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Summary

Studies have highlighted the impact of residential neighbourhood built environments (BE) on
well-being in recent years since people spend significant time in these areas. These studies ex-
amine correlations between micro-scale BE features—such as trees, grass, fences, and bikes—
and a single aspect of well-being (i.e., physical health, social interaction, mental health) or of
perceptions (e.g., safety). However, they do not comprehensively explore how these features
influence residential preferences nor provide clear guidance on designing micro-scale BE fea-
tures to enhance the attractiveness of residential areas and overall well-being.

To build appealing residential neighbourhoods cost-efficiently and comprehensively, we should
study people’s preferences by analyzing residential location choice (RLC) datasets to under-
stand how different micro-scale BE features influence attractiveness and well-being. However,
few studies investigate the quantified impacts of these features on RLC.

van Cranenburgh and Garrido-Valenzuela (2023) conducted a stated choice experiment where
respondents selected preferred residential neighbourhoods based on street view images (SVI).
They introduced a framework, the Computer Vision-enriched Discrete Choice Model (CV-
DCM). It uses a computer vision model to convert visual information into numerical data to
integrate with traditional discrete choice models. However, the applied computer vision model
is not for quantifying micro-scale BE features, limiting interpreting their impacts on RLC.

Building on van Cranenburgh and Garrido-Valenzuela (2023)’s framework and datasets (RLC
and SVI datasets), this thesis proposes a semantic CV-DCM to study the effects of micro-scale
BE features on RLC. The semantic computer vision model applied in this thesis is a panoptic
segmentation model that incorporates instance and semantic segmentation for categories bet-
ter quantified in units of instance and pixels, respectively. It can address the issue that some
micro-scale BE features are challenging to count in images like trees.

After applying the semantic computer vision model, 400 generated masks are randomly se-
lected and evaluated manually to examine whether the zero-shot computer vision model accu-
rately quantifies micro-scale BE features in the new SVI dataset for subsequent choice mod-
elling. Additionally, the detailed analysis of specific categories during mask evaluation pro-
vides valuable insights into the actual accuracies of different categories, enhancing the inter-
pretation of estimated coefficients in choice modelling.

Overall, the choice modelling results highlight the specific impacts of various micro-scale BE
features on RLC, providing valuable insights for urban planners. By pinpointing the most in-
fluential elements, the study facilitates the cost-effective restructuring of residential neighbour-
hoods to boost their attractiveness and enhance residents’ well-being. For instance, restricting
unattractive features like motorcycles in residential neighbourhoods and planting or maintain-
ing more trees are the most attractive among vegetation.
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1
Introduction

This chapter includes the background of this thesis, including the substantive and methodol-
ogy gaps of previous relevant studies in section 1.1. Research objectives and questions are
formulated in section 1.2. Section 1.3 outlines the structure of this report.

1.1. Background
In recent years, numerous studies have highlighted the potential impacts of a residential neigh-
bourhood’s built environment (BE) on people’s well-being (Greene et al., 2020; Pfeiffer &
Cloutier, 2016). Since individuals spend a significant amount of time in their neighbourhoods,
these areas play a crucial role in providing spaces for physical activities and opportunities for
social interactions (Ma et al., 2018; Pfeiffer & Cloutier, 2016; Sallis et al., 2022). Also, certain
physical elements of BE correlate with residents’ mental health (Y.-T. Wu et al., 2014). In gen-
eral, previous research have investigated the correlations between various features of BE and
different aspects of well-being (i.e., physical health, social interaction, and mental health). To
be more specific, BE features are usually studied at the neighbourhood- or street level, where
the former and latter indicate the macro-scale and micro-scale ones.

Macro-scale BE features encompass abstract concepts like the 5Ds (i.e., density, diversity, de-
sign, destination accessibility and distance to transit) proposed by Cervero et al. (2009) and
Ewing and Cervero (2010). Various factors of the macro-scale BE features are also linked to
specific facets of people’s well-being. For instance, residential density, mixed land use, and
street connectivity are highly correlated with walking frequency (Sallis et al., 2022). Streets
with higher accessibility may attract runners, whereas higher job density might hinder running
(Jiang et al., 2022).

Micro-scale BE features specifically indicate the physical elements that are visible at eye level
in residential neighborhoods (e.g., surrounding trees, grass, fences, vehicles, bikes, road and
sidewalks) (Sallis et al., 2022). Research demonstrates positive correlations between accessi-
ble green spaces (e.g., trees and grass) and activities like running (Jiang et al., 2022), cycling
(Mertens et al., 2014), walking (Molina-García et al., 2020; Moniruzzaman & Páez, 2012;
Steinmetz-Wood et al., 2019; 2020). Additionally, neighborhoods designed with traditional
features like grid-lined streets, anterior garages, and front porches are positively correlatedwith

1



1.1. Background 2

social engagement among residents (Pfeiffer & Cloutier, 2016). On the contrary, factors such
as litter-strewn streets, graffiti-ridden surfaces, and properties with broken windows create an
atmosphere conducive to social disorder and crime (Perkins et al., 1992; Wilson & Kelling,
2017). A poor BE not only impedes daily activities but also amplifies stress and feelings of
helplessness, posing significant risks to mental health (Blair et al., 2014; Y.-T.Wu et al., 2014).

Compared to modifying macro-scale features (Sallis et al., 2022; Steinmetz-Wood et al., 2020),
adjusting micro-scale features of neighborhoods offers a cost-effective means of creating ap-
pealing residential environments. Micro-scale features are often more adaptable, as they do
not necessitate a complete restructuring of the neighborhood layout, enabling swift application
of findings to existing neighborhood settings (Cain et al., 2014).

However, studies on correlations between micro-scale BE features and well-being only focus
on a particular aspect of well-being. These studies cannot offer comprehensive insights into
how to design micro-scale BE features to enhance overall well-being (Jeon &Woo, 2023; Koo
et al., 2022; Zhao et al., 2023). Moreover, these studies merely explore associations between
micro-scale BE features and specific well-being aspects rather than examining their direct im-
pacts on people’s behavior. The absence of causality in these findings complicates drawing
conclusions about whether certain features positively or negatively influence people’s behav-
ior.

To build appealing residential neighborhoods in a cost-efficient way that account for all as-
pects of well-being, policymakers and urban designers should obtain valuable insights into the
specific types, quantities, and combinations of micro-scale BE features that enhance overall
attractiveness. By investigating how these features influence individuals’ choices regarding
where to live, we can gain a comprehensive understanding of the quantified impacts of all
micro-scale BE features on people’s preferences for residential neighborhoods. Therefore, it’s
essential to study people’s residential preferences by analyzing datasets of residential location
choices (RLC) (Ma et al., 2018).

Under the context of BE and RLC, most studies investigate howmacro-scale BE features influ-
ence RLC, like land use mixture, distance to the city centre, transit and other facilities (Diao
et al., 2016; Guan & Wang, 2020; Kim, Boxall, et al., 2019; K. Wang & Ozbilen, 2020).
Nevertheless, micro-scale BE features often receive inadequate attention. Three substantive
gaps emerge in the few studies on the influence of micro-scale BE features on RLC. Firstly,
studies often concentrate on specific elements, neglecting others in open spaces, hindering a
comprehensive comparison of their effects on RLC and understanding of preferences (Cockx
& Canters, 2020). Secondly, the categorization of micro-scale BE features in RLC modelling
studies remains inadequate (e.g., vegetation can be further categorized into trees, grass, etc.),
obscuring impacts on choice behaviour. Lastly, scholars tend to examine the presence of the
physical elements rather than quantifying them. They rely on subjective assessments, posing
challenges in objective measurement, particularly for amorphous elements like trees and build-
ings that are uncountable (Cockx&Canters, 2020). Notably, the three limitations are attributed
to the methodology gap of quantifying the micro-scale BE features. It’s time-consuming for
humans to identify all micro-scale BE features in images whilst quantify them since there
are some uncountable features. They can only pay attention to certain features and examine
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whether they are present. These limitations underscore the need for more holistic and quantifi-
able approaches to studying the impact of the micro-scale BE features on RLC.

The methodology gap of quantifying micro-scale BE features also exist in early studies on as-
sociations between micro-scale BE features and daily activities or social interaction (Molina-
García et al., 2020; Steinmetz-Wood et al., 2019; 2020). Scholars usually examine micro-scale
BE features by virtual tools or field visits, only recording the presence of features instead of
quantifying them. In later studies, with the development of new technologies and data sources,
researchers apply the the combination of street view image data and semantic computer vision
technology, to address the methodology gap. Street-view images (also known as street-level
images) serve as a valuable and publicly accessible data source, offering a unique opportu-
nity to examine visual features from a human perspective horizontally, a viewpoint not readily
available in other common data sources like aerial or satellite imagery (Biljecki & Ito, 2021).
Semantic computer vision models usually involve semantic segmentation, object detection and
instance segmentation tasks, which can measure the objects in images with units of proportions
of pixels or/and instances. Semantic computer vision models are used to quantify micro-scale
BE features in street view images, studying the relationships between the features and differ-
ent daily activities including running (Jiang et al., 2022), walking (Koo et al., 2022), cycling
(Zhao et al., 2023). The emerging combination can also be adopted to study the impacts of
micro-scale BE features on RLC more deeply and broadly.

The emerging combination of SVI and semantic computer vision models has been applied in
studies on understanding people’s perceptions of micro-scale BE features (Meng et al., 2024;
Ramírez et al., 2021; Rossetti et al., 2019; Z. Wang et al., 2024; F. Zhang et al., 2018). These
studies commonly use a large-scale SVI dataset: Place pulse 2.0, which consist of 110,988
images from 56 cities and 1,170,000 pairwise comparisons answered by 81,630 online survey
participants on six perception scores. However, while these studies offer valuable insights, they
often lack clear guidance for designing appealing BE near residences or identifying the most
influential elements. Various perceptions shape preferences for residences, each perception car-
rying different weights in decision-making. For instance, although an open environment may
seem inviting initially, safety concerns might lead individuals to prioritize safety over open-
ness. Additionally, conflicting impacts of certain physical elements on different perceptions
add complexity to understanding people’s preferences. Therefore, generating policy-relevant
information on BE design necessitates a focus on studying the impacts of physical elements
on RLC rather than solely relying on people’s perceptions.

To investigate the impacts of micro-scale BE features on RLC, a designated dataset captur-
ing participants’ housing preferences is essential. In a recent study by van Cranenburgh and
Garrido-Valenzuela (2023), a novel Stated Choice Experiment was conducted, where partici-
pants made selections among various residential options, considering trade-offs between com-
mute time (numeric attributes), monthly housing cost (numeric attributes) and street-level con-
ditions shown in street view images (SVI). Additionally, they introduced a pioneering frame-
work called the Computer Vision-enriched Discrete Choice Model (CV-DCM). This frame-
work incorporates computer vision techniques to translate visual information into numerical
data, which is then integrated into traditional discrete choice models alongside data from stated
preference surveys.
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However, it’s noteworthy that their computer vision model was not designed to identify and
quantify micro-scale BE features in images. Instead, it employed a feature extractor, a deep
neural network trained to derive relevant features from images. This computer vision model
generated the feature map (a.k.a. embedding) representing salient image features, which is
a flat array of floating points. However, the interpretation of these elements of feature maps
in terms of behavioral significance remained ambiguous. Consequently, the study can only
tell the visual attractivesness (i.e., utilities) of images of residential neighborhoods rather than
providing insights into actual choice behaviors.

1.2. Research objective and questions
Understanding how micro-scale BE features influence RLC and individuals’ trade-offs among
these features is crucial for informing better BE designs in residential areas and enhancing
overall resident well-being. To address the gap of the work of van Cranenburgh and Garrido-
Valenzuela (2023), this thesis proposes a Semantic CV-DCM, which can take semantic texts as
prompts to identify and quantify micro-scale BE features. Building upon the dataset provided
by van Cranenburgh and Garrido-Valenzuela (2023) and following their established frame-
work, the Semantic CV-DCM comprises two primary components: firstly, identifying and
quantifying micro-scale BE features using semantic computer vision models, and secondly, in-
tegrating the results of image parametrization into discrete choice models to explore people’s
preferences more deeply.

The proposed Semantic CV-DCM endeavors to furnish policymakers and urban planners with
comprehensive insights into the design of all pertinent micro-scale BE features within residen-
tial areas, aimed at enhancing the overall appeal of these locales. Furthermore, beyond RLC,
the Semantic CV-DCM has the potential to extend to other areas of choice modelling involving
image parametrization, thereby contributing to advancements across various fields.

In order to achieve the research objective, the main research question of the thesis is presented
below, which will be further explained in the following paragraphs:

Main Research Question:
What are the impacts of the micro-scale built environment features on the residential lo-
cation choice?

Residential location choice (RLC) refers to how individuals or households decide where to
live, considering factors such as affordability, proximity to work, access to amenities, safety,
community atmosphere, and the surrounding environment (Cockx & Canters, 2020). While
some factors like housing costs and proximity to work are easily measured, others, such as
community atmosphere and the built environment, are more challenging to quantify. In this
thesis, the focus is on utilizing image data to manifest the built environment (BE) features,
which encompass physical elements commonly found in residential streets, including trees,
houses, cars, street lights, plants, and bicycles. Through the analysis of these physical elements,
this research aims to uncover their influences on RLC, providing valuable insights for decision-
makers and stakeholders involved in urban planning and residential development.
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Sub-questions:
To better answer the main research question, three parts are investigated in three sub-questions,
individually, as follows:

1. Whatmicro-scale BE features are quantified by the semantic computer visionmodel?

2. Towhich extent can the semantic computer visionmodel accurately quantifymicro-
scale BE features?

3. How do micro-scale BE features and other attributes of residences affect people’s
choice behavior on residential locations?

The first sub-question addresses the determination of texts to be provided to the semantic com-
puter vision model. As mentioned earlier, this thesis employs a semantic computer vision
model to identify and label micro-scale BE features in images. Consequently, it is essential to
define micro-scale BE features in advance and provide corresponding semantic texts to the se-
mantic computer vision model. A relevant study that investigated the effects of micro-scale BE
features on perceptions of urban spaces has predefined eleven semantic texts, including ”build-
ing,” ”sidewalk,” and ”vegetation” (Rossetti et al., 2019). While some physical elements of
the BE, such as trees, may be acknowledged to impact RLC by enhancing nearby residences’
attractiveness, the influence of most elements on choice behaviour remains uncertain and re-
quires empirical validation. Thus, there is a need to include as many physical elements of the
BE as possible to account for potential influences that may not be initially apparent. However,
it may be unnecessary to include specific physical elements if the number of images containing
them is insufficient.

