Non-destructive Infield Quality
Estimation of Strawberries using

Deep Architectures
C&es Jai

Strawberry
Ripeness: 8/10

\

Technology

Sity G

{ s =
/]) ol R
” “‘ o () %
" ey f -~
W > ; o N i 0
ol AKIRT ’
£’ N y
U b ’
I "' »
Strawberry f
Ripeness: 2/10

' ‘ i* 7 \) ..’ ‘1'0" g
Strawberry _J

"-
Ripeness: 1/10 Strawberry
Ripeness: 7/10

Strawberry
Ripeness: 3/10

Strawberry

%
TUDelft

Non-destructive Infield Quality

Estimation of Strawberries
using Deep Architectures

by

Cees Jol

submitted in partial fulfillment of the requirements for the degree of

Master of Science

at the Delft University of Technology.

Student number: 4653904

Thesis advisor: Dr. Jan C. van Gemert

Daily co-supervisor: Junhan Wen

Project Duration: April, 2022 - November, 2022

Institution: Delft University of Technology

Faculty: Faculty of Electrical Engineering, Mathematics & Computer Science
Research group: Pattern Recognition and Bioinformatics

Lab: Computer Vision

]
TU Delft

Preface

This report describes the work | performed for my thesis, the final part of the Master of Science in
Computer Science at the Delft University of Technology.

| would first like to thank my daily co-supervisor, Junhan Wen, who provided me with guidance
throughout the project. | received countless new ideas and useful feedback during the meetings. These
have helped to steer the project in the direction it did. Second, | would like to thank my thesis advisor,
Jan van Gemert, for helping me with approaches towards problems and for providing ideas during the
project. Finally, | would like to thank my friends and family for proposing new ideas and asking thorough
questions.

Cees Jol
Delft, November 2022

11

contents

Preface i
1 Introduction 1
2 Scientific paper 2
3 Backgound on Deep Learning 3
3.1 Neuralnetworks e 3
311 Goal 3

3.1.2 Single perceptron e 3

3.1.3 Multi-layer perceptron 5

3.1.4 Activationfunctions 6

3.1.5 Back-propagation 6

3.2 Optimization e e 7
3.2.1 Stochastic GradientDescent 7

3.22 Learningrate e 8

3.2.3 Momentum e e 9

324 RMSPIrop o o i e 9

3.25 Adam . .. e 10

3.2.6 Batchnormalization 10

3.3 Regularization e 11
3.3.1 Earlystopping 1"

3.3.2 Weightdecay e 11

3.3.3 Batch normalization 11

3.3.4 Dataaugmentation 12

3.4 Convolutional neuralnetworks 12
3.4.1 Theconvolutionoperation, 12

342 Padding 13

3.4.3 Stride e 14

3.44 Pooling 15

3.45 Networks 15

3.4.6 Transposed convolutions 16

3.4.7 Afew notable CNN architectures 16

4 Strawberry quality 19
4.1 Ripening process and chemical constituents 0L 19
4.1.1 Photosynthesis and chlorophyll o 0 oL 19

4.1.2 Anthocyanins and carotenoids 0oL 19

4.1.3 Firmnessandshelflife., 19

4.2 Environmentdata. 20

5 Stereo vision 21
5.1 Focallength calculation 21
5.2 Depthcalculation e 22
References 24

Introduction

Strawberries are non climacteric fruit, which means that they do not continue to ripen after harvesting.
Further, they have short shelf-life time and thus need to be harvested at the right time to reduce waste.
Quality attributes such as sweetness can help to indicate optimal harvesting time. Classic methods to
measure quality are labor-intensive and possibly destructive. Computer vision methods are a promising
solution that are automated and non-destructive.

Quality attributes can be used to determine proper harvesting moments of strawberries. As a straw-
berry ripens, sweetness increases and firmness decreases. Computer vision methods are able to
analyze strawberries without the need to manually inspect them. Quality attributes can be estimated
based on observations about the strawberry, such as color and texture [32]. We use deep learning
architectures to try to predict quality attributes.

Aside from quality, we aim to estimate strawberry size. The markets connected to our greenhouse
separate strawberries by size, specifically, their width in millimeters. Strawberries placed in the wrong
market could lead to waste. As we estimate size infield, it is not trivial to estimate the size of a strawberry:
some strawberries are further away than others, which means we cannot map the number of pixels
directly to the width of a strawberry. In this report, we outline a stereo vision method to estimate the
size automatically.

Since pictures are taken infield, strawberries can be occluded, e.g., covered by other fruits or leaves.
To properly estimate the width of occluded strawberries, we use an image inpainting algorithm, which
aims to recover the original shape.

The rest of the report is structured as follows. Chapter 2 is a scientific paper that describes the thesis.
The chapters that follow provide a background on certain topics. First, chapter 3 gives a background on
deep learning. Then, chapter 4 gives a background on strawberry quality evaluation. Finally, chapter 5
gives a background on stereo vision.

/

Sclentific paper

Non-destructive Infield Quality Estimation of Strawberries using Deep
Architectures

Cees Jol!, Junhan Wen2, Jan van Gemert!
!Computer Vision Lab, ?Algorithmics Group
Delft University of Technology

Abstract

Strawberries have a short shelf-life time and thus need
to be harvested at the right time to reduce waste. To this
end, information about quality attributes is useful. Recently,
many computer vision methods have been proposed. Most
literature analyzes postharvest, which means that strawber-
ries can only be analyzed after harvesting. As a result, these
methods cannot be used to find a good timing to harvest.
We analyze strawberries preharvest, so that we can analyze
until we find a good timing to harvest. We show that pre-
dicting ripeness, sweetness, and firmness of strawberries is
possible infield. Further, we analyze strawberry size to find
a fitting market. Since we analyze size infield, we find two
challenges: occlusions and lack of depth information. We
perform inpainting to try to recover the original shape. Re-
sults are good on artificial occlusions, but varying on real
occlusions as it is difficult to adapt to all kinds of occlu-
sions. We use stereo vision and depth estimation to estimate
size. Stereo vision improves size estimation slightly.

1. Introduction

Strawberries are non climacteric fruits, which means that
they do not continue to ripen after harvesting. Further, they
have a short shelf-life time. Underripe or overripe strawber-
ries are not desirable and contribute to fruit waste. Thus, for
optimal quality and maintenance of quality, they need to be
harvested at the right time [20].

Several attributes, such as sweetness and firmness, can
indicate strawberry quality. Classic methods to obtain qual-
ity attributes involve manual ratings from experts based on
color and texture, as well as laboratory evaluations of chem-
ical constituents [26]. These methods are possibly destruc-
tive, time consuming, and labor-intensive [7].

More recent methods analyze strawberries using com-
puter vision. In most literature, strawberries are analyzed
after harvesting [6,9,26]. This results in accurate and auto-
mated quality prediction. However, as quality is only pre-

Co
O
RGB
camf - O
OCN
cam2 O 0O
O
o ©

Figure 1. A top view illustration of our setup. Red circles denote
strawberries. Two cameras point at an array of strawberry plants,
allowing us to use stereo vision for depth estimation. The sec-
ond camera uses Orange Cyan NIR (OCN) color bands instead of
RGB, allowing us to observe more color bands.

dicted after harvesting, a good timing to harvest cannot be
found: a strawberry that is harvested too early does not con-
tinue to ripen. To overcome this obstacle, we estimate qual-
ity attributes infield.

Our setup is in a greenhouse in the Netherlands, which
has plants that grow the Favori strawberry. Strawberries
deemed ripe are manually harvested every few days.

Our setup, showed in Figure 1, contains two cameras that
both take a picture every hour. We have three of such sets,
which point at different strawberry plants. Two example
pictures are in Figure 2. There is an RGB and a Near In-
frared (NIR) camera that are parallel to each other. The
second camera has three channels: Orange, Cyan, and NIR
(OCN). Using more color bands than RGB might improve
quality prediction.

The stereo setup allows us to estimate strawberry size,
for which relevant measurements and camera specifications
are known. We calculate size as strawberries are placed in
markets based on their size; specifically, their width in mil-

limeters. Strawberries placed in the wrong markets could
lead to waste.

We also have many sensors that measure environment
factors, such as certain temperatures, radiation, and more.
Such environment factors correlate with certain quality at-
tributes [5, 1 1,15,23]. We use them to try to improve quality
prediction.

We have two types of data of the strawberries: prehar-
vest labelling information and postharvest quality informa-
tion. First, each strawberry is labelled by coordinates of the
segment in the image and a track_id. This id tracks a straw-
berry across its lifetime, i.e., the id is the same for the same
strawberry across images.

Second, we have data of four quality attributes per straw-
berry. They are: sweetness (Brix), firmness (kg/mm?),
ripeness, and size. Brix is a a measure of the soluble solids
content of a substance, primarily sugar. Sweetness and firm-
ness are measured using instruments. Ripeness is an esti-
mated parameter based on three experts that have rated pic-
tures of the fruits on a scale from 1 to 10. Around 7 to 8
is optimally ripe; below that is underripe, and above that
is overripe. Size is the width of the strawberry in millime-
ters, and is divided into three classes: tiny (< 20mm), small
(20mm - 25mm), and coarse (> 25 mm).

We conclude the following based on our experiments.
Infield prediction of measured attributes (Brix, firmness) is
decently possible and of an annotated attribute (ripeness)
is well possible. Environment data improves quality predic-
tions. Strawberry inpainting can be used to recover the orig-
inal shape with decent accuracy on artificial occlusions. Fi-
nally, using stereo vision slightly improves strawberry size
estimation.

2. Related work
2.1. Visible spectrum

While customers judge fruit by their external qualities,
such as shape and color, internal quality parameters influ-
ence customer appreciation [14]. Computer vision has been
used extensively to determine quality parameters of fruits.
An accuracy of 85.6% on three classes of ripeness was
achieved on strawberries using RGB images [9]. RGB is
highly correlated with total soluble solids (TSS) [1]. TSS
is a measure of soluble solids, primarily sugar, within a
substance. 79.2% accuracy was achieved on six classes of
TSS using a Support Vector Machine (SVM) and an RGB
camera [3]. CaffeNet reached 95% accuracy on classifying
whether strawberries were mature [12].

Computer vision can get good accuracy on quality pre-
diction because chemical changes inside strawberries are
visible on a camera. Various chemical changes occur during
fruit ripening. Chlorophyll is a green pigment frequently
found in plants. The destruction of chlorophyll plays a role

in the ripening process [4]. Anthocyanin is a pigment that
appears red in strawberries and is synthesized during the
ripening process [0]. Such chemical concentrations can be
observed visually: anthocyanin and chlorophyll pigments
have been shown to be visible in the regions around 535 nm
and 680 nm, respectively [16]. These regions are visible to
the eye.

