TU Delft

Tiny Machine Learning for Embedded Systems

Real-Time Traffic Sign Recognition on Microcontrollers

Aykut Emre Celen'
Supervisor(s): Qing Wang', Ran Zhu'!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Aykut Emre Celen
Final project course: CSE3000 Research Project
Thesis committee: Qing Wang, Ran Zhu, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Real-time traffic sign recognition on microcon-
trollers introduces challenges due to limited mem-
ory and processing capacity. This study inves-
tigates the trade-offs between model size, clas-
sification accuracy, and inference latency within
hardware constraints. We present an efficient net-
work architecture called AykoNet with two vari-
ants: AykoNet-Lite, prioritizing model size and
inference latency, and AykoNet-Pro, prioritizing
classification accuracy. We trained AykoNet on
the German Traffic Sign Recognition Benchmark
(GTSRB) and specifically optimized it for deploy-
ment on the Raspberry Pi Pico microcontroller.
AykoNet-Lite delivers 94.60% accuracy with only
a 36.80KB model size and 55.34ms inference time,
while AykoNet-Pro achieves 95.90% accuracy with
an 80.18KB model size and 87.13ms inference
time. Our approach demonstrates the effectiveness
of domain-specific preprocessing and architectural
design, class-aware data augmentation, and the
strategic use of depthwise separable convolutions.
These results validate the feasibility of real-time
traffic sign recognition in resource-constrained em-
bedded systems. Specifically, AykoNet-Lite strikes
an optimal balance between model size, classifi-
cation accuracy, and inference latency for practi-
cal deployment in autonomous navigation applica-
tions.

1 Introduction

Real-time traffic sign recognition enables autonomous navi-
gation systems to interpret and respond to traffic regulations
[13; 14]. Integrating such vision-based recognition capabil-
ities into microcontrollers supports the development of low-
cost intelligent transportation systems [4; 1].

However, deploying vision systems on microcontrollers
introduces difficulties due to limited memory and process-
ing capacity. The field of Tiny Machine Learning (TinyML)
bridges this gap by adapting machine learning models to run
efficiently on ultra-low-power microcontrollers [19]. Achiev-
ing real-time performance, on the other hand, requires opti-
mization, as the fundamental challenge lies in balancing clas-
sification accuracy, model size, and inference latency within
hardware constraints.

This research addresses the question: How can we create
an optimal TinyML model for real-time traffic sign recogni-
tion on microcontrollers? We explore the architectural trade-
offs between model size, inference speed, and accuracy. This
paper presents AykoNet, an efficient network architecture for
traffic sign recognition specifically optimized for deployment
on the Raspberry Pi Pico microcontroller. Our approach
achieves over 90% accuracy with inference times under 0.1
seconds, demonstrating the feasibility of real-time traffic sign
recognition on embedded systems.

Section 2 reviews related work in efficient convolutional
neural networks and traffic sign recognition on microcon-
trollers. Section 3 describes the AykoNet architecture and

training methodology. Section 4 details the experimental
setup and results. Section 5 discusses the implications and
limitations of our approach. Section 6 reflects the ethical as-
pects of this study. Section 7 concludes the paper and outlines
future research directions.

2 Related Work

Recent literature has shown rising interest in designing
lightweight and efficient convolutional neural networks for
resource-constrained devices, e.g. [10; 12; 16]. This sec-
tion presents two key architectures relevant to our work:
MobileNets [9], for efficient general-purpose inference, and
GiordyNet [6], a traffic sign recognition model specifically
optimized for STM32 microcontrollers.

MobileNets, developed by Google in 2017, are a class of
efficient convolutional neural networks specifically designed
for mobile and embedded applications [9]. MobileNetV1,
in particular, has been widely adopted in TinyML applica-
tions and is featured in the TinyML book as a representative
model for person detection on microcontrollers [19]. The key
innovation of MobileNets is the use of depthwise separable
convolutions, which decompose standard convolutions with
computational cost

Dg XD xMXN X Dp x Dp (1)

where Dy is the kernel size, M is the number of input chan-
nels, N is the number of output channels, and D is the spa-
tial dimension of the feature map. The decomposition splits
this into two separate operations: a depthwise convolution
with cost D X D x M x D x D followed by a pointwise
convolution with cost M x N x Dr x Dp. This factorization
reduces computational complexity to [9]

(Dx x Dk x M+ M x N) x Dp x Dp 2)

Furthermore, MobileNets introduce a width multiplier (o)
that allows the model to be scaled to match specific hardware
constraints.

GiordyNet, developed by Marco Giordano at ETH Zurich
in 2020, offers a strong balance between accuracy and mem-
ory usage for traffic sign recognition on microcontrollers [6].
The model is trained on the German Traffic Sign Recogni-
tion Benchmark (GTSRB), a widely used dataset containing
43 classes of traffic signs [8]. Sample images from different
classes of the GTSRB dataset are shown in Figure 1. GT-
SRB is also employed by other traffic sign recognition sys-
tems, such as MASG-Net [5] and Advanced Driver Assis-
tance System [2; 11]. GiordyNet combines domain-specific
preprocessing with an efficient architecture tailored for mi-
crocontrollers. It processes grayscale images to reduce the
number of input channels and applies photometric distortions
to enhance robustness against varying lighting conditions. As
a result, GiordyNet achieves a high accuracy of 94.7% on the
GTSRB test set and uses significantly less RAM compared to
SermaNet, the state-of-the-art neural network model from the
GTSRB competition [6].