Choosing relevant micro-scale BE features of RLC is essential. One object may contain other
objects. For instance, buildings are comprised of windows, walls and doors. It is question-
able to choose which among ”window”, ”wall”, ”door”, and ”building” to represent the object
”building”. Windows and walls are considered opportunities for natural surveillance from res-
idents and barriers that can divide space (e.g., private and public spaces) to promote territori-
ality, respectively (Zhanjun et al., 2022). However, as semantic computer vision models can
only assign one category to each pixel/region, providing redundant categories may confuse the
model and decrease the model’s accuracy.

The second sub-question focuses on assessing the results of the semantic computer vision
model applying to the Street View Image (SVI) data depicting residential areas in the Nether-
lands. Specifically, this evaluation aims to gauge the model’s proficiency in accurately quan-
tifying micro-scale Built Environment (BE) features depicted in these images.

Notably, the SVI dataset sourced from van Cranenburgh and Garrido-Valenzuela (2023) lacks
manually-labeled pixels with specific semantic meanings, making direct training of the chosen
semantic computer vision model using this dataset unfeasible. As a result, the chosen approach
involves employing a zero-shot semantic computer vision model for this task. Unlike conven-
tionalmodels trained on predefined categories, a zero-shotmodel is trained to recognize objects
or perform tasks without explicit examples or training data for those specific objects or tasks.
A zero-shot model is beneficial when collecting labelled training data for all possible classes



1.3. Thesis outline 6

or tasks that are impractical or expensive (Cao et al., 2020). It allows models to generalize
knowledge and adapt to new classes or tasks without additional training data.

However, this approach carries inherent risks. One critical consideration is whether the zero-
shot semantic computer vision model can accurately quantify micro-scale BE features from
images it has yet to be explicitly trained. Addressing this concern is crucial, as it directly influ-
ences the reliability of the quantified results in informing subsequent discrete choice models.
Manually evaluating the results of some randomly chosen images can provide direct evidence
to affirm the results of the semantic computer vision model, which can be input for choice
modelling. Also, having a picture of how the semantic computer vision model performs on
this SVI data may help interpret the discrete choice model’s estimates if some estimates are
unreasonable.

The third sub-question pertains to the analysis of results from model estimation, which is piv-
otal in this thesis as it delves into people’s preferences for different built environment (BE)
features when selecting residential locations. Answers to this sub-question offer insights into
whether certain attributes extracted from images, such as the presence of trees or cars, posi-
tively or negatively affect respondents’ decision-making processes. By examining and compar-
ing the impact of various attributes on respondents’ behavior, we can discern which attributes
wield the greatest and least influence on residential location choices, as well as the elasticities
(i.e., trade-offs) between them. Furthermore, this sub-question enables a comparison of the ef-
fects of micro-scale BE features and other attributes (e.g., commuting time and housing cost)
on residential location choice, shedding light on how individuals balance considerations such
as surrounding BE, location, and housing prices when making decisions.

1.3. Thesis outline
The rest of the thesis is organised as follows. Section 2 will review literature that are relevant
with residential location choice, image use in discrete choice modelling, image parametrization
of public spaces, panoptic segmentation. Section 3 will introduce methodology workflow,
including the specific methods for the semantic computer vision model and discrete choice
model, and how they connect with each other. Section 4 will present the results of semantic
computer vision models and discrete choice models with corresponding analyses. Section 5
will discuss other findings. Finally, the last section will offer the conclusion.



2
Literature Review

This chapter presents a literature review within the research scope by discussing several impor-
tant topics: (1) the introduction to residential location choice (RLC) including factors of built
environment influencing RLC; (2) comprehensive review of macro-and micro-scale built en-
vironment features that are correlated to different aspects of people’s well-being; (3) existing
methods for quantify micro-scale BE features; (4) studies that use semantic computer vision
(CV) models and tasks for quantification; (5) image use in discrete choice modelling; (6) other
attributes of images (low-level features and season variations) that might affect choices.

2.1. Residential location choice
Residential location choice (RLC) refers to the decision-making process individuals or house-
holds undergo when selecting a place to live. Identifying a relevant set of household and
location variables is necessary when modelling residential location choice (Cockx & Canters,
2020). Hurtubia et al. (2010) and Schirmer et al. (2014) provide a comprehensive review of
related attributes in RLCmodelling. Household variables typically include the age of the house-
hold head, household size, the presence of children, education level and the number of workers
within the household. These attributes are essential in RLCmodelling since similar households
regarding income class or ethnic groups usually have similar RLCs and gather together. Loca-
tion variables usually include the type of housing unit (e.g., attached or single-family houses
with monthly housing costs), the neighbourhood conditions (e.g., land use mixture, population
and job densities), and transport and access characteristics (e.g., distance to transit stations,
commuting time). Neighbourhood conditions and transport and access characteristics are also
usually denoted as the built environment (BE) in the context of residential location choice
(RLC). Household variables will not be included in this thesis.

In most previous studies on the impacts of BE on RLC, BE is a wider description, encompass-
ing factors such as the crime and traffic congestion (Ayoola et al., 2023), land use mixture
(K. Wang & Ozbilen, 2020), home-centre distances (Guan & Wang, 2020) and so on. There
are other studies defining BE as an “enormous”physical element located relatively far from
the residence. The elements usually include parks (Czembrowski & Kronenberg, 2016), land-
mark buildings (Been et al., 2016), transportation infrastructures (e.g., airports and railways)
(Diao et al., 2016; Yassin et al., 2019), and so on. However, very few studies have investigated

7
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“small”physical elements of BE that are very close to the residence.

The study of Cockx and Canters (2020) narrows the size of physical/visual elements. They in-
troduce small elements related to the environment (e.g., covering the appearance of buildings,
tidiness, air quality and quietness) and facilities (e.g., covering streets, pavements, cycle paths,
green, public transport, stores, health care, social services, daycare, and culture and recreation)
and incorporate them as variables into the residential location choice modelling. However,
variables describing the environment and facilities are ordinal variables with a natural ranking:
“unpleasant”, “satisfactory”, and “very pleasant”for the environment; “very bad condition”,
“very normal condition”, and “very excellent condition”for the facilities. The environment
and facilities are evaluated based on subjective opinions rather than objective statistics/num-
bers.

A key finding from the aforementioned studies is the inadequacy of quantifying the ”small”
physical elements of the BE in existing research on RLC. Typically, scholars focus on quanti-
fying access or proximity to ”enormous” physical elements, such as distances to parks (Czem-
browski & Kronenberg, 2016) and railways (Diao et al., 2016). Additionally, some studies
utilize binary variables to represent the presence of specific attributes, such as houses with wa-
terfronts (Kim, Boxall, et al., 2019). Similarly, studies like Cockx and Canters (2020) fail to
objectively quantify ”small” physical elements of BE, which are evaluated subjectively. Learn-
ing how previous studies quantify BE features in the residential location choices is essential as
most of them implement quantifying by pre-defining an order for the attribute and assigning a
value to the BE feature based on the order.

2.2. Macro- and micro-scale built environment features
Built environment features are typically categorized into two scales: macro- and micro-scale.
Macro-scale features encompass neighbourhood-level conditions, commonly referred to as the
5Ds: density, diversity, design, destination accessibility, and distance to transit. As noted in
the preceding subsection, these factors are frequently studied in research on residential location
choice as influential factors. Additionally, various studies have identified significant correla-
tions between macro-scale built environment features and activities such as walking (Koo et
al., 2022), running (Jiang et al., 2022), overall health (L. Zhang et al., 2023).

Micro-scale features pertain to street-level conditions, encompassing the physical elements
and features that people can directly perceive on the streets. Research often explores these
features in the context of various aspects of daily life, including health, street vitality, crime
rates, and air quality (Molina-García et al., 2020; Qi et al., 2022; Steinmetz-Wood et al., 2019;
2020; W. Wu et al., 2022; Y.-T. Wu et al., 2014; Zhanjun et al., 2022). Such studies consis-
tently reveal significant correlations between micro-scale built environment features and these
contextual factors. However, despite their relevance to residential location choice, micro-scale
features—”small” physical elements of the built environment—are seldom investigated in this
context, as highlighted in the preceding subsection.

Nevertheless, a neighbourhood’s support for daily activities like walking, running, cycling,
street vitality, and a safe atmosphere are crucial considerations in residential decision-making.
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The systematic impact of micro-scale built environment features on residential location choice
remains largely unexplored. Given that existing studies onmicro-scale features primarily focus
on daily activities, overall health and crime rates, the upcoming literature review will concen-
trate on these studies to explore how they extract the qualities of micro-scale built environment
features depicted in images.

2.3. Existing methods for quantifying micro-scale BE features
In previous studies, micro-scale built environment features have predominantly been assessed
through field investigations, where scholars gather information directly from the real-world
environment rather than relying solely on existing records or secondary sources (Adkins et al.,
2012; Loukaitou-Sideris et al., 2001). This approach entails physically going out into the field,
whether a geographical location, a specific site, or an area of study, to observe and document
phenomena firsthand, incurring high labour and time costs.

To mitigate these challenges, some studies have explored alternative measurement approaches,
leveraging virtual audit tools such as MAPS (Sallis et al., 2022), Virtual-STEPS (Steinmetz-
Wood et al., 2020), and the Residential Environment Assessment Tool (Y.-T. Wu et al., 2014).
These initiatives utilize Street View Imagery (SVI) data, providing a comprehensive view of
the physical elements in the built environment (BE), offering a close approximation of resi-
dents’ surroundings (Li et al., 2022). Researchers conduct detailed audits of micro-scale BE
features in neighbourhoods, assessing images based on their suitability for various behaviours
like walking or cycling, as well as mental health indicators (Mertens et al., 2014; Steinmetz-
Wood et al., 2020; Y.-T. Wu et al., 2014).

However, the above both methods rely on human assessment, making them subjective, time-
consuming, and labour-intensive. Furthermore, these approaches often focus on recording the
presence of features rather than quantifying them objectively or including all eye-level physi-
cal elements. Table 2.1 shows studies that use virtual tools to quantify micro-scale BE features,
their studying contexts and some of including features as examples.

A promising advancement emerges in the form of semantic computer vision models based on
deep learning, enabling the objective quantification of micro-scale BE features in an automated
manner. This method identifies the presence of specific environmental elements and discerns
their proportions, such as whether the green plants are lush. SVI data encompass a rich array
of ground elements within extensive regions, such as trees, sky, buildings, roads, and grass,
facilitating rapid data collection. Combining SVI data with semantic computer vision models
allows researchers to overcome the limitations of traditional methods, enabling more refined,
efficient, and human-centric perception research (Xu et al., 2023). Leveraging this emerging
integration, researchers have already delved deeper into the relationships between micro-scale
BE features and people’s behaviour and health, yielding more robust findings. Tables 2.2 and
2.3 demonstrate recent papers that use semantic computer vision models and SVI to quantify
micro-scale BE features.
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Table 2.1: Relevant studies that use virtual tools to quantify micro-scale BE features

Literature Contexts Micro-scale BE features

Sallis et al.
(2022)

all physi-
cal activi-
ties

Presence of transit stops, driveways, dustbins, benches, bicycle racks,
traffic calming (roundabouts and speed bumps), crosswalk amenities
(e.g., marked crosswalk), curb ramps, crossing signals, high and low
streetlights, sidewalk...

Steinmetz-
Wood et al.
(2020)

walking Presence of traffic calming (e.g., stop signs), aesthetics/disorder (e.g.,
graffiti), natural sights, signs of disorder, litter. Building height set-
back, building height road width ratio, building aesthetic design…

Molina-García
et al. (2020)

walking Average number of traffic lanes; number of regulated crossings; av-
erage parking street buffer, number of traffic calming features, aes-
thetic and social characteristics (e.g., building maintenance, foun-
tains, sculptures, or art)...

Steinmetz-
Wood et al.
(2019)

walking Pedestrian infrastructure (e.g., sidewalk, pedestrian crossing sign),
traffic calming (e.g., presence of traffic lights, number of parking
lanes), building characteristics (e.g., building setback and height),
transit (presence of transit, type of transit), bicycling infrastructure
(e.g., bike lanes and buffer), aesthetics/disorder (e.g., trees, litter, graf-
fiti)

Mertens et al.
(2014)

cycling Traffic level (presence of driving cars), traffic calming (presence of a
speed bump), evenness of the cycle path (good/poor), general upkeep
(overall maintenance degree, e.g., graffiti, broken windows), vegeta-
tion (presence of trees along the road and greenery on houses), sepa-
ration between cycle path and motorized traffic/sidewalk, and width
of the cycle path (narrow or wide)

Y.-T. Wu et al.
(2014)

mental
health

Property level (e.g.,vacant properties, abandoned cars, low property
maintenance, no trees in front gardens), street level (e.g., illegal park-
ing, dog litter, poor path condition, no neighbourhood watch signs,
public parking, front outlook: green/commercial/industrial)

Moniruzzaman
and Páez
(2012)

walking Low or high (postive or negative) uses insegment, slope, sidewalk
completeness, sidewalk connectivity, amenities, way findingaids,
trees shading walking area, overall cleanliness/building maintenance,
building height….