In our setup, we use computer vision and deep architec-
tures to predict quality parameters.

2.2. Hyperspectral imaging

Hyperspectral imaging is a technique that combines spa-
tial and spectral information: each pixel contains an entire
wavelength spectrum [25]. To determine ripeness, many
works first select optimal wavelengths and then use classi-
fiers to determine ripeness classes of strawberries [7,26] and
other fruits such as persimmon [25]. For example, 98.6%
accuracy on determining ripeness has been achieved [7].
Hyperspectral imaging has also been shown to be effec-
tive to predict measurable quality parameters, such as firm-
ness [16], sweetness [2, 0, 19], and titratable acidity [2,22].

Certain constituents in strawberries absorb infrared light
and reflect frequencies that indicate quality attributes [7].
Our eyes only see a part of the electromagnetic spectrum.
Hyperspectral imaging can observe ranges beyond what the
eye can see, which could improve quality predictions as it
shows more details of light absorbance.

A disadvantage of hyperspectral imaging is that devices
to acquire such images are often expensive and complicated
[27], making them unpractical for some farmers. For this
reason, our setup does not include a spectrometer, so we
cannot use hyperspectral imaging. However, we do have
both an RGB and an OCN camera. Using a wider variety of
wavelengths could improve quality prediction.

2.3. Environmental influence

Several environmental factors correlate significantly
with strawberry quality, and can thus be used to improve
quality predictions. Radiation, temperature, and relative hu-
midity are all correlated with Brix values [5]. Optimal tem-
perature and light increases Brix values [23].

Temperature of both greenhouse and soil influences
growth [1]. Weather patterns, such as solar radiation and
wind, can also influence growth [15].

Our setup has many sensors that measure temperature,
radiation, and more, and we will use them to try to improve
quality predictions.

2.4. Inpainting

Infield images of fruits can be occluded by obstacles
such as other fruits and leaves. This makes it difficult to
estimate their true size.

(a) Example of an RGB picture of the strawberries.

. o —

g - 3 F e
(b) Example of an OCN picture of the strawberries.

Figure 2. An example of an RGB and an OCN picture taken at the same location and time. Pictures are taken every hour. As the OCN
camera is placed slightly to the right of the RGB camera, the strawberries appear shifted to the left. Using two cameras allows us to use
stereo vision for strawberry size estimation and more color bands through the OCN camera.

A possible solution is image inpainting. The goal of in-
painting is to complete missing parts of an image. It has
been performed both for specific tasks, such as face com-
pletion [13], and to inpaint a wide variety of images [18].

For infield fruit occlusions, one approach has been to
manually occlude a dataset of tomatoes, and train U-Net
to recover the original shape [8]. The authors explain and
solve a problem that is similar to ours, and thus we take a
similar approach.

3. Method
3.1. Quality prediction

We run the strawberry pictures on two convolutional
neural networks (CNNs): LeNet-5 and ResNet-18. In
LeNet, we replace the Tanh activation layer with a ReLU
activation layer and average pooling with max pooling. In
ResNet, we add a second linear layer so that the network
can learn from environment data.

We use Mean Squared Error (MSE) as loss function and
Adam as optimizer with a learning rate of 3e-5. We train on
60% of data, validate performance on 20% of the data, and
use the remaining 20% of our data for demonstrated results.
We run on 100 epochs and use early stopping to select the
model with best performance on the validation set. We use
a batch size of 8 and a weight decay of 0.01. For each run,
we randomly divide the data to the training, validation, and
test set.

We have a dataset with ripeness values for 254 strawber-
ries and quality attributes for 184 strawberries. However,
some quality attribute entries are missing: 6 entries have no
value for Brix and 36 entries have no value for firmness.

Figure 3. Three data augmentation techniques on a strawberry
sample. Each technique is applied subsequently on the results of
the previous one, leading to 2° = 8 permutations. The original
strawberry is at the top left. The bottom left strawberry is horizon-
tally flipped. The second column displays random rotation. The
third and fourth column displays random cropping. The augment-
ing process results in more data to train on.

Since we have a relatively low amount of images, we
augment the data as follows. Each strawberry is flipped hor-
izontally, rotated randomly uniform between —30° and 30°,
and cropped by factor of 1.5. This turns every strawberry
into eight strawberry samples: all of the three permutations
of the augmentations. The augmentations aim to increase
the size of our data set, without changing attributes that
would alter the quality prediction, such as the color. The
data augmentation is only performed on the training set. An
example of an augmented strawberry sample is show in Fig-
ure 3.

(a) Strawberry segment with a cir- (b) Strawberry segment with a cir-

cularity of 0.263: not occluded. cularity of 0.245: occluded.

Figure 4. Two examples of strawberry segments: an occluded
segment has a lower circularity, which indicates that the segment
might be occluded. We aim to only inpaint occluded strawberries
to avoid possible performance loss.

3.2. Inpainting

In the pictures taken at our greenhouse, some strawber-
ries are occluded. This degrades size estimation perfor-
mance, as the width in pixels might be less than it would
be without occlusions. In this section, we outline our im-
age inpainting algorithm that aims to recover the original
strawberry shape.

3.2.1 Determining occlusions

We created a simple method to determine if a strawberry is
occluded or not. We have two motivations for this. First,
when gathering a data set to perform inpainting on, we aim
to include only non-occluded images, so that the ground
truth has no occlusions. Second, during size estimation, we
aim to only inpaint occluded strawberries, as performing
inpainting on a non-occluded strawberry could decrease the
performance of size estimation.

We aim to calculate circularity of strawberries to esti-
mate if they are occluded or not. Many formulas for circu-
larity have been proposed [2]. An occluded strawberry has
a similar circumference as a non-occluded strawberry, but a
smaller surface. Therefore, we use a ratio between them to
try to tell if the strawberry is occluded:

v/surface

circularity = ——.
circumference

ey

Since the circumference grows linear, but the surface
grows squared, we take the square root so that the ratio
stays the same regardless of the size of the strawberry. Em-
pirically, a circularity of 0.25 or less indicates an occluded
strawberry. An example of detecting occlusions using cir-
cularity is illustrated in Figure 4.

Occasionally, an occluded strawberry might be just
above this threshold. However, then the difference in width
is probably small, which means that for our purpose of
size prediction, this should not significantly degrade per-
formance.

3.2.2 Inpainting algorithm

We perform inpainting on strawberry segments. We gath-
ered 279 images of our data to train on. We use 25% of
the images for the occlusion set, which are used to artifi-
cially occlude the input image. Of the remaining part of the
images, 75% went to training set and the rest to the test set.

In a real occlusion, the predicted bounding box is often
too small, i.e., the part of the strawberry that is occluded, is
not in the bounding box. Thus, we reserve some space for
the inpainting algorithm to fill in values. The strawberries
keep their aspect ratio and are scaled down to take up at
most half the input image. They are placed in the center of
the input image.

At every epoch, each strawberry is occluded by overlap-
ping it with a randomly chosen transparent strawberry from
the occlusion set. This strawberry is also placed in the cen-
ter, but shifted in both the x and y direction. We aim to
use varying levels of occlusion per training sample. First,
with 50% probability, a shift value of either 32 or 64 pixels
is chosen. To prevent the occluding strawberry from com-
pletely overlapping the visible strawberry, in either the x or
y direction, the strawberry is moved the full shift value; in
the other direction, it is moved randomly uniform between 0
and the shift value. After occluding, the strawberry is recen-
tered, since on a truly occluded strawberry, the input would
also be centered.

To model multiple occlusions, 50% of the time, we place
two occlusions. We use U-Net for the image inpainting task.
The inputs and outputs are both 256x256.

We use two configurations. The first configuration uses
RGBA inputs, the second configuration uses binary inputs.
Binary input images are obtained by only keeping the opac-
ity channel, and using a threshold of 0.5 to determine the
binary value. The motivation behind binary inputs is that it
makes it easier for the network to focus on the shape, rather
than on the colors.

The loss function is MSE. For RGBA, it covers all four
channels, for the binary inputs, it covers only the binary
channel. Additionally, for indication of performance, we
calculate the Intersection over Union (IoU) and the differ-
ence in width between the network output and the ground
truth.

3.3. Stereo matching

The same strawberry usually appears on both the RGB
and the OCN camera. We need to match each strawberry

Figure 5. A method to try to calibrate the two cameras after pic-
tures were taken. Through translation, scaling, and rotation, ver-
tical disparity is eliminated and horizontal disparity is similar left
and right. This is needed for good accuracy on two subsequent
tasks: matching of strawberries of the two cameras and disparity
calculation. We seem to be able to match the pictures well, based
on some aspects in the image such as the small white bar in the
middle.

segment that is on the RGB camera to the one that appears
on the OCN camera so that we can estimate the depth of a
strawberry.

In our setup, the cameras are not calibrated. This could
lead to invalid matching of strawberries between the RGB
and OCN cameras and inaccurate disparity estimations.
Thus, we first calibrate the RGB and OCN pictures as best
as we can. Then, we aim to find the best fitting match be-
tween the strawberry segments.

3.3.1 Camera calibration

To try to calibrate the RGB and OCN images, we aim to
overlap them perfectly, which means two things. First, there
should be no vertical disparity anywhere. Second, there
should be similar horizontal disparity regardless of position
of the image. To this end, for each camera set, the OCN
picture was translated, rotated, and scaled, as demonstrated
in Figure 5.

3.3.2 Matching algorithm

We need to match each strawberry from the RGB image to a
strawberry in the OCN image, i.e., for each RGB strawberry
segment, find the segment on the OCN camera that displays
the same strawberry. We propose a simple loss function that
involves two components: the distance in location and the
distance in size. The intuition is that for each RGB straw-
berry segment, the further away the OCN segment is and
the more different it is in size, the less likely it is that they

are matches.
We follow a method outlined in [24] to calculate the dis-
tance in size between the strawberries:

surface — surface
ds — | RGB ocN| ?)

surfacergp + surfaceoen

where surface is the number of pixels of a segment. The
formula calculates the difference in size and is in range
[0,1].

The formula we use for the distance in location is:

dl = \/dz? + dy? - a, 3)

where dx is the distance between the x-coordinates, af-
ter subtracting the expected disparity in pixels; dy is the
distance between the y-coordinates; and « is a tunable pa-
rameter. o > 1 increases the weight of vertical disparity in
the loss function. While horizontal disparity depends on the
distance of a strawberry to the camera, and is thus flexible,
vertical disparity should be near zero. Thus, for matching,
vertical disparity should have more impact on the loss.

We multiply the two equations to calculate a loss be-
tween each strawberry in the RGB image and each straw-
berry in the corresponding OCN image:

loss =dl - (ds +), “4)

where [is a tunable parameter that stabilizes the loss
value for low values of ds. As we wish to minimize dis-
tances in location and size, we choose the strawberry with
the smallest loss as a match.

