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We consider the task of sharing a secret quantum state in a quantum network in a verifiable way. We propose
a protocol that achieves this task, while reducing the number of required qubits, as compared to the existing
protocols. To achieve this, we combine classical encryption of the quantum secret with an existing verifiable
quantum secret sharing scheme based on Calderbank-Shor-Steane quantum error correcting codes. In this way
we obtain a verifiable hybrid secret sharing scheme for sharing qubits, which combines the benefits of quantum
and classical schemes. Our scheme does not reveal any information to any group of less than half of the
n nodes participating in the protocol. Moreover, for sharing a one-qubit state each node needs a quantum
memory to store n single-qubit shares, and requires a workspace of at most 3n qubits in total to verify the
quantum secret. Importantly, in our scheme an individual share is encoded in a single qubit, as opposed to
previous schemes requiring �(log n) qubits per share. Furthermore, we define a ramp verifiable hybrid scheme.
We give explicit examples of various verifiable hybrid schemes based on existing quantum error correcting
codes.

DOI: 10.1103/PhysRevA.101.032332

I. INTRODUCTION

Secret sharing is a task which allows us to securely split
a secret message among n network nodes, in such a way that
at least a certain number of nodes is asked to collaborate in
order to reconstruct the secret. However, one also requires
that a subset with less than a certain number of nodes cannot
gain any information about the secret. This way one can
hide highly confidential and sensitive information from being
exposed, for example missile launch codes or numbered bank
accounts. The splitting and sharing of the message is often
performed by one designated node—the dealer. If the nodes
do not trust the dealer, but they want a guarantee that a secret
was indeed distributed, then they may wish to verify that at the
end of the protocol there will be one well-defined secret that
they can reconstruct. In this case, the secret sharing protocol
involves an additional step of verification of the shares, and
one talks about verifiable secret sharing [1,2].

Importantly, verifiable secret sharing is used as a sub-
routine for other cryptographic primitives, such as secure
multipartite computation [3,4], byzantine agreement [5], end-
to-end auditable voting systems [6], and atomic broadcast
[7]. Likewise, a quantum analog, namely verifiable quantum
secret sharing (VQSS), is a core subroutine for secure mul-
tiparty quantum computation [8,9] and fast quantum byzan-
tine agreement [10]. Verifiable schemes, similarly to their
nonverifiable counterparts, have the property that they hide
information from a certain number of nodes. That is, any
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subset with p or less nodes does not gain any information
about the secret throughout the protocol. We call this property
secrecy.

So far, many protocols have been proposed for sharing
a classical secret using purely classical shares [11–13], us-
ing classical and quantum shares [14–17], as well as for
sharing a quantum secret with quantum shares [14,18–22].
This work concerns the last variant, namely schemes which
share a quantum secret. Particularly, throughout this paper we
will consider that the dealer shares a pure single-qubit state
|ψ〉. In this scenario, numerous schemes for both nonverifi-
able quantum secret sharing [14,18,19,21–23] and verifiable
quantum secret sharing [8,24] are known. Fundamentally, for
any scheme sharing a quantum secret with only quantum
resources, there exists a limit to how many nodes p cannot
gain any information about the secret. This limit is given by
p � � n−1

2 � and can be intuitively understood as a consequence
of the no-cloning theorem [25]. Indeed, if less than half of
the nodes can reconstruct the secret, then there must exist
at least two groups of nodes able to reconstruct it, which
violates the no-cloning theorem. Moreover, if the majority of
nodes recovers the secret exactly, then the remaining nodes get
no information about the secret (for more details see [19]).
We will refer to schemes which saturate the above bound
on p as schemes with maximum secrecy. In particular, for
VQSS with maximum secrecy, the only current construction
[8] requires that the dimension q of local shares scales with
the number of nodes q > n. Therefore, using the existing con-
struction, we cannot find a nontrivial example of such a VQSS
scheme where the nodes hold single-qubit shares. The reason
for this scaling is that, in general, quantum secret sharing
schemes are directly connected to resource-intensive quantum
error correcting codes [18,19]. Consequently, this leads to
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FIG. 1. Lifting the secrecy of an n-node secret sharing scheme
of a quantum state, i.e., increasing the value p of nodes which gain
no information about the secret state throughout the execution of
the scheme. Here t denotes the number of nodes that can perform
arbitrary operations on their shares throughout the protocol, and
hence corrupt the secret (active cheaters).

secret sharing schemes which require �(log n) of qubits per
share.

In the area of nonverifiable quantum secret sharing, some
investigations have been performed to reduce the number of
required qubits, particularly, by exploring ramp secret sharing
schemes [21,26] and classical encryption. In a ramp scheme
one relaxes the constraint on the secrecy of the scheme,
and therefore, allows some of the nodes to obtain partial
information about the quantum state. This leads to schemes
with less qubits per share. Additionally, the secrecy of a ramp
scheme can be lifted, i.e., the value of p can be increased by
encrypting the quantum state and then sharing the encryption
key via classical secret sharing, see Fig. 1. Such a solution was
dubbed hybrid secret sharing [27–30].

In early stages of quantum network development, it would
be desirable to implement VQSS on a network with the ability
to control only a small number of qubits. Since quantum
resources are expensive, a lot of effort is being put in reducing
them in many areas of a quantum information field, for
example quantum computing or quantum simulation [31–35].
However, reducing the resource requirements in the domain
of distributed systems, and in particular verifiable secret
sharing, has not been considered so far. Here we address
the question of whether a verifiable secret sharing scheme
with the maximum secrecy property (i.e., p = � n−1

2 �) can be
realized on a quantum network with less qubits. We answer
this question positively by presenting a scheme which reduces
quantum resources necessary for sharing a quantum secret in
a verifiable way.

II. RESULTS

Our contribution is threefold. First, our scheme realizes
the task of verifiable secret sharing of a quantum state using
a single qubit per share. Second, we show that the protocol
can be realized in a setting where each node needs to store
n qubits in a quantum memory and has a workspace of 3n

s

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

|ψ

σ

FIG. 2. A sketch of a verifiable hybrid secret sharing (VHSS)
protocol for n = 10 nodes denoted N1, . . . , N10, with nq = 7 quan-
tum (•) and nc = 10 classical (�) shares. The quantum secret state
|ψ〉 of the dealer is encrypted using a classical key s. The resulting
encrypted state σ and the key s are then distributed by the dealer as
quantum and classical shares respectively.

qubits in total to verify the secret. For comparison, previous
protocols [8,36] require shares with �(log n) qubits and each
node having simultaneous control over �[r2n log(n)] qubits
for verification, where r is the security parameter. Finally, our
scheme preserves the maximum secrecy condition. This may
enable qubit reductions for future implementations of cryp-
tographic schemes, like multiparty computation or byzantine
agreement, which use VQSS as a subroutine.

We extend the idea of a hybrid scheme to verifiable quan-
tum secret sharing. Specifically, we present a protocol that
achieves the task of sharing a single-qubit quantum state
|ψ〉 in a verifiable way, where the dimension q of individual
shares does not grow with the number of nodes n. In the
spirit of [27–30], we make use of classical verifiable secret
sharing [37,38] in order to obtain a verifiable hybrid scheme
where each node holds at most 3n single-qubit shares at a
time during the verification of the secret, see Outline below.
Our scheme has a variety of consequences. Thanks to the
classical encryption of the quantum state via a quantum one-
time pad [39], our protocol can attain maximum secrecy,
i.e., p = � n−1

2 �. We show that by using a suitable classical
scheme, one can beat the limit of maximum secrecy at the
cost of tolerating less active cheaters (i.e., nodes that can
perform arbitrary operations on their shares, see Adversary).
Furthermore, motivated by nonverifiable schemes, we define
the notion of strong threshold schemes in the context of
verifiability, where any p + 1 nodes can reconstruct the secret,
any p nodes do not gain any information about it, and t
nodes can actively cheat in the protocol. We then show that
according to our definition, it is impossible to construct a
verifiable strong threshold scheme. Finally, we show how to
achieve a ramp hybrid scheme allowing for sharing secrets in
a verifiable way. The security proof of our protocol expands on
the approach suggested in [8,36], see the Appendix for details.

Number of nodes. One key ingredient in our resource
reduction is to combine quantum and classical resources in
a hybrid scheme. In our model, some nodes hold quantum
shares and some nodes hold classical shares. Note that nodes
can have both quantum and classical shares, see Fig. 2. We
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denote the number of nodes with classical shares and the
nodes with quantum shares by nc and nq, respectively, and by
n the total number of nodes.