When comparing the micro-scale built environment (BE) features presented in Table 2.1 and
Table 2.2 (or Tabel 2.3), a clear distinction emerges. While quantifying with virtual tools by
humans allows for the discernment of the mere presence or absence of features and subjective
assessments of their relative prominence, utilizing semantic computer vision models offers a
more accurate quantization. These models not only identify specific objects but also measure
the sizes of features within images, providing precise measurements in terms of pixel propor-
tions. However, it is essential to acknowledge that quantifying features with virtual tools cap-
tures additional details such as building height, setback distances, and the presence of marked
crosswalks. These nuanced qualities of the BE may pose challenges for semantic computer
vision models to identify accurately. Nonetheless, a virtual tool often requires significant time
for image processing and evaluation by human operators.
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Table 2.2: Relevant studies that use semantic computer vision models and SVI to quantify micro-scale BE
features

Literature Contexts Semantic
Computer
Vision
Models

Micro BE features Analysis
method

Chen et al.
(2024)

urban
green
space

pre-trained se-
mantic segmen-
tation model

sidewalk, person, street light, grass,
tree, chair, sky, water, fence, wall,
earth, fountain, mountain, sculpture,
bridge

spatial re-
gression
models
(ordinary
least
squares
(OLS))

Zhao et al.
(2023)

cycling
vol-
ume

pre-trained
Mask_RCNN
(object de-
tection) and
Pyramid Scene
Parsing Net-
work (PSPNet,
semantic
segmentation)

tree, road, grass, car, streetlight,
wall, building, sidewalk, earth, wa-
ter, plant, awning, van, person,
bridge, railing, bicycle, minibike,
ceiling, chair

OLS re-
gression

Fan et al.
(2023)

health,
crime,
trans-
port,
and
poverty

Pre-trained se-
mantic segmen-
tation model

street furniture, sidewalk, facade,
window & opening, road, sky, grass
and shrubs, trees, people, bike, vehi-
cles (each combined several original
categories in ADE 20 dataset)

least
absolute
shrink-
age and
selection
operator
(LASSO)
regres-
sion

L. Zhang et al.
(2023)

covid
19

DeepLabV3+
(semantic
segmentation)

sky, building, road, wall, macro-
phanerophytes, bush, grass

linear re-
gression

Jiang et al.
(2022)

running pre-trained
PSPNet
(semantic
segmentation)

Wall, building, tree, road, grass,
sidewalk, earth, plant, car, fence,
signboard, awning, streetlight, van,
ashcan, railing, person, minibike,
chair, sculpture, bicycle, column,
bridge, water, fountain, window-
pane, mountain, ceiling, booth, sofa,
lamp, skyscraper, lake, bulletin
board, desk, pier, Sky view factor
(SVF)

OLS re-
gression
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Table 2.2 – continued from previous page
Literature Contexts Semantic

Computer
Vision
Models

Micro BE features Analysis
method

Yue et al.
(2022)

health
(chronic
dis-
eases
and
men-
tal
health)

Convolutional
Neural Net-
works (Con-
vNets, scene
label)

street greenness (trees and landscap-
ing comprised at least 30% of the
image), (2) presence of a crosswalk,
(3) single lane road, (4) building
type (single-family detached house
vs. other), and (5) visible utility
wires

linear re-
gression

Zhanjun et al.
(2022)

crime
rates

Pre-trained
fully con-
volutional
network (FCN,
semantic
segmentation)

wall, fence, window, streetlight,
building, street furniture, greenness,
tree, car, person, ashcan, signboard,
bench, pavement, road, building

regression
models,
GWR and
MGWR,

Qi et al. (2022) NO2 Pre-trained
PSPNet
(semantic
segmentation)

built environment, transport net-
work, transport vehicles, natural,
vegetation, water, and human (each
one combined several relevant cate-
goires)

land
Use re-
gression
model

Nguyen et al.
(2022)

patient
health

ConvNets
(scene label)

building type (the presence of
any non-single-family detached
house: yes/no), roads with a single
lane (yes/no), crosswalk presence
(yes/no), street greenness (at least
30% of the image consisted of trees
and landscaping: yes/no), and the
presence of visible utility wires
overhead (yes/no)

poisson
regres-
sion
models

Koo et al.
(2022)

walking Pre-trained
PSPNet
(semantic
segmentation)

building-to street-ratio (the ratio of
the proportion of buildings and
houses to the sum of the proportion
of sidewalk, road, and car). The
greenness (the sum of the proportion
of tree, grass, and plant). Sidewalk-
to-street proportion (the proportion
of the share of sidewalk to the sum
of the share of sidewalk, road, and
car)

logistic re-
gression
models
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Table 2.2 – continued from previous page
Literature Contexts Semantic

Computer
Vision
Models

Micro BE features Analysis
method

Jeon and Woo
(2023)

walking Pre-trained
HRNetV2-
W48 model
(semantic
segmentation)

visual greenery ((tree + grass +
plant)/total), outdoor openness
(sky/total), street pavement (side-
walk/(road + sidewalk))

logistic re-
gression
models

H. Zhou et al.
(2021)

drug
places

Pre-trained
PSPNet
(semantic
segmentation)

building, terrain, traffic sign, traffic
light, pole, road, sidewalk

logistic re-
gression
models

Table 2.3: Studies quantifying micro-scale BE features by semantic computer vision models and Place Pulse
2.0 by Dubey et al. (2016)

Literature Computer vision models Micro BE beatures

Rossetti et al. (2019) Pre-trained SegNet method (se-
mantic segmentation)

building, car, cyclist, fence, pedestrian,
pole, road, sidewalk, sky, traffic sign, and
vegetation

Ramírez et al. (2021) Pre-trained SegNet (semantic
segmentation) and faster R-
CNN (object detection)

semantic segmention (cyclist, building,
car, fence, sidewalk, pedestrian, pole,
road, traffic sign, sky and tree), object de-
tection (car, person, truck, potted plant,
bus, train, motorcycle, bicycle, traffic
light, bench stop, sign, fire hydrant, um-
brella, chair)

Meng et al. (2024) Pre-trained DeeplabV3+ (se-
mantic segmentation)

vehicle occurrence rate, enclosure, green-
ness, pedestrian occurrence rate, openness,
natural landscape, Natural to artificial ra-
tio of the vertical interface, Natural to arti-
ficial ratio of the horizontal interface (each
one combined several relevant categories)

Z. Wang et al. (2024) ResNet101

F. Zhang et al. (2018) Pre-trained ResNet50 (seman-
tic segmentation)

wall, building, sky, tree, road, grass, side-
walk, plant, car, sign, stairs, van

2.4. Quantify micro-scale BE features by semantic CV model
and SVI data

The studies listed in Table 2.2 predominantly explore the correlations between micro-scale built en-
vironment (BE) features and various aspects of human behaviour, health, and crime using regression
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models. However, while these studies shed light on correlations, they often need to uncover the direct
influence of these features on people’s physical or mental well-being.

For example, in the research conducted by Chen et al. (2024), which examines the hot spots of urban
green spaces (UGS) and BE features, it is evident that proximity plays a pivotal role in people’s deci-
sions to visit green spaces. The convenience of accessing green spaces near residential, work, or leisure
areas significantly influences individuals’ choices regarding outdoor leisure activities. Overlooking the
importance of proximity in studying UGS popularity and usage patterns can lead to an incomplete un-
derstanding of their appeal and utilization dynamics.

Incorporating proximity data into analyses provides a more holistic view of how and why people uti-
lize different green spaces within urban environments. This comprehensive understanding can inform
urban planning efforts, ensuring that green spaces are strategically located to cater to the needs of local
communities. While spatial regression models utilized in this study aim to unveil statistical associations
between variables, considering spatial dependencies, they do not inherently establish causality. On the
contrary, choice modelling focuses on understanding causal relationships by examining how variations
in independent variables impact choices or decisions. Typically, choice modelling employs experimen-
tal or quasi-experimental designs to establish causality between variables.

The Place Pulse 2.0 dataset (Dubey et al., 2016) presents an invaluable opportunity for developing deep
learning models to predict urban perceptions based on visual features of the environment. Compris-
ing over 1.17 million pairwise comparisons across approximately 110,988 images from cities world-
wide, this dataset offers insights into perceptions across six key dimensions: safety, liveliness, bore-
dom, wealth, depression, and beauty (Dubey et al., 2016). By replacing traditional low-throughput
survey methods like questionnaires, the dataset enables rapid and large-scale estimation of residents’
true perceptions regarding the environmental quality of their neighbourhoods (Z. Wang et al., 2024).
Its extensive coverage and comprehensive perceptual dimensions make it a valuable resource for re-
searchers seeking to understand the impacts of the built environment on perceptions, which has been
leveraged in many studies. Table 2.3 demonstrates recent studies using the Place Pluse 2.0 dataset.

2.5. Semantic computer vision models and tasks for quantifi-
cation

Most studies in Table 2.2 and 2.3 use pre-trained semantic segmentation models. For instance, in the
work of Rossetti et al. (2019), a novel approach is proposed to quantify landscape-perception relations
through discrete choice models. Semantic segmentation of images of public spaces, generated via ma-
chine learning algorithms, serves as the primary explanatory variable. These models, estimated using
the Place Pulse dataset, offer insights into how users perceive the built environment based on its fea-
tures. Noteworthy is how Rossetti et al. (2019) parametrizes images and extracts interpretable features,
categorizing them into low-level (e.g., edges, number of binary large objects) and high-level ones (i.e.,
BE features).

Ramírez et al. (2021) integrates object detection and heterogeneity into choice modelling, expanding on
the work of Rossetti et al. (2019). This study employs three types of features: colour and edge statistics,
semantic segmentation, and object detection, each capturing distinct information. This study conducts
three discrete choice model estimations: an initial model akin to the study of Rossetti et al. (2019), a
second model incorporating bounding boxes of relevant objects for correcting segmentation errors, and
a third model considering heterogeneity by constructing additional variables.
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Building upon the study of Ramírez et al. (2021), which utilized semantic segmentation to quantify BE
features, Rossetti et al. (2019) incorporates object detection into the semantic computer vision model
for correcting segmentation errors. However, a limitation in the study of Rossetti et al. (2019) is that
several BE features are labelled twice by two semantic computer vision tasks (i.e., semantic segmenta-
tion and object detection) since they did not assign various BE features to suitable semantic computer
vision tasks. BE features should be categorized well to enhance fusion between semantic segmentation
and object detection, and appropriate extraction processes should be selected based on quantification
units. Semantic segmentation suits pixel-level category assignments, while object detection or instance
segmentation is ideal for categories described by instance counts, such as cars and trains. Categories
that are challenging to quantify by instance count, like trees, are better suited to semantic segmentation.

The above paragraph introduced two essential semantic computer vision tasks: semantic segmentation
and object detection, which can quantify given image categories. Semantic segmentation captures the
proportions of pixels labelled with corresponding categories, while object detection provides the counts
of categories in an image (Ramírez et al., 2021). Another semantic computer vision task, instance
segmentation, combines the principles of semantic segmentation and object detection to determine the
number of instances and the pixel count for each instance for each category (Kirillov et al., 2019). It
is evident that while object detection and instance segmentation excel in quantifying countable objects,
they are less suitable for amorphous entities, unlike semantic segmentation, which is applicable across
all categories.

The concept of panoptic segmentation, as introduced by Kirillov et al. (2019), integrates both instance
and semantic segmentation to offer a comprehensive, unified view of segmentation. Unlike traditional
approaches that focus solely on one aspect, panoptic segmentation categorizes visual entities into two
classes: “stuff”and “thing”. The former encompasses amorphous regions like grass, sky, and road,
suited for semantic segmentation, while the latter includes countable objects like people, animals, and
tools, ideal for instance segmentation. By utilizing a predefined set of semantic classes divided into
these two subsets, each pixel in an image is mapped to a pair consisting of a semantic label and an
instance ID, enabling a uniform evaluation metric across all classes. This aligns perfectly with the
objective of the thesis, which aims to incorporate all BE features depicted in images and transform them
into suitable output formats. Hence, the semantic computer vision model in this thesis will leverage
panoptic segmentation, where pixel-level categories correspond to “stuff”and instance-level categories
to “thing”categories.

2.6. Image use in discrete choice modelling
Whether using images in stated choice modelling improves model performance remains inconclusive
(Arellana et al. 2020). For instance, the studies of Iglesias et al. (2013) and Rossetti et al. (2018),
which investigate safety perception regarding neighbourhoods and cycling infrastructures, found that
image use can help respondents understand surveys and obtain better results of model parameters, re-
spectively. However, studies that focus on transport mode choice (Arentze et al., 2003) and crowding
discomfort in public transport (Tirachini et al., 2017) did not find evidence proving that image use can
assist in more accurate data collection. Overall, in these studies, image use only assists in explaining
the textual descriptions in the surveys auxiliarily rather than playing a leading role. One likely reason
could be that researchers with subjective opinions select and extract attributes from images (Poudel &
Singleton, 2022). van Cranenburgh and Garrido-Valenzuela (2023) demonstrates that the proposed CV-
DCM (computer vision-enriched discrete choice model) extracting information embedded in images
outperforms the traditional discrete choice model without images. This study suggests a practical ap-
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proach for capturing information embedded in images and integrating it with discrete choice modelling
by computer vision.

2.7. Other attributes of images affecting choices
Low-level features are introduced to characterize image attributes, encompassing HLS colour statistics
(mean and standard deviation for hue, saturation, and lightness channels) and image edges (expressed
as the percentage of pixels identified as edges). These variables are crucial for mitigating lighting
and saturation variations, preventing biases in evaluations such as comparing images captured under
different weather conditions. Edge statistics serve as a proxy measure for scene complexity, where
unoccupied areas exhibit fewer edges than densely populated ones. Additionally, textured or detailed
surfaces yield higher edge counts (Ito & Biljecki, 2021; Ramírez et al., 2021; Rossetti et al., 2019).
The season depicted in the image also influences individuals’ choices. For instance, images captured
during autumn and winter, when leaves fall, may not enhance the perceived utility of a residence. Con-
versely, images taken during spring or summer, with lush trees, may make the residence more appealing
(Zhao et al., 2023). Moreover, research by van Cranenburgh and Garrido-Valenzuela (2023) demon-
strates that incorporating the month into choice modelling improves prediction accuracy compared to
solely including numeric attributes like housing costs and commuting time.

2.8. Takeaways
Previous studies on micro-scale BE features and RLC are few due to the difficulty of quantifying micro-
scale BE features. Recent research on people’s well-being and BE provide an emerging method on how
to quantify micro-scale BE features: the emerging combination of semantic computer vision models
and SVI.

Studies in Table 2.3 utilizing the Place Pulse 2.0 dataset offer valuable insights into the impacts of
different built environment (BE) features on various perceptions. However, they fail to provide com-
prehensive insights on how to design a residential area considering all these perceptions since each
perception of a neighbourhood plays a different weighted role in residential location choice (RLC). van
Cranenburgh andGarrido-Valenzuela (2023) conducted a stated choice experiment wherein respondents
were tasked with selecting a residence to live in between two alternatives, considering factors includ-
ing images of residences, housing costs and commute travel time. This stated choice dataset presents
additional opportunities to delve into the impacts of micro-scale BE features on RLC. By incorporating
factors beyond visual perceptions, such as housing costs and commute time, this research avenue offers
a more holistic understanding of the complex decision-making process of residential location choices.

