be
r

of
id

en
-

tifi
ed

in
st

ru
ct

io
ns

an
d

th
ei

ru
til

iz
at

io
n

Id
en

tifi
es

sm
al

l
se

t
of

in
st

ru
ct

io
ns

w
hi

ch
ha

ve
hi

gh
ut

ili
za

tio
n

fa
ct

or
th

at
ca

n
le

ad
to

pe
rf

or
m

an
ce

ga
in

pr
e-

de
fin

ed
by

th
e

us
er

.

15

C
la

rk
[2

1]
In

cr
em

en
ta

lc
lu

st
er

in
g

0/
1

K
na

ps
ac

k
pr

ob
le

m
E

xp
on

en
tia

l
I/

O
de

gr
ee

of
th

e
in

st
ru

ct
io

ns
,a

re
a

U
se

s
w

ild
ca

rd
in

g
an

d
gr

ap
h

su
bs

um
in

g
to

ge
n-

er
al

iz
e

th
e

ap
pl

ic
at

io
n-

sp
ec

ifi
c

in
st

ru
ct

io
n

to
su

it
a

ap
pl

ic
at

io
n

do
m

ai
n

C
on

g
[2

2]

Su
b

gr
ap

h
en

um
er

-
at

io
n

fo
rm

ul
at

ed
as

m
in

im
um

ar
ea

lo
gi

c
co

ve
ri

ng
pr

ob
le

m

0/
1

K
na

ps
ac

k
pr

ob
le

m
E

xp
on

en
tia

l
I/

O
de

gr
ee

of
th

e
in

st
ru

ct
io

ns
,a

re
a

C
on

si
de

rs
op

er
at

io
n

du
-

pl
ic

at
io

n
w

he
n

in
st

ru
ct

io
n

ge
ne

ra
tio

n

G
al

uz
zi

[2
6]

In
cr

em
en

ta
l

cl
us

te
ri

ng
of

SU
B

M
A

X
M

IS
O

s
in

to
M

IM
O

in
st

ru
c-

tio
ns

N
o

ex
pl

ic
it

se
le

ct
io

n
st

ag
e

L
in

ea
r

A
re

a
an

d
ou

tp
ut

de
-

gr
ee

of
cu

st
om

in
-

st
ru

ct
io

n

U
se

s
SU

B
M

A
X

M
IS

O
ge

ne
ra

tio
n

al
go

ri
th

m
fr

om
[2

7]

G
al

uz
zi

[2
7]

Pa
rt

iti
on

in
g

of
a

gr
ap

h
in

to
SU

B
M

A
X

M
IS

O
N

o
ex

pl
ic

it
se

le
ct

io
n

st
ag

e
L

in
ea

r
O

ut
pu

t
de

gr
ee

of
th

e
cu

st
om

in
st

ru
c-

tio
n.

In
iti

al
ly

pa
rt

iti
on

th
e

gr
ap

h
in

to
M

A
X

M
IS

O
cl

us
te

rs
an

d
la

te
r

de
co

m
-

po
se

th
es

e
cl

us
te

rs
in

to
SU

B
M

A
X

M
IS

O

K
as

tn
er

[3
1]

R
ec

ur
re

nc
e

ba
se

d
in

-
cr

em
en

ta
lc

lu
st

er
in

g
G

ra
ph

ed
ge

co
ve

ri
ng

L
in

ea
r

(g
en

er
a-

tio
n)

,
Q

ua
dr

at
ic

(c
ov

er
in

g)

N
um

be
r

of
te

m
-

pl
at

es
ge

ne
ra

te
d

(a
re

a)

C
lu

st
er

in
g

re
su

lts
in

id
en

-
tifi

ca
tio

n
of

m
or

e
se

qu
en

-
tia

l
pa

tte
rn

s.
T

hi
s

ha
s

be
en

ex
te

nd
ed

by
B

ri
sk

[1
7]

16

Pe
ym

an
do

us
t

[3
6]

M
IS

O
ge

ne
ra

tio
n

us
-

in
g

[5
]o

r[
13

]

Se
le

ct
m

os
tc

om
m

on
ly

us
ed

in
st

ru
ct

io
ns

af
te

r
pr

ofi
lin

g
m

ap
pe

d
D

FG
s

L
in

ea
r/

ex
po

-
ne

nt
ia

l
I/

O
de

gr
ee

U
se

ss
ym

bo
lic

de
co

m
po

s-
iti

on
of

ap
pl

ic
at

io
n

co
de

to
im

pr
ov

e
ut

ili
za

tio
n

of
cu

st
om

in
st

ru
ct

io
ns

by
D

FG
s

Po
zz

i[
39

]
E

xh
au

st
iv

e
en

um
er

a-
tio

n
un

de
r

re
la

xe
d

I/
O

co
ns

tr
ai

ns

Se
le

ct
n

be
st

in
st

ru
c-

tio
ns

af
te

r
sc

he
du

lin
g

ea
ch

in
st

ru
ct

io
n

un
de

r
I/

O
co

ns
tr

ai
ns

E
xp

on
en

tia
l

In
tr

od
uc

ed
I/

O
se

ri
al

iz
a-

tio
n

to
ov

er
co

m
e

th
e

lim
-

ita
tio

ns
im

po
se

d
by

I/
O

de
gr

ee
of

re
gi

st
er

fil
e

V
er

m
a

[4
3]

C
liq

ue
en

um
er

at
io

n
in

a
cl

us
te

rg
ra

ph

Se
le

ct
n

be
st

in
st

ru
c-

tio
ns

af
te

rI
/O

se
ri

al
iz

-
at

io
n

E
xp

on
en

tia
l

Sp
ee

d-
up

Fo
rm

ul
at

ed
I/

O
se

ri
al

iz
a-

tio
n

as
a

m
at

ri
x

pr
ob

le
m

Y
u

[4
4]

A
tw

o-
st

ep
al

go
ri

th
m

ba
se

d
on

up
w

ar
d

an
d

do
w

nw
ar

d
co

ne
s

to
en

um
er

at
e

al
l

su
b-

gr
ap

hs

N
ot

ad
dr

es
se

d
E

xp
on

en
tia

l
I/

O
de

gr
ee

of
th

e
in

st
ru

ct
io

ns

T
he

al
go

ri
th

m
ap

pr
oa

ch
es

th
e

so
lu

tio
n

fa
st

er
th

an
[1

3]
,b

ut
ca

n
on

ly
id

en
tif

y
co

nn
ec

te
d

su
b-

gr
ap

hs

Y
u

[4
5]

D
is

jo
in

t
M

IM
O

pa
t-

te
rn

en
um

er
at

io
n

us
-

in
g

co
nn

ec
te

d
M

IM
O

pa
tte

rn
s

N
ot

ad
dr

es
se

d
E

xp
on

en
tia

l
I/

O
de

gr
ee

of
th

e
in

st
ru

ct
io

ns

E
xt

en
ds

th
e

w
or

k
in

[4
4]

to
su

pp
or

t
di

sc
on

ne
ct

ed
su

b
gr

ap
hs

.

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
IS

E
fr

am
ew

or
ks

fr
om

va
ri

ou
s

re
se

ar
ch

er
s.

17

18

Chapter 3

Framework for Generating
Domain Specific Custom
Instructions

In the previous chapter, we introduced custom instruction generation and selection
and we presented some of the most common approaches for (automatic) ISE. In
this chapter, we further extend our discussion and we present a framework for the
automatic generation and selection of domain-specific ISE. At first; in Section 3.1,
we present a motivational example to give a high level overview of the problem
solved by the proposed framework. Then, the problem is formalized in Section
3.2. Finally in Section 3.3 and Section 3.4, we present the algorithms for custom
instruction generation and selection used in the framework are described.

