

 Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

MODULARITY’14, April 22–26, 2014, Lugano, Switzerland.

ACM 978-1-4503-2773-2/14/04.

http://dx.doi.org/10.1145/2584469.2584473

Relations

A first class relationship and first class derivations programming language

Daco Harkes

Delft University of Technology

d.c.harkes@student.tudelft.nl

Categories and Subject Descriptors D.3.2 [Programming Lan-

guages]: Language Classifications – Very high-level languages

Keywords declarative; model based; relations; relationships;
derivations; derived values; reactive expressions

1. Introduction

Two useful features for data models are often not present in pro-
gramming languages: relationships and derivations. Relationships
between entities can be artificially encoded in pointers, nestings,
foreign keys and tuples, but these all have their drawbacks.
Derived values (Figure 2, line 9) can be realized with functions,
but one has to cache these manually, or in materialized views (in
databases), but the latter does not support all forms of recursion.

Different meta models provide different features for specifying
data models in applications. To illustrate the need for a language
with relationships and derivations as first class citizens the
problems of each meta model are listed:

 OO-model: traversing relationships in both directions requires
keeping pointers both ways consistent; relationships cannot be
ternary or have attributes without lifting them to objects; and
derived values have to be cached manually.

 Relational model [4]: recursive relations like trees can only be
saved and queried in normalized form; views have restrictions
on recursion, recursive aggregations are not supported; subty-
ping is not supported; and one cannot build an application
solely with a relational database and has to deal with the OR
impedance mismatch when using it with an OO language.

 Nested relational model [9]: This model does not other views
on the data than the hierarchy it is saved in; and also has the
impedance mismatch problem.

 Logic model (Datalog and Prolog): ordering, duplicates and
grouping by is nontrivial; and relationships, as tuples, cannot
be entities themselves.

These meta models support the features the others lack, but none
of them has both first class relationships and derivations. Without
language support relationships and derivations have to be encoded
in artificial constructs. These add code complexity, hide design
intent and are error prone. The goal of this project is to create a
language that has these as first class citizens.

2. Related work

Current approaches to add relationships to language do not solve
all of the above listed problems. In 1987 Rumbaugh was the first
to add relationships to a language [10]. His approach is pre-
processor based and dynamic. It does not have relations as first
class citizens and does not support symmetries and derived
relationships. Our approach is static and does support these.

Noble and Pearce extended Java with first class relationships
using aspects [8]. They argue that objects should be agnostic to
relationships. In our approach entities know what relations they
participate in. This allows using relations inside the derivations.

They also created the Java Query Language [12]. The query
language uses value-based joins, like SQL. LINQ also uses value-
based joins [7]. Our language does queries based on the relation-
ships themselves, essentially navigating along the relationships.

Bierman and Wren also added first class relationships to Java
named RelJ [2]. In their approach they support relationships as
first class citizens. The relations are tuples, having unnamed
ordered roles. In our approach the roles are named and unordered,
allowing symmetry and querying based on roles. Also our
approach is not a language extension.

Closely related work is the Rumer language by Balzer [1]. It
features first class relations with roles and queries. Rumer pro-
vides reactive queries as well as imperative code. It has cardinali-
ties specified in constraints and supports just binary relationships.
Our approach differs in the fact that everything is a derivation and
thus reactive, multiplicities are part of the type system instead of
constraints and we support relations of all degrees.

Work related to derivations is firstly the field of (materialized)
views in databases, for example [5]. There are grossly two ways
to maintain derived data: deriving maintenance queries (algebra
based) and reactive programming [11], using a dependency
model. The language abstracts over this, so the language itself can
stay the same while its compiler can use the above techniques.

3. The language

The starting point of designing the language is the Entity
Relationship model [3]. The data model is specified in terms of
entities, relationships and attributes. The data model also specifies
all derivations. Derivations work like spreadsheets, but then on
entities, attributes and relationships instead of cells.

The language does not have statements or functions, since eve-
rything can be expressed in derivation expressions (reactive ex-
pressions). There is no passing around of parameters for func-
tions, these should be fetched in derivation expressions by navi-
gating along relationships. Only CRUD-operations change state.