Additionally, in these studies, BE features lack suitable categorization of semantic computer vision tasks,
with some better suited for pixel-level quantification and others for instance-level quantification. Apply-
ing panoptic segmentation can incorporate all micro-scale BE features in suitable quantified units. This
semantic computer vision task perfectly matches the research objective: a comprehensive understand-
ing of the quantified impacts of all these features on people’s preferences for residential neighbourhoods.

Besides extracting the micro-scale BE features from images, this thesis will also include season and
low-level features of images to make the model capture more information people perceive.



3
Methodology

This chapter explains the methodology that is performed in this study in order to achieve the research ob-
jective. The following subsections include the introduction to the datasets to be used, the methodology
framework, and a detailed description regarding two essential models in the methodology.

3.1. Datasets
As mentioned in section 1.1, this thesis will use the same datasets (choice task and SVI datasets) pro-
vided by van Cranenburgh and Garrido-Valenzuela (2023). The SVI dataset contains 7594 street-view
images of residential streets in the Netherlands, retrieved from Google. The choice task dataset stems
from a stated preference experiment conducted in September 2022. In this experiment, participants se-
lect one of two residential options which provide information on their numerical attributes (commuting
time and housing costs) and images from the SVI dataset. The target population for the survey was the
Dutch population of 18 years and older, with ten or more minutes of commute travel time. In total, 800
people participated in this experiment, each completing 15 choice tasks.

3.1.1. Street-view images

Each alternative in the dataset is accompanied by a street-level image, randomly sampled from a database
they meticulously constructed beforehand. They initiated this process by randomly selecting 50 munic-
ipalities out of approximately 350 in the Netherlands to ensure a representative sample. Within these
municipalities, they established a grid of points with 150-meter intervals in residential areas. Using
Google’s API, they retrieved street-view image IDs for each grid point, limited to images taken in 2020
or later. From each 360-degree panorama, they generated two image URLs, providing 90-degree angles
to ensure one represents ”window views” (e.g., opposed to views parallel to the driving direction of the
Google car). The algorithm removed images of poor quality (e.g., black and blurred ones), resulting
in a database of over 60,000 street-view images. Notably, they recorded the month of capture for each
image, recognizing the seasonal variations in the Netherlands. Given the distinct seasons and potential
differences in environmental conditions, it is essential to consider how these factors might influence
respondents’ perceptions and preferences in the models.

3.1.2. Stated choice experiment

Respondents are prompted to envision themselves moving to a new neighbourhood and selecting their
preferred residence from two options, each accompanied by street-view images and numerical attributes
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(housing cost and commuting travel time). Prior to beginning the choice experiment, respondents are
informed of the following: 1) The new house mirrors their current one in terms of size, type, year built,
furnishings, etc., with only the neighbourhood changing. 2) Monthly housing costs (including rent,
mortgage, taxes, insurance, etc.) may fluctuate. 3) The new neighbourhood is relatively close to their
current one, but commute time may vary. 4) All other aspects of their situation remain constant, includ-
ing distances to amenities, schools, and healthcare providers. 5) The images presented in the choice
tasks depict the street-level window view.

Reasons for adding numeric attributes:
The alternatives feature two key numeric attributes: monthly housing costs (hhc) and commute travel
time (tti). They selected these attributes for their significance in residential location choice, broad ap-
plicability and usefulness in interpreting empirical results. By combining cost and time attributes, they
can calculate the Value-of-Travel-Time (VTT), a widely studied metric in transport, aiding model val-
idation. They deliberately limited attributes to demonstrate the proposed CV-DCMs’ effectiveness in
capturing visual preferences rather than developing an exhaustive predictive model for residential loca-
tion choices. The experimental design, illustrated in Figure 3.1, employs a pivoted approach to present
realistic choice scenarios, accounting for the variations in respondents’ current situations, particularly
housing costs. For housing cost, they utilized seven pivoted levels, while the number of levels and
ranges for travel time depended on respondents’ current travel times, as detailed in Table 3.1. These
attribute ranges were determined through a small pilot study conducted prior to the main survey.

Figure 3.1: Screenshot of a choice task from van Cranenburgh and Garrido-Valenzuela (2023)
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Table 3.1: Attribute levels stated choice experiment: from van Cranenburgh and Garrido-Valenzuela (2023)

Current commute travel time
of the respondent (TTn)

Attribute levels

Housing cost (hhc) [€] Commute travel time (tti) [min]

TTn < 10min N/A

10min < TTn < 20min
-225, -150, -75, 0, +75, +150, +225

-5, 0, +5, +10, +15

20min < TTn < 30min -10, -5, 0, +5, +10, +15

10min < TTn -15, -10, -5, 0, +5, +10, +15

Design of each each choice tasks:
Figure 3.1 indicates their choice of a pivoted experimental design to provide respondents with realistic
choice scenarios. Instead of absolute-level designs, they opted for this pivoted-level design to address
the considerable variations in respondents’ current situations. Particularly, they utilized seven pivoted
levels for the housing cost attribute and adjusted the number of levels and ranges for the travel time
attribute based on each respondent’s current travel time, as detailed in Table 3.1. A preliminary pilot
study conducted before the main survey determined the ranges for both attributes.

They employed a random experimental design due to the absence of ordinal or categorical levels in the
images, making it unfeasible to adopt an orthogonal or efficient experimental design strategy, especially
considering the images. Thus, they followed a two-step approach in constructing the choice tasks. First,
they randomly selected image pairs, ensuring none were from respondents’ municipalities identified by
their provided postcodes. This aimed to reduce biases from respondents’ familiarity with local images;
though complete unfamiliarity was not guaranteed, it decreased the likelihood.

Next, the researchers introduced housing cost (hhc) and travel time (tti) levels into the choice tasks.
This was done by randomly selecting a choice task from one of three pre-generated tables. Each table
was created by first establishing a full-factorial design based on the attribute levels outlined in Table 3.1.
Then, they eliminated choice tasks that didn’t involve a trade-off between housing costs and travel time,
guided by strong prior beliefs about the expected sign of the preference parameters for these attributes.
This step was crucial in ensuring that the choice tasks were aligned with the research objectives. Lastly,
they excluded choice tasks where attribute levels were identical, a measure that was taken to ensure
that each task inherently entailed a trade-off between housing cost and travel time, a key aspect of the
research study.

3.2. Methodology workflow
Figure 3.2 illustrates the methodology workflow of this study, comprising two main components: the
semantic computer vision model and the discrete choice model (DCM). The semantic computer vision
model will leverage the Panoptic-Segment-Anything model ((PSAM) proposed by Tobias Cornille 1 to
quantify micro-scale BE features. Concurrently, the multinomial logit model will be adopted for choice
modelling, consistent with the methodology employed in van Cranenburgh and Garrido-Valenzuela
(2023).

1https://github.com/segments-ai/panoptic-segment-anything
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Figure 3.2: Methodology workflow

The inputs for the semantic computer vision model encompass street-view images depicting the sur-
rounding built environment (BE) of residences and semantic texts representing micro-scale BE features,
further classified as pixel-unit and instance-unit categories. To predefine micro-scale BE features, per-
tinent literature such as Ramírez et al. (2021) and Rossetti et al. (2019) can provide insights into com-
monly considered visual elements. Additionally, manual inspection of image data beforehand is crucial
to record frequently appearing elements. The PSAM will output masks, the number of pixels for each
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pixel-unit category, and the number of instances for each instance-unit category, including the number
of pixels for each instance within each image.

Following PSAM results, assessing their accuracy for subsequent steps is imperative. Evaluators will se-
lect a subset of images, locate their corresponding generated masks and numerical results, and estimate
the proportion of correctly identified pixels for each image. Mask evaluation ensures the reliability of
image processing, with only sufficiently accurate results proceeding to the following steps. Moreover,
assessing the generated masks can identify missed or frequently misidentified micro-scale BE features,
prompting updates to predefined categories and potentially rerunning the workflow to enhance accuracy.
Simultaneously, reclassifying challenging micro-scale BE features into alternative categories could fur-
ther refine results, necessitating multiple workflow experiments in such cases.

Consistently observed features in street-view images, such as interconnected roadways and sidewalks or
the presence of trees and sky, may exhibit correlations in their quantified values. These potential corre-
lations can complicate individual attributions and challenge statistical inference. High correlations can
significantly affect coefficient estimation accuracy. Therefore, examining correlations between quanti-
fied values of micro-scale BE features is crucial.

After evaluating masks and feature correlations, the quantified micro-scale BE features will be inte-
grated into the multinomial logit model. Image and stated choice data are sourced from van Cranen-
burgh and Garrido-Valenzuela (2023), where participants selected one of two residential options in a
stated preference experiment based on numerical attributes (commute travel time and housing costs) and
corresponding images. Consequently, commute travel time and housing costs will serve as variables in
the choice modelling, yielding an estimating model with BE feature variables and numeric attributes,
including model performance metrics such as log-likelihood ratio.

3.3. Panoptic-Segment-Anything Model
The Panoptic-Segment-Anything model (PSAM) is a zero-shot panoptic segmentation model using the
Segment Anything Model (SAM). Panoptic segmentation offers a unified framework that combines
instance and semantic segmentation to provide a comprehensive understanding of visual scenes, distin-
guishing between “thing”(i.e., instance-unit) and “stuff”(i.e., pixel-unit) categories.

The Segment Anything Model (SAM), developed by Meta AI as a novel model, offers a powerful and
versatile solution for image object segmentation. It applies to various semantic computer vision tasks,
including object detection, semantic segmentation and instance segmentation (Kirillov et al., 2023).
However, SAM cannot immediately achieve panoptic segmentation, which is attributed to the fact that
the released version of SAM is not text-aware. In other words, the SAM cannot take texts as prompts
to identify and classify regions into corresponding semantic categories.

To solve these challenges, Tobias Cornille uses the following additional models: Grounding DINO
(Liu et al., 2023), a zero-shot object detector, and CLIPSeg (Lüddecke & Ecker, 2022), a zero-shot
(binary) segmentation model. The pipeline is demonstrated in the upper part of figure 3.2. Firstly, they
use Grounding DINO to detect the instance-unit categories. Secondly, instance segmentation masks
for the detected boxes will be obtained using SAM. Thirdly, CLIPSeg will obtain rough segmentation
masks of the pixel-unit categories. Fourth, sample points in these rough segmentation masks and feed
these to SAM to get fine segmentation masks. Last, combine the background pixel-unit masks with the
foreground instance-unit masks to obtain a panoptic segmentation label.



3.4. The evaluation metric on results of PSAM 22

3.4. The evaluation metric on results of PSAM
While studies that apply semantic computer vision models for downstream tasks often overlook the eval-
uation of the generated masks (Ramírez et al., 2021; Rossetti et al., 2019), this thesis proposes a novel
method for assessing the accuracy of semantic computer vision models in labelling and segmenting
images. This method addresses the common belief among scholars that segmentation performances are
adequately high but also acknowledges the lingering question of whether a trained semantic computer
vision model can accurately label pixels and objects in a new dataset. The following evaluation metric
provides a convincing approach with substantial evidence.

The standard evaluation metric for panoptic segmentation is the panoptic quality (PQ), which involves
two steps: 1) segment matching and 2) PQ computation given the matches (More details see Kirillov
et al. (2019)). However, due to the lack of ground truth masks of all pixels in the SVI dataset, the eval-
uation metric PQ proposed for training the model is complicated for humans to follow. Also, assessing
the generated masks of a zero-shot model does not necessarily require highly precise evaluation metrics
since the aim is to demonstrate whether the model performance is sufficiently accurate for downstream
tasks (i.e., choice modelling). Thus, the PQwill not be adopted as the evaluation metric in the following
contents.

To assess whether the PSAM correctly labels and segments regions in images in a relatively easy way,
the evaluation metric for each mask is divided into two steps. 1) Record the incorrectly labelled in-
stances for all instance-unit and incorrectly labelled proportions of pixels for all pixel-unit categories,
respectively. 2) Take a sum of all incorrectly labelled regions in the unit of pixel proportion and assess
the boundaries between segmented regions based on own subjective opinions. It is worth noting that
each image is to be evaluated as an Excel file recording the proportion of pixels for each identified
pixel-unit category and the number of instances along with its proportion for each identified instance-
unit category.

The first step focuses on the labelled number of instances for instance-unit categories and the propor-
tions of labelled pixels for pixel-unit categories as they are two forms of data to be fed to the following
discrete choice models, which are essential to be assessed. Since the correctly identified regions still
account for more than the incorrectly identified ones for most generated masks, the number of incor-
rectly identified instances for instance-unit categories (i.e., II_thing_instance) and the proportion of
incorrectly identified pixels for all pixel-unit categories (i.e., II_stuff_pixel) will be roughly estimated
by humans based on the output excel file per image. Note that the estimations on the pixel proportions
are all calculated by the sizes of the regions based on the coordinate axis of images.

The second step aims to examine the general accuracy of the generated mask for each image. It con-
siders two aspects: the overall accurate assignment of semantic categories to pixels and the precision
of boundaries between segmented regions. The former evaluates the model’s ability to label regions in
images with semantic categories correctly. It is similar to Pixel Accuracy (PA), a standard evaluation
metric for semantic segmentation that calculates the percentage of correctly labelled pixels over the total
number of pixels in the image (Kirillov et al., 2019). The evaluator estimates the proportion of pixels
for all incorrectly identified instances (i.e., II_thing_pixel) and sums it with recorded II_stuff_pixel to
have the total proportion of incorrectly identified pixels (i.e., II_P.P), as in equation 3.1.

II_P.P = II_thing_pixels+ II_stuff_pixels (3.1)

II_thing_instance = abs(G_thing − I_thing) (3.2)
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Regarding the assessment of boundaries, each image will receive a subjective score indicating the pre-
cision of segmentation. Also, it remedies the discontinuous regions of which proportions are hard to
estimate by humans. Assessing the overall quality of boundaries between segmented regions may help
address the issue. The predefined scores include 0, 1, 2, and 3, corresponding to unclear, relatively
unclear, relatively clear, and clear boundaries.

3.5. Discrete Choice Model
The bottom of Figure 3.2 outlines two primary types of variables essential for inclusion in choice
modelling: BE attributes extracted from images and numeric attributes (housing costs and commut-
ing time). Similar to the computer-vision discrete choice model proposed by van Cranenburgh and
Garrido-Valenzuela (2023), there are several assumptions in the multinomial logit model.

