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Abstract

We consider an ad-hoc network of wireless sensors that harvest energy from
the environment and broadcasts measurements independently, at random,
provided sufficient energy is available. Clients arriving at the network are
interested in retrieving measurements from an arbitrary set of sensors of some
fixed size s. We show that the sensors broadcast measurements according
to a phase-type distribution. We determine the probability distribution of
the time needed for a client to retrieve s sensor measurements. We provide
a closed-form expression for the retrieval time of s sensor measurements for
an asymptotically large capacity of the sensor battery or the rate at which
energy is harvested. We also analyze numerically the retrieval time of s sensor
measurements under various assumptions regarding the battery capacity of
the sensors, the energy harvesting and consumption processes. The results
provide a lower bound for the energy storage capacity of the sensors for which
the retrieval time of measurements is below a targeted level. It is also shown
that the ratio between the energy harvesting rate and the broadcasting rate
significantly influences the retrieval time of measurements, whereas deploying
sensors with large batteries does not significantly reduce the retrieval time
of measurements. Numerical experiments also indicate that our theoretical
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results generalize to non-identical energy harvesting rates, various amount of
energy consumed upon a broadcast and non-exponential distributions of the
energy harvesting and broadcasting processes.

Keywords: wireless sensor networks, energy harvesting, data retrieval
time, phase-type distribution, order statistics

1. Introduction

This paper considers the problem of retrieving measurements from an
ad-hoc wireless sensor network. The measurements should originate from an
arbitrary set of sensors, where the size of the set is predefined and fixed. The
sensors harvest energy from the environment independently of the other sen-
sors and at random points in time. This reflects the stochastic nature of the
availability of the energy source. We further assume that the sensors store
their energy in batteries of limited capacity. When sensors have energy, they
broadcasts measurements in a distributed manner. A broadcast implies en-
ergy consumption for the broadcasting sensor. Clients arrive at the network
at random points in time and are interested in retrieving measurements from
an arbitrary set of sensors. The size of the set is fixed and is considered to
be the minimum number of measurements needed to compute an aggregate.
Examples of applications are the case of sensors that estimate their position
by combining several relative position measurements between themselves and
the other sensors [1] or the case of users that obtain a reliable estimate of an
attribute by combining noisy measurements from several sensors [2].

We determine the probability distribution of the time to retrieve mea-
surements from an arbitrary set of sensors of fixed size. We also analyze the
retrieval time of measurements when the capacity of the sensor battery or
the rate at which energy is harvested are asymptotically large. These results
show the impact of the energy availability, as well as the energy storage ca-
pabilities, on the process of measurement retrieval from an ad-hoc wireless
sensor network with distributed data transmissions.

Energy harvesting for wireless communications has received significant
attention in the last decade [3]. Energy harvesting brings new dimensions
to the wireless communications problem in the form of intermittency and
randomness of available energy [4]. Many authors have considered energy
harvesting communication systems from the viewpoint of the communica-
tion channel of a single-transmitter to a single-receiver. For example, [5]
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studies the minimization of the time to transmit a fixed number of bits us-
ing an Additive White Gaussian Noise (AWGN) broadcast channel. Here,
a single transmitter harvests energy and has a finite-capacity rechargeable
battery. In [6] optimal transmission policies are derived to specify whether
to transmit incoming data packets or to drop them. The policies are derived
based on a value attached to each packet and on the energy available at
a single transmitter. The energy arrival process is assumed to be known in
advance, in an offline manner. In [7] a general framework is provided to max-
imize the amount of transmitted data by a given deadline when the battery
of the transmitter suffers from energy leakage, under similar conditions. In
[8, 9, 10] dynamic programming is employed to determine an optimal energy
allocation policy over a finite horizon so that the number of transmitted bits
is maximized.

Significant research has been conducted in the area of information the-
ory, with a focus on impairments in the communication channel such as
white noise, fading and interference. In [11, 12] the minimization of the
time to transmit a fixed number of bits using an Additive White Gaussian
Noise (AWGN) broadcast channel is considered. However, the energy ar-
rival process is assumed to be known in advance, in an offline manner. In
[13, 14] the process of energy harvesting is stochastic. However, in these
references centralized transmission policies that minimize the mean delay of
data transmission are derived. In [14], the average delay of data packets
arriving according to a Poisson process at a single transmitter is considered.