While MobileNets offer efficient inference through depth-
wise separable convolutions, they are general-purpose vision
models and lack design optimizations tailored for traffic sign

recognition. GiordyNet, on the other hand, demonstrates high
accuracy on traffic signs due to its domain-specific prepro-
cessing and architectural choices [6]. However, its use of
standard convolutions results in computationally heavy infer-
ence. This highlights a gap in existing solutions: the need
for a model that combines domain-specific optimizations with
computational efficiency.

Class 21

Class 5 Class 6

Class 10 Class 31 Class 27

Figure 1: Sample images from the GTSRB dataset

3 AykoNet

In this work, we present AykoNet, a novel architecture that
addresses the gap in existing solutions by integrating ele-
ments from both MobileNets and GiordyNet. Our model in-
corporates GiordyNet’s domain-specific preprocessing tech-
niques and architectural principles while integrating Mo-
bileNet’s efficient depthwise separable convolutions. This
approach aims to reduce model size and inference time com-
pared to standard convolutional architectures. Additionally,
to maintain high classification accuracy despite these op-
timizations, we introduce a class-aware data augmentation
strategy that handles the class imbalance in the GTSRB
dataset.

This section outlines the complete AykoNet training
pipeline, detailing the dataset preparation methodology, aug-
mentation strategy, architectural design, and training proce-
dures.

3.1 Data and Preprocessing

Aykonet is trained on the GTSRB dataset, which contains
39,166 training and 12,629 test images across 43 different
traffic sign classes (see Appendix A for the class labels). Im-
age sizes range from 15x15 to 250x250 pixels, and are cap-
tured under diverse lighting conditions, viewing angles, and
weather scenarios, making the dataset a realistic benchmark
for traffic sign recognition.

We convert all images from RGB to grayscale during pre-
processing, following the GiordyNet approach. This chan-
nel reduction from three colors to one decreases computa-
tional complexity and memory usage while preserving essen-
tial structural features like edges and shapes. For traffic signs,
which are designed with high contrast and distinctive forms
for visibility in varied conditions, the shape information cap-
tured in grayscale is often sufficient for accurate classification

[6].

All images are then resized to 32x32 pixels using bilinear
interpolation. This step standardizes input dimensions and re-
duces memory usage while preserving sufficient detail for ac-
curate classification. The chosen resolution represents a bal-
ance between computational efficiency and representational
fidelity, as demonstrated in GiordyNet’s findings [6].

Figure 2 illustrates the preprocessing pipeline, demonstrat-
ing the transformation of an original high-resolution RGB im-
age of a “Vehicles over 3.5 tons prohibited” traffic sign into its
32x32 grayscale representation used for model training and
inference.

0

30 40 50 0 5 10 15 20 25 30

Figure 2: Preprocessing of an image

3.2 Class-Aware Data Augmentation

The GTSRB dataset, consisting of 39,166 images distributed
across 43 distinct classes, exhibits a significant class imbal-
ance. In an ideally balanced scenario, each class would con-
tain approximately 910 images. However, the actual distribu-
tion ranges from only 210 images to as many as 2250. This
results in an imbalance ratio of roughly 1:11 between the least
and most represented classes. Specifically, the least repre-
sented class is Speed limit (20 km/h) (ID: 0) with 210 images,
while the most represented class is Speed limit (50 km/h) (ID:
2) with 2,250 images, deriving an imbalance ratio of 10.71x.
Figure 3 illustrates this imbalance across all 43 traffic sign
categories, sorted by frequency.

2500

2000

ing Images

1000

Number of Train;
o
8

1500

Figure 3: Class distribution in the GTSRB training dataset

Such disparity can lead to biased models that perform
poorly on underrepresented classes. This is particularly prob-
lematic in safety-critical applications, such as autonomous

driving, where misclassifying rare traffic signs could result in
hazardous outcomes. Ensuring balanced performance across
all classes is therefore essential for building robust and reli-
able traffic sign recognition systems.

Augmentation Techniques

To address this class imbalance, we developed a data augmen-
tation pipeline that employs these four techniques to simulate
real-world variations:

* Rotation: Randomly rotates images within a range of
[—15°,15°] to account for camera tilts and vehicle an-
gles.

» Translation: Shifts images horizontally and vertically
by up to 5 pixels to simulate sign displacement within
the frame.

» Shearing: Applies a horizontal shear transformation us-
ing a random factor from [—0.2,0.2] to simulate per-
spective distortions caused by angled views.

* Gamma Correction: Adjusts image brightness and
contrast using a gamma value randomly sampled from
the range [0.4, 1.5], simulating varying lighting condi-
tions.

Figure 4 illustrates the effects of our data augmentation
techniques applied to a preprocessed image of the “Vehicles
over 3.5 tons prohibited” traffic sign. The original image, re-
sized to 32x32 pixels and converted to grayscale (as shown
in Figure 2), is used as the input for these augmentations to
demonstrate their impact.

Rotation
1

Translation
1 1

10 -

20

30 -

T
10 20

Shearing Gamma Correction
1 1 1 1

10 -

20 - 20 -

304 30 -

10

20 30

Figure 4: Effects of data augmentation techniques applied to a pre-
processed image

Augmentation Strategy
We developed a tiered data augmentation strategy that applies
augmentation proportionally to each class’s sample count:

¢ Classes with <300 images: we apply three augmenta-
tion techniques per image, quadrupling the class size
(+300%).