We use a = 10 and 8 = 0.01, as empirically, we find
that it results in good matches. The exact values of the pa-
rameters is not important.

3.4. Depth estimation

Strawberries are divided into classes by their width in
millimeters (mm). We can estimate the width of a straw-
berry sample by calculating the depth and counting the
width in pixels.

We follow a standard method to calculate depth by using
stereo vision as outlined in [17,28]. We calculate the depth
in millimeters as follows:

bf
D= T)
where b is the baseline distance between the two cameras
in millimeters, f is the focal length in pixels, and d is the
disparity between the RGB and the OCN segments in pixels.
The focal length is

Wimg|px]
= —F, 6
f 2tan(9) (©)
where for each camera, wingpyxy = 4000px is the width in
pixels of the output and # = 41° is the angle.

CAM
20.5° D

Wimg[mm]

Figure 6. A triangulation method to find the width of the image in
millimeters at a given depth, D. The camera is located at distance
D from the strawberry, We use an angle of 20.5° as the camera
FOV is 41°. Using triangulation, we find x; 2x is the width of
the entire image. The width is later used to find the width of a
strawberry in millimeters.

3.5. Size estimation

Once we have calculated the depth, we aim to calculate
the width of a strawberry in millimeters. Here, we first cal-
culate the width of the entire image in millimeters at the
depth of the strawberry. Then we use the fraction of the
width that the strawberry occupies in the image to find the
width of the strawberry.

First, to calculate the width of the entire image, we use
a simple triangulation method, as illustrated in Figure 6.
Given that we know the angle of the camera, we can find
the width of the image in millimeters at a given depth using

0
Wimg[mm] = 2tan(§) - D, (7N

where the width is multiplied by 2 as wingmm) = 2.

Second, we multiply with the fraction of the width of the
image that the strawberry occupies. This gives the width of
the strawberry in millimeters:

Wstr[px]
= * Wimg[mm] 5 (3
Wimg[px] :

Wstr[mm]

where wg[px) s the width of a strawberry in pixels. The
above formulas can be used to calculate the size of a straw-
berry in millimeters.

4. Experiments
4.1. Quality prediction

To find the best performance on quality prediction, we
compare the following configuration options:

* input: RGB, OCN, or both;

¢ model: LeNet-5, ResNet-18.

Color mode Model MSE

RGB LeNet 1.39 + 0.438
OCN LeNet 1.69 + 0.486
Dual LeNet 1.51 £0.454
RGB ResNet 1.81 £ 0.581
OCN ResNet 2.06 4 0.782
Dual ResNet 2.02 +0.621

Table 1. Results of Brix estimation. MSE is the average MSE loss
over five experiments, we also denote the standard deviation here.
LeNet on RGB inputs has the best performance.

Color mode Model MSE -1072

RGB LeNet 3.60 & 0.549
OCN LeNet 577+ 1.74
Dual LeNet 3.76 + 0.223
RGB ResNet 4.27 £+ 0.580
OCN ResNet 5.78 +0.974
Dual ResNet 4.84 £ 1.12

Table 2. Results of firmness estimation. Both models appear to
have best performance on OCN. LeNet on RGB input has the best
performance.

For ripeness, we only evaluate RGB input images, as the
ripeness values were determined by experts on the RGB im-
ages.

The CNNs we use have both a convolutional part, of
which the output is inserted into a multilayer perceptron
(MLP). The environment data is added to the network by
concatenating it with the output from the convolutional net-
work. For each environment feature, we add both the av-
erage of the past four days before harvest and the average
over the past four days one week before harvesting.

The OCN image is the strawberry that matches the RGB
image. It is found by using our matching algorithm. To
train the network on both the RGB and the OCN image,
the convolutional part is duplicated: the first part is used
on the RGB image and the second part on the OCN image.
The outputs are concatenated and inserted into an MLP. It
is possible that the matching strawberry is not visible on the
OCN camera due to the disparity. In this case, for the dual
network, we insert a black and transparent image instead,
i.e., 7gba(0,0,0,0). For the OCN network, we skip the data
point.

To properly compare configurations, for each configura-
tion, we perform 5 runs with each a fixed and incrementing
random seed that is consistent across different configura-
tions. We report the mean and standard deviation for each
configuration.

The best performance on estimation of all attributes is

Color mode Model MSE -10~1
RGB LeNet 6.30 = 0.739
RGB ResNet 7.84 +£2.04

Table 3. Results of ripeness estimation. The best performance is
achieved on LeNet.

Attribute Unweighted Weighted Loss increase
Brix 1.39 £0.438 2.02 +0.639 45.3%
Firmness 4.01 £0.940 3.60 £ 0.549 -10.3%
Ripeness 6.76 £1.06 6.30 +0.739 -6.6%

Table 4. Results of changing the loss function using LeNet. For
comparison, all the loss values we display are MSE. Networks
were trained on either WMSE or MSE. On LeNet, loss weight-
ing increases the MSE loss for Brix, but decreases the MSE for
firmness and ripeness. Thus, for these configurations, we trained
on weighted loss in other tables in this section.

obtained using LeNet on RGB inputs, as shown in Table 1,
Table 2, and Table 3.

4.1.1 Weighted loss function

The quality attributes are not uniformly distributed, as
shown in Figure 7. Thus, certain values have few occur-
rences. We found that the network typically only predicts
the common values. In a new data batch with many uncom-
mon values, performance could be degraded.

As a solution, we aim to increase the weight of the loss
on uncommon values. A weighted loss function multiplies
the loss by how uncommon the value is. For example, on a
binary dataset that has two instances of X and one instance
of Y, the loss on the Y value will be weighted such that it
counts twice as much. We refer to this loss weighting as
Weighted MSE (WMSE). Further, we can add an exponent
to our weight values. We try both exponents of 0.5 and 2,
and refer to them as Square Root WMSE (SQWMSE) and
Squared WMSE (SWMSE), respectively.

We find that WMSE and SQWMSE improves perfor-
mance on LeNet on firmness and ripeness, but degrades per-
formance on other configurations. WMSE performs better
than SQWMSE. We show loss increase for each quality at-
tribute in Table 4. The tables in this section all present MSE
loss, but were trained using the loss that gave best perfor-
mance.

4.1.2 No environment data

We add environment data as input to our networks to im-
prove predictions. We aim to find the effect of adding en-
vironment data on each attribute. To this end, we run the

Attribute With env Without env Loss increase
Brix 1.39+0438 253 +0.714 82.1%
Firmness 3.60 & 0.549 3.86 + 0.463 9.48%
Ripeness 6.30 £ 0.739 6.65 £ 0.966 5.56%

Table 5. Results of quality attribute estimation of LeNet on RGB
input images, either with or without environment data. Perfor-
mance drop is most significant for Brix estimation. Performance
on firmness and ripeness estimation is slightly decreased from
omitting environment data.

Colormode MSE 1073 IoU Width diff
RGBA 5.46 0.871 2.00
Binary 7.21 0.874 1.70

Table 6. Results of inpainting on the test set. Width diff is the
difference in width between the network output and the ground
truth. The models have roughly equal IoU, but the binary model
has a higher loss but a lower width difference. It is not immediately
clear which configuration is best.

models with best performance without environment data.
We show our results in Table 5. Most notably, Brix predic-
tion is strongly impacted by environment data.

4.2. Inpainting

We test our inpainting model on two configurations:
RGBA and binary input images. Results are in Table 6.
The model with RGBA input images achieves a lower loss,
while the model on binary input images achieves a higher
IoU and a lower width difference.

Given artificial occlusions, the network performs well,
see Figure 8. However, on real occlusions, i.e., occlusions
present in our data, performance varies. We show an exam-
ple in Figure 9. It is difficult to occlude in a wide enough
variety of ways such that the network learns a general way
to inpaint.

4.3. Stereo matching

As there is no ground truth information for matching, we
only evaluate the stereo matching algorithm manually. We
show an example of a result of the matching algorithm in
Figure 10. Most strawberries are matched correctly, with
two major exceptions. First are a few tiny strawberries; the
performance on those for this research is not relevant, as
they are not near being harvested. Second, the large straw-
berries at the top are from the plant above the cameras: they
are far closer, and thus have much larger disparities. Perfor-
mance is not relevant here either, as these strawberries are
not part of our measurements.

Data exploration of Brix values

Data exploration of Firmness values

Data exploration of Ripeness values

]

=
Number of values

Number of values

8 10
Brix

(a) Brix distribution.

04 06

(b) Firmness distribution.

L

Number of values
]

08 10 4 & 3

Firmness Ripeness

(c) Ripeness distribution.

Figure 7. Distribution of quality attributes in our dataset. Each bar plots the number of strawberry samples for each possible value of
the quality attribute. The distributions are not uniform, so the network could be biased towards the most common values, and thus never

predict the lowest or highest values.

Figure 8. Example of results of the inpainting algorithm on a
strawberry. The first row uses RGBA inputs, the second row uses
binary inputs. The left column is the ground truth. The middle col-
umn is the network input. The right column is the predicted out-
put. The performance on both configurations is good: the original
shape is reasonably recovered, allowing us to estimate the straw-
berry width properly.

4.4. Depth estimation

Using the disparity, we can calculate the depth. Fig-
ure 11 shows a visualization of depth.

It is difficult to assess the performance of the algorithm,
as there is no ground truth information of depth. Further, it
is difficult for the human eye to observe depth differences.
For example, the visualization shows that some strawberries
have similar depth left and right on the bottom of Figure 11,
but is difficult to verify if this is accurate. In Figure 12 we
show that locally, the algorithm seems to perform well.

4.5. Size estimation

Our size estimation results are in Table 7. The accuracy
is the percentage of strawberries where the predicted size

Figure 9. Examples of results of the inpainting algorithm on real
occluded strawberries. As the occlusion is present in our data, we
do not have the ground truth. The first row uses RGBA inputs,
the second row uses binary inputs. The left column is the network
input. The right column is the predicted output. There is no non-
occluded ground truth of the strawberries, as the strawberries are
occluded infield. The performance on the RGBA configuration is
poor and on the binary configuration is mediocre.

Method Accuracy
Baseline 63.1%
Stereo 64.5%
Inpainting 62.4%
Stereo and inpainting 63.8%

Table 7. Effects of disparity calculation and inpainting on size es-
timation. Stereo vision improves results slightly, while inpainting
degrades results.

was equal to the true size class. It increases when using
stereo vision size estimation, but decreases when using in-
painting.

Figure 10. Example of matching of the images of Figure 2. Straw-
berries appear twice since both the strawberry segments from the
RGB and the OCN camera are shown. Segments shown with the
same color were matched by our algorithm. When manually eval-
uating, the matching performance is good on strawberries that are
relevant for our size measurements. Proper matching allows us to
calculate disparity, depth, and finally the size of a strawberry.