Adversary. We allow for the existence of t malicious nodes
(cheaters) in the protocol. We say that those cheaters are ac-
tive, meaning that they can perform arbitrary joint operations
on their state during the execution of the protocol, in order to
learn |ψ〉. We say that a protocol tolerates t active cheaters if
at the end of the protocol the reconstruction of the quantum
state is possible despite the presence of those cheaters. The
nodes who follow the protocol exactly are called honest.
We follow the common assumption that the set of malicious
quantum and classical nodes is determined at the beginning of
the hybrid protocol and stays fixed throughout (nonadaptive
adversary). We also assume that all nodes have access to an
authenticated broadcast channel [40] and that each pair of
nodes is connected by authenticated, private classical [41],
and quantum [42] channels.

Definition 1 ({p, t, n}- VHSS). A {p, t, n}-VHSS verifiable
hybrid secret sharing scheme is an n-node protocol with
three phases: sharing, verification, and reconstruction, and
two designated players, dealer D and reconstructor R. In the
sharing phase D shares a pure single-qubit quantum state
|ψ〉 using quantum and classical shares. In the verification
phase all of the nodes verify that the set of shares defines a
unique quantum state. In the reconstruction phase R receives
all shares from all nodes, and reconstructs the unique state de-
fined by these shares. We require that the scheme satisfies the
following requirements despite the presence of t nonadaptive
active cheaters, except with probability exponentially small in
the security parameter r:

(1) Soundness: if R is honest and D passes the verification
phase, then there is a unique state |ψ〉 that can be recovered
by R.

(2) Completeness: if D is honest, then she always passes
the verification phase. Moreover, if R is also honest, then the
reconstructed state is exactly D’s state |ψ〉.

(3) Secrecy: if D is honest, then any group of p � t
nodes cannot gain any information about the secret before
reconstruction.

The parameters of the scheme are determined by an un-
derlying quantum error correcting code which we use as a
building block. In particular, a relevant variable is the distance
d of the code. We remark that our results generalize to
multiqubit scenarios.

A. {p, t, n}-VHSS verifiable hybrid secret sharing protocol

Outline of the verifiable hybrid secret sharing (VHSS) proto-
col (see Protocol 1).

1. Sharing
The dealer D encrypts the secret quantum state |ψ〉 using

a classical key s = ab and quantum one-time pad [39],

σQS =
∑

ab={0,1}2

1

4
X aZb|ψ〉〈ψ |QZbX a ⊗ |ab〉〈ab|S,

where Q is the quantum register of the dealer and S is
the classical register of the encryption key. She shares the
encrypted state among the nodes using the quantum protocol
and the key s using the classical protocol, see Protocol 1
“Sharing.”

2. Verification
Nodes verify whether D is honest, i.e., that the shares

held by the nodes are consistent and at the end of the
protocol a state will be reconstructed. For this, each node
encodes the qubit received from the dealer into further n
qubits and sends n − 1 of them to other nodes. Then, each
node uses at most additional 2n ancilla qubits for one itera-
tion of the verification procedure. There are O(r2) iterations
of verification, where r is the security parameter. If the
dealer passes the verification phase the protocol continues.
Otherwise it aborts.

3. Reconstruction
One designated node R collects all shares of σ and

reconstructs it. She also reconstructs the classical key s and
decrypts |ψ〉.

Remark. Throughout the protocol each of the nodes needs
to simultaneously store n single-qubit shares corresponding
to the encoded secret state. In the verification phase each
node creates at most 2n ancilla qubits, performs a joint
operation between these ancillas and the shares of the secret,
and then measures only the ancilla qubits. This means that
the nodes require a workspace of at most 3n qubits in total
for verification.

We revisit the VQSS scheme introduced in [8] and explore
its extension to a verifiable scheme which uses single-qubit
shares. The construction we use is based on Calderbank-Shor-
Steane (CSS) error correcting codes [45,46]. Then we use the
existing verifiable classical secret sharing schemes [37,38] to
combine classical encryption of the quantum secret with the
VQSS scheme to achieve an n-node verifiable hybrid secret
sharing scheme (VHSS), see Outline. In {p, t, n}-VHSS the
number p of nodes who cannot gain any information about
the quantum state is determined by the classical scheme.
Moreover, t � � d−1

2 � cheaters are active and constrained by
the distance d of the underlying CSS code. In our scheme
the secret state of the dealer |ψ〉 is encrypted using quantum
one-time pad with a classical key s, and then both objects
are shared and verified in parallel. It is, therefore, impossible
to reconstruct the quantum secret without reconstructing the
classical key. In the case when n = nq = nc we achieve the
following functionalities:

(1) We construct a scheme which attains maximum se-
crecy using single qubit shares. Specifically, thanks to us-
ing classical encryption, we show that in our {p, t, n}-VHSS
scheme any p � � n−1

2 � nodes coming together before recon-
structing the secret do not gain any information about it. Our
{p, t, n}-VHSS scheme tolerates up to t < n

4 active cheaters.
Reconstruction of the secret occurs with all of the shares.
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TABLE I. Examples of verifiable hybrid secret sharing schemes using one qubit shares coming from this work. The secret is shared among
n nodes. A {� n−1

2 �, t, n}-VHSS scheme uses shares from all of the nodes to reconstruct the secret, whereas {� n−1
2 �, t, t ′, n}-ramp VHSS scheme

can reconstruct the secret without any t ′ nodes. Both schemes tolerate t active cheaters and are based on error correcting codes of [43,44].

{� n−1
2 �, t, n}-VHSS {� n−1

2 �, t, t ′, n}-ramp VHSS

Number of nodes n t = 2 t = 4 t = 1 t = 2

2(t + 1)2 {8, 2, 18} {24, 4, 50} {8, 1, 1, 18} {24, 2, 2, 50}
3t2 + 3t + 1 {9, 2, 19} {30, 4, 61} {9, 1, 1, 19} {30, 2, 2, 61}
6t2 + 1 {12, 2, 25} {48, 4, 97} {12, 1, 1, 25} {48, 2, 2, 97}
8t2 + 4t + 1 {20, 2, 41} {72, 4, 145} {20, 1, 1, 41} {72, 2, 2, 145}

(2) We show how to achieve a {p, t, n}-VHSS scheme
for p > � n−1

2 � by choosing an appropriate classical verifiable
scheme [38]. In this case, however, there exists a trade-off
between the number of active cheaters and secrecy, such that
n � p + 3t + 1. Therefore, in order to achieve higher secrecy
we tolerate less active cheaters t . As before, reconstruction of
the secret occurs with all of the shares.

(3) We define a strong threshold scheme (see Definition 2)
where shares from any group of n − t ′ nodes are sufficient
for the reconstruction, and no group of p = n − t ′ − 1 nodes
gains any information about the state. Importantly, we show
that according to our definition, it is impossible to achieve a
verifiable strong threshold scheme, namely, a scheme which
satisfies the two above constraints and tolerates t active
cheaters at the same time.

(4) We relax the secrecy constraint of the strong threshold
scheme and construct a ramp VHSS scheme (see Definition 3).
In our ramp verifiable scheme any n − t ′ nodes can recon-
struct the secret, but any group of at most p � � n−1

2 � does not
have any information about it. The scheme tolerates t active
cheaters, where t + t ′ � � d−1

2 � are constrained by the distance
of the underlying quantum error correcting code. We denote it
with {p, t, t ′, n}-ramp VHSS.

In the case when n = nc > nq, our VHSS scheme allows
us to construct a scheme which extends verifiable quantum
secret sharing onto nodes with purely classical capabilities,
see Fig. 2. That is, we use VQSS to share a quantum secret
with nq nodes, but we extend the sharing of the classical
key s onto nc > nq nodes. Therefore, some of the nodes
hold only classical shares but still participate in hiding of
the quantum secret. Due to the properties of our protocol,
this scheme can also lift the secrecy, such that no set with
p � � n−1

2 � nodes can learn the quantum state before the
reconstruction.

B. Implications for resource reduction

Our scheme allows us to exploit CSS quantum error cor-
recting codes which encode a single-qubit quantum state into
single-qubit shares. Such codes are well studied in the litera-
ture and therefore, numerous schemes with defined encoding
and decoding exist [43,44]. In the next section we present
examples of VHSS schemes based on such codes. We remark
that one could use approximate error correction codes and in
this way increase the number of active cheaters to 2t [24,42].
However, this solution requires significantly more resources,
see Sec. V.

III. RESOURCE REDUCTION

Our protocol reduces the number of qubits that need to be
controlled simultaneously by each node. To do so, we adapt
the protocol of [8], where the verification procedure requires
ancillas used in parallel, to a setting where they can be used
sequentially, i.e., one by one. This way, each node needs
control over 3n operational qubits at a time. For comparison,
the parallel execution of [8] requires simultaneous control
over �[r2n log(n)] qubits per node, where r is the security
parameter.