1) Decision-makers are assumed to make decisions based on RandomUtilityMaximising (RUM) princi-
ples, see Equation 3.3, with Ujn denoting the total utility experienced by decision-maker n considering
alternative j, Vjn is the utility experienced by decision-maker n derived from attributes observable by
the analyst. Also, an additive error term εjn is added to each alternative because the analyst does not
observe everything that matters to the decision-makers’s utility.

Ujn = Vjn + εjn (3.3)

2) During respondents completing each choice task, the information provided to them are images ((Sjn)
of two residences and their corresponding numeric attributes (Xjn, represent monthly housing costs and
commuting travel time). Equation 3.4 shows that v is a preference function which maps the attributes
and image onto the utility.

Ujn(Xjn, Sjn) = v(Xjn, Sjn) + εjn (3.4)

3) The utility is derived from the numeric attributes, and the image is assumed to be separable and
additive in utility space. Equation 3.5 shows that function z maps the numeric attributes onto the utility
and function g maps the information from the image onto the utility.

Ujn(Xjn, Sjn) = z(Xjn) + g(Sjn) + εjn (3.5)

4) Two supplementary variables will be considered: season and low-level features (LLF) of images since
they significantly impact people’s perceptions of images, as discussed in the literature review. Without
differentiating LLF and season variations from images, the gained impacts of micro-scale BE features
by choice modelling are possibly biased. It is worth including LLF and seasons into the discrete choice
model to estimate more accurate coefficients of micro-scale BE features. Also, LLF encompassing
HLS colour statistics (mean and standard deviation for hue, saturation, and lightness channels) and im-
age edges (expressed as the percentage of pixels identified as edges) are easy to measure by libraries like
OpenCV and NumPy in Python. Besides, the SVI dataset by van Cranenburgh and Garrido-Valenzuela
(2023) records the month of all images, which can be further categorized into seasons.

Therefore, assuming information people perceive in images does not only include quantification of dif-
ferent micro-scale BE features but also LLF (e.g., lightness) and season variations (e.g., whether leaves
of trees are present or not). The three types of information are linear additive, influencing people’s
choices. Model 1 to Model 4 are four models representing four utility functions, corresponding to the
two required and two optional types of variables as outlined below. Model 0 is the benchmark model
to compare with the proposed Model 1 to Model 4, which only incorporates housing costs and travel
time.
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Model 0: Numeric attributes:
Ujn =

∑
m

βmXjmn + εjn (3.6)

Model 1: Numeric attributes + micro-scale BE features:

Ujn =
∑
m

βmXjmn +
∑
f

βfSjfn + εjn (3.7)

Model 2: Numeric attributes + micro-scale BE features + season:

Ujn =
∑
m

βmXjmn +
∑
f

βfSjfn +
∑
h

βhSjhn + εjn (3.8)

Model 3: Numeric attributes + micro-scale BE features + Low-level features (LLF):

Ujn =
∑
m

βmXjmn +
∑
f

βfSjfn +
∑
l

βlSjln + εjn (3.9)

Model 4: Numeric attributes + micro-scale BE features + Season + Low-level features (LLF):

Ujn =
∑
m

βmXjmn +
∑
f

βfSjfn +
∑
h

βhSjhn +
∑
l

βlSjln + εjn (3.10)

Where Ujn denotes the total utility experienced by decision-maker n considering alternative j; Vjn is
the utility experienced by decision-maker n derived from attributes observable by the analyst;m refers
the numeric attributes (i.e. housing costs, commuting travel time); f represents different micro-scale
BE features; h refers the four seasons; l represents the seven low-level features (LLF)

5) Following the typical approach in choice modelling, it is assumed that εjn is independently and
identically distributed according to the Extreme Value Type I distribution, with a variance of π2/6This
assumption leads to the widely recognized and easily computed closed-form logit formula for the choice
probabilities Pin, as detailed in Equation 3.11.

Pin =
eVin∑

j∈Cn

eVjn
(3.11)

Where Cn represents the set of alternatives presented to decision maker n.

3.5.1. Normalization

After applying the semantic computer vision model, each image contains quantified values represent-
ing micro-scale BE features alongside extracted low-level features (LLF). Notably, pixel-unit features
range from 0 to 1, while instance-unit features consist of non-negative integers. The ranges of different
LLF also vary. To ensure an accurate comparison of variable estimation parameters in choice mod-
elling, it is essential to normalize these diverse variable types. This normalization process will utilize
Min-Max Normalization.

Pixel-unit categories across all images will undergo normalization to maintain disparities between dif-
ferent pixel-unit categories in one image and disparities of the same pixel-unit category between dif-
fering images. Instance-unit categories will be applied the same way as pixel-unit categories to keep
the disparities. For LLF, normalization will be straightforward, with each feature normalized across all
images.
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3.5.2. Strategy searching for valid model specification

In pursuit of a model specification ensuring the significant influence of all variables within the utility
function on choice behaviour (i.e., at least 90% confidence), a build-down strategy is adopted for each
type of utility function. For instance, when refining the model specification for Model 1, all numeric
attributes and categories are initially included in the utility function, followed by the systematic removal
of variables surpassing the predetermined p-value threshold from highest to lowest. Throughout this
iterative process, model performance indicators such as the log-likelihood ratio consistently fluctuate
within a narrow range. Once a model is attained where all variables satisfy the t-test/p-value criterion,
some previously removed variables are reintroduced to assess if they can meet the t-test threshold.

In most cases, reintroduced variables fall short of satisfying the t-test criterion. While this build-down
strategymay not explore all possible variable compositions, it enables the ascertainment of a validmodel
specification guaranteeing the significant influence of all included variables on choice behaviour. The
motivation behind incorporating additional variables is to address the research question effectively. By
including more micro-scale BE features in the model specification, we can explore the impacts of a
broader range of features on residential location choice.



4
Results

This section analyzes the results of the PSAM and DCM after an explanation on the selected BE features
as inputs to be identified by the PSAM. The subsequent sub-sections encompass the PSAM’s outcomes,
comprising how to apply the evaluation metric, the evaluation results, and descriptive statistics detailing
the quantified BE features across all images. An examination of correlations between the quantified
BE features follows this. Subsequently, the results of the discrete choice models and an analysis of the
estimated coefficients are presented.

4.1. Selected micro-scale BE features
Identifying relevant environmental features poses a significant challenge in studies examining people’s
perceptions or behaviours (Zhanjun et al., 2022). Tables 2.2 and 2.3 showcase micro-scale BE features
that previous scholars have selected for investigation. Given their contextual relevance to this thesis,
these features serve as valuable references. However, it is crucial to acknowledge that certain features
listed in these tables may not be prevalent in the Netherlands’ SVI dataset. Therefore, manual inspec-
tion of some SVI images is necessary to identify frequent features.

Following reviewing around 200 images of the SVI data, BE features that have a frequency more than 1
are selected as inputs for PSAM, forming a category list and presenting in Table 4.1. Most micro-scale
BE features are anticipated to impact RLC in specific ways. For instance, vegetation and water may
positively influence RLC by enhancing the aesthetic appeal of surroundings. At the same time, ameni-
ties like bus stops and dustbins may deposit positive affects on RLC because they facilitate convenient
access to transportation and essential services. Conversely, factors such as motorcycles may negatively
impact RLC due to associated noise disturbances.

Table 4.1: Predefined micro-scale BE features in category lists

Category list Micro-scale BE features

Pixel-unit Categories building, grass, road, sky, trees, sidewalk, plants, street sign, traffic light,
fence, street lamp, water, fire,hydrant, distribution box, agriculture land

Instance-unit Categories car, person, bench, dustbin, boat, bike, motorcycle, bus stop

26
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4.2. Evaluation on results of PSAM
A random selection of 400 images from 7653 images is used for the segmentation quality/performance
evaluation. Figure 4.1 showcases four examples ofmasks generated by the PSAM. The top two illustrate
high-qualitymasks, wheremost BE features are accurately assigned predefined semantic categories, and
distinct boundaries between features are evident. Conversely, the bottom two display low-quality masks
due to incorrect category assignments and unclear boundaries. The comparison between high- and low-
quality masks show that it is essential to randomly evaluate part of the generated masks to gauge the
overall quality and verify the accuracy of the PSAM’s results for choice modelling purposes.

(a) High-quality (Image ID: 4014) (b) High-quality (Image ID: 1000)

(c) Low-quality (Image ID: 5679) (d) Low-quality (Image ID: 4980)

Figure 4.1: Comparison between high- and low-quality segmentation masks

4.2.1. Applying the evaluation metric

Table 4.2 shows the evaluation results for the above four images. Take Image ID 4014 (i.e., Figure
4.1a) as an example; the evaluator records the number of ground-truth instances (i.e., G_thing) as 7. The
number of instances (i.e., I_thing) identified by the model is 8 in the Excel file of the mask for Image ID
4014. Thus, the incorrectly identified instance for the image is 1, which is the car reflected in the mirror,
as calculated in equation 3.2. II_thing_pixels is 0.001 based on the proportion of pixels for the car in
the Excel file of the mask. The evaluator records the number of ground-truth pixel-unit categories (i.e.,
G_thing) and compares it with the number of identified pixel-unit categories (i.e., I_thing). As there
are five ground-truth categories but four identified categories, the evaluator finds out the missing one
is a street lamp and estimates the size of the corresponding region. Hence, II_stuff_pixel is calculated
as 0.001 by dividing the region’s size by the image size. II_P.P is the summation of II_thing_pixels
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(0.001) and II_stuff_pixel (0.001): 0.002. The boundaries between segmented regions remain clear, so
this image receives a high score of 3.

Table 4.2: Evaluation table of the example figure

Image ID 4014 1000 5679 4980

G_thing 7 1 6 3
G_stuff 5 7 7 9
I_thing 8 1 6 3
I_stuff 4 7 7 7
II_thing_instance 1 0 0 0
II_thing_pixel 0.001 0.000 0.000 0.000
II_stuff_categories 1 0 1 2
II_stuff_pixel 0.001 0.000 0.300 0.099
II_P.P 0.002 0.000 0.300 0.099
Boundary 3 3 2 2

G_thing: Number of ground-truth instances of instance-unit (thing) categories
G_stuff: Number of ground-truth pixel-unit (stuff) categories
I_thing: Number of instances of instance-unit (thing) categories that identified by the model
I_stuff: Number of pixel-unit (stuff) categories that are identified by the model
II_thing_instance: Number of thing instances that are incorrectly identified by the Model
II_thing_pixels: Proportion of pixels of thing instances that are incorrectly identified by the model
II_stuff_categories: Number of pixel-unit (stuff) categories that are incorrectly identified by the model
II_stuff_pixels: Proportion of pixels of pixel-unit (stuff) categories that are incorrectly identified by the
model
II_P.P: Proportion of pixels that by incorrectly identified by the model (rough estimation)
Boundary: Subjective evaluation of the model’s segmentation precision. Values from 0-3, the higher
the value, the clearer boundaries.

4.2.2. Evaluation results

After analyzing 400 randomly selected images, Figures 4.2 and 4.3 illustrate the outcomes of the first
step in the evaluationmetric: the histogram showcasing incorrectly identified instances for instance-unit
categories and the proportions of incorrectly identified pixels for pixel-unit categories, respectively.

Among the images, 72.8% exhibit zero incorrectly identified instances, while 15.0% (89.8% - 72.8%)
have one misidentified instance. Approximately 10% of the images showmore than two instances incor-
rectly identified. Concerning pixel-unit categories, Figure 4.3 reveals that 27.6% of the images display
0% incorrectly identified regions, and 76.9% have less than 10% of pixels incorrectly identified.

Both the two histograms exhibit similar trends. Both curves peak at around 75% when the x-axis value
is small, indicating that for 75% of the images, the number of incorrectly identified instances and the
proportion of misidentified pixels are 0 and less than 10%, respectively. The two histograms suggest
that for most images, the predicted quantities for each category closely align with the ground-truth. The
PSAM’s results can be utilized for subsequent choice modelling processes.
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Figure 4.2: Histogram of II_thing_instance

Figure 4.3: Histogram of II_stuff_pixel

Figure 4.4 and 4.5 showcase the outcomes of step 2 in the evaluation metric, illustrating histograms of
II_P.P and boundaries. Among the images, 20% display 0% incorrectly identified pixels, while 74.8%
exhibit less than 10% of pixels being inaccurately identified. Regarding boundaries, only 14.5% of the
images are associated with values of 1 and 0, indicating somewhat ambiguous and disorderly bound-
aries, respectively, suggesting that the remaining images feature relatively clear boundaries.

Figure 4.4 demonstrates a generally accurate assignment of semantic categories to all pixels across all
images. Meanwhile, Figure 4.5 showcases the high precision of boundaries between segmented regions.
When the two histograms are examined together, they collectively portray satisfactory segmentation
outcomes, affirming the overall effectiveness of the results of the PSAM.
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Figure 4.4: Histogram of II_P.P

Figure 4.5: Histogram of Boundary

4.2.3. Specific categories

During the evaluation process, the evaluator also documents essential notes for each generated mask,
such as ”part of grass identified as plants” or ”part of unknown regions identified as a bus stop.” After
assessing all 400 masks, the evaluator identified common occurrences in the masks. The following
discussion outlines key findings for specific categories.

In terms of identifying street lamps, the model faces a complex task. Smaller ones pose a significant
challenge for accurate identification, whereas larger ones yield better performance, as depicted in Figure
4.6a. The model often struggles with misidentifying surrounding elements like vegetation or the sky as
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street lamps, as shown in Figure 4.6b and 4.6c. The complexity increases when buildings stand behind
the lamp, making street lamp identification problematic, likely due to similar colours, as seen in Figure
4.6d.

(a) Image ID: 216 (b) Image ID: 6251

(c) Image ID: 6022 (d) Image ID: 6017

Figure 4.6: Examples of misidentified masks of street lamps

Vegetation is categorized into four types: trees, plants, grass, and agricultural land. However, the model
struggles to distinguish them accurately. Grass and agricultural land are frequently mislabeled as each
other, as are plants and grass, as demonstrated in Figures 4.10a and 4.10b, respectively. Conversely,
trees are more consistently identified correctly than the other three vegetation types. Thus, the semantic
accuracy of the PSAM for vegetation categories influences the credibility of their estimated parameters
in discrete choice models. Interpreting the estimated coefficients for vegetation variables must consider
their potential lack of differentiation in the PSAM.
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(a) Image ID: 4012, Grass identified as agriculture land (b) Image ID: 4008, Plant identified as grass

Figure 4.7: Examples of misidentified masks of vegetation categories

In the case of bus stops, many labelled instances in the images do not correspond to actual bus stops.
Regions marked as bus stops often encompass areas challenging to categorize, even for humans, as
exemplified in Figure 4.8. These random, disordered, semantic-less regions often receive the bus stop
label despite actual occurrences of bus stops numbering few among the 400 images. Consequently, the
number of images featuring bus stops in the PSAM results could be relatively high.