The problem of maximizing the amount of data transmitted within a
fixed time window is considered in [7, 8, 9, 10]. In [15], the probability
of successful reception of data packets and the energy cost per transmitted
packet are determined for energy harvesting devices that broadcast using non-
perfect transmission channels. The authors propose an erasure-based broad-
cast scheme to guarantee reliable transmissions. In [16] a game-theoretical
approach is used to dynamically adjust the transmission power of sensors so
that efficient use is made of the harvested energy. Such transmission poli-
cies require central coordination and, thus, may be difficult to implement for
some ad-hoc wireless sensor networks. An interesting alternative viewpoint
is taken in [17]. Power-neutral operations are proposed, where the instan-
taneous power consumption of the system must match the instantaneous
harvested power (corresponding to very low energy storage capacity). Here,
the focus is on processing and not on communications.

This paper contributes in the following way. Complementary to stud-
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ies focusing on communication channel aspects, we further develop queueing
theory in order to find analytical expressions describing fundamental per-
formance trade-offs of an energy harvesting system, focusing on the impact
of the energy harvesting process on the overall system (as opposed to only
the communication channel). We analyze the time to retrieve measurements
from a network of sensors (as opposed to a single source), with energy arriv-
ing according to a stochastic energy arrival process (not known in advance)
to recharge the sensor batteries. Sensors transmit using a distributed (as
opposed to centralized) protocol. Here a randomly arriving receiver needs
to receive multiple distinct measurements (as opposed to a single measure-
ment). We provide a formal analysis. Our viewpoint allows us to provide
closed-form expressions for finite battery capacities, which, according to [4], is
an important open research problem. We also conduct discrete event simula-
tions for general energy harvesting and consumption models. The simulation
results indicate that our theoretical results generalize to non-identical energy
harvesting rates, various amount of energy consumed upon a broadcasting
and non-exponential distributions for the energy harvesting and consumption
processes. Overall, this work provides a formal theoretical support for the
design of applications for ad-hoc sensor networks addressing the impact of en-
ergy arrival rate and storage capacity on the retrieval time of measurements
under a distributed data transmission policy.

The remainder of this paper is organized as follows. In Section 2 we for-
mulate the model and the problem statement. In Section 3 we determine
the distribution of the time for a client to retrieve measurements from an
arbitrary set of sensors of fixed size. We also determine the retrieval time of
measurements when the rate at which energy is harvested and the maximum
capacity of the sensor batteries are asymptotically large. We also conduct
discrete event simulations to complement our numerical results and to inves-
tigate general energy harvesting and consumption models. In Section 4 we
numerically compute the retrieval time of measurements from an arbitrary
set of sensors of fixed size under various assumptions regarding the energy
harvesting and consumption models. In Section 5 we discuss the results and
provide conclusions.

2. Model and Problem Statement

We consider an ad-hoc network of N wireless sensors. Each sensor har-
vests one unit of energy from the environment at an exponential rate λe,
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independently of the other sensors. Sensors have a maximum storage ca-
pacity of B energy units. When the harvested energy exceeds the storage
capacity of the battery, the excessive energy is discarded.

Each sensor broadcasts a measurement at an exponential rate µ/N , inde-
pendently of the other sensors. Clearly, a sensor broadcasts a measurement
only if it has energy. Upon a broadcast, the energy of the broadcasting sen-
sor decreases by one unit. The assumption that each sensor broadcasts at an
exponential rate µ/N could be interpreted as the situation when the entire
network of sensors broadcasts measurements at an exponential rate µ and
this rate is shared uniformly among the N sensors of the network. Also,
for simplicity, the energy of a sensor is assumed to decrease or increase by
one unit upon a broadcast and an additional energy harvest, respectively.
However, similar techniques as in this paper can be employed for the case
of general rates at which the energy of a sensor varies due to broadcasts or
additional energy harvests.

Clients arrive at the sensor network according to a Poisson process with
rate λa. Each client waits until receiving 1 ≤ s ≤ N measurements from an
arbitrary set of sensors. Each measurement should originate from a distinct
sensor. Based on the retrieved set of measurements, each client computes an
aggregate. Upon a sensor broadcast, all clients present in the system receive
the broadcasted measurement simultaneously. The clients leave the system
as soon as they acquire s measurements.