Here we list a few examples of CSS codes leading to
VHSS schemes with single-qubit shares (also see Table I).
We express our examples in terms of a maximum tolerable
number of active cheaters t . Note that for a particular code
there exists a trade-off between the number of active cheaters
and the total number of nodes.

For t = 1:
(1) {3, 1, 7}-VHSS. In this scheme n = nc = nq = 7 nodes

hold both quantum and classical shares. The scheme achieves
maximum secrecy, i.e., no group of p = � 7−1

2 � = 3 shares
acquires any information about the secret. All of the quantum
shares are single-qubit shares, and each node requires control
over 21 qubits at a time for the verification procedure. This
example is based on the Steane’s [[7, 1, 3]]2 code, encoding 1
qubit into 7 qubits, with distance d = 3 [46]. In this scheme
all shares are necessary to reconstruct the secret.

Note that the Steane’s code without the classical encryption
would generate a VQSS scheme, where no two nodes could
gain any information about the secret. However, due to the
properties of the code, a specific group of three nodes could
still reconstruct the secret. To compare, the existing construc-
tion to achieve a purely quantum scheme with maximum
secrecy, requires individual shares of dimension q > 7.

(2) {� n−1
2 �, 1, n}-VHSS. In this scheme nq = 7 out of n

nodes hold quantum single-qubit shares and n = nc > 7 hold
classical shares. The scheme achieves maximum secrecy. For
the construction we use the Steane’s [[7, 1, 3]]2 code and a
classical scheme of [37]. Therefore, in our scheme only seven
nodes need to have quantum resources, but all of the n nodes
can participate in verifiable secret sharing of a quantum state.

For t � 1:
(1) {� n−1

2 �, t, n}-VHSS. We construct VHSS schemes which
tolerate more than one active cheater and achieve maximum
secrecy. All of the nodes hold both quantum and classical
shares (nq = nc = n), and the quantum shares contain a single
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qubit. For the construction we use higher-distance quantum
error correcting codes, for example toric codes and color
codes [43,44], and VCSS scheme of [37]. We present specific
examples in Table I. Note that each of those schemes can be
expanded onto even larger total number of nodes, by using a
verifiable classical secret sharing scheme with nc > nq.

(2) {p, t, t ′, n}-ramp VHSS. Based on the same higher-
distance quantum error correcting codes [43,44], we construct
examples of ramp schemes, see Table I. All of the nodes hold
quantum and classical shares, however, only n − t ′ are used to
reconstruct the secret.

IV. METHODS

A. Protocol

Our protocol is a hybrid between a classical scheme (VCSS)
and a quantum scheme (VQSS) to share the classical key s
and the encrypted quantum state σQS , respectively. In the
following we summarize the principles of these two protocols.

1. Verifiable classical secret sharing

A verifiable classical secret sharing scheme is a scheme
which shares a classical secret of the dealer among nc nodes
in a verifiable way, using classical shares. The scheme is
such that pc nodes cannot gain any information about the
classical secret after coming together (secrecy) and there are
at most tc active nonadaptive cheating nodes that the scheme
tolerates. We represent the classical verifiable secret sharing
protocol with a triple (pc, tc, nc)-VCSS. Here we treat the VCSS
scheme as a secure black box which leaks no information
about the classical key s, even if the adversary has access
to quantum side information during the execution of VCSS.
VCSS schemes that are information theoretically secure in
the context of classical adversary have been presented in for
example [3,37,38]. Here we add it as an assumption that any
VCSS protocol used to build Protocol 1 is secure against a
quantum adversary in the information-theoretic sense.

Assumption 1. The VCSS scheme used to build Protocol 1
does not leak any information about the secret key s to any
set of pc nodes, except with probability exponentially small in
the security parameter r, even in the presence of quantum side
information. That is, the scheme is information theoretically
secure in the presence of a quantum adversary.

Formally, VCSS is a classical protocol in which the dealer
inputs a classical message s, which is shared among the nodes.
Let P be a set of size at most pc, and let QP denote any
quantum side information held by the nodes in set P at the
end of the verification phase of the VHSS. In principle, QP

could be arbitrarily correlated with the classical secret key s.
However, Assumption 1 implies that the state held by nodes
in P carries no information about the key s, other than what
was known prior to the beginning of the protocol.

To the best of our knowledge, security of protocols of
[3,38] against an adversary with quantum side information
was never formalized. We note that in Theorem 13 of [47] it
was proven that any classical protocol which is statistically se-
cure in a universal composable (UC) sense, is also statistically
UC secure against a quantum adversary. Furthermore, [48,49]
discuss the possibility of strengthening the security of [37]

to UC security. As a consequence [37] could be conjectured
statistically UC secure against a quantum adversary.

In what follows, unless specified otherwise, we will con-
sider a classical VCSS protocol of [37]. This scheme is secure
with exponentially small probability of error 2−�(r′ ), where r′
is the security parameter. Here, for convenience, we choose r′
such that r′ = r, where r is the security parameter of VHSS.
The protocol can tolerate up to tc < nc

2 malicious nodes. In
particular, it also implies that pc = tc < nc

2 .

2. Verifiable quantum secret sharing

To construct our hybrid scheme we employ a VQSS scheme
which uses single-qubit shares. The VQSS scheme summarized
here is based on the results of [8].

A verifiable quantum secret sharing scheme is a scheme
which shares a quantum state of the dealer among nq nodes in
a verifiable way, using quantum shares. The scheme is such
that pq nodes cannot gain any information about the secret
(secrecy) and there are at most tq nonadaptive active cheating
nodes that the scheme tolerates. We denote such a scheme
with a triple (pq, tq, nq )-VQSS. To share a pure qubit state
among nq nodes in a VQSS, the nodes agree on (an efficiently
decodable) [[nq, 1, d]]2 Calderbank-Shor-Steane (CSS) error
correcting code C. Such a code encodes 1 qubit into nq qubits
and has distance d . This means that the chosen CSS code
is able to correct tq � � d−1

2 � arbitrary errors and pq � d − 1
erasure errors.

The CSS code C used to perform the protocol is defined
through two binary classical linear codes V and W , satisfying
V ∗ ⊆ W , where V ∗ is the dual code. Then, C = V ∩ FW is a
set of states of nq qubits which yield a codeword in V when
measured in the standard basis, and a codeword in W when
measured in the Fourier basis [50]. An important property
of a CSS code, which is useful for the VQSS protocol, is the
fact that certain logical operations �̄ can be implemented by
applying local operations � on the individual qubits held by
the nodes and encoded with C, i.e., �̄ = �⊗nq . This property,
called transversality, means that specific logical operations
can be applied qubit-wise. In particular, the protocol uses the
fact that (i) applying a CNOT gate is tranversal; (ii) applying
the Fourier transform qubit-wise maps codewords of the code
C onto codewords of the dual code C̃; and (iii) measurements
can be performed qubit-wise, but measurement outcome of
every qubit must be communicated classically to obtain the
result of the logical measurement.

In the VQSS protocol the dealer D encodes the quantum
secret state |ψ〉 using the code C and distributes it to nq nodes.
Next, each node i encodes her qubit into nq further qubits and
distributes those to every other node, see Fig. 3. This way the
nodes create two levels of encoding which can be represented
as a tree. The second level of encoding gives each node some
control over all the other shares, which allows honest nodes to
check consistency of all the shares.

The protocol aims to verify whether the shares (the tree)
create a codeword for which decoding is well defined with
respect to the code C, without revealing any information about
the secret state of the dealer. This property is formally defined
in [8,36] and is dubbed 2-GOOD. Intuitively, a 2-GOODV

tree means that for all branches of the tree which are held
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N1 N2 N3 N4 N5 N6 N7

N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7

|ψ

FIG. 3. The encoding tree for (2,1,7)-VQSS protocol with seven nodes N1, . . . , N7, based on the Steane’s [[7, 1, 3]]2 code. The figure
represents the encoding done in the sharing phase by each of the nodes.

by honest nodes, upon measuring their shares of the tree,
there exists a unique codeword in the code V that can be
recovered. Since C = V ∩ FW , to verify that the encoded
tree is 2-GOODC , the verification procedure first verifies that
the tree is 2-GOODV when measured in the standard basis,
and then that it is 2-GOODW when measured in the Fourier
basis.