Figure 11. Example of depth estimation from Figure 10. The more
blue a segment it is, the closer it is; the more red, the further away.
Depth ranges roughly from 800mm to 1000mm. Depth informa-
tion allows us to more accurately calculate the size of a strawberry.

5. Discussion
5.1. Quality prediction

The networks were trained on the images from the same
setup as they were tested on. This means that the networks
will likely perform worse when tested on strawberries from
other setups. On a new setup, the network should likely be
retrained on that setup to obtain good performance.

Our performance is worse than many related works.

Figure 12. Close up of three strawberry segments on the bottom
left of Figure 11. The depth estimation algorithm seems to put oc-
cluded segments further away, which indicates good performance
locally.

However, many related works use hyperspectral imaging. A
disadvantage of hyperspectral imaging is that devices to ac-
quire such images are often expensive and complicated [27],
making them unpractical for some farmers. Depending on
the budget of a farmer, our approach might be more suit-
able. Also, many related works do not analyze strawberry
quality infield, meaning it is easier to control aspects such
as lighting.

Compared to the range of values, the networks make a
smaller error on ripeness than on Brix and firmness. This is
probably because ripeness was manually evaluated based on
pictures, so a neural network can simply learn how humans
evaluate.

5.2. Inpainting

Inpainting performance appears significantly worse on
real occlusions than on artificial occlusions. It appears that
the network does not learn a general representation of a
strawberry, but rather, learns how to inpaint certain occlu-
sions. Thus, the network does not adapt to all types of oc-
clusions.

An argument could be made that metrics like MSE and
IoU were not designed indicate shape similarity. While this
is true, they do give an indication of reconstruction quality.

5.3. Depth estimation

During harvesting, occasionally someone bumped into
the camera, after which the cameras were not calibrated.
Further, we have no ground truth labels for depth. These
factors have limited the effectiveness of the stereo depth es-
timation.

6. Conclusion

We analyze strawberry quality attributes and size infield.
Infield predictions allow us to analyze strawberries before
harvesting. We achieve reasonable accuracy on predictions
on Brix, firmness, and ripeness. We also aim to calculate

size infield. We used inpainting to recover the shape of oc-
cluded strawberries. Inpainting did not improve size esti-
mation. The inpainting performance is good on artificial
occlusions, but varying on real occlusions, as it is hard to
model all types of occlusions. Calculating depth through
stereo vision improved size estimation, but only slightly, as
our cameras were not calibrated.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

PD. Abeytilakarathna, R.M. Fonseka, J.P. Eswara, and
K.G.N.A.B. Wijethunga. Relationship between total solid
content and red, green and blue colour intensity of straw-
berry (fragaria x ananassa duch.) fruits. Journal of Agricul-
tural Sciences, 8,07 2013. 2

Maria Luisa Amodio, Francesco Ceglie, Muhammad Mu-
dassir Arif Chaudhry, Francesca Piazzolla, and Giancarlo
Colelli. Potential of nir spectroscopy for predicting inter-
nal quality and discriminating among strawberry fruits from
different production systems. Postharvest Biology and Tech-
nology, 125:112-121, 2017. 2

Jayanta Kumar Basak, Bolappa Gamage Kaushalya Mad-
havi, Bhola Paudel, Na Eun Kim, and Hyeon Tae Kim. Pre-
diction of total soluble solids and ph of strawberry fruits
using rgb, hsv and hsl colour spaces and machine learning
models. Foods, 11(14), 2022. 2

C J Brady. Fruit ripening. Annual Review of Plant Physiol-
0gy, 38(1):155-178, 1987. 2

Fatima I. Pereira da Silva, Sabine K. Schnabel, Bastiaan
Brouwer, and Manon G. Mensink. Monitoring strawberry
production to get grip on strawberry quality. GreenCHAINge
Fruit & Vegetables, 2018. 2

Gamal ElMasry, Ning Wang, Adel ElSayed, and Michael
Ngadi. Hyperspectral imaging for nondestructive determi-
nation of some quality attributes for strawberry. Journal of
Food Engineering, 81(1):98-107, 2007. 1, 2

Zongmei Gao, Yuanyuan Shao, Guantao Xuan, Yongxian
Wang, Yi Liu, and Xiang Han. Real-time hyperspectral
imaging for the in-field estimation of strawberry ripeness
with deep learning. Artificial Intelligence in Agriculture,
4:31-38,2020. 1,2

Liang Gong, Wenjie Wang, Tao Wang, and Chengliang Liu.
Robotic harvesting of the occluded fruits with a precise
shape and position reconstruction approach. Journal of Field
Robotics, 39, 10 2021. 3

Indrabayu Indrabayu, Nurhikma Arifin, and Intan Sari Areni.
Strawberry ripeness classification system based on skin tone
color using multi-class support vector machine. In 20719 In-
ternational Conference on Information and Communications
Technology (ICOIACT), pages 191-195, 2019. 1, 2

M.N. Islam, Mehnaz Mursalat, and Mohidus Samad Khan.
A review on the legislative aspect of artificial fruit ripening.
Agric & Food Secur, 5, 06 2016. 2

Dong Sub Kim and Sung Kim. Prediction of strawberry
growth and fruit yield based on environmental and growth
data in a greenhouse for soil cultivation with applied au-
tonomous facilities. Wonye kwahak kisulchi: Korean journal
of horticultural science and technology, 38, 12 2020. 2

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

Xin Li, Jun Yu Li, and Jing Tang. A deep learning method for
recognizing elevated mature strawberries. 2018 33rd Youth
Academic Annual Conference of Chinese Association of Au-
tomation (YAC), pages 1072-1077, 2018. 2

Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. Gen-
erative face completion, 2017. 3

Manuela Mancini, Luca Mazzoni, Francesco Gagliardi,
Francesca Balducci, Daniele Duca, Giuseppe Toscano,
Bruno Mezzetti, and Franco Capocasa. Application of the
non-destructive nir technique for the evaluation of strawberry
fruits quality parameters. Foods, 9(4), 2020. 2

Mahesh Maskey, Tapan Pathak, and Surendra Dara. Weather
based strawberry yield forecasts at field scale using statistical
and machine learning models. Atmosphere, 10:378, 07 2019.
2

Binu Melit Devassy and Sony George. Estimation of straw-
berry firmness using hyperspectral imaging: a comparison
of regression models. Journal of Spectral Imaging, 10, 06
2021. 2

Dhaval K. Patel, Pankaj A. Bachani, and Nirav R. Shah. Dis-
tance measurement system using binocular stereo vision ap-
proach. International journal of engineering research and
technology, 2,2013. 5

Deepak Pathak, Philipp Krihenbiihl, Jeff Donahue, Trevor
Darrell, and Alexei Efros. Context encoders: Feature learn-
ing by inpainting. In Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 3

Ana Santos, Sara Ricardo Rodrigues, Marta Laranjo, C.
Melgdo, and R. Veldzquez. Non-destructive prediction of
total soluble solids in strawberry using near infrared spec-
troscopy. Journal of the Science of Food and Agriculture,
102, 03 2022. 2

K. Sturm, D. Koron, and F. Stampar. The composition of
fruit of different strawberry varieties depending on maturity
stage. Food Chemistry, 83(3):417-422, 2003. 1

Sylwia Szerakowska, Maria Sulewska, Jerzy Trzcinski, and
Barbara Woronko. Comparison of methods determining par-
ticle sphericity. Applied Mechanics and Materials, 7197:231—
237,112015. 4

Maria-Teresa Sanchez, Maria José De la Haba, Miriam
Benitez-Lépez, Juan Fernandez-Novales, Ana Garrido-Varo,
and D.C. Perez-Marin. Non-destructive characterization and
quality control of intact strawberries based on nir spectral
data. Journal of Food Engineering, 110:102-108, 05 2012.
2

Yilian Tang, Xun Ma, Ming Li, and Yunfeng Wang. The
effect of temperature and light on strawberry production in a
solar greenhouse. Solar Energy, 195:318-328, 2020. 2

Kris van Melis. Measuring the size of strawberries using
binocular photos. Dissertation for Bachelor of Computer Sci-
ence and Engineering, 2022. 5

Xuan Wei, Fei Liu, Zhengjun Qiu, Yongni Shao, and Yong
He. Ripeness classification of astringent persimmon using
hyperspectral imaging technique. Food and Bioprocess Tech-
nology, 7:1371-1380, 2013. 2

Chu zhang, Chentong Guo, Fei Liu, Wenwen Kong, Yong
He, and Binggan Lou. Hyperspectral imaging analysis for

(27]

(28]

ripeness evaluation of strawberry with support vector ma-
chine. Journal of Food Engineering, 179:11-18, 2016. 1,
2

Jingang Zhang, Runmu Su, Qiang Fu, Wengi Ren, Felix
Heide, and Yunfeng Nie. A survey on computational spectral
reconstruction methods from RGB to hyperspectral imaging.
Scientific Reports, 12(1), jul 2022. 2,9

Manaf Zivingy. Object distance measurement by stereo vi-
sion. International Journal of Science and Applied Informa-
tion Technology (IJSAIT), 2:05-08, 01 2013. 5

Backgound on Deep Learning

3.1. Neural networks

3.1.1. Goal

The goal of a neural network is to approximate a function f* using f [6]. A neural network has sev-
eral parameters 6, which it tunes over time to approximate the original function. The performance is
expressed as loss; the goal is to minimize this loss. Loss functions are often differentiable. The deriva-
tive can be used for minimizing the loss function because it indicates how to change the parameters
to minimize the loss [6]. By moving in the negative sign of the derivative, we can reduce the loss. We
call this gradient descent, where the gradient is a vector of partial derivatives. We visualize this in
figure 3.1.

2'0 T I T 1 T T I
\ /
15F N Global minimum at z = 0. VA
\ Since f’(z) = 0, gradient ,
10k N descent halts here. Vs |
S 7
N 7’
0.5}]
~ -’
~ -
0.0} S §
: For z < 0, we have f’(z) , For z > 0, we have f’(z) >|0,
so we can decrease f b so we can decrease f by
—0.5 moving rightward. moving leftward. -
1.0 g
1,.2
- . fl@)=3=
—15}F ,
— f@) =z

—2.0 1 1 1 1 1 I I

'—2.0 -1.5 -1.0 -05 0.0 0.5 1.0 1.5 2.0

Figure 3.1: Simple example of gradient descent [6]. The blue line is the loss function and the green line is its gradient. To
minimize the loss function, we can move in the negative direction of the gradient. Although in this 1-dimensional situation, the
solution can be found trivially by solving for f/(x) = 0, this solution does not work in practice: most problems are
multidimensional, and could have thousands of dimensions. Thus, we use gradient descent instead.