We are interested in the time, denoted by Ws, for a client to retrieve s
measurements from an arbitrary set of sensors of size s.

Lastly, we introduce some notation that will be useful when working with
phase-type distributions. Let e be a column vector with all unit entries for
which the dimensions are determined by the context. Let Ik denote the k×k
identity matrix. For n × n matrix M1 and m ×m matrix M2, let M1 ⊗M2

denote the Kronecker product of matrices M1 and M2 and let M1⊕M2 denote
their Kronecker sum, i.e., M1 ⊕M2 = M1 ⊗ Im + In ⊗M2. Finally, let M⊗n

and M⊕n denote the n-fold Kronecker product and the n-fold Kronecker sum
with itself, respectively.

3. Analysis

In this section we first determine the distribution of the time for a single
sensor to broadcast, given that the system is in steady-state. We show that
this is a phase-type distribution. Using these results, we then determine the
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distribution of Ws. Lastly, we compute the E[Ws] for asymptotically large
B, the maximum capacity of the sensor batteries, and λe, the rate at which
a sensor harvests energy from the environment.

3.1. A single sensor

Firstly, we consider the steady-state probability that an arbitrary sensor
has i units of energy, 0 ≤ i ≤ B, which we denote by νi. The evolution of
the units of energy at a sensor follows a Birth-and-Death model with a finite
state space {0, 1, . . . , B} with births at rate λe and deaths at rate µ/N . For
the special case λe = µ/N , we denote the steady state probability that an
arbitrary sensor has i units of energy by ν̄i, 0 ≤ i ≤ B. The steady-state
distribution of this model is well known in literature (see, for instance, [18])
and is, thus, stated below without proof .

Lemma 1. The steady-state probability for an arbitrary sensor to have i
units of energy, 0 ≤ i ≤ B, is:

νi =

ν̄0, if λe = µ/N

ν0

(
λeN
µ

)i
, otherwise,

(1)

where ν0 = (λeN/µ− 1)/((λeN/µ)B+1 − 1) and ν̄0 = 1/(B + 1).

Note that in the above ν0 (ν̄0 if λe = µ/N) is the probability that the
battery of a sensor is depleted.

Next, we consider W , which denotes the time until an arbitrary sensor
broadcasts, given that the system is in steady-state. Based on W , we com-
pute the distribution of Ws by observing that, upon arrival, a client sees the
steady-state energy available at the sensor [19]. This is valid since the sensors
operate independently of the arrivals of the clients and since the clients arrive
according to a Poisson process, and, thus, see the system in steady-state.

Observing that the evolution of the energy at an arbitrary sensor follows
a continuous-time Markov process, the distribution of W can be modeled as a
phase-type distribution as follows. Consider a continuous-time Markov chain
with B + 2 states. The state i ∈ {0, 1, . . . , B} is transient and corresponds
to a sensor having i units of energy. The (B + 2)−th state is an absorbing
state. This state is reached when the sensor broadcasts a measurement. At
an exponential rate λe, a jump occurs from state i to state i+ 1, 0 ≤ i < B.
This corresponds to the sensor harvesting an additional unit of energy. At
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an exponential rate µ/N , a transition occurs from state 1 ≤ i ≤ B to the
absorbing state. This corresponds to a broadcast. Let the initial distribution
over the transient states be νi (ν̄i if λe = µ/N), as described in Lemma 1.
Then, the time until absorption is W , as desired.

To this end, we simplify the model by observing that in the above descrip-
tion, the states 1 to B can be aggregated into a single transient state, which
we denote by 1. There is a transition from state 0 to this aggregated state
1 at rate λe and there is a single outgoing transition from this aggregated
state 1 to the absorbing state at rate µ/N . Below, we give the formal repre-
sentation of this phase-type distribution as (a, T ) and specify the row vector
a and the matrix T . Given this representation as a phase-type distribution,
we immediately obtain P(W ≤ t) = 1−aeTte. In this case, however, since T
has a simple structure, we also obtain the distribution function in an explicit
form. This yields the following result.

Lemma 2. The distribution of W is phase-type (a, T ), where

a =


[
ν̄0 1− ν̄0

]
, if λe = µ/N

[
ν0 1− ν0

]
, otherwise.