* Classes with 301-450 images: we apply two augmen-
tation techniques per image, tripling the class size
(+200%).

* Classes with 451-780 images: we apply one augmen-
tation technique per image, doubling the class size
(+100%).

* Classes with 781-1500 images: we augment 30% of the
images with one technique, increasing the class size by
30%.

* Classes with >1500 images: no augmentation is ap-

plied, as these classes are already well represented in
the dataset.

Results

Our class-aware data augmentation substantially improved
the balance of the GTSRB dataset (see Appendix B for the
full list of augmented classes):

* 10 classes were augmented with 3 techniques per image
(+300%)

* 9 classes were augmented with 2 techniques per image
(+200%)

¢ 7 classes were augmented with 1 technique per image
(+100%)

* 9 classes were augmented with 1 technique applied to
30% of images (+30%)

8 classes with sufficient samples were not augmented

Figure 5 illustrates the original class distribution and aug-
mentation targets for each class. The blue column indicates
+300%, the orange column +200%, the green column +100%,
and the red column +30%.

2500

2000

ing Images

1500

S
S
S

Number of Traini
o
g

Figure 5: Class distribution in the GTSRB training dataset after data
augmentation

This approach increased the total dataset size from 39,209
to 61,726 images, representing a 57.4% increase. More im-
portantly, it reduced the class imbalance ratio from 10.7x to

2.7x, corresponding to an approximately 75% reduction in
disparity between the largest and smallest classes. The most
underrepresented classes grew from 210 samples to 840 sam-
ples, ensuring adequate representation during training.

3.3 Architecture

To explore the architectural trade-offs, we developed two
variants of AykoNet, each optimized for different objectives:

* AykoNet-Lite: Prioritizes minimal model size and fast
inference for real-time applications

* AykoNet-Pro: Prioritizes classification accuracy while
maintaining deployability on microcontrollers

AykoNet-Lite

We designed AykoNet-Lite with aggressive size and speed
optimizations for real-time microcontroller deployment. Ta-
ble 1 shows the complete architecture.

The model follows a power-of-two channel progression
of 8—16—32—64—128. This scaling strategy optimizes
memory access patterns on the Raspberry Pi Pico’s ARM
Cortex-MO+ architecture, enabling efficient memory align-
ment for 32-bit memory bus access, simplified address cal-
culation during convolution operations, and improved vector-
ization efficiency in TensorFlow Lite Micro kernels [3]. This
contrasts with GiordyNet’s irregular channel progression of
10—50—100, which may result in less efficient memory uti-
lization.

Except for the initial feature extraction layer, all convo-
lutional layers employ depthwise separable convolutions to
reduce computational cost and parameter count. This ap-
proach differs from GiordyNet, which does not incorporate
any depthwise operations, and from MobileNet, which uses
depthwise separable convolutions even in its initial feature
extraction.

The classifier consists only of GlobalAveragePooling2D
followed by dropout and a single dense output layer. This
minimalist design avoids the computational overhead of in-
termediate dense layers while preserving sufficient represen-
tational capacity for traffic sign classification.

AykoNet-Pro

While AykoNet-Lite is designed for minimal resource usage,
AykoNet-Pro prioritizes higher classification accuracy within
feasible deployment constraints. Table 2 shows the complete
architecture.

The model uses 16—32—64—128—128 channels, start-
ing with a higher initial capacity compared to AykoNet-Lite
(16 vs 8) and maintaining maximum channels in the final
block. This is designed to provide richer feature represen-
tations throughout the network.

In contrast to AykoNet-Lite, the classifier includes an in-
termediate Dense(128) layer with ReLLU activation, providing
additional representational capacity for complex feature com-
binations. This architectural choice trades a modest increase
in size for improved classification performance.

3.4 Training

AykoNet was trained using the Adam optimizer with a learn-
ing rate of 0.001 and a sparse categorical cross-entropy loss

Table 1: AykoNet-Lite Body Architecture

Layer Type Output Shape Parameters
Initial Feature Extraction

Conv2D (32, 32, 8) 80
BatchNormalization (32,32,8) 32
ReLU (32, 32, 8) 0
First Depthwise Separable Block

DepthwiseConv2D (16, 16, 8) 80
BatchNormalization (16, 16, 8) 32
ReLU (16, 16, 8) 0
Conv2D (16, 16, 16) 144
BatchNormalization (16, 16, 16) 64
ReLU (16, 16, 16) 0
Second Depthwise Separable Block
DepthwiseConv2D (8,8, 16) 160
BatchNormalization (8,8, 16) 64
ReLU (8,8, 16) 0
Conv2D (8,8,32) 544
BatchNormalization (8,8, 32) 128
ReLU (8,8,32) 0
Third Depthwise Separable Block

DepthwiseConv2D 4,4, 32) 320
BatchNormalization 4,4, 32) 128
ReLU 4,4,32) 0
Conv2D 4,4, 64) 2,112
BatchNormalization 4,4, 64) 256
ReLU 4,4,64) 0
Fourth Depthwise Separable Block

DepthwiseConv2D 4,4, 64) 640
BatchNormalization 4,4, 64) 256
ReLU 4,4,64) 0
Conv2D 4,4, 128) 8,320
BatchNormalization 4,4, 128) 512
ReLU 4,4, 128) 0
Classification Head

GlobalAveragePooling2D (128) 0
Dropout (128) 0
Dense (Softmax) 43) 5,547
Total parameters: 19,419
Trainable parameters: 18,683
Non-trainable parameters: 736

function. The training process employed a batch size of 32
and was configured to run for a maximum of 50 epochs with
a 20% validation split from the training data.