3.1.2. Single perceptron
A perceptron is a single-layer neural network, illustrated in figure 3.2. The network can receive multiple
inputs.

Two simple functions to learn are OR and Exclusive Or (XOR). Both functions take two binary inputs
and return a binary output. While the OR function returns frue if either inputs are true, XOR returns
true if its inputs are not equal, see table 3.1. For the problems, we aim to separate the two binary
classes, true and false. We denote these classes as 0 and 1. We use Mean Squared Error (MSE) as
loss function, which is

3.1. Neural networks 4

weights

activation
functon

net input
net;
7 @ 0.
— 0
activation

transfer
function

0.
X, J
" @ threshold

Figure 3.2: An illustration of a perceptron [23]. A perceptron receives inputs and multiplies them by its weights.

Data

Input OR XOR
00 0 0
01 1 1
10 1 1
11 1 0

Table 3.1: Input and output values of the OR and XOR gates. We denote frue as 1 and false as 0. The OR gate returns true if
either input is true, while the XOR gate returns true if the inputs differ. The only different output between the two gates is when
both inputs are true, illustrated in bold text.

N
1 \
J0) = 5 D_(f7(@) = f(2:0))%, (3.1)
i=1
where 6 indicates the set of parameters w and b, and J(0) is the loss function over those parameters.
We can use a linear equation for our model function f:

flz;w,b) =2 w +b. (3.2)

Our current network is capable of linearly separating classes. For the OR function, a linear function
can separate the two classes, as shown in figure 3.3.

OR function: input space

104 o []

0.8 1

0.6

x2

0.4

0.2

004 ®]

0:0 0t2 O.‘4 0:6 0:8 l.‘D
x1
Figure 3.3: Visualization of the OR problem. The OR problem has two binary inputs and a binary output. The two axes
indicate the value of the two inputs, and the color represents the output value. The red dots are true (1), the blue dot is false (0).

A linear separation is possible and an example is shown by the blue line. This means that a linear classifier can learn to
perfectly separate the classes.

However, no linear function can separate the two classes for the XOR function, as shown in fig-
ure 3.4. To achieve this, we need multiple layers and nonlinear activation functions.

3.1. Neural networks 5

XOR function: input space

1041 L]
0.8
0.6 1
N
x
0.4 1
0.2
004 @ []
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.4: Visualization of the XOR problem. The XOR problem has two binary inputs and a binary output. A linear
separation is not possible. This means that a linear classifier cannot learn to perfectly separate the classes.

3.1.3. Multi-layer perceptron

Figure 3.5: (leff) An MLP uses multiple layers to learn nonlinear functions. This illustration shows one hidden layer h. An MLP
can have any amount of hidden layers and neurons in each layer. Both hidden layers and the output layer have weights and
biases. (right) A more abstract version of the network. In practice, we use vectors and matrices for efficient computation.

We can use a multi-layer perceptron (MLP) to learn nonlinear functions. We illustrate an example
of an MLP in figure 3.5. Recall our equation was:

flz;w,b) =z w+b. (3.3)

In our MLP, we use:
h= fY(a; Wi, b)) = W, z + by, (3.4)
y = f2(h;wa, ba) = wy h+ bo. (3.5)

Here, W1 is a matrix instead of a vector, as there are two hidden neurons, and thus four weight param-
eters. wy and b, have replaced the previous use of w and b. The full equation becomes

Fla; W, by, wa, bo) = F2(f1 (). (3:6)

3.1. Neural networks 6

Recall that our goal was to approximate a nonlinear function. It might appear that we have now achieved
this. However, since all terms are linear, this equation is still linear. If we plug in Equation 3.4 into
Equation 3.5, we get:

y=1wy h+by =wy (W, 24 b1) 4 by = woWiz + waby + by. (3.7)

Using a = wo W7 and b = wqb; + by, we can write this as

y=ax+b, (3.8)

which is again linear. Adding more layers would not make the model nonlinear either. As our function
is still linear, we still cannot separate the classes in the XOR problem. A usual solution is adding a
nonlinear activation function.

3.1.4. Activation functions

0.5
<3 X
! € 0
£2 8
1 05
0 -1 -
5 0 5 5 0 5
X X
(a) (c)

Figure 3.6: An illustration of three common activation functions [3]: (a) ReLU; (b) Sigmoid; and (c) Tanh.

A nonlinear activation function is used in neural networks to introduce nonlinearity. This allows us to
approximate functions that are nonlinear, such as the XOR problem. Three commonly used activation
functions are rectified linear unit (ReLU), sigmoid, and tanh. They are demonstrated in figure 3.6. We
use ReLU in this example. It is defined as:

o(xz) = max(0, z). (3.9)
This turns our equation into:

Flas Wi, bi,we, ba) = f2(o(f(2))). (3.10)

After a few iterations, the first layer can now learn to create a hidden space where the two classes are
linearly separable. In figure 3.7, we show a possible hidden space. The next layer can then learn two
separate the two classes in this hidden space. The question remaining is now: how can the network
learn such a hidden space? We explore this in the next section.

3.1.5. Back-propagation

So far we have explored network input. In problems like XOR, we pass two binary inputs to our net-
work, and receive a single binary output. Producing our output y based on inputs z is called forward
propagation.

The network needs to learn from the example inputs that we provide. To train the network, back-
propagation is typically used. First, we calculate the loss of our network. Then, information of our loss
function flows backward through the network, allowing us to calculate the gradient [6].

Following a notation style of Roger Grosse, we use bar notation to simplify notation of derivatives:

L or
o’

where v is the partial derivative of the loss function £ over a quantity v. Given our equations:

v

(3.11)

3.2. Optimization 7

XOR function: hidden space

0.8 4

0.6 4

0.4

0.2

001 @]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
h2

Figure 3.7: Visualization of a possible hidden space for the XOR problem. A linear separation in this learned space is now
possible. This means that a linear classifier can learn to perfectly separate the classes, as demonstrated by the blue line.

z=wzx+b, y=o(2), E:%(y—t)Q, (3.12)

we can use the following equations for backpropagation:

) = — = — — — 2 = — 1
zZ= 2 yo'(z) (3.14)
*yaz =Y) -
5=39% _ s (3.15)
ow
- 0z
b—z%—z. (3.16)

We measure how well we can approximate a function through loss. The goal is to minimize the loss.
However, when moving a step through the gradient, the loss usually does not hit a minimum immediately.
Thus, we propagate forward and backward many times. Each such iteration is called an epoch. At each
epoch, we can update our parameters 6 as follows:

0 =0 — eV (0), (3.17)

where ¢ is the learning rate, which determines how far we move into the negative direction of the
gradient.

By updating our parameters using gradient descent, we can learn parameters that approximate
functions. An MLP can approximate the mapping of any continuous function [9]. In the next section,
we discuss several optimization techniques that help to approximate more difficult functions.

3.2. Optimization

3.2.1. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a stochastic extension of gradient descent. In large training sets,
computing the loss function over all samples is often too computationally expensive. SGD works under
the expectation that we can approximate the gradient of all samples using a minibatch of a few samples
[6]. For instance, we might be able to approximate a dataset consisting of millions of samples with a
few hundred samples. These samples come from a minibatch B with m’ samples. We use the following
equation for the gradient estimation:

3.2. Optimization 8

1 m’ o
0’ :0—6WZV9L(331,3/1,9). (3.18)
i=1

3.2.2. Learning rate

The learning rate indicates how fast we move into the negative direction of the gradient. In this section,
we explore tuning this parameter. We create an example loss space, visualized in figure 3.8. Recall
that our goal is to minimize this loss.

Figure 3.8: Visualization of a two-dimensional loss space. The center, yellow oval indicates the lowest loss: the loss increases
as we move outwards. We aim to find the point of minimal loss. In this visualization, a human could easily just pick a point of
minimal loss. However, in practice, we often have many more dimensions, and finding the minimum becomes difficult. Thus,

we use gradient descent to minimize the loss.

With a learning rate that is too high, we might not converge. Convergence means that the network
has found a minimum.

Figure 3.9: The red dots represent a loss value for a certain parameter configuration of the network. A line through the dots
shows the progression of the loss attained. The dot on the far left is the first dot: we move inwards as we aim to minimize the
loss, which is at the center of the figure. In this figure, due to a too high learning rate, we fail to converge.

With a learning rate that is too low, it might take long to converge.

Figure 3.10: Due to a too low learning rate, it takes long to converge.

SGD calculates an expectation of the loss. Thus, the loss can be noisy: also towards the minimum.

3.2. Optimization 9

Figure 3.11: Since SGD is noisy, we might not converge.

We can decay the learning rate over time to find a good solution.

Figure 3.12: Using learning rate decay, we find the optimum after some epochs.

However, the convergence is quite slow. We can do better by having separate learning rates for
each parameter. In the next three sections, we explore three gradient descent optimization techniques.

3.2.3. Momentum

Momentum aims to accelerate learning. The name momentum comes from physics, where a force
moves a particle through a space [6]. We try to accelerate the learning in a direction where the gradient
updates decrease the loss, and decelerate the learning in a direction where the gradient updates do
not decrease the loss as much. We use figure 3.11 to give an intuition behind this algorithm. Note that
in this figure, the gradient updates oscillate vertically, while we want to move to the right. We can keep
a moving average of the past few gradients and use them to indicate how much we should accelerate
or decelerate gradient descent:

* In the past few gradients in the vertical direction, the gradient is mostly oscillating, so the average
will be close to zero.

+ In the past few gradients in the horizontal direction, the gradient moves to the right, so the average
will be large.

We update the parameters based on a moving average of the gradients, so that the algorithm takes a
less oscillated path towards the minimum than SGD.

Momentum is implemented as follows. We use v as the velocity, initialized at zero. It is similar to the
momentum of a particle. We decay v by « € [0, 1) after each epoch. This o parameter acts similarly to
friction in physics: it decays previous contributions exponentially. By doing this, we are calculating an
exponentially weighted average of the gradient. This speeds up learning by increasing the step size for
parameters with large gradients, and reduces oscillations by decreasing the step size for parameters
with small gradients. Using g to indicate the gradient, we can formulate momentum as follows [6]:

V4 QU — €4, (3.19)
0 0+w. (3.20)
We ignore bias correction with this formulation as it is often not implemented in practice.

3.2.4. RMSProp

Similarly to momentum, Root Mean Squared Propagation (RMSProp) [11] aims to reduce noisiness of
the gradient updates. This effect is illustrated in figure 3.11, where the gradient updates move much

3.2. Optimization 10

vertically, which does not help to converge. Similarly to momentum, we aim to move faster in the
horizontal direction, where the gradient steps are large, and move slower in the vertical direction, where
the gradient steps are small.