T =

[
−λe λe

0 −µ/N

]
. (2)

The distribution function of W can be expressed as

P(W ≤ t) =

{
1− e−λet − λete−λetν̄0, if λe = µ/N

1− e− µ
N
t +

µ
N

µ
N
−λeν0

(
e−

µ
N
t − e−λet

)
, otherwise.

(3)

Proof. The representation in (2) follows from the discussion above and Lemma
1. Equation (3) is obtained by observing that, given that the system is in
state 0, which happens with probability ν0 (probability ν̄0 if λe = µ/N),
the distribution of W is given by the sum of two exponentially distributed
random variables with parameters µ/N and λe (if λe = µ/N , then W is
Erlang(2, λe) distributed). Given that the system is in the aggregated state
1, which happens with probability 1− ν0 ( if λe = µ/N , 1− ν̄0), the distri-
bution of W is given by an exponentially distributed random variable with
parameter µ/N (parameter λe if λe = µ/N). Therefore,

P(W ≤ t)=

{
(1− e−λet − λete−λet)ν̄0 + (1− e−λet)(1− ν̄0), if λe = µ/N(
1−

µ
N

µ
N
−λe e

−λet+ λe
µ
N
−λe e

− µ
N
t
)
ν0+(1−e− µ

N
t)(1−ν0), otherwise.
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Equation (3) follows directly from the above expression.

Observation 1: For the general case when 0 < l ≤ B units of energy are
harvested by an arbitrary sensor at an exponential rate λe, the same reason-
ing as above holds. It only remains to derive the steady state probability
that an arbitrary sensor has i units of energy, which requires solving the
balance equations of the continuous-time Markov chain which characterizes
this system.
Observation 2: For the general case when 0 < k ≤ B units of energy
are consumed by an arbitrary sensor upon a broadcast, the same reasoning
as above holds with the observation that, letting ν

(k)
i denotes the steady

state probability that a sensor has i units of energy, the distribution of W is
phase-type (a(k), T (k)), where

a(k) =
[
ν

(k)
0 ν

(k)
1 . . . ν

(k)
k−1 1−

∑k−1
i=0 νi

]
, (4)

T (k) =



0 1 2 . . . k − 1 k

0 −λe λe 0 0 0 0
1 0 λe −λe 0 0 0
2 0 0 λe −λe 0 0
. . . . . . . . . . . . . . . . . . . . .
k − 1 0 0 0 0 λe −λe
k 0 0 0 0 0 −µ/N

. (5)

For reasons of simplicity of notation and tractability of analytical results,
in the following we will consider the case where l = k = 1.

3.2. Distribution of Ws

In this section, we determine the distribution of Ws. This result is general
in the sense that the distribution of W can be expressed for a general energy
harvesting and broadcasting process modeled as a phase-type distribution
with a general representation (a, T ).

Theorem 1. The distribution of Ws is:

P(Ws ≤ t)=1−
s−1∑
j=0

(
N

j

)( j∑
k=0

(
j

k

)
(−1)j−ka⊗(N−K) exp

(
tT⊕(N−k)

)
e

)
.
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Proof. Recall that a client leaves the system as soon as it retrieves s mea-
surements. Thus, we need to compute the distribution of the time between
the moment a client arrives at the network and the moment when the s-th
broadcast occurs, all s broadcasts originating from distinct sensors. This can
be seen as the distribution of the s-th order statistic of N phase-type dis-
tributed random variables with representation (a, T ), as introduced above.
The distribution of the s-th order statistic (see, for instance, [20]), for N
variables, is

P(Ws ≤ t) =
N∑
j=s

(
N

j

)
P(W ≤ t)j(P(W > t))N−j. (6)

= 1−
s−1∑
j=0

(
N

j

)
(1− P(W > t))j (P(W > t))N−j

= 1−
s−1∑
j=0

(
N

j

)( j∑
k=0

(
j

k

)
(−1)j−kP(W > t)j−k

)
(P(W > t))N−j

(7)

= 1−
s−1∑
j=0

(
N

j

)( j∑
k=0

(
j

k

)
(−1)j−kP(W > t)N−k

)
, (8)

where in (7) we expanded the polynomial (1− P(W > t))j.
Now, observe that the distribution of P(W > t)N−k in (8) is:

P(W > t)N−k = P(min{Y1, Y2, . . . , YN−k} > t), (9)

where the Yi, 1 ≤ i ≤ N−k are i.i.d. phase-type distributed random variables
with representation (a, T ). Therefore, P(W > t)N−k is the first order statis-
tic of a phase-type distributed random variable for which it is well known
(see, for instance, [21]) that it is phase-type distributed with representation
(a⊗(N−k), T⊕(N−k)). The result follows directly by inserting the distribution
function of this phase-type distribution into (8).