(a) Image ID: 1021 (b) Image ID: 4005

(c) Image ID: 4006 (d) Image ID: 4017

Figure 4.8: Examples of misidentified masks of bus stops

Similarly, distribution boxes face a comparable issue. While the number of images featuring distribution
boxes is relatively low, some semantic-less regions in many images are labelled as distribution boxes
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by the PSA model, as illustrated in Figure 4.9. The low labelling accuracy of these two categories
(bus stops and distribution boxes) underscores the limitations of the zero-shot computer vision model
in handling them.

Figure 4.9: Examples of misidentified masks of distribution boxes

On the other hand, several categories, such as traffic lights, street signs, and fire hydrants, also seldom
appear in the images. Unlike bus stops and distribution boxes, the PSAM results indicate that few im-
ages contain these categories. It may suggest that the PSAM handles these three categories better than
bus stops and distribution boxes. Despite the evaluator noting misidentifications concerning these cate-
gories, the low frequency of occurrence mitigates potential issues arising from such misidentifications.

(a) Image ID: 6764 (b) Image ID: 7010

Figure 4.10: Examples of misidentified masks of bikes

Bikes also warrant attention due to their relatively frequent misidentification. The evaluator observed
that bikes are often stacked instead of correctly placed in bike racks. It could contribute to fewer bikes
identified than the actual count. Figure 4.10 provides an example where bikes are not fully and accu-
rately identified when stacked together.
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4.2.4. Descriptive statistics

Table 4.3 presents the descriptive statistics outlining the quantified BE features. It is important to note
the distinction between pixel-unit and instance-unit categories: the former denotes percentages of pixels,
while the latter represents counts of instances. These features are ordered based on their occurrence fre-
quency. Elements such as sky, buildings, sidewalks, roads, and vegetation emerge as the most prevalent
ones in images. In contrast, items like fire hydrants, traffic lights, water, and street signs are compara-
tively rare.

Table 4.3: Descriptive statistics

Categorization BE features Count
(1)

Mean
(2)

Std.
(2)

Min 25% 50% 75% Max

Pixel-unit Categories

sky 7016 0.176 0.118 0.000 0.081 0.172 0.258 0.993
building 6914 0.232 0.201 0.000 0.070 0.189 0.344 1.000
trees 6646 0.157 0.148 0.000 0.031 0.116 0.250 0.957
sidewalk 6303 0.095 0.084 0.000 0.023 0.077 0.150 0.542
plants 5996 0.059 0.076 0.000 0.008 0.035 0.080 0.798
grass 5990 0.087 0.099 0.000 0.010 0.053 0.133 0.791
road 5122 0.074 0.087 0.000 0.000 0.042 0.124 0.553
fence 3431 0.027 0.055 0.000 0.000 0.000 0.030 0.828
agriculture land 2136 0.025 0.060 0.000 0.000 0.000 0.015 0.772
street lamp 1195 0.009 0.040 0.000 0.000 0.000 0.000 0.692
distribution box 1070 0.006 0.032 0.000 0.000 0.000 0.000 0.842
water 562 0.006 0.032 0.000 0.000 0.000 0.000 0.430
street sign 553 0.001 0.015 0.000 0.000 0.000 0.000 0.610
traffic light 127 0.001 0.009 0.000 0.000 0.000 0.000 0.458
fire hydrant 107 0.000 0.003 0.000 0.000 0.000 0.000 0.105

Instance-unit Categories

car 4560 1.823 2.518 0 0 1 3 21
bus stop 1254 0.187 0.446 0 0 0 0 4
bike 1066 0.315 1.050 0 0 0 0 14
bench 879 0.164 0.536 0 0 0 0 10
person 824 0.211 0.832 0 0 0 0 20
dustbin 691 0.145 0.580 0 0 0 0 9
motorcycle 260 0.047 0.300 0 0 0 0 8
boat 111 0.040 0.437 0 0 0 0 11

An intriguing observation is the presence of images where a single category dominates the scene. For
instance, a maximum quantified value of 1 for a building suggests that the entire image is labelled as
such. Upon closer inspection, it becomes evident that this phenomenon often occurs when the camera
is near the building, resulting in the exclusion of background elements. Additionally, instances of in-
flated maximum pixel percentages can be attributed to misidentification, as seen with the distribution
box category reaching a maximum value of 0.842. After checking, this image is found that substantial
portions of sky and trees are erroneously labelled as distribution box.

Moving to the instance-unit categories, cars, bus stops, and bikes emerge as the most frequent occur-
rences. The mask evaluation already reveals instances where unidentified and semantic-less objects/re-
gions are ambiguously labelled as ”bus stops” or ”distribution boxes.” The presence of instances such
as a maximum of four bus stops in one image also proves the misidentification.
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4.3. Examination of feature correlation
Following the established methodology workflow, the next step involves examining correlations be-
tween BE features. Initially, attention is directed towards examining the correlation matrix, illustrated
in Figure 4.11. Notably, variables including buildings, sky, trees, grass, road, and sidewalks exhibit
relatively high correlations.

Figure 4.11: Correlation matrix

The negative correlation between buildings and trees is logical, considering they both feature promi-
nently in vertical imagery and often overlap. An increase in tree ratio typically coincides with a reduc-
tion in visible sky proportion. This relationship holds empirically, as a broader tree canopy naturally
obstructs the view of the sky. Similarly, buildings and sky exhibit a similar dynamic, with buildings
frequently overlapping with the sky in upper image sections. Moreover, buildings commonly occupy
vertical sections of images, thereby reducing available grass areas typically seen in lower image sections.
This reasoning extends to sidewalks and grass which are often situated in lower and side image sections.

Typically, correlations exceeding 0.70 or 0.80may indicate potential multicollinearity concerns (Belsley
et al., 2005; Sabilla et al., 2019). A relevant study incorporating the micro-scale built environment
features noted that even the highest correlation of 0.59 is not considered indicative of multicollinearity
(Chen et al., 2024). Consequently, given that the most highly correlated value in Figure 4.11 is only
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-0.58, it is reasonable to presume no significant effects on potential multicollinearity and proceed with
including all variables in the subsequent analysis.

4.4. Results of multinomial logit model
Table 4.4 displays the estimated coefficients and model fits for the five models with Model 0 is the
benchmark model and Model 1 to Model 4 are semantic CV-DCMs. The table also demonstrates the
Value of Travel Time (VTT) 1. In the stated choice experiment, VTT indicates the (mean) willingness
to pay per month for a one-hour reduction in travel time. A VTT ranging from €217 to €231 per hour
per month is reasonable, given that most respondents commute five days a week, totaling about 20 days
per month. The stable values of VTT across the five models confirm the validity of the models (van
Cranenburgh & Garrido-Valenzuela, 2023).

Table 4.4: Estimated coefficients and model fits for the five models

Model ID 0 1 2 3 4

est r.s.e r.t est r.s.e r.t est r.s.e r.t est r.s.e r.t est r.s.e r.t
B_Cost 0.86** 0.02 -35.60 -0.93** 0.03 -36.10 -0.93** 0.03 -36.10 -0.93** 0.03 -36.10 -0.93** 0.03 -36.10
B_Time 0.21** 0.03 -8.31 -0.24** 0.03 -9.08 -0.24** 0.03 -9.09 -0.24** 0.03 -9.22 -0.24** 0.03 -9.23
BE Features-Thing Categories
B_DB
B_Car
B_Dustbin 2.32** 0.76 3.06 2.28** 0.76 3.00 2.17** 0.76 2.84 2.11** 0.76 2.76
B_Boat 1.6** 0.59 2.72 1.6** 0.59 2.70 1.75** 0.59 2.96 1.75** 0.59 2.95
B_Bike -0.61* 0.29 -2.13 -0.63* 0.29 -2.20 -0.51 0.29 -1.75 -0.53 0.29 -1.81
B_Motorcycle -4.27** -4.27 -2.75 -4.22** 1.56 -2.71 -4.49** 1.57 -2.85 -4.43** 1.58 -2.81
B_BusStop -1.98* 0.82 -2.44 -2.03* 0.82 -2.50 -2.12** 0.82 -2.59 -2.17** 0.82 -2.65
BE Features-Stuff Categories
B_Building 1.97** 0.27 7.19 1.94** 0.28 7.08 2.18** 0.28 7.79 2.15** 0.28 7.68
B_Grass 2.08** 0.26 8.08 2.08** 0.26 8.08 2.03** 0.26 7.78 2.04** 0.26 7.81
B_Road 0.972** 0.30 3.30 0.96** 0.30 3.25 1.23** 0.30 4.07 1.21** 0.30 4.02
B_Sky 3.33** 3.33 10.10 3.3** 0.33 9.92 3.14** 0.33 9.41 3.1** 0.34 9.24
B_Trees 3.37** 0.30 11.10 3.32** 0.31 10.90 3.48** 0.31 11.30 3.43** 0.31 11.10
B_Sidewalk 1.29** 0.29 4.46 1.27** 0.29 4.38 1.48** 0.29 5.05 1.46** 0.29 4.96
B_Plants 2.98** 0.32 9.43 2.95** 0.32 9.32 2.85** 0.32 8.98 2.82** 0.32 8.87
B_Fence 0.66* 0.66 1.96 0.66 0.34 1.94 0.81* 0.34 2.39 0.81 0.34 2.37
B_Street
Lamp

2.51** 0.59 4.23 2.52** 0.59 4.25 2.48** 0.59 4.20 2.49** 0.59 4.22

B_Water 3.47** 3.47 5.87 3.49** 0.59 5.91 3.91** 0.60 6.56 3.93** 0.60 6.60
B_Agriculture
Land

2.63** 2.63 7.51 2.61** 0.35 7.44 2.86** 0.36 8.01 2.84** 0.36 7.97

Season1
B_spring
(3,4,5)
B_summer
(6,7,8)
B_autumn
(9,10,11)
B_winter
(12,1,2)

-0.140 0.07 -1.83 -0.15 0.08 -2.02

Low Level Features
B_MH
B_ML 0.54** 0.13 4.14 0.52** 0.13 3.98
B_MS
B_PE
B_SL
B_SS 0.43 0.13 3.40 0.46** 0.13 3.62
B_SH
Model Performance-Training Dataset
Log likelihood -5953.908 -5663.193 -5661.530 -5646.487 -5644.471
AIC 11911.820 11362.390 11361.060 11332.970 11330.940
BIC 11926.190 11491.780 11497.640 11476.740 11481.900
Rho square-
bar

0.122 0.162 0.162 0.164 0.165

Model Performance-Test Datatset
Log likelihood -1193.654 -1161.921 -1160.800 -1156.229 -1155.079
AIC 2391.308 2359.842 2359.599 2352.457 2352.158
BIC 2402.457 2460.184 2465.516 2463.948 2469.224
Number of Parameters

2 18 19 20 21
Value of Travel Time [euro/hour/month]

216.918 228.155 228.155 231.290 231.042

Note: p**<0.01, p*<0.05

1VTT = 60*(225/15) * (B_Time/B_Cost), (225/15) arises from scaling the attributes before training.
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The choice dataset is divided into a training dataset and a test dataset to mitigate the risk of overfitting.
The training set is utilized to train the model. The test is unseen by the model during training and
used to evaluate the model’s generalization performance after training. If a trained model overfits the
data, disparities in performance between the training and test sets become evident. The training and
test datasets consist of N = 9,784 and N = 1,948 choice observations, respectively. For more in-depth
information on this dataset partitioning, please refer to the cited paper of van Cranenburgh and Garrido-
Valenzuela (2023).

4.4.1. Results analysis on model fits

Table 4.4 presents a clear progression in model performance for the semantic CV-DCMs (Model 1, 2,
3, 4). A consistent trend is observed in both the training and test datasets, reflected by log-likelihood
and rho-square-bar. Model 1, which comprises solely numeric attributes and BE features, shows the
lowest log-likelihood and rho-square-bar, indicating poorer fit and explanatory power. However, in-
troducing season variables in Model 2 leads to a marginal improvement, as evidenced by its slightly
higher rankings. This trend continues with Model 3, incorporating LLF, achieving the second-highest
values, suggesting enhanced accuracy and predictive power compared to its predecessors. It is worth
mentioning that the effectiveness of seasonal variables is inferior to that of LLF in enhancing model
accuracy and predictive power.

Notably, Model 4, encompassing all variables (cost, time, BE features, season variables, and LLF),
consistently attains the highest scores, signifying superior performance. The increasing trend of the se-
mantic CV-DCMs’ performances highlights the importance of comprehensively incorporating diverse
types of information from images for better outcomes. Furthermore, the AIC and BIC of the semantic
CV-DCMs confirm the trend, aligning closely with the patterns observed in log-likelihood and rho-
square-bar. However, the slight instability in the increase of AIC and BIC from Model 1 to 4 suggests
nuances in model complexity.

The model performances of semantic CV-DCMs are much higher than Model 0 for any performance
indicator. For instance, the log-likelihood of the test dataset of Model 0 is -1193, while the correspond-
ing values of semantic CV-DCMs range between -1161 and -1155. Similarly, the log-likelihood of
the training dataset for semantic CV-DCMs surpasses that of Model 0, as well as the rho-square-bar
of the training dataset. Although an increase in parameters usually leads to higher log-likelihood and
rho-square-bar for the training data, the notably higher log-likelihood of the test dataset for Model 4
compared to Model 0 underscores the semantic CV-DCM’s enhanced prediction of people’s choice
behaviour.

4.4.2. Results analysis on estimated parameters

Table 4.4 illustrates the estimated coefficients of the four model types. Model 4 is chosen for further
analysis of coefficients as it demonstrates the highest performance based on the log-likelihood for both
the training and test datasets.

It is crucial to note that the interpretation of coefficients in discrete choice models varies because of
the underlying scales and units of the original variables. Although all variables in different scales have
been normalized as described in 3.5.1, the coefficients represent the change in the outcome variable
for a one-unit change in the predictor variable. Consequently, the magnitudes of estimated coefficients
across different units of variables are not directly comparable when interpreting their impacts on choice
behaviour. Given the significance of micro-scale BE features, the estimated coefficients for instance-
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unit and pixel-unit categories of Model 4 are visualized in Figure 4.12a and Figure 4.12b, respectively.