3.1 Motivational Example

In Figure 3.1, we present the dataflow graphs of the basic blocks of four different
applications from [3]. Although the graphs may look very simple, they are real ex-
amples from the literature and not synthetic custom-made applications/examples.
In the first stage, our framework identifies custom instructions, which are common
across the applications. We consider two input DFGs at-a-time during the iden-
tification of these instructions. As a result, for the four DFGs in the figure, the
instructions are identified in six steps:

STEP 1) Between arf - ewf ;
STEP 2) Between arf - fir;
STEP 3) Between arf - fir1;
STEP 4) Between ewf - fir;
STEP 5) Between ewf - fir1;
STEP 6) Between fir - fir1;

19

ADD

ADD

MUL

MUL

ADD

ADD

ADD

MUL

ADD

MUL

MUL

ADD

ADD

ADD

MUL MUL

ADD

ADD

MUL MUL

ADD

MUL

ADD

ADD

ADD

MUL

ADD

MUL

ADD MUL

ADD

ADD

MUL ADD

ADD

MUL ADD

ADD

MUL ADD

MUL

i3 i3

i5 i5

i3i5 i3i5

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADDADD

MUL

MUL

ADD

MUL MUL

ADD

MUL

MULMUL MUL MUL MUL

MULMUL MULMUL

MULMUL

i2

i2 i2

i2

i1 i1

i8 i8

i8

i0 i0

i6

ADD

MUL

ADD

ADD

ADD

MUL

ADD

MUL

ADD

ADD

ADD

ADD

ADD

MUL

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD ADD

MUL MUL

MUL

ADD

MUL

ADD

ADD

ADD

ADD

i9

i3

i3

i3

ADD

ADD

ADD ADD

ADD

ADD

ADD

ADD

ADD

ADD

MemW

MemR

MUL

MemR

MULMemR

MUL MemR

MUL

MemR

MUL

MemR

MUL

MemR

MUL

MemR

MUL

MemR

MUL

MemR

MULMemR

MUL

MemR MemR

MemR

MemR MemRMemR

MemR MemRMemR

MemR

MemR

i7

i6 i7

i7

i6

i7

i8

i6

imp

add

mul

imp

add

imp

mul

imp

add

imp

mul

imp

add

imp

mul

imp

add

imp

mul

imp

add

imp

mul

imp

add

imp

mul

imp

add

imp

mul

add

add

add

add

add

add

add

exp

imp

i0 i1 i2 i3 i4

i6
i5

i7

i8
i9

(a) Auto Regression Filter (arf).

(c) Elliptic Wave Filter (ewf).

(b) Finite Impulse

Response (fir).

(d) Finite Impulse Response (fir1).

(e) Potential custom instructions.

Figure 3.1: Motivational example. (a-d) represent four DFGs taken from the bench-
mark suite presented in [3]; (d) shows the custom instructions generated by our
framework.

20

i1

i0

i3

i4

i5

ADD

ADD

ADDADD

ADD

ADD

ADD

ADD

ADD

ADD

MemW

MemR

MUL

MemR

MULMemR

MULMemR

MUL

MemR

MUL

MemR

MUL

MemR

MUL

MemR

MUL

MemR

MUL

MemR

MULMemR

MUL

MemR MemR

MemR

MemR MemR MemR

MemR MemR MemR

MemR

MemR

i1

i0 i3i4

i5

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADDADD

MUL

MUL

ADD

MULMUL

ADD

MUL

MULMULMUL MULMUL

MULMUL MULMUL

MULMUL

ADD

ADD

MUL

MUL

ADD

MUL

ADD

MUL

MUL

ADD

ADD

ADD

MUL MUL

ADD

ADD

MUL MUL

i0

i1 i3

i4
i5

(b) Finite Impulse Response (fir1). (c) Custom Instructions.(a) Auto Regression Filter (arf).

Figure 3.2: Identification of common complex instructions across arf and fir1.

Figure 3.2 shows, as an example, the identification of instructions between arf
and fir1. After the instructions are identified for each pair of graphs, they are
consolidated into a set, which contains all the potential custom instructions (Fig-
ure 3.1e). If we consider the utilization of these instructions in the applications,
we can notice that some of these instructions may never be utilized. This hap-
pens as each node in the DFG can be covered by multiple custom instructions.
For example, when we try to cover these DFGs targeting the reduction of the dy-
namic instruction count, instruction i4, which is identified as a common instruction
across arf and fir1 (Figure 3.2), is never utilized in both arf and fir1 (Figure 3.1).
It can be noticed that the nodes in arf and fir1, which correspond to instruction
i4, are covered by i3 and i5 in arf, and by i3 and i9 in fir1, respectively. Hence,
the implementation of i4 is not required. We use this as a motivation for our in-
struction selection stage, where we cover each DFG with custom instructions and
select only those ones, which have a utilization factor better than a threshold value.
As our covering aims at reducing the dynamic instruction count, the final set of
custom instructions is pareto optimal. This means that the instruction utilization of
our custom instructions can produce maximum benefit, measured as a reduction in
the dynamic instruction count.

3.2 Problem Formulation

In this section, we formally describe the instruction generation and selection prob-
lem for domain-specific ISE. Unlike the general ISE formulation described in Sec-
tion 2.1, domain-specific ISE should consider instruction reuse when the custom
instructions are identified.

Definition 3.1. Given two graphs G1(V1, E1) and G2(V2, E2), the Maximum Com-
mon Induced Convex Sub-graph (MCICS) of G1 and G2, MCICS(G1, G2), is a

21

convex sub-graph G′, such that G′ is an induced sub-graph of both G1 and G2, and
there is no other sub-graph with greater number of vertices.

In the proposed framework, the goal of instruction generation is to generate (to
identify) custom instructions for which the utilization factor is maximal. These
instructions, which are common across all the applications, correspond to the in-
duced convex sub-graphs. As this formulation would lead to very small common
parts, we relax our identification scheme to every pair of sub-graphs. It is import-
ant to notice that, these sub-graphs cannot contain forbidden nodes1. Therefore,
for each pair of input DFGs, the instruction identification problem can be formally
stated as follows.

Problem 3.1. Given two DFGs, G and H, find the maximum common induced
convex sub-graphs of G and H, such that these sub-graphs do not contain any for-
bidden node.

The maximum common induced convex sub-graph is a disconnected graph. The
connected components of this graph are the potential custom instruction candid-
ates. After the MCICSs are identified for every pair of input DFGs, the connected
components of these graphs represent a complete list of the custom instruction
candidates, each of which, clearly, has utilization greater than 1.

To identify the instructions with small utilization factor, we cover each of the
input DFG with the custom instructions and remove those with utilization factor
smaller than a certain threshold value. The DFG covering problem, which is the
crux of the instruction selection can then be stated as follows.

Problem 3.2. Given a graph G and a set of graphs S = {S1, S2, .., Sn}, find
S′ ⊆ S with the smallest2 |S′| and such that the number of nodes in G not covered
by elements of S′ is minimal.

In the following sections, we elaborate further on both the instruction generation
and the instruction selection phases.

3.3 Instruction Generation

Instruction generation corresponds to the solution of the MCICS problem (Sec-
tion 3.2) for every pair of DFGs. MCICS is a variant of the Maximum Common
Sub-graph (MCS) problem. MCS with a convexity constraint is equivalent to the
MCICS problem. In this section, we first derive the necessary conditions to ensure
convexity of the common sub-graphs and, later, we utilize these results to identify
custom instructions across the applications.

1Memory operations cannot be part of the custom instructions. As a result, these operations are
marked as forbidden (nodes).

2Given a set A, |A| represents the number of its elements.