Only primitive types are allowed as attributes of entities or
relationships. The way to relate two entities is by a relationship,

http://dx.doi.org/10.1145/2584469.2584473

not by putting one in an attribute of the other. The reason for this
is simply that relationships should all be first class relationships.

Another remark about the types is that there are no collection
types. Instead of collections explicit cardinalities (or
multiplicities) are stated for all relationships. These are orthogonal
to types and interact when needed. For example when navigating
along relationships both types and multiplicities are checked.

The current state of the prototype supports defining entities,
relationships, attributes, derived attributes and navigating along
relationships. The prototype is built with the Spoofax Language
Workbench [6]. It has an editor with syntax highlighting, name
resolution, type checking and generates Java code.

The language has three main parts: model, data and execute.
The model describes an ER-model, the data instances of that
model and lastly the execute part contains queries over the model.
Model and Data are quite straight forward, except for the roles in
the relations. These are expressed as type, multiplicity and role-
name, where the multiplicity is from the participating entities
point of view and role-names are optional.

Figure 1 shows a complete program where navigating along
relationships is illustrated in the execute part. To navigate one
starts with an entity, and specifies the relation and role to navigate
along. The navigation syntax has two components; navigating
from an entity into relation or navigating out of a relation to
entities again. Also the role names are explicit in navigating.

On line 28 we navigate from a person to a marriage where the
person has the role husband. On line 29 we subsequently navigate
out of the marriage relation by the wife-role and line 30 is the
shorthand for both. Because relationships are first class citizens
we can navigate from the marriage relation to the counselling
relation (line 31). Marriage has the marriage-role in counselling
(notice the same name, the role name is not specified on line 11).

Figure 2 shows only the model, but with the derivations. The
average grade can be calculated based on the averages of the
children. To do this the navigation along relationships is used.

Future work includes refining the syntax, introducing
shorthand notations and more powerful querying techniques, as
well as invariants and transactions.

References

1 Balzer, Stephanie. Rumer: a Programming Language and Modular
Verification Technique Based on Relationships. 2011.

2 Bierman, Gavin M. and Wren, Alisdair. First-Class Relationships in an
Object-Oriented Language. In ECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow, UK, July 25-29,
2005, Proceedings (2005), Springer, 262-286.

3 Chen, Peter P. The Entity-Relationship Model - Toward a Unified
View of Data. ACM Trans. Database Syst., 1, 1 (1976), 9-36.

4 Codd, E. F. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13, 6 (1970), 377-387.

5 Gupta, Ashish and Mumick, Inderpal Singh. Maintenance of
Materialized Views: Problems, Techniques, and Applications. IEEE
Data Eng. Bull., 18, 2 (1995), 3-18.

6 Kats, Lennart C. L. and Visser, Eelco. The Spoofax language
workbench: rules for declarative specification of languages and IDEs.
In Proceedings of the 25th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010 (Reno/Tahoe, Nevada 2010), ACM, 444-463.

7 Meijer, Erik, Beckman, Brian, and Bierman, Gavin M. LINQ:
reconciling object, relations and XML in the.NET framework. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, June 27-29, 2006 (
2006), ACM, 706.

8 Pearce, David J. and Noble, James. Relationship aspects. In
Proceedings of the 5th International Conference on Aspect-Oriented
Software Development, AOSD 2006, Bonn, Germany, March 20-24,
2006 (2006), ACM, 75-86.

9 Roth, Mark A., Korth, Henry F., and Silberschatz, Abraham. Extended
Algebra and Calculus for Nested Relational Databases. ACM Trans.
Database Syst., 13, 4 (1988), 389-417.

10 Rumbaugh, James E. Relations as Semantic Constructs in an Object-
Oriented Language. In OOPSLA (1987), 466-481.

11 Salvaneschi, Guido and Mezini, Mira. Reactive behavior in object-
oriented applications: an analysis and a research roadmap. In
Proceedings of the 12th annual international conference on Aspect-
oriented software development (2013), 37-48.

12 Willis, Darren, Pearce, David J., and Noble, James. Efficient Object
Querying for Java. In ECOOP 2006 - Object-Oriented Programming,
20th European Conference, Nantes, France, July 3-7, 2006,
Proceedings (2006), Springer, 28-49.

Figure 2. Recursive aggregation derivations in model

Figure 1. Relationships between relationships and navigators