Other variables (housing costs, commute travel time, LLF, seasonal variables) are not shown in Fig-
ure 4.12 because they are not the primary focus of this research, and comparing their coefficients is
challenging due to differing units. As shown in Table 4.4, mean lightness and standard deviation of
saturation significantly enhance residential attractiveness, as expected. Additionally, winter has a nega-
tive impact on RLC, reflecting the anticipated decrease in attractiveness due to the season’s association
with withering landscapes. Housing costs and travel time impacts align with expectations as well.

The following discussion will address micro-scale BE features with negative and positive impacts sep-
arately, along with ranking the magnitude of these impacts.

(a) Instance-unit categories

(b) Pixel-unit categories

Figure 4.12: Visualization of estimated coefficients of model 4
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Positive coefficients:
Vegetation variables, including grass, trees, and plants, are shown as positive, reasonable influences.
Water and boats represent waterfront properties, offering picturesque views and recreational opportuni-
ties such as boating, fishing, or simply enjoying waterfront walks. It contributes to overall well-being
and satisfaction with the living environment. Also, owning a property with waterfront access or views
can be seen as a status symbol, contributing to a sense of prestige and exclusivity for residents. Dustbins
also positively influence residential location choice, which dustbins near the residences can explain as
representing more convenient access. The presence of the sky represents an open living environment,
so it also positively influences people’s choices. Fence positively impacts RLC, which is also expected
since it promotes order and territory, dividing personal and open spaces (Rossetti et al., 2019; Zhanjun
et al., 2022). The street lamp also positively impacts RLC, which is under expectation. The presence
of street lamps can increase the safety of the residential neighbourhood.

Negative coefficients:
Both motorcycles and bikes are found to influence RLC negatively. The presence of motorcycles in-
troduces noise, which can diminish the attractiveness of residences. Additionally, bikes in images are
often observed to be stacked improperly without being placed in bicycle racks, leading to untidy piles
that may detract from the residential neighbourhood’s appeal. Transport-related categories, including
cars, bikes, motorcycles, and bus stops, demonstrate negative influences on residents’ choices. While
the negative impact of bus stops might seem counterintuitive, it can be explained that most objects la-
belled as bus stops in images are incorrect, which are some objects not being provided semantic texts.
These unknown objects may disarray the image, decreasing the corresponding residence’s attractive-
ness. Therefore, the coefficients of bus stops will show as negative.

Ranking of magnitude of coefficients:
In Figure 4.12a, dustbins, representing convenience, have the highest impact on RLC among all instance-
unit categories. Boats, which are usually together with the presence of water, have the second highest
impact. This ranking suggests that people prioritize convenient facilities over waterfront views when
choosing a residence. This preference indicates that practical amenities like dustbins, which simplify
daily life, are more influential in residential choice than the aesthetic appeal of being near water.

Both transport-related features, bikes and motorcycles, have been noted for their negative impact on
RLC. However, bus stops were omitted from the analysis due to their low identification accuracy. No-
tably, motorcycles stand out for their notably adverse effect on RLC, suggesting a significant decline
in attractiveness where they are present. The disorder and noise associated with motorcycles can signif-
icantly detract from the appeal of residential areas.

Given that the robust standard error (r.s.t) for bikes and motorcycles is the highest among all variables
(0.82 and 1.58 in Table 4.4), it is imperative to delve deeper into their impact on RLC. A high robust
standard error indicates a greater degree of uncertainty or variability in estimating the respective coef-
ficients. This prompts a pressing need for further investigation to ascertain whether motorcycles and
bikes indeed exert such pronounced negative impacts on RLC, a matter of significant concern for aca-
demic researchers, urban planners, and policymakers.

Among all the pixel-unit categories in Figure 4.12b, water has the highest positive impact on RLC,
indicating a strong preference for residences near canals in the Netherlands. This finding aligns with
the known preference for residences surrounded by natural features. Trees, followed closely by water,
further affirm this preference for residences amidst vegetation.
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Interestingly, agricultural land, grass, and plants show lesser impact magnitudes than trees. As discussed
in sub-section 4.2.3, these three vegetation categories are often misidentified as each other. Due to this
misclassification, it becomes challenging to differentiate and rank the impacts of agricultural land, grass,
and plants accurately. However, trees can be concluded to have a higher impact with greater confidence.

Street lamps and fences are facility-related categories that positively impact residential location choice.
Comparing their coefficients provides insights into how people prioritize safety and order when se-
lecting residences. Street lamps, symbolizing enhanced safety, exhibit the highest impact, reflecting
residents’ prioritization of safety. Fences, symbolizing order and territory, are ranked lowest regarding
impact on RLC.



5
Discussion

This section delves into the limitations of employing the semantic computer vision model. First, we
discuss the constraints encountered with the PSAM, which are general findings after the mask evalu-
ation. Second, we discuss the broader limitations associated with leveraging panoptic segmentation
models to quantify micro-scale BE features as inputs of choice modelling, i.e., whether the quantified
features align with what people perceive in images. Subsequently, we compare and analyze the model
performances of semantic CV-DCM in this thesis against the CV-DCM proposed by van Cranenburgh
and Garrido-Valenzuela (2023).

5.1. Limitations of employing the semantic computer vision
model

5.1.1. Limitations of the PSAM

Section 4 discussed the evaluation performance for some specific categories during the mask evaluation.
There are also two key limitations concerning the PSAM. The first is related to the performance of the
semantic computer vision model, which can be elaborated from three perspectives.

1) The model struggles to differentiate between similar categories, such as grass and agricultural land,
as well as sidewalks and roads. Typical Dutch categories like cycling lanes also require training to make
the model learn about. 2) It was observed that perfect segmentation tends to occur more frequently in
simple scenes. At the same time, the model struggles to perform effectively in complex scenes featur-
ing numerous pixel-unit categories and instances. The generated masks of images with complex scenes
usually have unclear and blurred boundaries between segmented regions, and several regions are mis-
labeled with semantic categories. 3) The model tends to identify all of the present elements in images,
even if some are not predefined. In this case, some unknown categories for the model are mistakenly
recognized as predefined categories. Remarkably, by calculating total pixels and total labelled pixels,
over 99% of images have more than 99% of their pixels labelled.

The above three problems could be addressed by training the model with more images of the surround-
ing environments of residences in the Netherlands. This additional training can enhance the model’s
ability to distinguish between similar categories and learn about special categories often appearing in
the urban environment in the Netherlands. Furthermore, the training can equip the model to handle more
complex scenes. Additionally, the trained model might have a higher threshold for labelling categories,
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reducing the instances where it assigns predefined categories to nearly all pixels in images. These po-
tential solutions offer a clear path for improving the model’s performance.

The second key limitation is associated with the non-overlapping property of panoptic segmentation,
which aims to assign a unique label or category to each pixel in the image. This property ensures a clear
and unambiguous assignment of pixels to specific objects or classes and eliminates ambiguous regions
where multiple labels or categories are assigned to the same pixel. However, in instances where there
is a fence with a hollow design, the model may label pixels (e.g., grass) between railings as a fence as
well. The pixels between railings pose a dilemma, as they can be interpreted as both parts of the fence
and grass. Deciding between these two possibilities is challenging even for humans. Importantly, this
issue is not a reflection of the model’s abilities but is instead tied to its inherent properties. Instances
such as fences with hollow designs are infrequently shown in masks, but it is still worth mentioning this
potential issue in the discussion. This highlights a limitation of the model’s current design and suggests
a potential area for future improvement.

5.1.2. Limitations of panoptic segmentation models for quantifying micro-
scale BE features that humans perceive

Applying panoptic segmentationmodels represent a need to predefine categories to be quantified in units
in instances and pixels. Instance-unit and pixel-unit categories present different challenges in panoptic
segmentation models regarding whether they correctly reflect how people quantify micro-scale built
BE features in images. Moreover, classifying BE features into suitable semantic computer vision tasks
for suitable quantified units (pixels or instances) is also a question that worth thinking.

Instance-unit categories
In traditional stated choice experiments, respondents are offered numbers or texts of alternatives and
make choices. It’s easy to perform the discrete choice modelling as the attributes of alternatives are
in numbers and texts. However, the semantic computer vision model in this study is tasked with ex-
tracting information from images and transforming it into numbers. The key question here is whether
this semantic computer vision model can accurately reproduce how people perceive the quantities of
micro-scale BE features in images.

In the middle part on the right side of Figure 5.1a and the left bottom corner of Figure 5.1b, the model
accurately identifies cars of petite sizes. Usually, it should be considered a high-quality mask for cor-
rectly identifying objects that are hard to be identified. However, this also questions whether these
small objects affect people’s decision-making. Participants may not notice these small cars when they
observe these images and make choices. Taking cars occupying a small area into account may signif-
icantly influence the results of choice modelling since the segmentation unit of cars is predefined as
an instance rather than a pixel. This would not be a problem for the pixel-unit categories since their
segmentation results already tell the area occupied in the image.

Therefore, for instance-unit categories, it might be crucial to correctly and effectively capture instances
participating in people’s cognitive processes. This problem needs further research for studies that use
instance segmentation or object detection tasks to quantify instances in images. Establishing a threshold
of the proportion of pixels deemed ”big” enough to qualify as an instance, we can then explore whether
variations in the number of instances have an impact on choice modeling outcomes.
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(a) Image ID: 7 (b) Image ID: 7017

Figure 5.1: Masks that include cars in small sizes

Pixel-unit categories
The pixel-unit categories have their problems with the depth of field. It means that objects located at
different depths within a scene may appear to be the same size in the image due to the effects of perspec-
tive (Forsyth & Ponce, 2002). For instance, if a semantic segmentation model identifies a building and
grass in an image, it should understand that buildings typically have larger physical dimensions than
grass, regardless of their apparent sizes in the image due to perspective. Figure 5.2 shows an example
that grass and buildings have similar proportions of pixels identified: 0.18. However, the actual sizes
of objects may contradict this visual interpretation. Human observers, equipped with contextual knowl-
edge and semantic understanding derived from real-life experiences, can intuitively discern the actual
sizes of objects despite their appearances in the image (B. Zhou et al., 2019). Semantic segmentation
results of buildings and grass in Figure 5.2 are certainly accurate. Nevertheless, the accuracy may not
reflect how people perceive the quantities of buildings and grass, which could affect the results of the
discrete choice modelling. Incorporating depth estimation (i.e., determining the distance of objects from
a camera) into semantic segmentation may be closer to how people quantified pixel-unit categories in
images (Robbins et al., 2022).

Figure 5.2: Image ID: 1020 (grass and building have the similar pixel proportions)
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Classifying BE features into suitable categories
Classifying each micro-scale BE feature into a suitable category (pixel-unit or instance-unit) is a chal-
lenge. The output unit of the semantic computer vision model matters because it relates to how people
perceive and process information when making choices. For instance, people will be aware of tree quan-
tities by the proportion of trees that occupy the image rather than counting how many trees are one by
one since trees represent amorphous regions. On the contrary, cars are more suitable in instance units
since they are easily counted. These are two categories that are easy to classify.

However, it’s important to note that even countable objects can pose challenges when they accumulate
in a region of the image, as illustrated by the bikes in Figure 4.10. In such cases, the suitable unit
for bikes could be a pixel, as people perceive them as amorphous regions. Similarly, street lamps and
traffic lights, although currently classified into pixel-unit categories, may be better quantified in the
unit of instances, as people are often more concerned with their presence or absence. These examples
highlight the need for further experiments to determine the most suitable semantic computer vision tasks
and output units for different BE features.

5.2. Comparison between semantic CV-DCM, lin-add RUM-
MNL and CV-DCM

Table 5.1 presents a comparative analysis of the performance between the benchmark model (Model
0), the semantic CV-DCM developed in this study, and the CV-DCM proposed by van Cranenburgh
and Garrido-Valenzuela (2023). Model 0 includes only cost and time variables in its utility function.
Model 4, exhibiting the best performance, represents the semantic CV-DCM. Model 5 corresponds to
the CV-DCM, encompassing 86 million variables, which include housing costs, travel time and image
embedding that lacks interpretability. The value of time for all four models falls within a reasonable
range, validating their validity (van Cranenburgh & Garrido-Valenzuela, 2023). Additionally, the three
models all include housing costs and travel time, while Models 4 and 5 clearly show higher model
performances than Model 0 since the two models incorporate more variables than Model 0.

Table 5.1: Comparison on model performances between semantic CV-DCM, lin-add RUM-MNL and CV-DCM

Model Name Semantic CV-DCM CV-DCM

Model ID 0 4 5

Number of parameters 2 20 86m

Train dataset Log likelihood -5954 -5644.471 -5724

Rho-square-bar 0.12 0.165 0.156

Test dataset Log likelihood -1194 -1155.079 -1137

Value of Time euro/hour month 216.700 231.042 228.500

Comparing Model 4 and Model 5, while Model 4 still outperforms the training dataset, it exhibits a
lower log likelihood for the test data. The test data is instrumental in evaluating a model’s generaliza-
tion performance after training. The lower log likelihood of the training data for Model 4 suggests that
Model 5 fits the training data more closely, capturing its patterns and relationships. Conversely, the
high log likelihood of the test dataset for Model 4 suggests potential overfitting of the training data.
Model 5, by contrast, demonstrates superior generalization to unseen data, indicating its capability to
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capture underlying patterns without being overly influenced by noise or specific characteristics of the
training set. Model 4’s better performance on the training data may indicate its tendency to memorize
the training set rather than learning the underlying patterns, resulting in poor generalization of the test
data.

The comparison between Model 4 and Model 5 aligns with expectations, given that Model 5 utilizes
a feature map, a deep neural network, to extract the most salient characteristics from images. With
86 million weights, the feature map encompasses a wealth of information from images, surpassing the
quantified micro-scale BE features. However, Model 5’s enhanced predictability comes at the cost of
incorporating numerous parameters lacking behavioural meaning, rendering the analysis of choice be-
haviour by parameters impossible. The comparison between models 4 and 5 exemplifies the advantages
and disadvantages of semantic CV-DCM and CV-DCM, respectively.