22

3.3.1 Convexity of Maximum Common Sub-graphs

A DAG G is said to be an oriented tree if the underlying undirected graph is a tree.
A tree is an undirected graph in which any two vertices are connected by exactly
one path.

Theorem 3.1. Let G(V,E) be a connected DAG and let f : V → N be a function
that determines the out degree of a given vertex. If f(v) = 1 ∀v ∈ V , G(V,E) is
an oriented tree.

Proof. By contradiction, let us assume that G is not an oriented tree. This means
that there exists at least two paths between vi and vj . For two paths to exist there
should be a fork node and a join node. A fork node is a vertex where the two paths
split. The source node of the path vi can itself be the fork node. Without a fork
node there cannot be two paths between the two vertices. The existence of the fork
node contradicts f(v) = 1,∀v ∈ V . Therefore, there cannot be two paths between
any two vertices in the given graph.

Corollary 3.1. Let G′(V ′, E′) be an induced sub-graph of G(V,E). If, ∀v′i ∈
V ′, f(v′i) = 1, G′(V ′, E′) is a convex sub-graph.

Proof. From Theorem 3.1, G′ is an oriented tree and, therefore, there exists only
one path between any pair of vertices in G′. This automatically excludes the exist-
ence of a path between two vertices of G′, which contains a vertex not in G′. As a
result, G′ is a convex sub-graph of G.

3.3.2 Framework for Instruction Generation

Fig. 3.3 shows the steps involved in finding the MCICS between two given graphs.
In the following, we describe them in more details.

The Transformation of High Fanout Instructions

In the first step, given two graphs, each of their vertices with out degree greater
than 1 is replaced with two vertices: the operator, with out degree of 1, and a REP
vertex3 (Figure 3.4). REP vertices are considered as forbidden nodes and they are
not part of the custom instructions. All the common sub-graphs between the two
input DFGs do not contain REP nodes and, hence, the out degree of each vertex
in the common sub-graph is 1. Therefore, according to Corollary 3.1, the common
sub-graphs are convex and, hence, they are potential custom instructions.

REP nodes do not correspond to any operator. They are included in the DFG
to ease the generation of custom instructions. These REP nodes are removed from
the DFGs at the end of the instruction generation stage. This does not affect the
convexity of the instruction and, hence, the DFG can be scheduled using the new
custom instructions.

3REP is short for Replication. These vertices have no physical meaning.

23

Edge

compatibility

Maximum

clique

(Exact/heuristics)

DFG1

Potential

custom

instructions

Compatibility

Graph (CG)

DFG2

Transformation

Transformation

Sub-graph

generation

Vertices of CG

(edge mappings

in input DFGs)

DFGs with REP

nodes

Connected

Components

MCICS of DFG1

and DFG2

Figure 3.3: Steps involved in the generation of custom instructions for two input
DFGs.

ADD

ADD

REP

Figure 3.4: Transformation of high fanout instructions.

The Compatibility Graph

A compatibility graph of two given DFGs is an undirected graph, where the vertices
represent possible edge mappings. An edge e1 = (u, v) in G1 can be mapped to
an edge e2 = (p, q) in G2 if and only if f(u) = f(p), f(v) = f(q), and u, v are
not forbidden nodes. The function f returns the basic operation performed at the
given node. An edge exists between two vertices in a compatibility graph if both
mappings represented by the two vertices are compatible.

For example, let us consider the two graphs G1 and G2 shown in Fig. 3.5a and
Fig. 3.5b. The possible edge mappings between G1 and G2 includes (a1, a3) →
(b1, b3), (a2, a3) → (b2, b3), (a1, a3) → (b6, b7), and (a4, a5) → (b4, b5). These
mappings are the vertices of the compatibility graph CG in Figure 3.5c. Both
mappings (a1, a3) → (b1, b3) and (a2, a3) → (b2, b3) can co-exist, as there is
no conflict between them. As a result, they are connected by an edge in the
compatibility graph. Now, let us consider the mappings (a1, a3) → (b6, b7) and
(a2, a3) → (b2, b3). These two mappings cannot co-exist as vertex a3 in G1

can be mapped to both b3 and b7 in G2. As a result, there is no edge between
(a1, a3)→ (b6, b7) and (a2, a3)→ (b2, b3) in CG.

24

a1 a2

a3
a4

a5

ADD

SUB

DIV

AND

MUL

ADD

SUB

DIV

MUL

AND

ADD

SUB

SHR

b1 b2 b6

b3

b4

b7

b8

b5

ADD

SUB

DIV MUL

ADD

(a1,a3) →

(a) Graph G1.

(b) Graph G2.

(d) Maximum common

disconnected subgraph

of G1 and G2.

(a1,a3) →
(b1,b3)

(a2,a3) →
(b2,b3)

(a4,a5) →
(b4,b5)

(b6,b7)

(c) Compatibility graph CG.

Maximum

Clique

Figure 3.5: Example for finding the MCS of two graphs G1 and G2.

The Maximum Clique

A clique of an undirected graph G(V,E) is a subset of vertices V ′ ⊆ V , such that
(vi, vj) ∈ E ∀vi, vj ∈ V ′. This means that every two vertices in the subset are
connected by an edge. A maximum clique is a clique of the largest possible size in
a graph. The maximum clique problem is NP complete [30] and, over the years,
researchers have proposed both exact solutions and heuristics to solve it.

The maximum clique of the compatibility graph corresponds to the maximum set
of mappings that can co-exist. The maximum set of mappings corresponds to the
maximum common part of the two graphs G1 and G2. We use a branch-and-bound
based exact algorithm from [41] to solve the maximum clique problem. When
the solution is not computable in a feasible time, we employ a greedy heuristic
approach from [19] to solve the problem. The dotted line in Figure 3.5c highlights
the maximum clique in the compatibility graph CG.

The Connected Components

After the maximum clique is identified, the mappings from the compatibility graph
are projected back to the input DFGs. The common sub-graph between the two
given DFGs is a disconnected graph. For example, Figure 3.5d shows the MCS

25

between G1 and G2.
A connected component of an undirected graph G is defined as a sub-graph G′

in which there exists a path between any pair of nodes in the sub-graph and non
of those nodes is connected to nodes in G \G′. Each connected component of the
underlying undirected graph of MCS corresponds to a potential custom instruction.
A Depth First Search (DFS) based algorithm with a complexity of O(|V |+ |E|) is
used to find the connected components [28].

3.4 Instruction Selection

The goal of instruction selection is to remove unused/less-utilized custom instruc-
tions from the instructions identified in the instruction generation phase. This is
done by covering each DFG with the list of instructions and, then, by remov-
ing all custom instructions, which have a utilization factor smaller than a specific
threshold value defined by the user. The steps involved in the DFG covering are
shown in Fig. 3.6.

Sub-graph

isomorphism
Exact CoveringDFG

Potential custom

instructions

List of

isomorphism

mappings

Vertex set

Covered

DFG

Merit function

Figure 3.6: Steps in covering a DFG with a set of instructions.

The Sub-graph Isomorphism

Given two graphs G(V,E) and G′(V ′, E′), an isomorphism between G and G′ is
a bijective function f : V ′(G′) → V (G), such that ∀u, v ∈ V , (u, v) ∈ E if
and only if (f(u), f(v)) ∈ E′. This means that f preserves the edge structure of
both G and G′. f is said to be a graph-subgraph isomorphism (or just a sub-graph
isomorphism) ⇐⇒ f is an isomorphism between G′ and a sub-graph of G.