At each epoch, RMSProp calculates an exponentially weighted average of the squares of the deriva-
tives. When the derivative is sloped more steeply, such as in the vertical direction in figure 3.11, the
weighted average of the squares of the derivative is larger. We can divide by this number to reduce
oscillations. We keep track of a weighted moving average, r, which is initialized at zero. We use a
decay rate p € [0, 1). The following equations allow us to implement RMSProp [6]:

rpr+(l1—p)g®y, (3.21)
€

A —— oy, 3.22

its Y (5:22)

0« 0+ A0 (3.23)

Here, ¢ is small number, such as 1e-6, which is added to prevent dividing by zero. We again ignore
bias correction with this formulation as it is often not implemented in practice.

3.2.5. Adam
Adam [15], derived from adaptive moment estimation, essentially combines momentum and RMSProp.
We use p; and p, as decay rates. t indicates the time step. We can use the following equations to
implement Adam [6]:

To update the first and second moment estimates, we use:

s« p1s+(1—p1)g, (3.24)

7= par+ (1 —p2)g ©g. (3.25)
To correct for bias in the moments, we use:

s 2 (3.26)

1—pf’

R r
P (3.27)
Finally, to compute and apply the update, we use:
3
5+ Vi
0« 6+ A6. (3.29)

AQ +— —¢

(3.28)

3.2.6. Batch normalization
Normalizing input features can speed up learning. We refer to normalizing as centering and normalizing
values to a zero mean and unit variance. Normalizing speeds up training because it equalizes impact
of features on the loss function regardless of its possible values. For instance, if one feature ranges
from [0, 1], and another feature ranges from [0, 1000], then the second feature will have a much larger
impact on the loss.

Beyond normalizing input features, we could also normalize features in the hidden layers of the
network. For this, batch normalization [12] is commonly used.

We can use the following equations to normalize our hidden layers:

b=t S (3.30)
n =
1 <,
of == (& =), (3.31)
i=1
snorm _ 21 (3.32)

3.3. Regularization 1

Hidden layers should not always have a zero mean and unit variance. Thus, we introduce two learnable
parameters, v and g.

270 =z + By (3.33)

~ and 8 are updated the same way as the weights of the neural network.

3.3. Reqgularization

A model generalizes if it performs well on inputs it has not been trained on. To understand the relevance
of this, consider a case where a network aims to classify dogs and wolves. As in the dataset, all pictures
of wolves have snow in them, the network simply learns to classify dogs and wolfs based on snow,
regardless of which animal is in it [24]. However, in unobserved inputs, an image with a wolf might not
have any snow, likely leading to a bad prediction.

The most straightforward approach to verifying if our model generalizes, is to split our data into a
training and a test set. The model trains only on the training set; it is evaluated on the test set.

A model can underfit when the model cannot get good performance on any set. A model can
overfit by performing much better on the training set than on the test set, which indicates a lack of
generalization. Regularization is a method which aims to reduce overfitting. In this section, we outline
a few common approaches towards regularization.

3.3.1. Early stopping

When a model overfits, its error on the training set - the training error - tends to decrease over time,
while the test error begins to increase [6]. This is illustrated in figure 3.13. Early stopping refers to
creating a copy of the model every time the test error is at a new minimum. We then use this model for
later inference rather than the most recent one. Depending on the implementation, the model training
is halted when the test error starts to increase.

Error

Epoch +

Figure 3.13: An illustration of model error on a model that overfits. The blue line indicates the train error. The red line indicates
the test error, which starts to increase after a while. At the dotted line, the model starts to overfit. Using early stopping, we
return the model with best performance on the test set.

3.3.2. Weight decay

Weight decay is a technique that aims to avoid weight parameters with high values. Such parameters
can introduce high variance. As a possible solution, we can add the sum of squares of the weights
to the loss. The idea is that smaller weights lead to less variance, which means a more generalized
model. We can update our loss to the following to implement weight decay [6]:

J(0) = MSEqrain + Aw ' w, (3.34)
where A controls the amount of regularization.
3.3.3. Batch normalization

Batch normalization has a small regularization effect on the gradients [30]. The mean and variance
statistics are calculated on the minibatch. The statistics on each minibatch differ slightly from each

3.4. Convolutional neural networks 12

other. This difference introduces random jitter perturbations to the partition boundaries, which has a
regularizing effect [1].

3.3.4. Data augmentation
Deep learning algorithms typically regularize more with more data. However, acquiring data is usually

expensive. Data augmentation is a common technique to expand the current dataset. It is particularly
helpful on small datasets.

We use three types of augmentations:

* horizontal flipping;
+ rotation: randomly uniform between [—30°, 30°];
* cropping; zooming in by a factor of 1.5 and taking a random crop within this image.

We illustrate an example of an augmented strawberry sample in figure 3.14.

Figure 3.14: Three data augmentation techniques on a strawberry sample. Each technique is applied subsequently on the
results of the previous one, leading to 22 = 8 permutations. The original strawberry is at the top left. The bottom left strawberry
is horizontally flipped. The second column displays random rotation. The third and fourth column displays random cropping.
The augmenting process results in more data to train on.

Data augmentation techniques should be chosen based on the task. For example, for strawberry

quality prediction, augmentations that alter colors might not be suitable, as quality parameters depend
on color.

3.4. Convolutional neural networks

MLPs can be used for computer vision tasks, such as image classification. However, since MLPs are
fully connected, they have a large amount of parameters. For example, an MLP with 1000 hidden units
and a 256x256 RGB input image has 256x256x3x1000 = 197 million parameters in the first layer. It is
not computationally feasible to use an MLP for large images.

Instead, we can use a convolutional neural network (CNN). A CNN is a neural network that uses
convolutional operations and is often used for image analysis.

3.4.1. The convolution operation

We can use a filter to detect a certain pattern in an image. An example filter, shown in figure 3.15, acts
as a vertical edge detector.

3.4. Convolutional neural networks 13

110]|-1
110]|-1

Figure 3.15: An example of a 3x3 filter that detects vertical edges.

We can apply this filter on an input image, which is represented as a matrix. A convolution operation
is an element-wise matrix multiplication. The first part of the multiplication is an input matrix, i.e., the
input image. The second part of the multiplication is a filter.

4 |5 |3 |8 |4 1 (0 [« 6

3 3 2 8 4 * 1 0 |1 —

2 |8 |7 |2 |7 110 |-

5 4 4 5 4 Tx1+4x143x1+
2x0+5x0+3x0+
3x-1+3x-1+2%-1
=6

Figure 3.16: A single output of a convolution operation. The filter in the middle is multiplied element-wise with the top-left part
of the image. The output goes to the top right of the output image.

We can apply the same multiplication on the entire input matrix.

4 |5 |3 (8 |4 1 |0 |- 6 |9 |8
3 3 2 8 4 * 1 0 |1 — 3 |2 |-3
2 s i 0 3 |0 |-2

Figure 3.17: The full output of the convolution operation.

This example used a vertical edge detection filter. In practice, the values in the filter are the weights
of the network. The neural network learns the weights over time.

Technically, the convolution operation first flips the filter both horizontally and vertically. The term
cross-correlation defines an operation where this action is omitted. However, in practice, literature
refers to this operation - without flipping - as convolution. The flipping is not implemented for simplicity.

3.4.2. Padding
As demonstrated in figure 3.17, the size of the output becomes smaller after the convolution operation.
This has two disadvantages. First, the image shrinks over time: when using many layers, we end up

3.4. Convolutional neural networks 14

with an output image that is much smaller than the input image. Second, the information at the edges
is used less than the information towards the center. For instance, with a 3x3 filter, a pixel at the corner
is used once, while a pixel in the center is used 9 times.

A common solution to this is padding. If our input matrix is n x n and our filter is f x f, then the
output of convolution is (n — f + 1) x (n — f + 1). So, a 5x5 input with a 3x3 filter gives a 3x3 output.
When padding the image, we add a border to the image, i.e., we add pixels on all sides of the image.
Padding is typically applied with zeroes, called zero-padding. After padding the image with p pixels at
each side of the image, the size becomes (n+2p— f+ 1)« (n+2p— f 4+ 1). Usingp = 1, we get a
5x5 output: the image size stays the same. The result is that pixel values at the edge are convolved
over just as much as pixel values towards the center.

Figure 3.18: Padding is applied by appending pixels on the all sides of the image. This figure shows a border of 1 pixel.

Given that the output size is (n+2p— f+ 1) * (n+2p — f + 1), we can find that using p = %, the
output size is equal to the input size.
There are three common types of convolution, each with their own amount of padding:

+ valid convolution: here, no padding is applied, thus the output shrinks by f — 1 pixels;
» same convolution: by padding the input with % pixels, our output size is equal to the input size;
« full convolution: by padding the input with f — 1 pixels, our output size increases by f — 1 pixels.

The choice of type of convolution depends on the goal: to either decrease, keep, or increase the
image size.

3.4.3. Stride

We can add a level of stride to the convolution operation. The stride is an integer that indicates with

how many steps the filter moves. The default stride is 1. When using a stride of 2, the filter moves 2

steps at a time. The result is a smaller output image. The dimensions when using a stride are:

n+2p—f
S

n+2p—
Tpfﬂj,

I +1) %] (3.35)

For example, in the output of figure 3.19, each dimension is now | =3 4 1| = 3,

3.4. Convolutional neural networks 15

7 x 7 Input Volume 3 % 3 OQutput Volume

Figure 3.19: A 7x7 input is convolved over using a 3x3 filter and a stride of 2. The stride indicates the step size of the
convolution operation. The output size is 3x3.

3.4.4. Pooling

Pooling is an operation that decreases the size of feature maps by summarizing the features. It in-
creases translation invariance [6]. It is computed per feature channel. Two common types of pooling
are max pooling and average pooling. Empirically, max pooling gives better results, and is thus used
more commonly. Max pooling takes the maximum of each region, while average pooling takes the
average of each region.

12 120 | 30| O

8§ [121 2 | 0| 2x2Max-Pool |20f30
34 | 70 | 37 | 4 112 | 37

112 1100 25 | 12

Figure 3.20: A max pooling operation. The maximum value of each region, denoted by a distinct color, is chosen for the output.
A 2x2 pooling operation reduces the output size by a factor 4. Pooling operations have no learnable parameters.

3.4.5. Networks
A network typically uses many consecutive layers of convolution. Each layer applies a few steps, as
visualized in figure 3.21:

 convolve the input image with filters;
« apply a non-linearity function, such as RelLU;
+ apply a pooling operation.