6
Conclusion

This study proposes a semantic CV-DCM that can extract information from images by a semantic com-
puter vision model and input the information to traditional discrete model to investigate the impacts of
micro-scale BE features on residential location choice behaviour. The estimated coefficients of choice
modelling tell the influence of different micro-scale BE features on attractiveness of residential neigh-
borhoods, which can provide valuable insights on how to design the appealing residential neighbbor-
hoods in a cost-efficient way regarding the mix and quantities of micro-scale BE features.

6.1. Answers to research questions
Sub-research question 1: What micro-scale BE features are quantified by the semantic computer
vision model?
The selected micro-scale BE features are buildings, grass, roads, skies, trees, sidewalks, plants, street
signs, traffic lights, fences, street lamps, water, fire hydrants, distribution boxes, agricultural land, cars,
motorcycles, bikes, pedestrians, benches, dustbins, boats, and bus stops.

After a review of relevant literature, it becomes evident that studies utilizing virtual tools for quantify-
ing Built Environment (BE) features by human raters encompass a wide array of micro-scale elements.
Human raters can capture intricate details within images, including diverse BE features such as litter
in streets, varying levels of street lighting (car-oriented or pedestrian-oriented), and marked crosswalks.
Furthermore, the assessment criteria employed in these studies exhibit high variability and subjectivity,
ranging from assigning scores to sidewalk continuity (e.g., ”high” or ”low”) to binary indicators (e.g.,
”1” or ”0”) denoting the presence or absence of specific features.

In contrast, studies leveraging semantic computer visionmodels for quantifyingmicro-scale BE features
demonstrate a higher degree of consistency in the features they choose to investigate. These studies fo-
cus on more standardized BE features such as buildings, grass, and roads. While slight variations in the
selected features may exist among different studies, the core set of features remains relatively consistent.
Consequently, these studies serve as valuable references for determining which BE features to select
and quantify.

Given the utilization of a zero-shot computer vision model in this study due to the absence of labelled
training images, selecting frequent features from the SVI dataset is critical. Forming a category list
containing the most prevalent BE features depicted in the images may decide whether the semantic
computer vision model quantifies features accurately. Following a manual review of approximately
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200 images, BE features appearing more than once are identified.

These identified features are then classified into appropriate semantic computer vision tasks based on
their countability. Features that can be counted are categorized as instance-unit categories, such as seg-
mentation tasks. In contrast, those that cannot be counted are designated pixel-unit categories for seman-
tic segmentation tasks. However, specific categories, such as street lamps and traffic lights, pose chal-
lenges in classification due to occupying amorphous regions and their ambiguous countability. Street
lamps, traffic lights, fire hydrants and distribution boxes are classified as pixel-unit categories.

Sub-research question 2: To which extent can the semantic computer vision model accurately
quantify micro-scale BE features?
After evaluating the 400 masks and recording the incorrectly identified pixel proportions and instances
for each mask, the overall segmentation outcomes were found to be satisfactory. This evaluation con-
firms the effectiveness of the PSAM results and holds significant implications for subsequent choice
modeling procedures.

In addition to the numerical results of mask evaluation, the evaluator also documented pertinent ob-
servations about specific BE features during the assessment process. Several issues were noted. For
instance, there were challenges in identifying street lamps in certain scenes. Bus stops were seldom
correctly identified, but semantic-less or unknown regions often labelled as bus stops. Similar diffi-
culties were encountered with distribution boxes. Additionally, the number of instances of bikes was
frequently under-identified. Moreover, different categories of vegetation were often misidentified as
one another. These findings are invaluable for gaining insight into the accuracy of quantification for
various BE features.

It’s evident that the zero-shot model faces limitations in accurately capturing all BE features without
prior training. By having a comprehensive understanding of the accuracy of each BE feature, we can
better interpret the estimated coefficients in choice modeling. On one hand, evaluation of specific cate-
gories can offer explanations if the quantified impacts of certain BE features appear unreasonable. On
the other hand, ensuring that BE features are rarely misquantified enhances the reliability and validity of
their impacts on Residential Location Choice (RLC). This underscores the importance of assessing the
model’s performance on individual BE features to bolster the credibility of choice modeling outcomes.

Sub-research question 3: How domicro-scale BE features and other attributes of residences affect
people’s choice behavior on residential locations?
All pixel-unit categories—water, trees, sky, agricultural land, plants, street lamps, buildings, grass, side-
walks, roads, and fences—exhibit positive coefficients in the choice modelling results. Comparing the
magnitudes of these coefficients reveals the positive contribution of one pixel for each pixel-unit cate-
gory to the attractiveness of residential neighbourhoods.

Among the pixel-unit categories, water and trees emerge as the most influential factors in RLC, fol-
lowed by plants, agricultural land, and grass, which have similar coefficient values. However, due to
challenges in the PSAM’s differentiation of plants, grass, and agricultural land, it is difficult to rank
their impacts conclusively.

Street lamps indicate safety and have a relatively high impact on RLC, reflecting residents’ safety con-
cerns. Fences, symbolizing order and territory, have the lowest positive impact on RLC. These two
features are quantified with relatively low robust standard errors, indicating reliable measurements.
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The choice modelling results show positive and negative coefficients for the instance-unit categories.
Among these categories (dustbin, boat, bike, bus stop, motorcycle), dustbins represent convenience and
demonstrate the highest positive impact on RLC. Adding one dustbin makes residences more attractive
than adding one instance of any other instance-unit category. Boats also show relatively high impacts
on RLC, indicating residents’ preferences for waterfront properties.

On the other hand, bikes, bus stops, and motorcycles negatively influence RLC, reflecting that their
presence makes residences less attractive. Despite these negative coefficients, determining the exact
values of their negative influence on RLC is challenging. This difficulty arises from the high robust
standard error associated with motorcycles and the infrequent correct identification of bus stops. In
contrast, bikes may be identified accurately, but their quantization is often less than the actual instances
in images.

In terms of other attributes, both the mean lightness and the standard deviation of saturation significantly
enhance residential attractiveness, as expected. Brighter and more varied color saturation in an area
likely makes it more visually appealing to residents. Additionally, the winter season has a negative
impact onRLC,which is understandable. Images inwinter typically showwithering landscapes, making
residences less attractive during this time. Furthermore, influences of housing costs and travel time align
with expectations, as higher housing costs strain financial resources, and longer travel times reduce
convenience and quality of life. Both factors make a location less desirable for potential residents.

6.2. Contributions
The contributions of this study can be divided into scientific and practical ones. The scientific contri-
bution is as follows:

• The proposed semantic CV-DCM represents the first application of panoptic segmentation mod-
els as inputs for choice modelling. Specifically, panoptic segmentation models are utilized to
appropriately categorize diverse micro-scale BE features. These models combine instance seg-
mentation, which identifies individual objects, and semantic segmentation, which classifies each
pixel into a category. This approach ensures that each micro-scale BE feature is assigned to a
suitable category (i.e., instance-unit and pixel-unit categories), enhancing the accuracy and rele-
vance of the choice modelling process.

• This thesis contributes significantly by addressing the common limitations in applying pre-trained
computer vision models for choice modelling. Unlike previous studies that use these models
without evaluating the accuracy of the generated masks or the overall performance on their spe-
cific datasets, this research rigorously assesses these aspects. Doing so clarifies whether the
accuracies reported for pre-trained models hold when applied to new datasets. Additionally, the
detailed analysis of specific categories during mask evaluation provides valuable insights into
the actual accuracies of different categories, enhancing the interpretation of estimated coeffi-
cients in choice modelling. This thorough evaluation ensures a more reliable and accurate use
of semantic computer vision models in understanding and predicting residential location choices.

• The proposed semantic CV-DCM, including a panoptic segmentation model, mask evaluation,
and discrete choice model, is a pipeline that can be applied in other research directions. The
research can be any studying contexts that require quantifying categories in images and studying
their impacts on choice behaviour.

The practical contribution is as follows:
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• This thesis makes a significant contribution by exploring the primarily overlooked area of RLC
in relation to micro-scale BE features. While existing studies have focused on the correlation be-
tween physical and mental health and micro-scale BE features or the impact of these features on
perceptions using datasets like Place Pulse 2.0, they fall short of providing comprehensive guid-
ance on designing appealing BE near residences. This research bridges that gap by integrating
the quantification of micro-scale BE features with Street View Imagery (SVI) and stated choice
datasets. The findings reveal the specific impacts of these features on RLC, offering valuable
insights for urban planners. By identifying the most influential elements, the study enables cost-
effective restructuring of residential neighbourhoods to enhance their attractiveness and improve
residents’ well-being.

• This thesis provides guidance for policymakers and urban planners on enhancing residential
neighbourhood attractiveness. Positive micro-scale BE features identified include water, trees,
plants, agricultural land, grass, and street lamps, significantly boosting neighbourhood appeal.
Water, in particular, has the highest positive impact on RLC, indicating that integrating water
features such as lakes, rivers, ponds, and canals can greatly enhance neighbourhood desirabil-
ity. This finding is reinforced by the positive influence of boats on RLC. Besides, trees have
the strongest influence on RLC among all vegetation types, so urban planners may prioritize
maintaining trees. Additionally, dustbins positively influence attractiveness, highlighting the
importance of ensuring convenient waste management facilities.

• On the other hand, bikes and motorcycles have a negative impact on RLC. Policymakers should
tackle these issues by strategically managing or reducing the presence of these features. For ex-
ample, enhancing bike storage solutions and regulating motorcycle parking can alleviate their
negative effects. By concentrating on increasing positive BE features, particularly water ele-
ments, and addressing the negative ones, urban planners can fashionmore desirable and attractive
residential areas, thereby enhancing the overall quality of life for residents.

6.3. Limitations and recommendations
Feature selection
Most studies utilizing semantic computer vision models for upstream tasks rely on closed-vocabulary
and zero-shot (pre-trained) models. Selecting relevant categories that are aligned with the study context
and frequently occurring in the local dataset is crucial. However, determining relevance and frequency
can be challenging. Including too many irrelevant or infrequent categories may reduce the accuracy
of quantified BE features. However, it may not affect the choice modelling results significantly. It is
worth experimenting with several category lists, including different BE features, and running the se-
mantic CV-DCM to see if the final results of choice modelling differ significantly.

Training the semantic computer vision model with local datasets
Several limitations affect the PSAM’s performance in quantifying micro-scale BE features, as outlined
in section 5.1.1. These limitations could be mitigated by enriching the model’s training dataset with im-
ages depicting the surrounding environments of residences in the Netherlands. This additional training
could improve the model’s capacity to differentiate between similar categories and familiarize it with
unique categories commonly found in the Dutch urban landscape. Moreover, expanded training could
enable the model to handle more intricate scenes. The trained model might also adopt a higher thresh-
old for labelling categories, reducing instances where it over-assigns predefined categories to pixels.
These potential solutions provide a clear pathway for enhancing the model’s performance and improv-
ing recognition, particularly for challenging categories like bus stops.
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Depth of field of pixel-unit categories
Depth of field refers to the phenomenon where objects situated at varying depths within a scene may
appear to be of similar size in an image, owing to perspective effects. To faithfully reproduce how
individuals perceive object sizes in images, semantic segmentation algorithms must not solely account
for geometric attributes but also consider semantic meanings and contextual relationships within the
scene. Alternatively, integrating depth estimation (measure the distance between the object and the
camera) with semantic segmentation could aid in correcting the sizes of pixel-unit categories to align
more closely with human perception of objects in images.

Small objects for instance-unit categories
For instance-unit categories, particular small objects may be accurately identified by the model, al-
though they could be too insignificant to influence human cognitive processes significantly. This issue
warrants further investigation. For instance, by establishing multiple threshold values determining the
proportion of pixels considered ”significant” enough to qualify as an instance, we can assess whether
fluctuations in the number of instances affect choice modelling results and identify the threshold that
yields optimal fit for choice modelling. Alternatively, employing semantic segmentation to measure
the sizes of instance-unit categories, as demonstrated in Y. Zhang et al. (2023), presents another viable
approach.

Appropriate semantic computer vision tasks for different micro-scale BE features
Determining the appropriate categorization (pixel-unit or instance-unit) for each micro-scale BE feature
is critical. The choice of output unit from the semantic computer vision model is pivotal as it influences
how individuals perceive and interpret information during decision-making processes. Some categories
may benefit from a different unit than initially expected. For example, given the relatively small size of
bikes compared to other instance-unit categories, semantic segmentation and quantifying their spatial
extent might yield more precise results. Exploring which unit of measurement for categories aligns
more closely with human perception of quantity is worthy of further investigation.

Heterogeneity
While this study has not accounted for individual heterogeneity, it’s essential to recognize that prefer-
ences for residential neighborhoods can vary significantly among different demographic groups (Ramírez
et al., 2021). Investigating the influence of micro-scale BE features on RLC across diverse demographic
segments could provide valuable insights. By understanding how different groups prioritize various
neighborhood attributes, urban planners can develop more tailored policies for neighborhood design in
different regions, catering to the specific preferences of predominant demographic groups.

Non-linear choice modelling
The micro-scale BE features are assumed to exert a linear additive influence on people’s choices. How-
ever, it is essential to acknowledge that this assumption may not always hold in real-world scenarios.
There is a possibility that the relationships between micro-scale BE features and residential location
choices are not linear additive but rather exhibit non-linear patterns. Therefore, exploring non-linear
choice modelling approaches to uncover potential non-linear relationships between micro-scale BE fea-
tures and choice behaviour is worthwhile. This could provide a novel understanding of how different
BE features interact and influence individuals’ decisions regarding residential location.

Interactions between micro-scale BE fetures
This thesis primarily examines the individual impacts of quantified BE features, overlooking their po-
tential interacting effects. For instance, the spatial arrangement or relationship between specific BE
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features within a neighbourhood could significantly influence people’s choices in varying ways. Ad-
ditionally, combining multiple BE features to create new variables, such as the concept of enclosure
proposed by Meng et al. (2024), could be vital for understanding public sentiment and its impact on
residential preferences. Therefore, future research should consider exploring the interactions between
different BE features and investigating the creation of composite variables to capture more detailed
neighbourhood characteristics instead of only single impacts of quantified BE features.

Find the micro-scale BE features influencing RLC by Explainable AI
The semantic CV-DCM assumes predetermined micro-scale BE features influence people’s choices
based on their quantified quantities. However, another approach, Explainable AI, takes a reverse stance
by identifying regions in images that contribute most to the attractiveness of residences. From there, it
deduces the underlying micro-scale BE features responsible for these appealing aspects. This method-
ology offers a complementary perspective, allowing a more complete understanding of how specific
features influence residential preferences.
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