26

For each instruction in the custom instruction list, the isomorphism operator re-
turns the list of vertices in the DFG, which are isomorphic to the custom instruction.
It is important to note that each custom instruction can return more than one iso-
morphism mapping. For example, let us consider a DFG G and two instructions, i1
and i2, as shown in Figure 3.7. The isomorphism between G and i1 and G and i2,
returns 8 mappings each. After the sub-graph isomorphism is performed between
all the instructions and the DFG, we have a list of possible mappings. The VF2
isomorphism implementation from Boost Graph Library[2] is used to implement
the isomorphism operator. Time complexity of VF2 is O(V 2) in the best case and
O(V.V !) in the worst case.

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADDADD

MUL

MUL

ADD

MULMUL

ADD

MUL

MUL MUL MULMUL MUL

MUL MUL MUL MUL

MUL MUL

v0 v1 v2 v3

v4 v5

v6 v7

v8

v9 v10

v11

v12 v13

v14 v15 v16 v17 v18 v19 v20 v21

v22 v23 v24 v25

v26 v27

[[v14, v15, v16, v22, v23, v26], [v14, v15, v18, v22, v23, v26],

 [v14, v16, v18, v22, v23, v26], [v15, v16, v18, v22, v23, v26],

 [v17, v19, v20, v24, v25, v27], [v17, v19, v21, v24, v25, v27],

 [v17, v20, v21, v24, v25, v27], [v19, v20, v21, v24, v25, v27],

 [v0 , v1 , v4], [v2 , v3 , v5], [v20, v21, v25], [v16, v18, v23],

 [v17, v19, v24], [v14, v15, v22], [v8 , v10, v12], [v9 , v11, v13],

 [v0], [v1], [v2], [v3], [v4], [v5], [v6], [v7], [v8],

 [v9], [v10], [v11], [v12], [v13], [v14], [v15], [v16], [v17],

 [v18], [v19], [v20], [v21], [v22], [v23], [v24], [v25], [v26], [v27]]

[[v0, v1, v4], [v2, v3, v5], [v8, v10, v12],

 [v9, v11, v13], [v6], [v7], [v17], [v18],

 [v14, v15, v16, v22, v23, v26],

 [v19, v20, v21, v24, v25, v27]]

Exact cover

G

(a)

(b)

MUL

ADD

ADD

ADD

MUL MUL

[[v14, v15, v16, v22, v23, v26],

 [v14, v15, v18, v22, v23, v26],

 [v14, v16, v18, v22, v23, v26],

 [v15, v16, v18, v22, v23, v26],

 [v17, v19, v20, v24, v25, v27],

 [v17, v19, v21, v24, v25, v27],

 [v17, v20, v21, v24, v25, v27],

 [v19, v20, v21, v24, v25, v27]]

~

i2

MUL

ADD

MUL

[[v0 , v1 , v4],

 [v2 , v3 , v5],

 [v20, v21, v25],

 [v16, v18, v23],

 [v17, v19, v24],

 [v14, v15, v22],

 [v8 , v10, v12],

 [v9 , v11, v13]]

~
i1

Figure 3.7: (a) Sub-graph isomorphism between G and i1, and G and i2 generates
8 mappings each. (b) The mappings generated in (a) are appended with the vertex
set of G before finding the exact cover.

The Exact Covering

Given a set X and a collection S of its subsets, an exact cover of X is a sub-
collection S∗ ⊆ S, such that each element in X is contained in exactly one element

27

of S∗.
To the list of mappings identified in the previous step, we append the vertex

set of the DFG (see Figure 3.7b). Now, clearly, the graph covering problem can
be solved as an exact covering problem. An exact cover for a set need not be
unique. Whenever more than one exact cover is identified, the one which maximize
the benefit function is preferred. The benefit function for a cover S∗ is given by
Equation 3.1.

M(S∗) =

|S∗|∑
n=0

m(n) (3.1)

where, m(n) is the merit value of the instruction corresponding to mapping n.
The merit value of each instruction can be based on the parameter(s) that needs

to be optimized during the covering. This can include, for example, the number of
instruction savings produced by the custom instruction. More details on the merit
function are given in Chapter 4. The exact cover problem is solved by using the
Dancing Links implementation of AlgorithmX [32].

3.5 Summary

This chapter presented the framework for the generation and selection of domain-
specific custom instructions. Instruction generation is formulated as the maximum
common sub-graph problem and it is solved by identifying maximum clique in the
compatibility graph. The identified custom instructions are convex by construction.
Instruction selection is formulated as a graph covering problem and it is solved
using sub-graph isomorphism and exact covering.

In the next chapter, the experimental validation of the framework is presented.
We use the framework proposed in this chapter to identify custom instructions for
various benchmarks taken from three application domains.

28

Chapter 4

Evaluation of the Framework

In this chapter we evaluate the framework presented in Chapter 3 with the help of
benchmarks from three application domains. The chapter begins with a detailed
description of the experimental set up used to evaluate the framework. In the ex-
perimental set up, we present the assumptions behind the base processor and later
give the details of the benchmarks used for experiments. In addition to this, we
elaborate on the metrics, and the corresponding merit functions, used to evaluate
the framework. Towards the end of the chapter, experimental results for different
benchmarks are discussed and, later, a summary of the conclusions is presented.

4.1 Experimental Set-up

The framework described in Chapter 3 is not restricted to any kind of architec-
tures or sets of applications. As a matter of fact, the framework can be used for
generating custom instructions for different processor models. However, in order
to effectively evaluate the proposed methodology, we have to make some assump-
tions about the base processor described in the following. Later on, we present a
set of benchmarks and the metrics used to evaluate our framework and we show
how performance as a metric, is not the most suitable metric to evaluate ISE meth-
odologies. As a result we propose a more efficient metric based on the dynamic
instruction count. Finally, we present an overview of the implementation details of
our framework.

4.1.1 Base Processor

In order to evaluate the effectiveness of our custom instructions, we assume an
single-issue inorder processor model. The custom instructions are implemented in
hardware as Custom Functional Units (CFUs). Figure 4.1 shows an example of
how a CFU can be integrated into a base processor’s execution stage. We would
like to emphasize that, the scope of this thesis is limited to the identification of the
custom instructions. Their implementation as CFUs is not discussed in this thesis.

29

ALU

CFU

+/-

X

&

Rin1

Rin2

Rout

Figure 4.1: Execution stage of a processor with the custom instructions identified
by our framework.

4.1.2 Input data set

The input of our framework is a set of DFGs derived from various well-known
applications. More specifically, we tested our framework with seventeen DFG
benchmarks from [3]. These benchmarks are further divided into three applica-
tion domains and custom instructions are generated for each domain. Furthermore,
we tested our framework by considering, at the same time, all applications from
the different domains.

Table 4.1 shows the details of the benchmark DFGs used in the experiments.
The selected DFGs (benchmarks) have very diverse topologies to consider different
kinds of applications. While some of these show a very high degree of parallelism,
others are more sequential by nature. By using a diverse set of DFGs to test our
framework we intend to show that the proposed algorithms are not dependent on
the topological structure of the graph and, hence, can be effectively utilized for
generating custom instructions for any set of applications.

4.1.3 Metrics for evaluation

Most of the ISE frameworks presented in the literature [13, 4, 39, 43, 16, 31, 17]
use performance and area as a metric to evaluate the quality of the generated cus-
tom instructions. The performance gain for an application can be computed using
Equation 4.1.

Gp =
(toriginal − tcustom)

toriginal
, (4.1)

30

Table 4.1: Target applications from [3] and the corresponding numbers of
nodes/operations.

Application |V | Application |V | Application |V |
EPIC 56 BMP Header 106 Matrix inversion 333

FIR 44 Smooth Downsample 51 Smooth Triangle 197

FIR1 40 Forward DCT 134 Horner Bezier 18

EWF 34 JPEG: Inverse DCT 122 Interpolate Aux 108

ARF 28 MPEG: Inverse DCT 114 Matrix Multiplication 109

Motion Vectors 32 Feedback Points 53

where Gp is the performance gain and tcustom and torignial are the execution times
of the application with and without custom instructions, respectively.