We adapt the verification procedure from the work of
[8,36] to run in a sequential way. In our procedure, to verify
that the encoded secret is 2-GOODV in the standard basis,
the dealer and the nodes create auxiliary trees initiated in a
logical |+̄〉 state of the code C. Importantly, these systems
are distributed one at a time. Therefore, each node needs to
control 2n qubits at a time: n single-qubit shares for the en-
coded secret state, and n single-qubit shares for the auxiliary
|+̄〉 state. We perform r such checks, where r is the security
parameter.

After this step, our protocol verifies that the encoded secret
is 2-GOODW in the Fourier basis. To do so, the dealer and
the nodes create new auxiliary trees initiated in a logical |0̄〉
state of the code C. Here an important difference is that each
of the auxiliary |0̄〉 states is first verified to be 2-GOODV

as well, before applying the Fourier transform. This step is
necessary, because one wants to make sure that the check in
the Fourier basis does not introduce bit flips in the standard
basis (at this point the check in standard basis for the secret
state |ψ〉 has already been performed). Verifying each |0̄〉
requires using extra n single-qubit shares per node and is
repeated r times. Therefore, each node needs to control 3n
qubits at this step: n single-qubit shares for the encoded
secret, n single-qubit shares for a |0̄〉 state, and additional n
single-qubit shares for the verification of |0̄〉. In comparison,
in [8,36] all of the above steps are performed in parallel,
and effectively, each node needs to control �[r2n log(n)] at
once.

In the verification phase the nodes publicly identify a set
of apparent cheaters B with probability exponentially close to

1 in the security parameter r. Set B includes all of the errors
introduced by the dealer and errors introduced by the cheating
nodes until the end of the verification phase. Note that there is
no way to distinguish the errors introduced by the dealer and
those introduced by the cheaters at this point. The dealer will
pass verification as “honest” if |B| � tq. On the other hand, if
|B| � tq, then the protocol aborts.

After the verification phase, the cheating nodes can still
corrupt their shares. Therefore, the reconstructor R runs an er-
ror correction circuit and measures syndromes, so that she can
correct arbitrarily located errors introduced by the cheaters
after the verification. If for a branch encoded by a particular
node i there have been more than tq errors, then R adds that
node to the set B of cheaters. Otherwise, R corrects errors
and reconstructs branch i. After reconstructing all branches,
she randomly picks n − 2tq shares which she has left, and
reconstructs the state of the dealer. Importantly, the size of
set B cannot be larger than 2tq at the end of the protocol.
This is because the dealer D and cheaters can introduce at
most tq errors at the first level of encoding before verification
(otherwise the protocol aborts). Before the reconstruction, the
cheaters may introduce up to tq extra errors at the second level
of each branch they hold. This may create extra errors at the
first level, but never more than tq, since the cheaters have some
control over at most tq branches.

What is more, let CVQSS be the set of cheaters in the VQSS
and CVCSS the set of cheaters in VCSS. We assume that if a node
behaves maliciously in VQSS, it can also behave maliciously
in VCSS, and moreover CVQSS = CVCSS. Therefore, we put t =
tc = tq. Moreover, in our VHSS protocol we assume that the
nodes have access to shared public source of randomness.
This can be realized, for example, by running a classical
verifiable secret sharing protocol or multipartite coin flipping.
We remark that [36] points out solutions to reduce the classical
communication complexity of generating public randomness.
In the following we will write [1, n] to denote registers of
nodes from 1 to n.
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Protocol 1: Verifiable Hybrid Secret Sharing (VHSS)

Input: a qubit secret system |ψ〉 to share, CSS error correcting code C = V ∩ FW .

SHARING
Encryption

1. The dealer D encrypts her secret state |ψ〉 using quantum one-time pad with a classical key s, creating the state σQS ,
see Eq. (5).

2. D shares the classical key s among n nodes using a verifiable classical secret sharing VCSS protocol.
Encoding

1. D encodes σQ using C into �0,0
[1,nq], where σQ is the reduced state of σQS .

2. for i = 1, . . . , nq:
D sends �0,0

i to node i.
Each node i encodes received systems using C into �0,0

i[1,nq ]
and sends jth component �0,0

i j
to node j.

VERIFICATION
Z basis

for � = 0, m = 1, . . . , r:
1. D prepares |+̄〉0,m

[1,nq] = ∑
v∈V |v〉 using C.

2. for i = 1, . . . , nq:
D sends |+̄〉0,m

i to node i.
Each node i encodes received systems using C into |+̄〉0,m

i[1,nq ]
and sends jth component |+̄〉0,m

i j
to node j.

3. Nodes use shared public randomness source and get public random value b0,m ∈R {0, 1}. Each node j:
(a) applies the controlled NOT (CNOT) gate to her shares depending on the value of b0,m (CNOTb0,m ). That is, for

every qubit i, if b0,m = 0 the node does nothing, and if b0,m = 1 the node applies a CNOT gate with a qubit
indexed by m = 0 as a control to a qubit indexed by m = 1, . . . , r as a target:

∀i = 1, . . . , nq : CNOTb0,m
(
�0,0

i j
, |+̄〉0,m

i j

)
(b) measures all systems indexed � = 0, m = 1, . . . , r in the Z basis and broadcasts the result of the measure-

ment.
X basis

for � = 1, . . . , r:
4. D prepares |0̄〉�,0[1,nq] = ∑

w∈W ⊥ |w〉 using C.
5. for i = 1, . . . , nq:

D sends |0̄〉�,0i to node i.
Each node i encodes received systems using C into |0̄〉�,0i[1,nq ]

and sends jth component |0̄〉�,0i j
to node j.

for m = 1, . . . , r:
6. D prepares |0̄〉�,m[1,nq] = ∑

w∈W ⊥ |w〉 using C.
7. for all i = 1, . . . , nq:

D sends |0̄〉�,mi to node i.
Each node i encodes received systems using C into |0̄〉�,mi[1,nq ]

and sends jth component |0̄〉�,mi j
to node j.

8. Nodes use shared public randomness source and get public random values b�,m ∈R {0, 1}. Each node j:
(a) applies the CNOT gate to her shares depending on the value of b�,m (CNOTb�,m ):

∀i = 1, . . . , nq : CNOTb�,m
( |0̄〉�,0i j

, |0̄〉�,mi j

)
(b) measures the mth system in the Z basis and broadcasts the result of the measurement.

9. Nodes apply the Fourier transform F to all of their remaining shares, resulting in �F 0,0
[1,nq] j

and |0̄F 〉�,m[1,nq] j
for each

node j. Note that |0̄F 〉 = ∑
w∈W |w〉.

10. Nodes use shared public randomness source and get public random values b�,0 ∈R {0, 1}. Each node j:
(a) applies the CNOT gate to her shares depending on the value of b�,0 (CNOTb�,0 ):

∀i = 1, . . . , nq : CNOTb�,0
(
�F 0,0

i j
, |0̄F 〉�,0i j

)
(b) measures �th system in the Z basis and broadcasts the result of the measurement.
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11. (Decoding leaves Z basis) Broadcasted values in steps 3(b) and 8(b) yield words v�,m,i from code V , corresponding
to the second level of shares encoded by each node i. For each of the words, using classical decoding, the nodes:

(a) obtain a decoded value a�,m,i

(b) publicly check on which positions the errors have occurred, denote these positions by B�,m,i. Nodes update
sets Bi = ∪�,mB�,m,i from the positions of errors which occurred in the systems encoded by node i. If
|Bi| > t then add i to a global set B.

12. (Decoding the root Z basis) The nodes arrange values a�,m,i into a�,m = {a�,m,1, . . . , a�,m,nq}. Word a�,m yields a
classical codeword from the code V and the nodes decode it using classical decoder of code V . They add the
positions on which an error occurred to the global set B.

13. (Decoding leaves X basis) Broadcasted values in step 10(b) yield words w�,0,i from code W , corresponding to the
second level of shares encoded by each node i. For each of the words, using classical decoding, the nodes:

(a) obtain a decoded value a�,0,i

(b) publicly check on which positions the errors have occurred, and update sets Bi and B as before. Sets Bi and
B are cumulative throughout the protocol.

14. (Decoding the root X basis) Nodes create a codeword a�,0 = {a�,0,1, . . . , a�,0,nq} and decode it using classical
decoder of code W . They add the positions on which an error occurred to the global set B. If |B| > t then reject
the dealer and abort. Otherwise continue.

15. Nodes apply an inverse Fourier transform F−1 to their remaining system and obtain global sharing of D secret,
i.e., each node j holds �0,0

[1,nq] j
.

RECONSTRUCTION

1. Each quantum node j = 1, . . . , nq sends their shares to the reconstructor R. Moreover, all of the nc classical nodes
send their classical shares to R.