To prevent overfitting, early stopping was implemented
with patience of 15 epochs, monitoring validation accuracy.
This callback automatically restored the model weights to the
best-performing epoch when validation accuracy stopped im-
proving.

3.5 Post-training Quantization

The TinyML workflow as described in the TinyML book was
followed [19]. After training, the model underwent post-
training quantization to reduce its size and meet the compu-
tational requirements of 8-bit microcontrollers.

The trained Keras model was first converted to TensorFlow
Lite format with float32 precision, then integer-only quanti-

Table 2: AykoNet-Pro Body Architecture

Layer Type Output Shape Parameters
Initial Feature Extraction

Conv2D (16, 16, 16) 160
BatchNormalization (16, 16, 16) 64
ReLLU (16, 16, 16) 0
First Depthwise Separable Block

DepthwiseConv2D (16, 16, 16) 160
BatchNormalization (16, 16, 16) 64
ReLLU (16, 16, 16) 0
Conv2D (16, 16, 32) 544
BatchNormalization (16, 16, 32) 128
ReLU (16, 16, 32) 0
Second Depthwise Separable Block

DepthwiseConv2D (8,8, 32) 320
BatchNormalization (8,8, 32) 128
ReLU (8,8,32) 0
Conv2D (8,8, 64) 2,112
BatchNormalization (8,8, 64) 256
ReLU (8,8, 64) 0
Third Depthwise Separable Block

DepthwiseConv2D 4,4, 64) 640
BatchNormalization 4,4, 64) 256
ReLLU 4,4, 64) 0
Conv2D 4,4, 128) 8,320
BatchNormalization 4,4, 128) 512
ReLU 4,4, 128) 0
Fourth Depthwise Separable Block

DepthwiseConv2D 4,4, 128) 1,280
BatchNormalization 4,4, 128) 512
ReLU 4,4, 128) 0
Conv2D 4,4, 128) 16,512
BatchNormalization 4,4, 128) 512
ReLU 4,4, 128) 0
Classification Head

GlobalAveragePooling2D (128) 0
Dense (128) 16,512
ReLU (128) 0
Dropout (128) 0
Dense (Softmax) 43) 5,547
Total parameters: 54,539
Trainable parameters: 53,323
Non-trainable parameters: 1,216

zation was applied using 500 representative samples from the
training set [7]. This process converts all weights and activa-
tions from 32-bit floating-point to 8-bit integers.

4 Experimental Setup and Results

To evaluate AykoNet’s performance and validate our design
choices, we benchmarked it against three baseline models.
We conducted a comparative experiment against these mod-
els: MobileNetV1_25 (width multiplier of «=0.25), Mo-
bileNetV1_20 (width multiplier of a=0.20), and GiordyNet.
We chose these baselines to highlight the trade-offs be-
tween the general-purpose efficiency of MobileNets and the
domain-specific optimization of GiordyNet. This compari-
son positions AykoNet’s approach within the existing litera-

ture. To ensure a fair analysis, all models underwent identical
training procedures and post-training quantization.

Our experimental pipeline follows the standard TinyML
workflow. The process begins with model training on Google
Colab, followed by conversion to the TensorFlow Lite format
with full integer quantization also on Google Colab. The final
models were then deployed on our target hardware platform,
a Raspberry Pi Pico microcontroller, for real-world perfor-
mance testing.

We evaluated all models against these three metrics:

* Model Size
¢ Classification Accuracy
¢ Inference Latency

This methodology provides a comprehensive assessment of
the trade-offs between model complexity, accuracy, and per-
formance that are critical in TinyML applications. The fol-
lowing subsections will detail the training and deployment of
the models, explain the evaluation metrics, and present the
final results.

4.1 MobileNets

MobileNetV1 was selected as a baseline because it serves
as the canonical model in the ”person detection” examples
within both the official TinyML book [19] and the Tensor-
Flow Lite for Microcontrollers GitHub repository [15]. This
established use case demonstrates its suitability for microcon-
troller applications, making it a relevant benchmark for our
work.

MobileNetV1_25
We began with the MobileNetV1_25, with a width multiplier
of «=0.25. This specific version was chosen as it directly
corresponds to the architecture used in the aforementioned
TinyML book [19] and TensorFlow Lite for Microcontrollers
[15] examples.

Unlike AykoNet’s preprocessing pipeline, images were re-
sized to 32x32 pixels but kept in their original 3-channel RGB
format, as the standard MobileNet architecture expects this

input. TensorFlow’s built-in preprocess_input function
was used for normalization.

The model was constructed by load-
ing the MobileNet base architecture from
tensorflow.keras.applications.mobilenet with

random weights and adding a GlobalAveragePooling2D
layer followed by a final Dense layer with a softmax acti-
vation for the 43 traffic sign classes. We adapted training
configurations from the TensorFlow Lite for Microcon-
trollers GitHub repository’s person detection example [15].
The repository authors note that hyperparameter tuning is
non-trivial [15]. For this reason, we adopted their specified
parameters.