The execution time of an application on an in-order processor is rather simple to
measure. Most of the current operating systems provide APIs to precisely measure
the execution time of an application. In order to measure the execution time of
an application, which includes custom instructions, these instructions have to be
implemented and integrated into a processor. This involves a considerable amount
of design time and efforts. Therefore, most of the ISE frameworks use a simplified
version of Equation 4.1, represented by Equation 4.2 to measure the performance
gain.

Gp =
(loriginal − lcustom)

loriginal
, (4.2)

where lcustom and lorignial are the execution latencies of the DFG under consider-
ation, respectively.

The execution latency is the number of processor cycles that are required for
executing all the operations in the DFG. This simplification is based on two as-
sumptions:

1 the memory access latencies, which are non-deterministic (or rather had to
be modelled) in a processor system with memory hierarchy, are the same
with and without custom instructions;

2 the DFG corresponds to the hot-spots in the application, the parts of the
application where most of the execution time is spent.

Let us assume c is the processor cycle time, l is number of processor cycles
taken by the application, and t is the application execution time. Then, t, l, and c
are dependent as shown in Equation 4.3:

t = l × c. (4.3)

31

Let ldfg and lrest be the number of processor cycles spent for the execution of the
instructions in the DFG under consideration, and for the rest of the application
respectively. Then:

l = ldfg + lrest. (4.4)

By the second assumption, we know that ldfg >> lrest. By ignoring lrest in Equa-
tion 4.4, we have

t = ldfg × c. (4.5)

From Equation 4.5 and Equation 4.1, we can conclude that, under the two as-
sumptions mentioned above, Equation 4.2 provides a good approximation of the
performance gain.

For an in-order single issue processor, the latency of the DFG is the sum of the
latencies of each of its nodes (instructions). While latencies of simple instructions
are available from the processor data sheet, the latency of the complex custom
instruction is not directly available. To get the latency of the custom instructions,
these should be implemented (synthesized) using the same technology libraries as
the base processor.

As a result, it is clear that, by using performance as a metric for the evaluation
of the custom instructions generated by an automatic ISE framework the results
are highly dependent on their implementation details. An effective evaluation of
ISE frameworks should not depend on the architecture of the baseline processor
and the implementation of the custom instructions. Anyhow, the definition of such
evaluation metric is beyond the scope of this thesis.

To provide an architecture and technology independent evaluation of the frame-
work, we use the dynamic instruction count as the evaluation metric. Dynamic
instruction count is the run-time count of the number of instructions executed by
an application. Assuming that the DFGs are derived from the application hot-spots,
the dynamic instruction count is proportional to the number of vertices in the DFG.
The reduction in the dynamic instruction count is, therefore, given by Equation 4.6:

Gi =
(|No| − |Nc|)
|No|

, (4.6)

where Gi is the reduction in the dynamic instruction count, |No| and |Nc| are the
number of vertices in the DFG, with and without custom instructions, respectively.

We cannot quantitatively measure the performance, area and power benefit of
our custom instructions, without implementing them. However, the reduction in
the dynamic instruction count gives a qualitative indication of how these high level
metrics may vary:

• a reduction in the dynamic instruction count can potentially lead to a shorter
execution time of the application and, therefore, improves the performance
of the system;

32

• a reduced execution time directly correlates to lower energy consumption;

• a reduction in the size of DFG with custom instructions reduces, in general,
instruction memory requirements.

4.1.4 Merit Functions

For a given instruction I , the merit function is a mapping m : I → R, which
assigns a weight to instruction I . As mentioned in Section 3.4, a merit function is
used by the instruction selection phase of the framework to perform graph covering.
It is noteworthy that, the instruction I can be a simple ALU operations as well as
a custom instruction identified by our framework. Based on the optimization goal,
various merit functions can be defined. In this section, we present two examples of
the merit functions. The first one tries to minimize the dynamic instruction count
whereas the second one is based on performance gain.

The merit function guides our framework to produce custom instructions which,
when implemented, can optimize a particular metric. Although a merit function
based on performance gain is intended to improve the performance, this cannot
be verified without implementing the custom instructions in hardware. As the im-
plementation of the custom instructions is not discussed in this thesis, we did not
perform any experiment with merit functions based on performance gain.

Dynamic Instruction Count

A domain-specific custom instruction is a cluster of simple ALU operations. Let
I be an instruction and V (I) be the number of simple ALU operations performed
by the instruction. The merit function, which corresponds to the savings in the
dynamic instruction count, is given by Equation 4.7:

m(I) = V (I)− 1. (4.7)

For simple ALU operations, V (I) = 1 and, therefore, the merit value of using
simple ALU operation in covering the DFG is 0. This means that, the utilization of
only simple ALU operations during the graph covering will result in no reduction
in the dynamic instruction count, as expected. On the contrary, if I is a custom
instruction, m(I) > 0. A bigger cluster has a higher value of m(I) and, therefore,
it leads to a greater reduction in the dynamic instruction count. Intuitively, m(I) is
the instruction savings that an instruction I can produce. The instruction savings
are directly proportional to the size of the custom instruction (cluster). It is inter-
esting to observe that, the use of Equation 4.7 as the merit function results in the
selection of bigger custom instruction over the smaller ones.

As mentioned before, a reduction in the dynamic instruction count is less de-
pendent on the base-processor model and has no dependency on the implementa-
tion details of the custom instructions. As a result, the merit function in Equation
4.7 will be used in the rest of this thesis to perform the experiments.

33

Performance Gain

The merit value of an instruction I , which can lead to a performance gain, is equal
to its latency. For simple ALU operations, the latency is specified in the ISA. In
this section, we present a simple technique to estimate the latency of the custom
instructions generated by our framework.

The latency of a custom instruction is the critical path of the custom instruction
divided by the cycle time of the processor under consideration. Apart from the
critical path, the latency is also dependent on the I/O degree of the custom instruc-
tion. If the I/O degree1 of the custom instruction is greater than the I/O degree2

of the register file of the base processor, the reads/writes have to be serialized. In
such cases, we perform an ASAP scheduling of the custom instructions under I/O
constraints and, later, measure the critical path.

Latency for custom instructions is estimated using Algorithm 1. Each instruction
I(V,E) is associated to a graph G′(V ∪ V +, E ∪ E+), which contains additional
nodes V + and edges E+ (see Figure 4.2). The additional nodes represent the input
and output variables of the instruction. The additional edges E+ connect nodes
V + to V , and nodes V to V +. The scheduling problem can now be addressed as
an assignment of each operation in G′ to a time slot corresponding to a clock cycle,
such that the schedule uses at most Nin and Nout, IN and OUT operations in each
time slot, respectively. Nin and Nout are the number of read and write ports of the
register file in the base processor. After the time slots are assigned, the critical path
in the scheduled graph is determined.

From the discussion in Section 4.1.3 it is clear that the performance improvement
due to the use of custom instructions is affected by parameters, such as the Instruc-
tion Set Architecture (ISA) and the memory architecture of the base processor and
the implementation details of the custom instructions. Although the merit function
described above tunes the graph covering to optimize performance, it is not pos-
sible to measure the performance benefit resulting from the custom instructions.
Therefore, we refrain from using this merit function in our experiments.