2. R reconstructs the classical secret key s using a decoder of VCSS.
3. For each share �0,0

i[1,n]
coming from encoding of node i /∈ B, R runs a circuit for code C which identifies errors. R

creates a set B̃i such that it contains Bi, Bi ⊆ B̃i. If |B̃i| � t then errors are correctable, R corrects them and decodes
the ith share, obtaining �0,0

i . Otherwise, R adds i to the global set B.
4. For all i /∈ B, R randomly chooses nq − 2t shares �0,0

i and applies an erasure-recovery circuit to them. R obtains
σR.

5. R decrypts σR using the classical key s and obtains |ψ〉.

B. Security

As discussed in previous sections, in the task of verifiable
secret sharing we want to ensure that the dealer is honest and
that at the end of the protocol there will be a well-defined
state to be reconstructed. In this section we prove the security
of Protocol 1 against t nonadaptive active cheaters. First we
state useful lemmas about the security of the VQSS protocol of
[8], which we use as a subroutine. For a detailed discussion
we refer the reader to [36]. We remark that we use an adapted
version of VQSS in the setting where we run the verification
phase sequentially, i.e., one ancilla at a time, whereas in [8]
the verification is performed in a parallel setting, i.e., all
ancillas together. In the Appendix we prove that this fact does
not change security statements of the original VQSS.

Lemma 1 (soundness of VQSS). In the verifiable quantum
secret sharing protocol [8], either the honest parties hold a
consistently encoded secret or dealer is caught and the proto-
col aborts with probability at least 1 − 2−�(r) [see Eq. (A26)
in the Appendix].

Lemma 2 (completeness of VQSS). In the verifiable quan-
tum secret sharing protocol [8], if D is honest then she passes
the verification phase. Moreover, if R is also honest she recon-
structs D’s secret with probability at least 1 − 2−�(r), where r
is the security parameter [see Eq. (A27) in the Appendix].

Using the above lemmas we now show that our VHSS
protocol, Protocol 1, is sound and complete.

Theorem 1 (soundness). In the verifiable hybrid secret
sharing protocol, Protocol 1, either the honest parties hold
a consistently encoded secret or dealer is caught and the
protocol aborts with probability at least 1 − 2−�(r).

Proof. The soundness of the hybrid protocol is a combina-
tion of soundness statements for the VQSS and VCSS protocols.
Formally, we need to bound the probability that one of the
protocols fails,

Pr[failVQSS ∨ failVCSS] � Pr[failVQSS] + Pr[failVCSS]. (1)

Let us first consider Pr[failVCSS]. Consider the protocol of
[37] whose probability of failure scales exponentially with
a security parameter r′. We choose r′ such that it is equal
to the security parameter of VQSS, r′ = r, and therefore,
Pr[failVCSS] � 2−�(r).

On the other hand, by Lemma 1, the VQSS protocol can fail
with probability Pr[failVQSS] � 2−�(r). Therefore, we obtain

Pr[failVQSS ∨ failVCSS] � 2−�(r). (2)
�

Theorem 2 (completeness). In the verifiable hybrid secret
sharing protocol, Protocol 1, if D is honest, then she passes
the verification phase. Moreover, if R is also honest, she
reconstructs D’s secret with probability at least 1 − 2−�(r),
where r is the security parameter.

Proof. For the first part of the theorem, observe that an
honest dealer always passes the verification phase. Indeed,
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if the dealer is honest, she does not introduce any errors,
neither in the VQSS, nor in the VCSS protocol. Moreover, by
the assumption that active cheaters t are always bounded by
the number of tolerable errors, the VHSS protocol can always
correct the arising errors and the verification phase always
accepts an honest dealer.

For the second part of the theorem, as in the soundness
statement, we calculate the probability that the VHSS protocol
fails with an honest dealer,

Pr[fail′VQSS ∨ fail′VCSS] � Pr[fail′VQSS] + Pr[fail′VCSS]. (3)

For the classical VCSS protocol, as before, we consider the
protocol of [37]. By choosing the security parameter of the
classical protocol such that r′ = r, we obtain Pr[fail′VCSS] �
2−�(r). For the VQSS protocol, if R is also honest, by Lemma 2
the probability that the verification phase fails to identify the
set B of apparent malicious nodes, occurs with probability
2−�(r), see the Appendix for details. Therefore,

Pr[fail′VQSS ∨ fail′VCSS] � 2−�(r). (4)
�

The encryption of the secret with a classical key has
significant consequences for the secrecy of the VHSS scheme.
We expand on it in the theorem below. Note that in a VQSS
[8] the secrecy property holds for any pq � 2tq nodes not
being able to learn any information about the dealer’s secret.
However, in our VHSS scheme we choose a classical scheme
such that pc = p > 2tq, and therefore, we lift the secrecy of
the VQSS scheme (for a detailed discussion see Sec. IV C 1
below).

Theorem 3 (secrecy). In the verifiable hybrid secret shar-
ing protocol, Protocol 1, when D is honest and there is at most
t active cheaters in the verification phase, no group of at most
p = pc nodes learns anything about D’s secret state through-
out the protocol, where pc is the secrecy of the underlying
classical scheme, except with probability exponentially small
in the security parameter r.

Proof. The state describing the dealer’s encrypted quantum
secret and the randomly chosen classical encryption key s =
ab is

σQS =
∑

ab={0,1}2

1

4
X aZb|ψ〉〈ψ |QZbX a ⊗ |ab〉〈ab|S, (5)

where Q is the quantum register of the dealer and S is the
classical register of the encryption key. By Assumption 1
the classical VCSS scheme is secure and does not leak any
information about the key s = ab to any set of pc nodes,
even in the presence of a quantum adversary, except with
probability exponentially small in the security parameter r.
Therefore, without the knowledge of the encryption key s, the
quantum state shared by the dealer as seen by the rest of the
nodes is maximally mixed,

σQ = trS (σQS ) =
∑

ab={0,1}2

1

4
X aZb|ψ〉〈ψ |QZbX a = 1Q

2
. (6)

Before sending out the shares, the dealer applies an encoding
EQ to the quantum register Q, so that

∀ |ψ〉 trS[(EQ ⊗ 1S )(σQS )] = EQ[trS (σQS )] (7)

= EQ(σQ) =: ρ[1,nq], (8)

where ρ[1,nq] is an nq-qubit state sent by the dealer to nq

nodes. Importantly, since EQ and σQ, Eq. (6), are independent
of |ψ〉, ρ[1,nq] is also independent of |ψ〉. Subsequently, the
honest nodes do their encoding E , and the malicious nodes
can perform any (CPTP) operation A that they desire. After
this step, since E and A do not depend on |ψ〉, the state of the
nq nodes ρ ′

[1,nq] is independent of |ψ〉. In the classical scheme
any group of pc or fewer nodes has no information about s.
Hence, the partial state of any p = pc or fewer nodes in VHSS
does not depend on |ψ〉 and no information about the dealer’s
secret can be obtained, except with probability exponentially
small in r.

C. Verifiable hybrid schemes

Our protocol for VHSS, Protocol 1, leads to a variety of
schemes, depending on the parameters of the underlying VQSS
and VCSS protocols. In this section we discuss the trade-offs
between those parameters and specify what schemes can be
achieved with our protocol.

1. Verifiable schemes with maximum secrecy

In any VQSS scheme based on an error correcting code
with distance d , any group of at most d − 1 nodes cannot
recover information about the secret. As mentioned before,
this is due to the fact that a code of distance d can correct
up to d − 1 erasures, and therefore any n − (d − 1) nodes can
recover the state perfectly. In particular, it implies that d − 1
nodes do not have any information about the encoded state
[19]. Quantum Singleton bound [51] allows that n � 2d − 1
for codes encoding a single qubit. The construction of [8]
saturates this inequality, and therefore allows for attaining
p = � n−1

2 �, which we refer to as maximum secrecy. However,
this construction uses systems of local dimension q > n and
is based on quantum Reed-Solomon codes [52].

To remedy this problem, we use a VQSS scheme based on
CSS codes with single-qubit shares, at the cost of reducing
secrecy. However, in our VHSS scheme, we combine this with
a classical scheme for which pc > 2tq. Specifically, the VCSS
protocol of [37] tolerates up to � n−1

2 � cheaters. This allows us
to maximally lift the secrecy of the quantum scheme to the
one attainable by the VQSS of [8].

Lemma 3 (VHSS with maximum secrecy). Given a
[[n, 1, d]]2 CSS error correcting code and a VCSS scheme
tolerating up to � n−1

2 � classical active cheaters, Protocol 1
provides a way to construct a {� n−1

2 �, t, n}-VHSS scheme with
maximum secrecy p = � n−1

2 �, tolerating t � � d−1
2 � active

cheaters, where all of the shares are used to recover the
quantum secret state.