We are next interested in determining E[Ws]. In principle, E[Ws] can be
obtained directly from Theorem 1. However, the moments of order statistics
of phase-type distributed random variables are known in the literature [22].
Therefore, we will resort to the results from [22]. Let mk

s denote the k-
th moment of the s-th order statistic of N phase-type distributed random
variables with representation (a, T ).
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Theorem 2. [22, Thm 4.1]

mk
s = mk

s−1 +
s∑
j=1

(−1)j−1

(
N − s+ j

j − 1

)
L

(k)
N−s+j,

where L
(k)
j =

(
N
j

)
(−1)kk! (a⊗j) (T⊕j)

−k
e, 1 ≤ j ≤ s, and mk

0 = 0.

Taking k = 1, E[Ws] can be computed from Theorem 2.

3.3. Expected retrieval time of s sensor measurements

Using Theorem 2 together with the results of Lemma 2 and Theorem
1, we can now compute E[Ws]. However, this approach involves computing
the matrices T⊗j, where j takes values up to N . The dimension of T⊗N is
2N × 2N . Therefore, the complexity of these computations is exponentially
increasing in N . Since we are interested in the behaviour of the system for
arbitrary large values of N , in this section we derive an expression for E[Ws]
that has at most polynomial complexity in all model parameters.

Theorem 3. The expected time for a client to retrieve s measurements from
arbitrary s different sensors is:

E[Ws]=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

N−k∑
v=0

(
N − k
v

)

·
(

ωv(1− ω)N−k−v

λe(N − k − v)+ µ
N
v
1λe 6= µ

N
+
ν̄N−k−v0 Γ(N − k − v + 1)

λe(N − k)N−k−v+1
1λe= µ

N

)
,

where ω = 1− ν0

µ
N

µ
N
−λe .

Proof. The expected retrieval time for s measurements from distinct sensors
can be expressed using Theorem 1 and Lemma 2 as follows.

E[Ws]=

∫ ∞
0

P(Ws > t)dt =
s−1∑
j=0

(
N

j

)∫ ∞
0

(
j∑

k=0

(
j

k

)
(−1)j−k(P(W > t))N−k

)
dt,

(10)

where (10) follows from the derivations in (8).
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i) Case λe = µ/N .

E[Ws]=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

∫ ∞
0

(e−λet + ν̄0λete
−λet)N−kdt (11)

=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

∫ ∞
0

N−k∑
v=0

(
N − k
v

)
(e−λet)v(ν̄0λete

−λet)N−k−vdt

=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

N−k∑
v=0

(
N − k
v

)
(λeν̄0)N−k−v

∫ ∞
0

e−λet(N−k)tN−k−vdt

=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

N−k∑
v=0

(
N − k
v

)
(λeν̄0)N−k−v

Γ(N − k − v + 1)

(λe(N − k))N−k−v+1
,

(12)

where (11) follows from Lemma 2 and (12) follows from multiplying by
Γ(N−k−v+1)(λe(N−k))N−k−v+1

Γ(N−k−v+1)(λe(N−k))N−k−v+1 and from
∫∞

0
(λe(N−k))N−k−v+1tN−k−ve−λet(N−k)

Γ(N−k−v+1)
dt = 1

since we integrate over the pdf of an Erlang(N − k − v + 1, λe(N − k))
distributed random variable. The result follows.

ii) Case λe 6= µ/N .

E[Ws]

=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

∫ ∞
0

(
ωe−

µ
N
t + (1− ω)e−λet

)N−k
dt (13)

=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

∫ ∞
0

N−k∑
v=0

(
N − k
v

)(
ωe−

µ
N
t
)v(

(1− ω)e−λet
)N−k−v

dt

=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

N−k∑
v=0

(
N − k
v

)
ωv(1− ω)N−k−v

∫ ∞
0

e−
µ
N
tv
(
e−λet

)N−k−v
dt

=
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

N−k∑
v=0

(
N − k
v

)
ωv(1− ω)N−k−v

λe(N − k − v) + µ
N
v
, (14)

where (13) follows from Lemma 2, where we denoted by ω = 1−ν0

µ
N

µ
N
−λe and,

thus, P(W > t) = ωe−
µ
N
t + (1− ω)e−λet.
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3.4. Asymptotic analysis of E[Ws]

In this section we determine E[Ws] for both asymptotically large rate of
energy harvesting and capacity of the sensor battery. First, we introduce the
following lemma.