4.1.5 Implementation details

The proposed framework is implemented as a dedicated tool chain and it can work
with any given set of DFGs. We make extensive use of Boost Graph Library [2]
(BGL), a header only generic library, to store the graph structures and implement
graph algorithms. The use of BGL makes our implementation highly extensible
and, thus, it can be easily tuned to suit different optimization goals with very few
changes. Unlike the earlier ISE frameworks, which are usually built over Trimaran
[1] and LLVM [33] infrastructures, our tool chain is not bound to a particular com-
piler infrastructure. Thus, it can be used in any proprietary HW/SW co-design

1I/O degree of an instruction is the number of input required and number of outputs generated by
a custom instruction.

2I/O degree of a register file is equal to the number of its write ports and read ports.

34

Algorithm 1 Resource constrained ASAP scheduling algorithm

1: procedure SCHEDULE(I(V,E), Nin, Nout) . Returns the latency of
instruction I

2: G′(V ′, E′)← transform(I(V,E))
3: s← 0 . Number of scheduled nodes
4: t← 0 . Time unit
5: while s 6= |V ∪ V ′| do
6: U ← ready nodes(G′)
7: Sin ← Sout ← 0
8: for all v in U do
9: if v is IN vertex && Sin ≤ Nin then

10: T [v]← t
11: s← s+ 1
12: Sin ← Sin + 1
13: else if v is OUT vertex && Sout ≤ Nout then
14: T [v]← t
15: s← s+ 1
16: Sout ← Sout + 1
17: else if v is operation then
18: T [v]← t
19: s← s+ 1
20: else
21: continue
22: t← t+ 1

23: l← critical path(G′, T)
24: return l . l is the latency of I

tools.

4.2 Results

In this section, we present the results concerning the reduction in the dynamic
instruction count of the benchmarks described in Section 4.1.2. Figure 4.4 shows
the normalized dynamic instruction count for different application domains. On
average, we observe a 45% reduction in the dynamic instruction count, when the
custom instructions identified by our framework are utilized. This reduction is
higher, if the application can utilize greater number of custom instructions. For
instance, a 72% reduction can be observed in arf. In this case, the entire DFG
is covered by just 8 complex instructions. In most of the cases, the input DFG is
completely covered by custom instructions (if not, as mentioned before, basic ALU
operations are added to the list of operations.). For some applications, such as fdct
and idct, the reduction is only 20%. This happens because of the higher number of

35

IN

ADD

IN IN

ADD

IN

IN

ASR

IN

OUT

XOR

AND

IN

ADD

IN IN

ADD

IN IN

ASR

IN

XOR

OUT

AND

0.5

0.5

0.1

0.1

0.2 1.0

0.5

1.5

1.6
1.2

1.7

t = 1

t = 2

(a) (b)

Figure 4.2: (a) Instruction with IN and OUT vertices. The normalized values of
the critical path of each instruction are only indicative values. (b) Scheduled graph
assuming 3 read ports and 1 write port for the register file.

memory instructions in the two applications. Memory instructions are marked as
forbidden nodes and, therefore, they are not covered by custom instructions.

To improve the utilization of instructions, we may remove the instructions with
limited utilization factor (below a certain threshold value defined by the user) and
repeat the covering process with the new set of custom instructions. When this
threshold is set to 2, we observe only a slight increase in the dynamic instruction
count (see Figure 4.4). This small change is an indicator that most of our custom
instructions have a very good utilization factor.

Figure 4.5 shows the dynamic instruction count, when all applications are con-
sidered simultaneously in the custom instruction generation process. Figure 4.6
shows the percentage in reduction of the dynamic instruction count for various
experimental scenarios. It is interesting to see that the reduction is almost sim-
ilar when applications are either considered domain wise or simultaneously. This
means that the quality of custom instructions generated by our framework is the
same irrespective of the number of applications under consideration, which makes
our approach application independent.

The number of custom instructions identified for each of our experiments is
shown in Table 4.2. On average, our framework identified 12 instructions for each
domain. This low value ensures that ISE does not bolt up the op-code space. By
setting a higher threshold (2), the number of custom instructions for hardware im-
plementation is reduced, on average, by 30%, which, in-turn, can result in addi-
tional area and power savings.

36

Table 4.2: Number of Custom Instructions per application domain.

Application domain Threshold = 1 Threshold = 2 % reduction

Filters 10 6 40

Image Compression 13 10 23.1

Matrix Operations 14 10 28.6

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7

U
ti

li
z
a
ti

o
n

C

o
u

n
t

Size of Custom Instruction

Filters

Image Compression

Matrix Operations

Figure 4.3: Utilization of custom instructions of various sizes.

Figure 4.3 shows the distribution of the custom instruction utilization with its
size. As expected, smaller instructions have better utilization over larger instruc-
tions. The two instructions with very high utilization factors are the MAC oper-
ations which is a very common operation in both image compression and matrix
operations. This provides some empirical evidence that our framework is making
intelligent decisions. While some custom instructions, such as MAC, are trivial
to be manually identified, others, such as the ones shown in Figure 3.1d, are too
unusual for manual identification.

4.3 Summary

In this chapter, we evaluated the framework proposed in this thesis. We described
various aspects of the experimental set-up such as the base processor model, the
benchmarks, the metrics for evaluation, the merit functions and implementation
details. Additionally, we showed that the conventional performance evaluation
metrics cannot be used for an effective evaluation of the ISE frameworks without
actually implementing the custom instructions. Experimental results are discussed
in detail. We have shown that by using, on average, 12 custom instructions, we
can reduce the dynamic instruction count of every application domain by 45%.
In the next chapter, we provide concluding remarks and propose future research
directions.

37

0

0.2

0.4

0.6

0.8

1

1.2

EPIC FIR FIR1 EWF ARF Total

N
o
r
m

a
li

z
e
d

D
y
n

a
m

ic

In

s
tr

u
c
ti

o
n

C
o
u

n
t Original Count

Threshold = 1

Threshold = 2

(a) Filters

0

0.2

0.4

0.6

0.8

1

1.2

Matrix

inversion

Smooth

Triangle

Horner Bezier Interpolate Aux Matrix

Multiplication

Feedback

Points

N
o
r
m

a
li

z
e
d

D
y
n

a
m

ic

In

s
tr

u
c
ti

o
n

C
o
u

n
t

Original Count

Threshold = 1

Threshold = 2

(b) Matrix Operations.

0

0.2

0.4

0.6

0.8

1

1.2

BMP Header Smooth

Downsample

Forward DCT JPEG: Inverse

DCT

MPEG: Inverse

DCT

Motion

Vectors

N
o
r
m

a
li

z
e
d

D
y
n

a
m

ic

In

s
tr

u
c
ti

o
n

C
o
u

n
t

Original Count

Threshold = 1

Threshold = 2

(c) Image Compression.

Figure 4.4: Normalized dynamic instruction count for various application domains.

38

0

0
.2

0
.4

0
.6

0
.81

1
.2

Normalized Dynamic Instruction Count

O
ri

g
in

a
l

C
o
u

n
t

T
h

re
sh

o
ld

 =
 1

T
h

re
sh

o
ld

 =
 2

Fi
gu

re
4.

5:
D

yn
am

ic
in

st
ru

ct
io

n
co

un
tw

he
n

al
lt

he
ap

pl
ic

at
io

ns
ar

e
gi

ve
n

as
in

pu
tt

o
ou

rf
ra

m
ew

or
k

at
th

e
sa

m
e

tim
e.

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

% reduction in dynamic instruction count

A
ll

ap
p

lic
at

io
n

s
(T

h
re

sh
o

ld
 =

 1
)

A
ll

ap
p

lic
at

io
n

s
(T

h
re

sh
o

ld
 =

 2
)

D
o

m
ai

n
 w

is
e

 (
Th

re
sh

o
ld

 =
 1

)

D
o

m
ai

n
 w

is
e

 (
Th

re
sh

o
ld

 =
 2

)

Fi
gu

re
4.