Furthermore, we can explore other classical verifiable
schemes in the context of lifting secrecy in VHSS. In [38]
a classical VCSS scheme was presented, which has a strong
secrecy property: any pc > tc nodes cannot learn any informa-
tion about the classical secret (for comparison, in the scheme
of [37] pc = tc). However, this scheme is able to tolerate up
to tc � � nc−1

4 � active classical cheaters. Additionally, there
exists a trade-off between the number of nodes n, and the
numbers of cheaters, i.e., nc � pc + 3tc + 1 (for details see
Sec. 3.2 of [38]). Consequently, this allows us to construct
a VHSS scheme lifting the secrecy beyond n

2 , but at the cost
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of tolerating less active cheaters t . Note that the classical
scheme was proven to be information theoretically secure
against a classical adversary, and by Assumption 1 we assume
it remains information theoretically secure against quantum
adversary. Moreover, the protocol was shown to be perfectly
secure, i.e., with zero probability of error. Therefore, secrecy
achieved in a VHSS, which uses this protocol as a subroutine,
is exact and does not depend on the security parameter r.

Lemma 4. Given a [[n, 1, d]]2 CSS error correcting code
and a VCSS scheme with n � p + 3t + 1, Protocol 1 provides
a way to construct a {p, t, n}-VHSS scheme. In particular,
to achieve p > � n−1

2 � the scheme tolerates t < 1
3 (n − p − 1)

active cheaters. All of the shares are used to recover the
quantum secret state.

2. Threshold verifiable schemes

In the literature of secret sharing schemes, one often
considers schemes which have a property called threshold
[11,12]. This property can be stated as the requirement that
there exists p > 0, such that no subset of less than p shares
reveals any information about the state of the dealer, while
any subset of p + 1 shares allows us to perfectly reconstruct
the state. Importantly, in such schemes, there are no actively
cheating nodes in the protocol.

Since in Protocol 1 we allow for the existence of active
cheaters, let us consider a definition of a threshold scheme
when there are t > 0 active cheaters. We will call it a strong
threshold scheme. In this case, in the reconstruction phase
the reconstructor R receives shares from p + 1 = n − t ′ of
the nodes. Among those, up to t of them can be arbitrarily
corrupted.

Definition 2 (strong threshold scheme). A strong thresh-
old (verifiable) secret sharing scheme is a scheme where:

(1) Any set of shares held by p = n − t ′ − 1 nodes does
not reveal any information about the secret state.

(2) The reconstructor is able to perfectly reconstruct the
secret state with the set of shares from any n − t ′ nodes.

The above conditions hold in the presence of t > 0 active
cheaters.

In the literature of classical verifiable secret sharing a
similar definition of threshold is satisfied in the presence
of cheaters. For example, the scheme of [53] considers a
situation when honest shares are flagged. Therefore, the re-
constructor knows which n − t ′ honest shares to pick for the
reconstruction. However, in our case, the reconstructor does
not know which shares are honest and which are not. In such
a situation, this definition cannot be satisfied, which we show
in the following proposition.

Proposition 1. It is impossible to construct a strong thresh-
old secret sharing scheme according to Definition 2.

Proof. From point 2 of Definition 2 we have that R must be
able to reconstruct the secret state from any n − t ′ shares, in
particular, she must be able to do so when receiving n − t ′ − t
honest shares and t arbitrary ones. This implies that she is
able to recover the state from the n − t ′ − t honest shares
alone. On the other hand, from point 1 of Definition 2 no
n − t ′ − 1 shares reveal any information, which implies that
we must have n − t ′ − t > n − t ′ − 1. The only way to satisfy
this inequality is when t = 0. �

Remark. Similarly to [53], it is possible to add a flagging
system to Protocol 1 using techniques from [24,42]. Indeed,
there, one uses a quantum authentication scheme to flag
whether the shares are honest or not. However, as mentioned
before, this happens at a significant qubit cost. Since our
objective is to reduce the number of qubits, we explore a
alternative direction in the next section.

3. Ramp verifiable schemes

In the previous section we have seen that it is impossible
to construct a strong threshold scheme which tolerates active
cheaters according to Definition 2. In particular, this result
also applies to verifiable schemes. Therefore, here we allow
for a gap between the number of nodes p that obtain no
information about the secret and the number of nodes n −
t ′ necessary to reconstruct the secret, and we introduce a
definition of a ramp verifiable scheme.

Definition 3. A ramp verifiable secret sharing scheme is
a scheme where any n − t ′ nodes can reconstruct the secret,
but any p nodes cannot gain any information about the secret
state, for some p < n − t ′ − 1. The scheme can verify the
dealer in the presence of t active cheaters. We denote such
a scheme with {p, t, t ′, n}-ramp.

Relating to discussion in Sec. IV C 1, we see that the purely
quantum VQSS scheme of [8] allows for constructing a ramp
scheme with secrecy p � � n−1

2 �. However, for qubit CSS
codes this equality is not saturated. Therefore, as before we
use a classical scheme [37] to increase the value of p (lift the
secrecy) as compared to the purely quantum ramp scheme. We
obtain the following result.

Lemma 5 (Ramp VHSS). Given a [[n, 1, d]]2 CSS error
correcting code and a VCSS scheme tolerating up to � n−1

2 �
classical active cheaters, Protocol 1 provides a way to con-
struct a {p, t, t ′, n}-ramp VHSS scheme with p = � n−1

2 �,
where the quantum state can be recovered with shares from
any n − t ′ nodes in the presence of t active cheaters, and
t + t ′ � � d−1

2 �.
By putting t ′ = 0 we require reconstruction with all of the

shares and recover the result of Lemma 3. Note that if we are
interested in maximizing the number of cheaters and minimiz-
ing the number of the shares necessary for reconstruction, we
can put t = t ′ = � d−1

4 �.

V. OUTLOOK

We presented a protocol which achieves the task of sharing
a quantum secret in a verifiable way, which reduces the
number of qubits necessary to realize the protocol. In our
scheme each node requires an n-qubit quantum memory and
a workspace of at most 3n qubits in total. By combining clas-
sical encryption with a quantum scheme we showed that we
can construct a variety of verifiable hybrid schemes attaining
maximum secrecy. We proved that our protocol is secure in
the presence of active nonadaptive adversary.

We remark that there is a dependence between the number
of cheaters tolerated by a verifiable secret sharing protocol
and quantum resources necessary to realize it. The number
of cheaters can be increased to 2t by using approximate
quantum error correction based on quantum authentication
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schemes [24,42]. Indeed, in [9] the authors showed that
by employing quantum authentication techniques, the VQSS
scheme of [8] can tolerate up to n

2 malicious nodes. In this
case, the power of the verification scheme increases up to
the number of tolerable erasures of the code, and one can
effectively tolerate twice as many malicious nodes. However,
authentication schemes typically require another level of error
correction, where the size of the code scales exponentially in
the security parameter of the authentication. Therefore, such
schemes increase the number of qubits required to realize the
protocol.
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APPENDIX: SECURITY OF THE VQSS SCHEME [8]
IN THE SEQUENTIAL SETTING

Proof of Lemma 1. Here we state the soundness of the
VQSS protocol. Since we use the VQSS in the sequential setting
instead of the original parallel one, we restate security in
the sequential setting. Our techniques are inspired by the
approach suggested in [8,36].

To prove the soundness of the VQSS protocol, we bound
the probability that the state held by the nodes after the
verification phase is close to a codeword in C = V ∩ FW with
at most t errors on the first level of encoding in the verification
phase, or that the protocol aborts, and therefore, the dealer is
caught. V denotes a space spanned by {|v〉 : v ∈ V C}, where
V C is a classical code space. Similarly, FW is spanned by
{F |w〉 : w ∈ W C}, where F is the Fourier transform and W C

is a classical code space such that the dual code V C∗ ⊆ W C .
Recall that in the protocol we encode the secret of the

dealer into two levels of encoding. We will argue that perform-
ing verification on the second level of encoding is equivalent
to verification on the first level of encoding. If a state is en-
coded once using C, and has at most t errors, then the encoding
defines a unique state. Therefore, it is enough to count the
number of errors present in the first level of encoding and
verify that there are at most t . However, the protocol requires
two levels of encoding to make sure that no node has complete
control over all shares. This implies that we cannot perform
the verification directly at the first level. But since all the
operations we use for verification are (essentially) transversal
for code C, we can argue about the verification as if it was
performed on the first level.