3.4. Convolutional neural networks 16

Learned . A q . .
-[filters] [Convolutlon] [Non Llnearlty] [Spanal Poollngj -

7
o |
N\

S,

Figure 3.21: A visualization of a possible input image processed by a convolutional layer. We apply convolution, non-linearity,
and spatial pooling, and the result moves to the next layer.

In a CNN, filters with different sizes allow the network to look at the image from a low-level and
a high-level. Relatively larger filter sizes means that a filter operates on a larger part of the image.
Rather than increasing the filter size, we decrease the image size. This has a similar effect, but is more
efficient, as smaller images reduce computation time. As the image size shrinks throughout the layers,

deeper layers detect more high level features, such as shapes; earlier layers detect more low level
features, such as edges.

3.4.6. Transposed convolutions

After subsampling operations such as pooling, the image size shrinks. Transposed convolutions are
convolution operations that allow us to increase the image size, rather than decrease it.

Figure 3.22: Transposed convolutions with a 5x5 output [4]. The green matrix is the output of the operation; the blue matrix is
the input. The blue matrix is 3x3, but padded with a 1 pixel border and a stride of 2 pixels.

3.4.7. A few notable CNN architectures

LeNet LeNet [16] was one of the earlier convolutional neural networks. It consists of convolutional,
pooling, and fully connected layers. LeNet used average pooling and a Tanh activation function.

C3:f. maps 16@10x10

INPUT C1: feature maps S4:{. maps 16@5x5
6@28x28

32x32 S2: f. maps

6@14x14

‘) ‘ FuIIconAection ‘

Convolutions St ing Full connection

Ci ions
5x5 filters 5x5 filters

Figure 3.23: LeNet [16]. A 32x32 black and white input is passed through three convolutional layers, two pooling layers, and
two fully connected layers.

ResNet Many visual tasks have benefited from deep models [10]. However, as depth increases, accu-
racy eventually decreases. One problem that causes this is vanishing/exploding gradients. This refers

3.4. Convolutional neural networks 17

to gradients that are repeatedly multiplied until they either hit zero or infinity, hurting the performance
of the network. Indeed, certain CNNs have been shown to perform worse with an increasing amount
of layers [10].

Aresidual neural network (ResNet) [10] uses shortcut connections that can skip layers. The shortcut

connections allow input to go through less layers, which reduces the impact of vanishing/exploding
gradients.

weight layer

X
identity

Figure 3.24: A residual learning building block [10] used in ResNet. Inputs can bypass layers by going through the shortcut
connection. The shortcut connection is an identity function.

n
28
=

3x3 conv, 128,
3x3 conv,
3x3 conv, 128

1
256, /2

Input
3x3 conv, 64
3x3 conv, 64
3x3 conv. 64

-
Avg pool

3x3 conv, 64

=]
1 z
. 4
g 8
= o
X -

3x3 conv, 256

a2
ot
%‘
-
#
-

3x3 conv, 256
3x3 conv, 512, /2
3x3 conv, 512

3x3 conv, 128
3x3 conv, 256

3x3 conv,

Figure 3.25: ResNet-18 is a variant of ResNet with 18 layers. The top arrows indicate shortcut connections. These shortcut
connections reduce the vanishing/exploding gradient problem [10].

U-Net U-Net [25] is a CNN originally made for biomedical image processing. In such tasks, localization
should often be outputted [25]. The architecture is shown in figure 3.26. The network has a contractive
path on the left and an expansive path on the right. This creates a U-like shape, hence the name,
U-Net. The contractive path consists of 3x3 convolutions, ReLU, and 2x2 max pooling with stride 2.
The expansive path replaces the pooling operation with a 2x2 transposed convolution.

As the architecture in the original paper does not use padding, the output size is smaller than the
input size. Later implementations’ of the network added padding to make the output and input sizes

equal, which makes the network more suitable for segmentation. We also use padding in our scientific
paper so that the sizes stay the same.

'PyTorch implementation of U-Net on Github. https://github.com/jvanvugt/pytorch-unet/blob/master/README.md

https://github.com/jvanvugt/pytorch-unet/blob/master/README.md

3.4. Convolutional neural networks

18

1 64 64

input
image
tile

A4
A/

572 x 572
570 x 570
568 x 568

¥ 128 128

R K<)

f © o]

Nj N N
¥ 256 256
b bt
SN 2N O
—a o o

512 512

128 64 64 2
ole e output
segmentation
N (@) oOff O
3 8 & & map
x x| x| x|
al g 8
[32] o o ™)
256 128

2002
1982
1962

512 256 t

g 'E 'gl =»conv 3x3, ReLU
A o =
S 4 copy and cro
1024 512 py p
5 IeEem § max pool 2¢2
B o 4 up-conv 2x2
=» conv 1x1

Figure 3.26: U-Net [25]. The numbers at the top indicate the number of channels and the number on the side indicates the
image size. A blue box represents a feature map and a white box represents a copied feature map. The horizontal lines
indicate concatenations for upsampling. The left part of the network reduces the image size and increases the number of

channels; the right part of the network increases the image size and reduces the number of channels.

Strawberry quality

This chapter aims to provide an answer to the following question: why are we able to determine internal
quality attributes of strawberries from pictures and environment data?

4.1. Ripening process and chemical constituents

One way that fruit ripening is observed is through color change. Fruit ripening usually involves changes
in pigment concentrations. Mainly, chlorophyll is degraded and other pigments, such as anthocyanins,
are biosynthesized [26]. Chemical concentrations can be observed visually: anthocyanin and chloro-
phyll pigments have been shown to be visible in the regions around 535 nm and 680 nm [18]. These
regions are visible to the eye.

4.1.1. Photosynthesis and chlorophyll

Photosynthesis is a process where plants synthesize nutrients from carbon dioxide and water under
influence of sunlight. This is an endothermic reaction, which means it absorbs heat. Thus, sunlight is
necessary. The following equation can represent the reaction [8]:

CO, + H,0 ﬁ [CH,0] + O». (4.1)

Plants contain chloroplasts, which store the energy of sunlight [27]. The chloroplast contains the
pigment chlorophyll, which is a light-absorbing pigment. It allows plants to absorb energy from light.
Specifically, it absorbs energy from red and blue wavelengths and reflects green wavelengths. This
makes fruit appear green.

Chlorophyll content is directly linked to sugar content [14]. During the ripening process of plants,
chlorophyll is degraded [2]. Thus, a change in color due to a change in chlorophyll concentrations can
be observed: the fruit becomes less green.

4.1.2. Anthocyanins and carotenoids

Anthocyanins are pigments that give a red or blue color [26]. They are common in strawberries [31].
It is synthesized during the ripening process [13]. They are not involved in photosynthesis, but serve
other purposes, such as protection against UV light [14].

Unlike anthocyanins, carotenoids are essential in photosynthesis [7]. Strawberries have low carotenoid
content, which decreases during ripening. Carotenoids expand the wavelength range that a plant is
able to drive photosynthesis in the following way [7]: chlorophylls cannot absorb light well in the 450-
550nm region, yet carotenoids absorb light strongly here. They transfer this energy to the chlorophylis.
Further, like anthocyanins, carotenoids prevent photo-damage under conditions of excess light.

4.1.3. Firmness and shelf life

Fruit firmness decreases over time, contributing to its quality. It is largely due to cell wall degradation
[26]. This loss of firmness results in a short shelf life [20]. Strawberries that lose too much firmness
could lead to waste [19]. Pectin, a structural fiber, forms a major component of the cell walls, which

19

4.72. Environment data 20

are extensively modified during ripening [19]. During fruit ripening, pectin is broken down by enzymes.
Enzymes are proteins that catalyze chemical reactions. The breakdown of pectin makes the fruit softer
as cells are separated from each other [22].

4.2. Environment data

Environmental data significantly impact quality attributes such as sweetness. In this section, we outline
a few possible causes of these impacts of two relevant environment factors: temperature and carbon
dioxide.

Temperature affects fruit photosynthesis [29]. The reactions of photosynthesis are controlled by
enzymes [5]. Enzymes work most efficiently at around 10-20 degrees Celsius [17]. At lower or higher
temperatures, enzymes work less efficiently, which decreases photosynthetic rate. This results in less
glucose content in strawberries.

Elevated levels of carbon dioxide (CO-) significantly increases sweetness in strawberry fruits [28].
Higher CO, results in higher dry weight. Dry weight is a measure of the weight of a fruit after drying.
The effect could be due to higher photosynthetic rate.

Stereo vision

In our greenhouse, two cameras are placed in parallel, which take pictures of the strawberry plants.
Given our stereo setup, we can calculate the depth of a strawberry. The depth is the length from the
cameras to the strawberry, parallel to the cameras. Our markets divide strawberries based on their
width in millimeters, but we are only able to measure the width in pixels. These cannot trivially be
converted: a strawberry that takes up the same amount of pixels, but is further away, is actually larger.
Although we know that the distance from the cameras to the strawberries is roughly 900mm, it varies
by around 100mm. With stereo vision, we are able to calculate the depth; using the depth, we are able
to calculate the size in millimeters.

This chapter is structured as follows. In section 5.1, we explain how we calculate the focal length of
our cameras, which we need to calculate the depth. In section 5.2, we explain how we calculate depth.

5.1. Focal length calculation

20.5°

w 172w

Figure 5.1: We can calculate the focal length using trigonometric ratios. In the left side of the image, the bottom line is the
camera film; the top line is the where the strawberries are, roughly. The right side of the image is a zoomed-in version of the
blue part of the left side of the image. We can find the length of the opposite (focal length, f) using the length of the adjacent

(image width, %w) and the angle (camera angle, 6).

We can find the focal length of a camera using trigonometric ratios. We know the width of the
pictures taken by the camera in pixels, namely, w = 4000px. We also know that the angle of the
camerais 6 = 41°.

We can create a triangle with an angle of % = 20.5° by drawing a line from the center of the
projection in the camera to the center of the reality. We know that opposite angles are equal, therefore,
in the blue triangle, our angle is % = 20.5° as well. We illustrate this in figure 5.1.

21

5.2. Depth calculation 22

In our triangle, Jw is the adjacent line and g = 20.5° is our angle. We can use this to find the focal
length, which is the opposite line, with the following equation:

0 %w
tan(;;) = = (5.1)
To get the focal length, we rewrite this to:

w

= . 5.2
f 2tan(%) (5:2)
Using details of our cameras, we find:
4000px
= —— "~ 5349px. 5.3
= San (A pX (5.3)

The focal length allows us to calculate the depth.

5.2. Depth calculation

Similar triangles can be used to find an equation for depth [21]. We illustrate our setup in figure 5.2.
A simplified version of this figure, which only has the relevant details for triangulation, is shown in
figure 5.3.