6:
R

ed
uc

tio
n

in
dy

na
m

ic
in

st
ru

ct
io

n
co

un
tf

or
va

ri
ou

s
be

nc
hm

ar
ks

fr
om

[3
].

39

40

Chapter 5

Conclusions

In this thesis, we presented a framework for the automatic generation of domain-
specific custom instructions, which can be utilized in various computing platforms,
to improve the dynamic instruction count of the applications. The problem is
divided into instruction generation and instruction selection. In the former, we
identify instructions, which can potentially have high utilization across different
applications. Later, custom instructions for hardware implementation are selected
in such a way that, the dynamic instruction count is reduced. In our experiments,
we considered various applications from different domains and we have shown that
dynamic instruction count can be reduced 45%, on average, and upto 80% in spe-
cific cases. In this chapter we summarize our contributions and list some future
research directions that can be pursued based on the our framework.

5.1 Contributions

The main contributions of this thesis can be summarized as follows.

1 A processor and technology independent automatic ISE framework. The
ISE framework presented in this thesis does not make any assumptions or
impose any restrictions on the architecture of the base processor. In addition
to this, all the steps in the framework are fully automated and requires no
manual intervention;

2 Instruction generation as the Maximum Common Sub-graph problem.
The instruction generation is formulated as a MCS problem and is solved by
detecting maximum clique in the compatibility graph;

3 Instruction selection as a graph covering problem. Instruction selection
is driven by a merit function which optimizes a metric. The graph covering
is solved using sub-graph isomorphism and exact covering. After choosing
a cover that produces highest benefit, the instructions with utilization factor
greater than a threshold are selected for hardware implementation;

41

4 Convexity of the sub-graphs. The sub-graphs identified by our frame-
work are convex and therefore can be utilized by applications without any
scheduling1 problems. As elaborated in Section 3.3.1, the convexity of the
sub-graphs is theoretically guaranteed;

5 Experimentation and validation. We validated the framework presented
in this thesis using 17 benchmarks from three different domains. Our ex-
perimental evaluation showed that the custom instructions generated by our
framework can reduce the dynamic instruction count on average by 45%.

5.2 Future Work

In this section we present some enhancements which can be taken up in future to
improve/extend our framework. We also propose a research direction can make use
of the algorithms presented in this thesis.

MIMO instructions

The instruction generation stage of our framework is restricted to enumeration of
MISO instructions. This can be extended to support identification of MIMO in-
structions. The granularity (size of a cluster) of MIMO instructions is higher com-
pared to MISO instructions [24]. Therefore, maximal common MIMO sub-graphs
across a pair of applications may lead to further reduction in the dynamic instruc-
tion count.

In the current framework, we impose an out-degree restriction of 1 for each
node that can be part of a custom instruction. For the generation of MIMO in-
structions, this restriction should be removed. When the restriction is removed, the
MCS of two input graphs is not necessarily convex. To identify MIMO instruc-
tions, convexity has to be considered during the generation of the compatibility
graph. Apart from checking the compatibility of two edge mappings, the construc-
tion process should also check if the convexity constraints are honoured if both
mappings under consideration are part of MCS. Checking for convexity involves
enumeration of all paths between every pair of nodes in the mapping. Enumeration
of all paths between any two vertices in a graph is known to be NP hard. Solu-
tions to this problem have exponential time complexities and incorporating them
into our framework would drastically increase the execution time by a great extent.
Further investigation is required to solve the problem of identifying overlapping
MIMO instructions.

1Non-convex sub-graphs result in presence of loops in the DFG which in-turn makes scheduling
impractical

42

Processor Customization

As mentioned in Chapter 1, the scope of this thesis is restricted to ISE problem
during processor customization. In future, other steps in processor customization,
such as DFG extraction, instruction synthesis, processor integration may be ex-
plored in greater detail. Each of these steps pose interesting research questions
such as:

• Can we transform control dependencies in a program to data dependencies?
This enables us to work with a larger part of an application and therefore
would result in better speed-up. This problem has been addressed for Tagged
Token Data Flow Architectures in [14].

• Resource sharing across instructions in custom instruction synthesis is an-
other interesting aspect. Many researchers have proposed techniques for
custom instruction synthesis [18, 46].

• What is an efficient way to integrate domain-specific custom instructions
to different processor architectures? Should these custom instructions have
direct access to the register file of the base processor? How is state shared
between execution unit of the processor and the CFU?

• Does the computation model of the base processor have any influence on the
benefit derived from custom instructions?

Domain Specific Coarse Grained Reconfigurable Arrays

A coarse grained reconfigurable array (CGRA) is a aggregation of Functional Units
(FUs) which are connected by an interconnect. Compared to FPGAs, CGRAs are
known to have higher performance, lower power consumption, lesser configuration
overheads and ease of mapping applications [37]. Traditionally, FUs in a CGRA
are simple ALU operations. Mapping of applications on a CGRA is equivalent
to mapping each node in the DFG of an input application to a FU in the CGRA.
Increasing the granularity of the FUs reduce the communication latency between
them and therefore increase the performance of the CGRA. The granularity of the
FUs can be increased by replacing the simple ALU operations with clusters of ALU
operations. If a CGRA is domain-specific, FUs have to be utilized by multiple
applications in the domain.

The custom instructions generated by our framework are clusters of ALU oper-
ations. These custom instructions have high utilization factor across applications
and therefore, are good FU candidates in a domain-specific CGRA. While auto-
matic generation of CGRA is a completely different research question, our frame-
work can provide a solution for its FU identification problem.

43

44

Bibliography

[1] An Infrastructure for Research in Backend Compilation and Architecture Explora-
tion. http://trimaran.org/. Accessed: 2014-05-02.

[2] Boost Graph Library. http://www.boost.org/doc/libs/1_55_0/
libs/graph/doc/index.html. Accessed: 2014-02-01.

[3] DFG Benchmarks. http://express.ece.ucsb.edu/benchmark/. Ac-
cessed: 2014-02-01.

[4] Junwhan Ahn and Kiyoung Choi. Isomorphism-aware identification of custom in-
structions with i/o serialization. In IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, volume 32, pages 34–46, Jan 2013.

[5] Cesare Alippi, William Fornaciari, Laura Pozzi, and Mariagiovanna Sami. A dag-
based design approach for reconfigurable vliw processors. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’99, 1999.

[6] Cesare Alippi, William Fornaciari, Laura Pozzi, and Mariagiovanna Sami. Determin-
ing the optimum extended instruction-set architecture for application specific recon-
figurable vliw cpus. In 12th International Workshop on Rapid System Prototyping,
pages 50–56, 2001.

[7] Frances E. Allen. Control flow analysis. In Proceedings of a Symposium on Compiler
Optimization., pages 1–19. ACM, 1970.

[8] A. Alomary, T. Nakata, Y. Honma, J. Sato, N. Hikichi, and M. Imai. Peas-i: A
hardware/software co-design system for asips. In Proceedings of Design Automation
Conference, 1993., DAC ’93, pages 2–7. IEEE, Sep 1993.

[9] AMD. Heterogeneous Computing. http://developer.amd.com/
resources/heterogeneous-computing/. Accessed: 2014-05-10.

[10] M. Amold and H. Corporaal. Designing domain-specific processors. In Proceed-
ings of the Ninth International Symposium on Hardware/Software Codesign, 2001.,
CODES ’01. ACM, 2001.

[11] K. Atasu, C. Ozturan, and G. Dundar. An integer linear programming ap-
proach for identifying instruction-set extensions. In Third IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, 2005.,
CODES+ISSS ’05, pages 172–177, Sept 2005.

[12] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific instruction-set ex-
tensions under microarchitectural constraints. In Proceedings of Design Automation
Conference, 2003., pages 256–261, June 2003.