Lemma 3. For any 0 ≤ j ≤ s, j ∈ N,(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

N − j
N − k

= 1. (15)

Proof. This proof follows from induction on j. It is easy to see that (15)
holds for j = 0. We assume that (15) holds for some j > 0. We next show
that (15) holds for j + 1.(

N

j + 1

) j+1∑
k=0

(
j + 1

k

)
(−1)j+1−kN − (j + 1)

N − k

=

(
N

j + 1

) j+1∑
k=0

(
j + 1

k

)
(−1)j+1−kN − k + k − (j + 1)

N − k

=

(
N

j + 1

)j+1∑
k=0

(
j + 1

k

)
(−1)j+1−k1k+

(
N

j + 1

)j+1∑
k=0

(
j + 1

k

)
(−1)j+1−k k − j − 1

N − k

= 0 +

(
N

j + 1

) j+1∑
k=0

(
j + 1

k

)
(−1)j+1−k−1 (j + 1)− k

N − k

=

(
N

j + 1

) j∑
k=0

(
j + 1

k

)
(−1)j−k

(j + 1)− k
N − k

=

(
N

j + 1

)
(j + 1)

j∑
k=0

j!

k!(j + 1− k − 1)!
(−1)j−k

1

N − k

=

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

N − j
N − k

= 1,

where the last equality follows from the induction hypothesis.
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Theorem 4. For 1 ≤ N <∞, 1 ≤ s ≤ N and 0 < B <∞,

lim
λe→∞

E[Ws] =
s−1∑
j=0

1
µ
N

(N − j)
.

Proof. Taking λe →∞ in Theorem 3, we have that

lim
λe→∞

E[Ws] =
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

1
µ
N

(N − k)
,

where we make the observation that ν0 → 0, ω → 1 as λe →∞ and the terms

in
∑N−k

v=0

(
N−k
v

) ωv(1−ω)N−k−v

λe(N−k−v)+ µ
N
v

tend to zero except for the case when v = N−k.

The result now follows by multiplying by N−j
N−k

N−k
N−j and from Lemma 3.

We next consider the situation when the capacity of the sensors to store
energy in the battery is asymptotically large.

For λe < µ/N and B → ∞, the battery of a sensor is most of the time
empty as the rate at which this sensor receives energy is lower than the rate
at which this sensor broadcasts. As a consequence, in this case, the waiting
time for a client to retrieve s measurements from distinct sensors largely
depends on λe, which supports the broadcasting process. For λe > µ/N and
B →∞, a sensor has most of the time energy for broadcasting since the rate
at which it harvests energy is higher than the rate at which it broadcasts.
In this case, the waiting time for a client to retrieve s measurements from
distinct sensors depends on the broadcasting rate µ/N .

Theorem 5. For 1 ≤ N <∞, 1 ≤ s ≤ N and 0 < λe <∞,

lim
B→∞

E[Ws] =



s−1∑
j=0

1

λe(N − j)
, λe <

µ
N

s−1∑
j=0

1
µ
N

(N − j)
, λe ≥ µ

N
.

Proof. We first consider the case λe < µ/N . Then, from Lemma 1, it follows
that limB→∞ ν0 = 1 − λe

µ/N
and, thus, limB→∞ ω = 0. Using this result in

Theorem 3 we have that

lim
B→∞

E[Ws] =
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

1

λe(N − k)
.

13



The result follows by multiplying by N−j
N−j and from Lemma 3.

We next consider the case λe ≥ µ/N . Then limB→∞ ν0 = 0 and, thus,
limB→∞ ω = 1. Using this result in Theorem 3 we have that

lim
B→∞

E[Ws] =
s−1∑
j=0

(
N

j

) j∑
k=0

(
j

k

)
(−1)j−k

1
µ
N

(N − k)
.

Again, the result follows by multiplying by N−j
N−j and from Lemma 3.