Figure 5.2: Our setup. We illustrate our two parallel cameras in black in the middle of image. They point at an example object,
here denoted as a star.

x1 and z- are the disparities in pixels, observed by the two cameras, and S; and S, are the disparities
in millimeters. Using similar triangles, we find the following two equations:

Sl D 52 D
—=— and — =—. 54
vy f Ty f (54)
Rewriting leads to
1D xo D
S = 17 and S, = 27 (5.5)

Observing figure 5.2, we see that the following equation holds:

5.2. Depth calculation 23
ol e
D} . D
: f f
x1 X2
Figure 5.3: A simplified version of figure 5.2 that only shows relevant details for triangulation.
Inserting the values from Equation 5.5 gives:
1D xeD (1 4+ x9)D
b= + = . (5.7)
f f f
We can define the disparity d as the sum of the disparities in pixels xz; and z-:
d=1x1 + 2. (5.8)
Plugging this into the previous equation gives us:
dD
b= —. (5.9)
f
Finally, rewriting to obtain the depth gives
D= % (5.10)

The baseline between the cameras and the focal length are constant. This means that the depth is

a function of the disparity: the depth is inversely proportional to the disparity.

Finally, using the same triangulation method as described in section 5.1, we calculate the size of
strawberry in millimeters, given the depth and the size of a strawberry in pixels. This is described in

detail in section 3.5 of the scientific paper.

(1]

(2]

3]

[4]
[5]
[6]
[7]

[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

References

Randall Balestriero and Richard G. Baraniuk. Batch Normalization Explained. 2022. DOI: 10 .
48550/ARXIV.2209.14778. URL: https://arxiv.org/abs/2209.14778.

C J Brady. “Fruit Ripening”. In: Annual Review of Plant Physiology 38.1 (1987), pp. 155-178.
DOI: 10.1146/annurev.pp.38.060187.001103. eprint: https://doi.org/10.1146/annurev.
pp.38.060187.001103. URL: https://doi.org/10.1146/annurev.pp.38.060187.001103.

Jason Carson et al. “Artificial intelligence approaches to predict coronary stenosis severity using
non-invasive fractional flow reserve”. In: Proceedings of the Institution of Mechanical Engineers
Part H Journal of Engineering in Medicine 234 (Aug. 2020). DOI: 10.1177/0954411920946526.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. 2016.
DOI: 10.48550/ARXIV.1603.07285. URL: https://arxiv.org/abs/1603.07285.

Enzymes. URL: https://www.bbc.co.uk/bitesize/guides/z9pjrwx/revision/2 (visited on
09/30/2022).

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://wuw.deeplearni
ngbook.org. MIT Press, 2016.

Hashimoto H, Uragami C, and Cogdell RJ. “Carotenoids and Photosynthesis”. In: Subcell Biochem
79 (2016), pp. 111-39. DOI: 10.1007/978-3-319-39126-7_4.

D. O. Hall and K. K. Rao. Photosynthesis. 6th ed. Cambridge University Press, 1999.

Eric J. Hartman, James D. Keeler, and Jacek M. Kowalski. “Layered Neural Networks with Gaus-
sian Hidden Units as Universal Approximations”. In: Neural Computation 2.2 (June 1990), pp. 210—
215. ISSN: 0899-7667. DOI: 10.1162/neco.1990.2.2.210. eprint: https://direct.mit.edu/
neco/article-pdf/2/2/210/811985/neco.1990.2.2.210.pdf. URL: https://doi.org/10.
1162/neco.1990.2.2.210.

Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. DOI: 10.48550/ARXIV.
1512.03385. URL: https://arxiv.org/abs/1512.03385.

Geoff Hinton. Coursera, video lectures. 2012.

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. 2015. DOI: 10.48550/ARXIV. 1502.03167. URL: https:
//arxiv.org/abs/1502.03167.

M.N. Islam, Mehnaz Mursalat, and Mohidus Samad Khan. “A review on the legislative aspect of
artificial fruit ripening”. In: 5 (June 2016). DOI: 10.1186/s4006601600575.

Leepica Kapoor et al. “Fruit ripening: dynamics and integrated analysis of carotenoids and antho-
cyanins”. In: BMC Plant Biology 22 (Jan. 2022). DOI: 10.1186/s12870-021-03411-w.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014. DOI:
10.48550/ARXIV.1412.6980. URL: https://arxiv.org/abs/1412.6980.

Yann Lecun et al. “Gradient-Based Learning Applied to Document Recognition”. In: Proceedings
of the IEEE 86 (Dec. 1998), pp. 2278-2324. DOI: 10.1109/5.726791.

Samuel Markings. The Effect of Temperature on the Rate of Photosynthesis. 2018. URL: http
s://sciencing.com/effect-temperature-rate-photosynthesis-19595.html (visited on
09/30/2022).

Binu Melit Devassy and Sony George. “Estimation of strawberry firmness using hyperspectral
imaging: a comparison of regression models”. In: Journal of Spectral Imaging 10 (June 2021).
DOI: 10.1255/jsi.2021.23.

24

https://doi.org/10.48550/ARXIV.2209.14778
https://doi.org/10.48550/ARXIV.2209.14778
https://arxiv.org/abs/2209.14778
https://doi.org/10.1146/annurev.pp.38.060187.001103
https://doi.org/10.1146/annurev.pp.38.060187.001103
https://doi.org/10.1146/annurev.pp.38.060187.001103
https://doi.org/10.1146/annurev.pp.38.060187.001103
https://doi.org/10.1177/0954411920946526
https://doi.org/10.48550/ARXIV.1603.07285
https://arxiv.org/abs/1603.07285
https://www.bbc.co.uk/bitesize/guides/z9pjrwx/revision/2
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-319-39126-7_4
https://doi.org/10.1162/neco.1990.2.2.210
https://direct.mit.edu/neco/article-pdf/2/2/210/811985/neco.1990.2.2.210.pdf
https://direct.mit.edu/neco/article-pdf/2/2/210/811985/neco.1990.2.2.210.pdf
https://doi.org/10.1162/neco.1990.2.2.210
https://doi.org/10.1162/neco.1990.2.2.210
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.1186/s4006601600575
https://doi.org/10.1186/s12870-021-03411-w
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/5.726791
https://sciencing.com/effect-temperature-rate-photosynthesis-19595.html
https://sciencing.com/effect-temperature-rate-photosynthesis-19595.html
https://doi.org/10.1255/jsi.2021.a3

References 25

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

Candelas Paniagua et al. “Fruit softening and pectin disassembly: An overview of nanostructural
pectin modifications assessed by atomic force microscopy”. In: Annals of botany 114 (July 2014).
DOI: 10.1093/a0ob/mcu149.

Candelas Paniagua et al. “Structural changes in cell wall pectins during strawberry fruit devel-
opment”. In: Plant Physiology and Biochemistry 118 (2017), pp. 55-63. ISSN: 0981-9428. DOI:
https://doi.org/10.1016/j.plaphy.2017.06.001. URL: https://www.sciencedirect.com/
science/article/pii/S0981942817301791.

Dhaval K. Patel, Pankaj A. Bachani, and Nirav R. Shah. “Distance Measurement System Using
Binocular Stereo Vision Approach”. In: International journal of engineering research and technol-
ogy 2 (2013).

Pectin. 2022. URL: https://en.wikipedia.org/wiki/Pectin#cite_note-Grierson-7 (visited
on 09/25/2022).

Perceptron. 2022. URL: https://nl.wikipedia.org/wiki/Perceptron (visited on 10/07/2022).

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should | Trust You?”: Explaining
the Predictions of Any Classifier. 2016. DOI: 10 . 48550/ ARXIV. 1602 . 04938. URL: https://
arxiv.org/abs/1602.04938.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. 2015. DOI: 10.48550/ARXIV.1505.04597. URL: https://arxiv.org/
abs/1505.04597.

Graham B. Seymour, Jane E. Taylor, and Gregory A. Tucker. Biochemistry of Fruit Ripening. 1st
ed. Dordrecht: Springer Dordrecht, 1993.

National Geographic Society. Photosynthesis. 2022. URL: https://education.nationalgeogr
aphic.org/resource/photosynthesis (visited on 09/25/2022).

SY Wang and JA Bunce. “Elevated carbon dioxide affects fruit flavor in field-grown strawberries
(Fragaria x ananassa Duch)”. In: Journal of the Science of Food and Agriculture 84.12 (2004),
pp. 1464-1468. DOI: https://doi.org/10.1002/jsfa.1824. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/jsfa.1824. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/jsfa.1824.

Wu X.Y. et al. “The difference in temperature between day and night affects the strawberry soluble
sugar content by influencing the photosynthesis, respiration and sucrose phosphatase synthase.”
In: Hort. Sci. (Prague) 48 (2021), pp. 174-182. DOI: 10.17221/169/2020-hortsci.

Greg Yang et al. A Mean Field Theory of Batch Normalization. 2019. DOI: 10.48550/ARXIV.1902.
08129. URL: https://arxiv.org/abs/1902.08129.

Yosuke Yoshioka et al. “Use of image analysis to estimate anthocyanin and UV-excited fluores-
cent phenolic compound levels in strawberry fruit”. In: Breeding science 63 (June 2013), pp. 211—
7.DOI: 10.1270/jsbbs.63.211.

Chu zhang et al. “Hyperspectral imaging analysis for ripeness evaluation of strawberry with
support vector machine”. In: Journal of Food Engineering 179 (2016), pp. 11-18. ISSN: 0260-
8774. DOI: https://doi.org/10.1016/j . jfoodeng.2016.01.002. URL: https: //www .
sciencedirect.com/science/article/pii/S0260877416300024.

https://doi.org/10.1093/aob/mcu149
https://doi.org/https://doi.org/10.1016/j.plaphy.2017.06.001
https://www.sciencedirect.com/science/article/pii/S0981942817301791
https://www.sciencedirect.com/science/article/pii/S0981942817301791
https://en.wikipedia.org/wiki/Pectin#cite_note-Grierson-7
https://nl.wikipedia.org/wiki/Perceptron
https://doi.org/10.48550/ARXIV.1602.04938
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.48550/ARXIV.1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://education.nationalgeographic.org/resource/photosynthesis
https://education.nationalgeographic.org/resource/photosynthesis
https://doi.org/https://doi.org/10.1002/jsfa.1824
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jsfa.1824
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jsfa.1824
https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.1824
https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.1824
https://doi.org/10.17221/169/2020-hortsci
https://doi.org/10.48550/ARXIV.1902.08129
https://doi.org/10.48550/ARXIV.1902.08129
https://arxiv.org/abs/1902.08129
https://doi.org/10.1270/jsbbs.63.211
https://doi.org/https://doi.org/10.1016/j.jfoodeng.2016.01.002
https://www.sciencedirect.com/science/article/pii/S0260877416300024
https://www.sciencedirect.com/science/article/pii/S0260877416300024