[13] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific instruction-set
extensions under microarchitectural constraints. In International Conference on
Application-Specific Systems, Architectures and Processors, 2008., ASAP 2008,
pages 1–6, July 2008.

[14] Micah Beck, Richard Johnson, and Keshav Pingali. From control flow to dataflow.
J. Parallel Distrib. Comput., 12(2):118–129, June 1991.

45

http://trimaran.org/
http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/index.html
http://express.ece.ucsb.edu/benchmark/
http://developer.amd.com/resources/heterogeneous-computing/
http://developer.amd.com/resources/heterogeneous-computing/

[15] P. Biswas, N. Dutt, P. Ienne, and L. Pozzi. Automatic identification of application-
specific functional units with architecturally visible storage. In Proceedings of
Design, Automation and Test in Europe, 2006., DATE ’06, pages 1–6. IEEE, March
2006.

[16] P. Bonzini and L. Pozzi. Recurrence-aware instruction set selection for extensible
embedded processors. In IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, volume 16, pages 1259–1267, Oct 2008.

[17] Philip Brisk, Adam Kaplan, Ryan Kastner, and Majid Sarrafzadeh. Instruction gen-
eration and regularity extraction for reconfigurable processors. In Proceedings of the
2002 International Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems., CASES ’02, pages 262–269. ACM, 2002.

[18] Philip Brisk, Adam Kaplan, and Majid Sarrafzadeh. Area-efficient instruction set
synthesis for reconfigurable system-on-chip designs. In Proceedings of Design Auto-
mation Conference, 2004., pages 395–400, June 2004.

[19] M. Brockington and J. C. Culberson. Camouflaging Independent Sets in Quasi-
Random Graphs. In Cliques, Coloring, and Satisfiability: Second DIMACS Imple-
mentation Challenge, pages 75–88. AMS, 1994.

[20] Hoon Choi, Jong-Sun Kim, Chi-Won Yoon, In-Cheol Park, Seung-Ho Hwang, and
Chong-Min Kyung. Synthesis of application specific instructions for embedded dsp
software. In IEEE Transactions on Computers, volume 48, pages 603–614, Jun 1999.

[21] N.T. Clark, Hongtao Zhong, and S.A. Mahlke. Automated custom instruction genera-
tion for domain-specific processor acceleration. In IEEE Transactions on Computers,
volume 54, pages 1258–1270, Oct 2005.

[22] Jason Cong, Yiping Fan, Guoling Han, and Zhiru Zhang. Application-specific in-
struction generation for configurable processor architectures. In Proceedings of the
2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Ar-
rays., FPGA ’04, pages 183–189. ACM, 2004.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[24] Carlo Galuzzi. Automatically Fused Instructions. PhD thesis, Delft University of
Technology, Delft, The Netherlands, May 2009.

[25] Carlo Galuzzi and Koen Bertels. The instruction-set extension problem: A survey. In
Roger Woods, Katherine Compton, Christos Bouganis, and PedroC. Diniz, editors,
Reconfigurable Computing: Architectures, Tools and Applications, volume 4943 of
Lecture Notes in Computer Science, pages 209–220. Springer Berlin Heidelberg,
2008.

[26] Carlo Galuzzi, Koen Bertels, and Stamatis Vassiliadis. A linear complexity algorithm
for the automatic generation of convex multiple input multiple output instructions.
In ARC, pages 130–141, March 2007.

[27] Carlo Galuzzi, Koen Bertels, and Stamatis Vassiliadis. A linear complexity algorithm
for the generation of multiple input single output instructions of variable size. In
SAMOS, pages 283–293, July 2007.

[28] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph
manipulation. Commun. ACM, 16(6):372–378, June 1973.

[29] Paolo Ienne and Rainer Leupers. Customizable Embedded Processors: Design Tech-
nologies and Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2007.

[30] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer US,
1972.

46

[31] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzadeh. Instruction genera-
tion for hybrid reconfigurable systems. In ACM Trans. Des. Autom. Electron. Syst.,
volume 7, pages 605–627, Oct 2002.

[32] Donald E. Knuth. Dancing links. Millenial Perspectives in Computer Science, pages
187–214, 2000.

[33] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis and transformation. pages 75–88, San Jose, CA, USA, Mar 2004.

[34] C. Liem, T. May, and P. Paulin. Instruction-set matching and selection for dsp and
asip code generation. In Proceedings of European Design and Test Conference,
1994., EDAC-ETC-EUROASIC ’94, pages 31–37. IEEE, Feb 1994.

[35] N. Moreano, E. Borin, Cid de Souza, and G. Araujo. Efficient datapath merging
for partially reconfigurable architectures. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, volume 24, pages 969–980, July 2005.

[36] A. Peymandoust, L. Pozzi, P. Ienne, and G. De Micheli. Automatic instruction set
extension and utilization for embedded processors. In Application-Specific Systems,
Architectures, and Processors, 2003. Proceedings. IEEE International Conference
on, pages 108–118, June 2003.

[37] K. Pocek, R. Tessier, and A. DeHon. Birth and adolescence of reconfigurable com-
puting: A survey of the first 20 years of field-programmable custom computing ma-
chines. In FCCM20, 2013.

[38] Laura Pozzi. Methodologies for the design of Application-Specific Reconfigurable
VLIW Processors. PhD thesis, Politecnico di Milano, Milan, Italy, Jan 2000.

[39] Laura Pozzi and Paolo Ienne. Exploiting pipelining to relax register-file port con-
straints of instruction-set extensions. In Proceedings of the 2005 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems., CASES
’05, pages 2–10. ACM, 2005.

[40] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and P. Ienne. Selective flexibility:
Creating domain-specific reconfigurable arrays. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, volume 32, pages 681–694, May
2013.

[41] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, and Mitsuo Wakatsuki. A simple and
faster branch-and-bound algorithm for finding a maximum clique with computational
experiments. IEICE Transactions, 96-D(6):1286–1298, 2013.

[42] Jeffery D. Ullman and Alfred V. Aho. Foundations of Computer Science. W. H.
Freeman, New York, USA, 1994.

[43] A.K. Verma, P. Brisk, and P. Ienne. Fast, nearly optimal ise identification with
i/o serialization through maximal clique enumeration. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, volume 29, pages 341–
354, March 2010.

[44] Pan Yu and Tulika Mitra. Scalable custom instructions identification for instruction-
set extensible processors. In Proceedings of the 2004 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems., CASES ’04, pages
69–78. ACM, 2004.

[45] Pan Yu and T. Mitra. Disjoint pattern enumeration for custom instructions identifica-
tion. In Field Programmable Logic and Applications, 2007. FPL 2007. International
Conference on, pages 273–278, Aug 2007.

[46] M. Zuluaga and N. Topham. Design-space exploration of resource-sharing solutions
for custom instruction set extensions. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 28(12):1788–1801, Dec 2009.

47

	Preface
	Introduction
	Problem Description
	Contributions
	Organization

	Background and Related Work
	The Instruction Set Extension Problem
	Instruction Generation
	Instruction Selection

	Application-Specific ISE
	Predefined Templates
	Exhaustive Search
	Incremental Clustering
	Recurrence Aware ISE

	Domain-specific ISE
	Discussion
	Summary

	Framework for Generating Domain Specific Custom Instructions
	Motivational Example
	Problem Formulation
	Instruction Generation
	Convexity of Maximum Common Sub-graphs
	Framework for Instruction Generation

	Instruction Selection
	Summary

	Evaluation of the Framework
	Experimental Set-up
	Base Processor
	Input data set
	Metrics for evaluation
	Merit Functions
	Implementation details

	Results
	Summary

	Conclusions
	Contributions
	Future Work