We next make the following simple observation regarding the waiting time
of an arbitrary clients when the size of the network is arbitrarily large.

Lemma 4. For any s > 0 and λe 6= µ/N ,

lim
N→∞

E[Ws] =
s

µ
.

Proof. From Lemma 1, limN→∞ ν0 = 0. Thus, the sensors always have energy
for broadcasting. As a result, at an exponential rate µ, a broadcast occurs.
Moreover, the probability that any s consecutive broadcasts are from distinct
sensors, tends to 1 as N → ∞. Thus, a client waits for an expected period
of s · 1/µ to retrieve s measurements.

4. Numerical results

In this section we analyze numerically the expected time for a client to
retrieve measurements from arbitrary s sensors under various assumptions
concerning the size of the network, the capacity of the sensor battery, the
energy harvesting and the broadcasting processes.

4.1. Size of the sensor network

Figures 1a and 1b show E[Ws] under various N , the size of the sensor
network. The results are obtained analytically, following the derivations in
Section 3.3. Figures 1a and 1b also show that the result in Lemma 4 is
exhibited already for networks of size 500 sensors, where the expected time
is well approximated by s/µ = 25.

Figure 1a considers the case when λe ≥ µ/N , whereas Figure 1b considers
the case when λe < µ/N . When λe > µ/N , it is expected that most of the
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(b) λe = 0.001, µ = 0.4, s = 10.

Figure 1: Theoretical results: E[Ws] under various N , the size of the sensor network.

time the batteries of the sensors have energy. If λe < µ/N , the batteries are
expected to be empty most of the time. This explains the fact that E[Ws]
takes lower values in Figure 1a than in Figure 1b.

Figures 1a and 1b also show as N increases, E[Ws] decreases. The reason
is that, as N increases, the probability that at least one sensor has energy
to broadcast a useful measurement, increases. Thus, it is expected that
clients wait less to retrieve s measurements. Figures 1a and 1b show that,
for a fixed λe, if B is increased, then E[Ws] decreases. This is because as
B increases, more energy can be collected, which enables broadcasts. The
results also indicate the minimum battery capacity of a sensor such that
the retrieval time of s measurements remains below a targeted level, given a
fixed N . Equally important, Figures 1a and 1b indicate that large battery
sizes do not lead to a significant decrease in the expected time to retrieve
measurements. We further investigate this observation in Figure 3.

We also conducted discrete-event simulations to support the theoretical
results for various sizes of sensor networks. Figure 2 shows that the simulation
results coincide with the theoretical results.

4.2. Maximum battery capacities

Figure 3 shows E[Ws] for various B, the battery capacity of a sensor, and
for various λe, the rate at which sensors harvest energy from the environment.
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(a) λe = 0.2, µ = 0.4, s = 10. (b) λe = 0.001, µ = 0.4, s = 10.

Figure 2: Theoretical results vs. Simulation results.

As expected, for a fixed B, E[Ws] decreases as λe increases. This is the case
because the battery of the sensors are more frequently replenished and, thus,
the sensors have energy to broadcast. Note that for λe = 0.2, λe > µ/N ,
while for λe ∈ {0.002, 0.001}, λe < µ/N .

Figure 3 also shows that, for a fixed λe, if B increases, then E[Ws] de-
creases. This decrease becomes less significant for large values of B. This
can be explained as follows. If λe ≥ µ/N , then even though sensors are able
to store large amounts of energy, the rate at which the sensors broadcast is
low and thus, E[Ws] mostly depends on the broadcasting rate, rather than
B. If λe < µ/N , then even though B is large, the amount of energy in the
batteries is expected to be low most of the times. Thus, in this case, the fact
that B is very large does not result in a significant decrease in E[Ws].

4.3. Distributions governing the energy harvesting and measurement broad-
casting processes

The model formulation in Section 2 assumes exponential distributions
for the energy harvesting and broadcasting processes. By means of discrete
event simulations, we investigated the influence of non-exponentiality on the
retrieval time of measurements.

Figure 4 shows the expected time needed to retrieve s = 10 measure-
ments when the energy harvesting and broadcast processes assume exponen-
tial distributions and uniform distributions. The uniform distributions were
assumed to have the same mean as the exponential distribution assumed in
Section 2. For example, the energy harvesting process was assumed to be
U(0, 2/λe), with mean 1/λe.