Specifically, we used an Adam optimizer with a scheduled
learning rate, starting at 0.045 and decaying every 2.5 epochs
by a factor of 0.98. The model was trained with a batch size of
96, using categorical cross-entropy loss with a label smooth-
ing factor of 0.1. To prevent overfitting, we implemented an
early stopping callback to monitor validation loss with pa-
tience of 10 epochs, restoring the best-performing weights.

After training, the model was converted to the TensorFlow
Lite format and underwent full 8-bit integer quantization, fol-
lowing the guidelines in the TinyML book and the Tensor-
Flow Lite Micro repository [19; 15].

MobileNetV1_20

Upon quantization, we discovered that the memory footprint
of the MobileNetV1_25 model was too large for the Rasp-
berry Pi Pico’s memory constraints. To obtain a deploy-
able MobileNet variant, we trained a smaller version with
the width multiplier reduced to «=0.20. All other aspects
of the preprocessing, model architecture, training, and quan-
tization process were identical to those described for Mo-
bileNetV1.25.

4.2 GiordyNet

As a domain-specific baseline, we implemented GiordyNet
based on the architecture and methodology described in its
original report [6]. We trained the model on the GTSRB
dataset, with all images preprocessed into 32x32 grayscale
images, where the report identifies 32x32 image size as opti-
mal for balancing detail and efficiency.

For data augmentation, we followed the report’s sugges-
tion of applying photometric distortions to handle variations
in lighting. Specifically, we applied gamma correction with
a random value between 0.4 and 1.5. A key difference from
AykoNet is how this augmentation was applied; in line with
the GiordyNet methodology, it was applied randomly to 30%
of the entire training set, rather than being used as part of
a class-aware strategy to rebalance the dataset. This differs
from AykoNet’s class-aware strategy because it applies aug-
mentation proportionally based on class frequency to address
dataset imbalance more systematically.

The GiordyNet architecture consists of three sequential
convolutional blocks, each containing a Conv2D layer fol-
lowed by MaxPooling2D, BatchNormalization, and ReLU
activation [6]. The feature maps are then flattened and passed
through two Dense layers, with the final layer using a softmax
activation for classification.

We trained the model using an Adam optimizer and an
early stopping callback that monitored validation loss with
patience of 10 epochs, restoring the best weights. After train-
ing, we converted the model to TensorFlow Lite and quan-
tized it following the workflow outlined in the TinyML book
[19].

4.3 AykoNet

We trained AykoNet on Google Colab using the augmented
GTSRB dataset, following the complete methodology out-
lined in Section 3.

4.4 Deployment

Hardware Platform

We deployed the models on the Raspberry Pi Pico which fea-
tures a dual-core ARM Cortex-M0+ running at 133 MHz,
with 264 KB of SRAM and 2 MB of flash. Due to its con-
strained memory architecture, the Pico introduces challenges
for TinyML deployment, particularly as its limited SRAM
must hold intermediate activations and temporary buffers dur-
ing inference [18].

Software Framework

We used the official TensorFlow Lite Micro port for the
Raspberry Pi Pico [17] for model deployment. This frame-
work provides optimized inference routines specifically de-
signed for ARM Cortex-MO+ architecture. We integrated
quantized models into the TensorFlow Lite Micro runtime.
Model weights were stored in flash memory, while interme-
diate computations were executed in SRAM during inference.

4.5 Evaluation Metrics And Results

Model Size

We measured the post-quantization model size in kilobytes
(KB), representing the final memory footprint required for
deployment. This metric directly impacts the feasibility of
deployment on memory-constrained microcontrollers. Based
on TensorFlow Lite for Microcontrollers guidelines, we as-
sumed that models exceeding 250KB would not fit within the
Pico’s deployment constraints, as this threshold ensures suffi-
cient memory remains available for system components [15].

Classification Accuracy

We evaluated classification accuracy using quantized Tensor-
Flow Lite models with 8-bit integer precision, as these mod-
els represent the intended microcontroller deployment. We
performed the evaluation on 1,000 randomly selected images
from the official GTSRB test set (which contains a total of
12,629 images).

Inference Latency

We evaluated real-time performance by measuring the infer-
ence time of quantized models on the hardware platform. To
ensure consistency, we evaluated all deployable models us-
ing a standardized protocol with 43 test images from the GT-
SRB dataset (one per traffic sign class). We recorded infer-
ence times using the Pico’s timers (get_absolute_time()
and absolute_time _diff us()), specifically measuring the
TensorFlow Lite Micro interpreter’s Invoke () call duration.
This isolates neural network computation time from prepro-
cessing and post-processing overhead. We summed inference
times over all 43 images and averaged them to derive repre-
sentative latency metrics.

4.6 Results

We evaluated model performance based on three key met-
rics: classification accuracy, model size, and inference la-
tency. The results are summarized in the tables below.

Model Size

We measured model sizes using the file size of the Tensor-
Flow Lite models as described in Section 4.5. We only report
quantized versions, as they represent the deployable models.
Table 3 lists the results.