In order to check for errors, it is enough to check for errors
in the Z basis and errors in the X basis. Let Vt be the space of
words that have at most t errors in the Z basis as compared
to a codeword in V . In particular, if one measures a state
|v〉 ∈ Vt in the Z basis, the outcome is a word in the space V C

t ,
where V C

t is the space of strings having at most t compared

to a string in the classical code V C . Similarly, we can define
(FW )t as the space of words that have at most t errors in the
X basis as compared to a codeword in W . This means that if
one measures a state |w〉 ∈ (FW )t in the X basis, the outcome
is a word in the space W C

t , where W C
t is the space of strings

having at most t compared to a string in the classical code W C .
Considering the above argument, now we proceed with

proving soundness of verification of the state in the Z basis
and as if we were considering only one level of encoding.

Without loss of generality, we can decompose the state of
the nodes after the sharing phase in spaces Vt and V ⊥

t ,

ρsh =
∑

i

qi|ψi〉〈ψi|, (A1)

with |ψi〉 = ai |ψ̃i〉 + bi |ψ̃⊥
i 〉 , where |ψ̃i〉 ∈ Vt and |ψ̃⊥

i 〉 ∈
V ⊥

t . In words, the state after the sharing phase is a mixture
of pure states which have components in Vt and V ⊥

t .
Moreover, let ρver(Z ) be the state of all the nodes after

the verification phase in the Z basis. We will show that
“conditioned on not aborting, the state ρver(Z ) is close to a
codeword in the space Vt or the verification phase aborts with
high probability.”

By definition of the space Vt , ρver(Z ) belongs to Vt , if by
measuring it in the Z basis one obtains with certainty an
outcome corresponding to a string v ∈ V C

t . Therefore, we will
quantify “the state ρver(Z ) is close to a codeword in the space
Vt ” with a high probability of getting an outcome v ∈ V C

t
when measuring ρver(Z ). Alternatively, one can think of a
situation in which first a measurement on the initial state
is performed and then the verification takes place. To prove
the security statement we will use a tool called “quantum-to-
classical” reduction, which relates the statistics obtained in
the two situations. That is, in order to compute the probability
of aborting in the verification phase of the VQSS protocol or
the probability that the resulting state is in V ∩ FW , we will
analyze the situation in which the state is measured before the
verification.

Probability of aborting. In order to evaluate probability of
aborting, we will follow the solution suggested in [36] for the
parallel execution of the VQSS and we will show how to use
this result for the sequential setting. To do so, let us fix a round
(0, m), with m > 0. For this round we can use the quantum-to-
classical reduction. It states that the two following situations
are equivalent: (i) the honest nodes measure their shares of
ρver(Z ) in the standard basis at the end of the verification phase;
and (ii) the honest nodes measure their shares of ρsh and an
mth ancilla right after they have been distributed, i.e., before
running the verification of round (0, m). Formally,

∀mM0MmCNOT
b0,m

0,m = MmCNOT
b0,m

0,mMmM0, (A2)

where M0 and Mm denote measurements of the state of the
nodes and mth ancilla, respectively. CNOT

b0,m

0,m denotes a CNOT

gate performed with ρsh as a control and the mth ancilla as
target. Note that if the nodes perform measurements right
after the shares are distributed [situation (ii)] they only need
to handle classical data from that moment on. Therefore,
quantum-to-classical reduction means that the verification
phase of the quantum VQSS protocol (Q protocol) can be
reduced to a corresponding verification in a classical protocol
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(C protocol). That is to say, measurement outcomes in Q
protocol and C protocol are exactly the same and the moment
when the measurement is performed does not change the
behavior of the protocol. Since the measurement is performed
in the standard basis and the CNOT gate acts as a bit flip in the
standard basis, the two operations commute.

Let us look now at the sequential execution of Q protocol
and C protocol. Expanding the above dependence onto m
sequential rounds, we obtain

M0MrCNOT
b0,r

0,r · · ·M1CNOT
b0,1

0,1

= MrCNOT
b0,r

0,r Mr · · ·M1CNOT
b0,1

0,1 M1M0. (A3)

In particular, this means that the probability of aborting in
the sequential Q protocol can be reduced to considering the
probability of aborting in the sequential C protocol,

Pr[¬abortQ] = Pr[¬abortC]. (A4)

Consider the corresponding C protocol for round (� = 0,

m): the nodes have classical bit strings v0,0 and v0,m. They
wish to verify whether v0,0 is a string in the space V C

t . To do so
the (honest) nodes compute bit-wise v0,m + b0,mv0,0 according
to public random bit b0,m. They broadcast the result and create
the set of apparent cheaters B.

In the C protocol, the string v0,0 can either be a string in V C
t

or not. This depends on the shared state (A1), and therefore
happens with probabilities

Pr
[
v0,0 ∈ V C

t

] =
∑

i

qi|ai|2 =: a, (A5)

Pr
[
v0,0 /∈ V C

t

] =
∑

i

qi|bi|2 =: b, (A6)

respectively. Indeed, the probability that any of the |ψi〉 from
(A1) yields a string from V C

t (not in V C
t ) is given by |ai|2

(|bi|2). In the case when v0,0 is a string in V C
t , the verification

always passes and we have that Pr[¬abortC |v0,0 ∈ V C
t ] = 1.

On the other hand, if v0,0 is not a string in V C
t , then for

all bit strings v0,m there exists at most one bit b0,m such
that v0,m + b0,mv0,0 is a string in V C

t . Since b0,m is chosen
independently of v0,m and v0,0, and uniformly at random, the
probability that v0,m + b0,mv0,0 a codeword is at most 1

2 . Since
the above is true for any value of v0,m, in particular it must be
true even if v0,m depends on the previous rounds 1, . . . , m − 1.
Therefore, the overall probability p that the verification phase
of the C protocol does not abort given that v0,0 is not a string
in V C

t , is at most

p = Pr
[¬abortC |v0,0 /∈ V C

t

]
� 2−r . (A7)

The above consideration allows us to write that the probability
of the C protocol not aborting is

Pr[¬abortC] = Pr
[
v0,0 ∈ V C

t

]
Pr

[¬abortC |v0,0 ∈ V C
t

]
+ Pr

[
v0,0 /∈ V C

t

]
Pr

[¬abortC |v0,0 /∈ V C
t

]
.

(A8)

Since Pr[¬abortQ] = Pr[¬abortC], Eq. (A4), in the Q protocol
we have

Pr[¬abortQ] = a + pb. (A9)

Probability of measuring a string in V C
t . Now our objective

is to evaluate Pr[v0,0 ∈ V C
t |¬abortQ]. By quantum-to-classical

reduction argument (A3), we know that the C protocol should
yield the same statistics as the Q protocol,

Pr
[
v0,0 ∈ V C

t |¬abortQ
] = Pr

[
v0,0 ∈ V C

t |¬abortC
]
. (A10)

From the considerations about the probability of aborting,
using the rules of probability, we can compute

Pr
[
v0,0 ∈ V C

t |¬abortQ
] = a

a + pb
. (A11)

Now let us combine the statements about probability of
aborting and probability of measuring a string in V C

t . Using
the quantum-to-classical reduction, we can formally reformu-
late the initial statement “conditioned on not aborting, the
state ρver(Z ) is close to a codeword in the space Vt , or the
verification phase aborts with high probability” as⎧⎪⎪⎨

⎪⎪⎩
Pr

[
v0,0 ∈ V C

t |¬abortQ
]

> 1 − δ

or
Pr

[
v0,0 ∈ V C

t |¬abortQ
]
� 1 − δ

and Pr[abortQ] � 1 − 2−r

δ
,

(A12)

where δ is a threshold for probability of measuring a string
from V C

t . Indeed, using Eqs. (A9) and (A11) we can express
Pr[v0,0 ∈ V C

t |¬abortQ] as a function of Pr[¬abortQ],

Pr
[
v0,0 ∈ V C

t |¬abortQ
] = Pr[¬abortQ] − p

Pr[¬abortQ](1 − p)
. (A13)

Now, either Pr[v0,0 ∈ V C
t |¬abortQ] > 1 − δ and the first con-

dition is satisfied, or Pr[v0,0 ∈ V C
t |¬abortQ] � 1 − δ and us-

ing (A13) we get

Pr[¬abortQ] � p

δ
� 2−r

δ
, (A14)

and therefore Pr[abortQ] � 1 − 2−r

δ
.