16



0 5 10 15 20
B

20

40

60

80

100

120

E
[W

s]

λ
e
=0.2

λ
e
=0.002

λ
e
=0.001

Figure 3: E[Ws] under various B, the maximum battery capacity of a sensor, N = 100,
µ = 0.4, s = 10.
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Figure 4: E[Ws] under various distributions governing the energy harvesting and broad-
casting process, B = 10, µ = 0.4, λe = 0.2, s = 10.

Figure 4 shows that the results obtained for exponential distributions are
closely approximated by the results obtained for the uniform distributions.

4.4. Non-identical energy harvesting rates

The model formulation in Section 2 assumes identical energy harvesting
rates λe. By means of discrete event simulations we investigated the influence
of non-identical energy harvesting rates.

Figure 5 shows the expected time of retrieving s = 10 measurements
from sensors that harvest energy at identical and non-identical exponential
rates. In the case of non-identical rates, we have partitioned the network in
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Figure 5: E[Ws] under identical vs. non-identical energy harvesting rates. For the case
of non-identical energy harvesting rates, the N sensors are partitioned into 3 clusters of
equal size, where sensors harvest energy according to the cluster’s energy harvesting rate.

3 clusters of sensors of equal size N/3. Each cluster of sensors assumes a
different exponential rate for the process of energy harvesting. To compare
this case with the case of identical harvesting rates assumed in Section 2, we
have maintained equal the mean harvesting rate of a sensor in the identical
and non-identical case. Figure 5 shows that under these assumptions, the
expected retrieval time obtained for the model assuming non-identical energy
harvesting rates is closely approximated by the retrieval time obtained for
the model assuming identical energy harvesting rates.

4.5. Amount of energy consumption upon broadcast

In this section we investigate by means of discrete event simulations the
influence of general energy consumption rates on the retrieval time of mea-
surements.

Figure 6 shows the expected time to retrieve s = 10 measurements when
k ∈ {1, 2, 5} units of energy are consumed upon a broadcast. As expected,
increasing k , k ≤ B , results in an increase in the expected retrieval time of
measurements. However, for large sensor networks, the effect of amount of
energy consumed upon transmission on the retrieval time is less significant
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Figure 6: E[Ws] under various amounts of energy energy upon a transmission, µ =
0.4, λe = 0.2, s = 10, B = 10.

since, as N increases, the probability of having at least one sensor with
sufficient energy to broadcasts tends to 1. This is also supported by the
result in Lemma 4.

5. Conclusions

In this paper, we considered the problem of retrieving a set of measure-
ments from an ad-hoc wireless sensor network. We assumed that the sensors
harvest energy from the environment and broadcast measurements in a dis-
tributed fashion.

We showed that the time until an arbitrary sensor broadcasts has a phase-
type distribution. Based on this result, we determined the probability distri-
bution of the time to retrieve measurements from an arbitrary set of sensors
of fixed size. We provided a closed-form expression for the expected time to
retrieve these measurements. We also determined the retrieval time of such a
set of measurements when the energy available for harvesting or the storage
capacity of the sensors are asymptotically large. The results show how the
time to retrieve data from an ad-hoc wireless sensor network is influenced by
a stochastic energy-harvesting process and a distributed data transmission
policy. This provides a formal, theoretical support for the design and im-
plementation of data retrieval applications for ad-hoc sensor networks where
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the retrieval time of data is an important performance metric.
Lastly, we analyzed numerically the retrieval time of a set of measure-

ments originating from distinct sensors for various network sizes, capacities
of the sensor batteries, energy harvesting and broadcasting models. We show
what is the minimum battery capacity such that the retrieval time of mea-
surements is below a targeted threshold. We demonstrate that deploying
sensors with very large batteries does not result in a significant decrease in
the retrieval time of the measurements. Also, for large sensor network, the
amount of energy consumed upon a broadcast, as well as the harvesting rate
distribution, have a limited effect on the retrieval time of measurements.
However, the ratio between the rate at which energy is harvested and the
rate at which sensors broadcast, significantly influences the retrieval time of
sensor measurements.

As future work, we will investigate more general settings for the sensor
networks such as various sources of energy and corresponding energy har-
vesting rates, as well as general deployment of sensors in the plane and its
impact on the amount of energy consumed for broadcasting.
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