Despite using depthwise separable convolutions for effi-
ciency, MobileNetV1 models have the largest sizes due to
their general-purpose architecture designed for diverse im-
age classification tasks. These models process RGB inputs
(3 channels) and employ 13 convolutional blocks, resulting
in a higher parameter count compared to domain-specific ar-
chitectures.

Table 3: Model Size

Model Size (KB)
MobileNetV1_25-int8 307.59
MobileNetV1_20-int8 217.79

GiordyNet-int8 106.87
AykoNet-Lite-int8 36.80
AykoNet-Pro-int8 80.18

MobileNetV1_25 exceeds 300KB. Even though it sur-
passes the 250KB threshold recommended in the TFLite Mi-
cro repository [15], it may be deployable since TensorFlow
Lite Micro’s tensor arena requirement (kTensorArenaSize)
is typically smaller than the full model size, as not all
model weights need to be cached simultaneously during in-
ference. However, following the deployment guidelines from
the TFLite Micro repository [15], we consider models ex-
ceeding 250KB as incompatible with Pico’s memory con-
straints. Reducing the width multiplier o from 0.25 to 0.20
yields a 29.2% size reduction (from 307.59KB to 217.79KB),
highlighting the effectiveness of width multipliers for com-
pressing and scaling models.

GiordyNet (106.87KB) and AykoNet-Pro (80.18KB)
achieve similar model sizes, indicating similar architectural
complexity. AykoNet-Lite (36.80KB) represents an aggres-
sive minimization approach, achieving a 54% reduction com-
pared to AykoNet-Pro.

Classification Accuracy

We evaluated the quantized TensorFlow Lite models on the
test set, as described in Section 4.5. The results are presented
in Table 4.

Table 4: Classification Accuracy

Model Accuracy
MobileNetV1_25-int§ 87.50%
MobileNetV1_20-int8§ 79.80%

GiordyNet-int8 95.50%
AykoNet-Lite-int8 94.60%
AykoNet-Pro-int8 95.90%

MobileNetV1_25 achieves an accuracy of 87.50% de-
spite its general-purpose design, demonstrating adaptability
to domain-specific classification tasks. Reducing the width
multiplier o from 0.25 to 0.20 results in an 8.8% drop in ac-
curacy (from 87.50% to 79.80%) in MobileNetV1_20. Com-
pared to the corresponding 29.2% reduction in model size
(from 307.59KB to 217.79KB), the accuracy loss is dispro-
portionately smaller, suggesting that the width multiplier o
is an effective mechanism for balancing model efficiency and
performance. However, since MobileNetV1_20 achieves less
than 80% accuracy, it is considered unsuitable for traffic sign
recognition in safety-critical autonomous systems.

AykoNet-Pro achieves the highest accuracy at 95.90%,
closely matching the perfomance of GiordyNet (95.50%).
Both models benefit from domain-specific architectures and
preprocessing techniques. AykoNet-Lite demonstrates excep-
tional efficiency, achieving 94.60% accuracy while requiring

only 36.80KB of storage. Compared to GiordyNet, AykoNet-
Lite is approximately one-third the size while sacrificing only
0.9 percentage points in accuracy, validating the effectiveness
of our architectural optimizations.

Inference Latency

We measured inference time on the Raspberry Pi Pico as
described in 4.5. We excluded MobileNetV1_25-int8 as its
size exceeds the 250KB threshold (see Section 4.5). Table 5
shows the latency results.

Table 5: Inference Latency

Model Time (ms)
MobileNetV1_20-int8 77.29
GiordyNet-int8 204.08
AykoNet-Lite-int8 55.34
AykoNet-Pro-int8 87.13

We exclude MobileNetV1_25 from on-device testing due
to its 307.59KB size exceeding the established 250KB de-
ployment threshold for Raspberry Pi Pico, as detailed in Sec-
tion 4.5.

GiordyNet exhibits the highest inference latency
(204.08ms), primarily attributed to its exclusive use of
standard convolution layers instead of depthwise separable
convolutions. Furthermore, its irregular channel progression
of 10—50—100 likely leads to misaligned memory access
patterns on the 32-bit ARM Cortex-M0+ processor. The
combination of computationally intensive standard convolu-
tions and suboptimal memory access patterns contributes to
its substantial latency.

MobileNetV1_20 achieves efficient inference (77.29ms)
despite processing RGB images (3 channels) and having a
model size of 217.79KB. Its exclusive use of depthwise sep-
arable convolutions throughout the network, combined with
optimizations specifically designed for TensorFlow Lite Mi-
cro’s interpreter [9; 3], demonstrates the effectiveness of
hardware-aware architectural design for embedded deploy-
ment on resource-constrained microcontrollers.

AykoNet-Pro records an inference time of 87.13ms,
demonstrating a 12.7% increase compared to Mo-
bileNetV1_20, despite processing grayscale images. This
performance overhead is attributed to the inclusion of
standard convolution layers in the initial feature extraction,
which introduces greater computational complexity than a
purely depthwise separable approach.

AykoNet-Lite delivers the fastest inference time (55.34ms),
validating its lightweight design. Although it also employs
standard convolutions in the initial feature extraction, its min-
imalist classification head and reduced initial channel capac-
ity compared to AykoNet-Pro (8 vs 16) significantly decrease
the total computational operations, resulting in optimal infer-
ence performance for the target hardware platform.