In analogy to the above reasoning, one can construct an
argument for a check in the X basis. Therefore, we can write⎧⎪⎪⎨

⎪⎪⎩
Pr

[
w0,0 ∈ W C

t |¬abortQ
]

> 1 − δ′
or
Pr

[
w0,0 ∈ W C

t |¬abortQ
]
� 1 − δ′

and Pr[abortQ] � 1 − 2−r

δ′ ,

(A15)

where δ′ is a threshold for probability of measuring a string
from W C

t .
Furthermore, in the protocol we verify that each of the |0̄〉

ancilla states is sufficiently close to space Vt before running
the verification in the X basis. Let V 0C

t be a subspace of the
code V C

t whose codewords are entries in the logical |0̄〉, i.e.,
0 + (W C∗)t , where the dual code (W C∗)t ⊆ V C

t . Then V 0
t is a

subspace of Vt , such that V 0
t is spanned by {|v〉 : v ∈ V 0C

t }.
Formally, we verify that conditioned on not aborting, the
actual state of the ancilla is close to a codeword in V 0

t , or the
verification phase aborts with high probability,⎧⎪⎪⎨

⎪⎪⎩
Pr

[
v ∈ V 0C

t |¬abortQ
]

> 1 − δ′′
or
Pr

[
v ∈ V 0C

t |¬abortQ
]
� 1 − δ′′

and Pr[abortQ] � 1 − 2−r

δ′′ ,

(A16)

032332-12



VERIFIABLE HYBRID SECRET SHARING WITH FEW QUBITS PHYSICAL REVIEW A 101, 032332 (2020)

where δ′′ is a threshold for probability of measuring a string
from V 0C

t . Since there are r of ancilla checks, the probability
that measuring all of the |0̄〉 states yield a codeword from
space V 0C

t can be written as

Pr

[
r∧

�=1

v�,0 ∈ V 0C
t

∣∣∣∣¬abortQ

]
� 1 − rδ′′. (A17)

The purpose of having |0̄〉 ∈ V 0
t is that using these ancillas

for verification in the X basis will not introduce bit flip errors
in the Z basis. In other words, any state in Vt remains in Vt

after its verification in the X basis, as long as we use ancillas
|0̄〉 ∈ V 0

t .
We will now make a statement about the whole verification

phase. Let the state of the nodes after the verification in the Z
basis have the form

ρver(Z )|bZ �=0 = αρVt + βρV ⊥
t

(A18)

where ρVt is a mixture of pure states in Vt and ρV ⊥
t

is a mixture
of pure states in V ⊥

t . Here we condition the state on the fact
that the public random bits bZ used in the verification in the
standard basis (i.e., b0,m for m = 1, . . . , r) are all different
than 0, i.e., that at least one CNOT gate is performed. In this
case, measuring the state of the nodes after the CNOT, projects
it either on Vt or V ⊥

t . It happens with probabilities α and β,
respectively.

Similarly, after the consecutive verification in the X basis,
the state of the nodes will be

ρver(Z,X )|bZ ,bX �=0,|0̄〉∈V 0
t

= αα′ρVt ∩FWt + αβ ′ρV ⊥
t ∩FWt

+ β
(
α′′ρVt ∩FW ⊥

t
+ β ′′ρV ⊥

t ∩FW ⊥
t

)
, (A19)

where we additionally condition the state on the fact that bits
bX used for verification in the X basis are all different than
zero (i.e., at least one CNOT was performed in the X basis).
Moreover, we condition it on the fact that |0̄〉 ancillas used for
verification in the X basis are in V 0

t . Assuming the first lines
of Eqs. (A12) and (A15), we get that

αα′ + αβ ′ > 1 − δ, (A20)

αα′ + βα′′ > 1 − δ′. (A21)

The first line implies that β(α′′ + β ′′) � δ and therefore,
β � δ. Using this in the second line we get that αα′ � 1 −
δ − δ′. Now, αα′ is exactly the probability that measuring
ρver(Z,X )|bZ ,bX �=0,|0̄〉∈V 0

t
in the Z basis yields a string in V C

t and
measuring it in the X basis yields a string in W C

t . Therefore,
we get

Pr
[
v0,0 ∈ V C

t ∧ w0,0 ∈ W C
t |¬abort, bZ ,

bX �= 0, |0̄〉 ∈ V 0
t

]
� 1 − δ − δ′. (A22)

Now we will lower bound the probability Pr[v0,0 ∈ V C
t ∧

w0,0 ∈ W C
t |¬abort], i.e., remove the conditioning on bZ , bX �=

0, |0̄〉 ∈ V 0
t from the above probability expression. Let us

evaluate

Pr
[
v0,0 ∈ V C

t ∧ w0,0 ∈ W C
t |¬abort

]
= Pr

[
bZ , bX �= 0 ∧ |0̄〉 ∈ V 0

t |¬abort
]

Pr
[
v0,0 ∈ V C

t ∧ w0,0 ∈ W C
t |¬abort, bZ , bX �= 0, |0̄〉 ∈ V 0

t

]
+ Pr

[¬(bZ , bX �= 0) ∨ |0̄〉 /∈ V 0
t |¬abort

]︸ ︷︷ ︸
�r2−r+Pr

[
|0̄〉/∈V 0

t |¬abort
]
�r2−r+rδ′′

Pr
[
v0,0 ∈ V C

t ∧ w0,0 ∈ W C
t |¬abort,¬(bZ , bX �= 0), |0̄〉 /∈ V 0

t

]︸ ︷︷ ︸
�1

, (A23)

where we assumed the first line of Eq. (A16) to bound
Pr[|0̄〉 /∈ V 0

t |¬abort]. To sum up, the conjunction of

Pr
[
v0,0 ∈ V C

t |¬abortQ
]

> 1 − δ,

Pr
[
w0,0 ∈ W C

t |¬abortQ
]

> 1 − δ′,

Pr

[
r∧

�=1

v�,0 ∈ V 0C
t

∣∣∣∣¬abortQ

]
� 1 − rδ′′, (A24)

implies that

Pr
[
v0,0 ∈ V C

t ∧ w0,0 ∈ W C
t |¬abort

]
� (1 − δ − δ′) + r(2−r + δ′′)(δ + δ′).

(A25)

Therefore, either Eq. (A25) is satisfied or at least one of
the equations in (A24) is not satisfied. In the latter case,
Eqs. (A12), (A15), and (A16) imply that

Pr[abort] � 1 − max

{
2−r

δ
,

2−r

δ′ ,
2−r

δ′′

}
. (A26)

�

Proof of Lemma 2. If the dealer is honest, the size of set
B must be at most t—there is at most t malicious nodes and
only real malicious nodes are accused of cheating. Therefore,
the verification phase will always lead to accepting an honest
dealer.

If R is also honest then we must calculate the probability
that the verification phase fails to identify the set B of apparent
malicious nodes. In this case, the reconstruction phase could
take inconsistent shares to reconstruct the original state of
the dealer. We can use the quantum-to-classical reduction
argument again (see [36] and the argument above) and argue
about the probability of error for the classical protocol. An
error in the classical case can occur when any of the checks
for Z or X basis, or checks of |0̄〉, lead to consistent strings
on V C

t , FW C
t , or V C0

t . Similarly to the argument above, the
probability of that occurring is

εc = (2 + r)2−r . (A27)
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Let us now look at the reconstruction phase of the quantum
protocol to bound the fidelity of the output state. When the
reconstructor is honest, she first applies a decoding operator to
each branch i corresponding to node i /∈ B. The operator cor-
rects errors without knowledge of the positions which carry
errors (i.e., it corrects arbitrary errors). Therefore, whenever
in qubits corresponding to branch i /∈ B there is no more than
t errors, the decoding will identify the errors and correct them.
In the case when there are more than t errors in a branch
i, the procedure will leave that branch untouched and the
reconstructor will update the set B with position i. Second,
the honest reconstructor applies an erasure-recovery circuit
to randomly chosen n − 2t positions from i /∈ B. In the case
when all of the errors are correctly identified in B, the erasure-
recovery corrects for n − 2t erasure errors, i.e., missing qubits
of the dealer and malicious nodes, and outputs the original

state of the dealer. Since the verification phase can fail to
identify the set B with probability εc, we have

ρrec = (1 − εc)|ψ〉〈ψ | + εcρ̃R, (A28)

where ρ̃R is an arbitrary state that depends on the action of the
malicious nodes. Let us define the fidelity of the reconstructed
state as F = Tr[ρrec|ψ〉〈ψ |R]. Using linearity properties of the
trace together with the fact that quantum states have nonzero
trace, we have that

F = Tr[((1 − εc)|ψ〉〈ψ | + εcρ̃ ) |ψ〉〈ψ |]
= (1 − εc)Tr[|ψ〉〈ψ ||ψ〉〈ψ |] + εcTr[ρ̃ |ψ〉〈ψ |]︸ ︷︷ ︸

�0

� 1 − εc. (A29)
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