5 Discussion

By developing and evaluating AykoNet, we aimed to iden-
tify key principles for effective embedded machine learning

deployment, exploring the architectural trade-offs that influ-
ence model size, classification accuracy, and inference la-
tency. Our results reveal distinct performance rankings across
these metrics: AykoNet-Pro achieves the highest accuracy
(95.90%), while AykoNet-Lite delivers the smallest model
size (36.80KB) and the fastest inference time (55.34ms).
Critically, no single model dominates all metrics, highlight-
ing the fundamental trade-offs in TinyML and real-world de-
ployment.

The evaluation of AykoNet variants against Mo-
bileNetV1_20 underscores the advantages of domain-specific
preprocessing and architecture design in achieving high
classification accuracy. While MobileNetV1_20 offers a
deployable model size and applicable inference latency for
real-time systems, its sub-80% accuracy renders it unsuitable
for safety-critical applications. AykoNet addresses this gap
by employing a targeted domain-specific approach, achieving
the high accuracy required for robust autonomous systems.

The comparative analysis between AykoNet variants and
GiordyNet highlights the distinct advantages of depthwise
separable convolution layers and class-aware data augmen-
tation. Although GiordyNet achieves strong classification
accuracy, its reliance on computationally intensive standard
convolutions results in problematic inference latency for real-
time applications, rendering it unsuitable for autonomous sys-
tems. AykoNet overcomes this limitation by integrating ef-
ficient depthwise separable convolutions. To maintain high
classification accuracy despite this optimization, AykoNet ap-
plies class-aware data augmentation on the GTSRB dataset,
which led AykoNet-Pro to achieve higher accuracy than Gior-
dyNet while being smaller and faster.

Our experimental design had several limitations. To ad-
dress the class imbalance, we developed a data augmentation
pipeline without exploring undersampling approaches, which
could offer valuable comparisons. Additionally, the specific
contribution of class-aware data augmentation remains un-
clear since we did not evaluate AykoNet variants without it.
Lastly, we evaluated the models on a subset of 1000 images
rather than the complete GTSRB test set, limiting the statisti-
cal significance.

Based on our findings, designing an optimal TinyML
model for real-time traffic sign recognition on the Raspberry
Pi Pico using the GTSRB dataset requires three key princi-
ples. First, domain-specific preprocessing and architec-
tural design, as demonstrated by the superior performance of
both AykoNet and GiordyNet compared to MobileNetV1_20.
Second, class-aware data augmentation, implemented in
AykoNet to address dataset imbalance and enhance accu-
racy. Third, the strategic use of depthwise separable con-
volutions, which enabled AykoNet to achieve significant ef-
ficiency gains over GiordyNet while maintaining high accu-
racy. For practical deployment, AykoNet-Lite emerges as the
optimal solution, providing the best balance between classifi-
cation accuracy (94.60%), model size (36.80KB), and infer-
ence latency (55.34ms) within hardware constraints.

6 Responsible Research

6.1 Ethical Considerations

Traffic sign recognition is a low-risk domain. While the
dataset we use may incidentally capture individuals or vehi-
cles in the background, it is publicly available and widely
used in literature. Our research focuses solely on the traffic
signs, and any background elements are not analyzed or used
in any way.

6.2 Reproducibility

We provided detailed documentation of our hardware, soft-
ware, training procedures, and evaluation protocols to ensure
reproducibility. The dataset used is publicly available, and
model settings are specified with fixed random seeds used
for consistent results. All code and configuration files will
be made available in a public repository to enable replication
and support further research.

7 Conclusion

This research addressed the question: How can we create
an optimal TinyML model for real-time traffic sign recogni-
tion on microcontrollers?, where optimal is defined as balanc-
ing model size, classification accuracy, and inference latency
within the hardware constraints. We proposed a new model
architecture called AykoNet with two variants: one prioritiz-
ing classification accuracy (AykoNet-Pro) and one prioritiz-
ing model size and inference latency (AykoNet-Lite). We in-
vestigated some of the important design decisions leading to
an optimal model. We then compared AykoNet variants with
existing architectures relevant to our work. We concluded
by demonstrating AykoNet’s effectiveness by highlighting the
importance of image preprocessing, data augmentation, and
depthwise separable convolution layers. As a next step, we
plan to integrate AykoNet into an autonomous navigation sys-
tem with camera integration, enabling real-time traffic sign
recognition and autonomous vehicle response.

A

The GTSRB dataset contains 43 different traffic sign classes

GTSRB Class Labels

as follows:

A B B W W W W L W W LW LW W NN NN DN N NN = = = e = = e =

WX RN R RN e

Speed limit (20km/h)

Speed limit (30km/h)

Speed limit (50km/h)

Speed limit (60km/h)

Speed limit (70km/h)

Speed limit (80km/h)

End of speed limit (80km/h)
Speed limit (100km/h)
Speed limit (120km/h)

No passing

No passing for vehicles over 3.5 metric tons
: Right-of-way at intersection

: Priority road

: Yield

: Stop

: No vehicles

: Vehicles over 3.5 tons prohibited
: No entry

: General caution

: Dangerous curve left

: Dangerous curve right

: Double curve

: Bumpy road

: Slippery road

: Road narrows on the right

: Road work

: Traffic signals

: Pedestrians

: Children crossing

: Bicycles crossing

: Beware of ice/snow

: Wild animals crossing

: End of all speed and passing limits
: Turn right ahead

: Turn left ahead

: Ahead only

: Go straight or right

: Go straight or left

: Keep right

. Keep left

: Roundabout mandatory

: End of no passing

: End no passing vehicles over 3.5 tons

B Data Augmentation Results

ClassID Before After Final
0 210 630 840
19 210 630 840
37 210 630 840
27 240 720 960
41 240 720 960
42 240 720 960
32 240 720 960
24 270 810 1080
29 270 810 1080
39 300 900 1200
21 330 660 990
40 360 720 1080
20 360 720 1080
36 390 780 1170
22 390 780 1170
16 420 840 1260
34 420 840 1260
6 420 840 1260
30 450 900 1350
23 510 510 1020
28 540 540 1080
26 600 600 1200
15 630 630 1260
33 689 689 1378
31 780 780 1560
14 780 780 1560
17 1110 333 1443
18 1200 360 1560
35 1200 360 1560
11 1320 396 1716
8 1410 423 1833
3 1410 423 1833
7 1440 432 1872
9 1470 441 1911
25 1500 450 1950
5 1860 0 1860
4 1980 0 1980
10 2010 0 2010
38 2070 0 2070
12 2100 0 2100
13 2160 0 2160

1 2220 0 2220
2 2250 0 2250

References

[1]

(2]

[10]

[11]

[12]

[13]

[14]

Michael Breiter, Adrian Fazekas, Tobias Volkenhoff,
and Markus Oeser. Video based intelligent transporta-
tion systems — state of the art and future development.
Transportation Research Procedia, 14:4495-4504, 12
2016.

Tejas Chaudhari, Ashish Wale, Amit Joshi, and Suraj
Sawant. Traffic Sign Recognition Using Small-Scale
Convolutional Neural Network, 2020.

Robert David, Jared Duke, Advait Jain, Vijay Janapa
Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian Nappier,
Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen
Wang, and Pete Warden. TensorFlow Lite Micro: Em-
bedded Machine Learning on TinyML Systems, 2020.

Esma Dilek and Murat Dener. Computer vision appli-
cations in intelligent transportation systems: A survey.
Sensors, 23(6):2938, 2023.

Chunhui Du, Shenglan Su, Cheng Lin, et al. A
lightweight network for traffic sign detection via mul-
tiple scale context awareness and semantic information
guidance. Scientific Reports, 15:10110, 2025.

Marco Giordano. Traffic Sign Recognition, CNN on Mi-
crocontrollers, 2020.

Google Al Edge Authors. Post-training Integer Quanti-
zation, 2024.

Sebastian Houben, Johannes Stallkamp, Jan Salmen,
Marc Schlipsing, and Christian Igel. Detection of traf-
fic signs in real-world images: The German Traffic Sign
Detection Benchmark. In International Joint Confer-
ence on Neural Networks, number 1288, 2013.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and ;0.5mb model size, 2016.

Ida Syafiza Binti Md Isa, Choy Ja Yeong, and Nur
Latif Azyze bin Mohd Shaari Azyze. Real-time traffic
sign detection and recognition using raspberry pi. Inter-
national Journal of Electrical and Computer Engineer-
ing (IJECE), 12(1), 2022.

Jonghoon Jin, Aysegul Dundar, and Eugenio Culur-
ciello. Flattened convolutional neural networks for feed-
forward acceleration, 2015.

Girish Kumar N G, Ashish Kishore, and Aaditya Kr-
ishna. Real-time traffic sign recognition and au-
tonomous vehicle control system using convolutional

neural networks. Multimedia Tools and Applications,
pages 1-36, 04 2025.

A. Radha Rani, Y. Anusha, S.K. Cherishama, and S. Vi-
jaya Laxmi. Traffic sign detection and recognition us-
ing deep learning-based approach with haze removal

[15]
[16]

[17]
[18]

[19]

for autonomous vehicle navigation. e-Prime - Ad-
vances in Electrical Engineering, Electronics and En-
ergy, 7:100442, 2024.

Yuan Tang. TensorFlow Lite for Microcontrollers.

Min Wang, Baoyuan Liu, and Hassan Foroosh. De-
sign of efficient convolutional layers using single intra-
channel convolution, topological subdivisioning and
spatial "’bottleneck” structure, 2017.

Pete Warden. Pico TensorFlow Lite Port.

Pete Warden. Understanding the Raspberry Pi Pico’s
Memory Layout, 2024.

Pete Warden and Daniel Situnayake. TinyML: Machine
Learning with TensorFlow Lite on Arduino and Ultra-
Low-Power Microcontrollers. O’Reilly Media, 2019.

	Introduction
	Related Work
	AykoNet
	Data and Preprocessing
	Class-Aware Data Augmentation
	Augmentation Techniques
	Augmentation Strategy
	Results

	Architecture
	AykoNet-Lite
	AykoNet-Pro

	Training
	Post-training Quantization

	Experimental Setup and Results
	MobileNets
	MobileNetV1_25
	MobileNetV1_20

	GiordyNet
	AykoNet
	Deployment
	Hardware Platform
	Software Framework

	Evaluation Metrics And Results
	Model Size
	Classification Accuracy
	Inference Latency

	Results
	Model Size
	Classification Accuracy
	Inference Latency

	Discussion
	Responsible Research
	Ethical Considerations
	Reproducibility

	Conclusion
	GTSRB Class Labels
	Data Augmentation Results

