

Delft University of Technology

Object grasping by combining caging and force closure

Lei, Qujiang; Wisse, Martijn

DOI
10.1109/ICARCV.2016.7838638
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings 2016 14th International Conference on Control, Automation, Robotics and Vision

Citation (APA)
Lei, Q., & Wisse, M. (2016). Object grasping by combining caging and force closure. In Proceedings 2016
14th International Conference on Control, Automation, Robotics and Vision Article 7838638 IEEE.
https://doi.org/10.1109/ICARCV.2016.7838638

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICARCV.2016.7838638
https://doi.org/10.1109/ICARCV.2016.7838638

Object Grasping by Combining Caging and Force Closure
Qujiang Lei

TU Delft Robotics Institute
Delft University of Technology

Delft, The Netherlands
q.lei@tudelft.nl

Martijn Wisse
TU Delft Robotics Institute

Delft University of Technology
Delft, The Netherlands

m.wisse@tudelft.nl

Abstract— The current research trends of object grasping can be
summarized as caging grasping and force closure grasping. The
motivation of this paper is to combine the advantage of caging
grasping and force closure grasping to enable under-actuated
grippers like the Lacquey gripper and the parallel grippers like
the PR2 gripper to quickly grasp the flat unknown objects.
Inspired by the idea that caging grasping generates finger points
along the object’s boundary and considering the geometry
property of the grippers, we propose to allocate a discrete set of
finger candidates along the object’s boundary. Any two of the
finger candidates can form a grasp candidate, which is analyzed
by using force closure to choose the best grasp candidate as the
final grasp execution. The grasp quality during the manipulation
of the object is guaranteed by considering the gravity of the
object. Simulations and experiments on an Universal arm UR5
and an under-actuated Lacquey Fetch gripper are used to
examine the performance of this algorithm, and successful results
are obtained.

Keywords-object grasping; caging; force closure; robot

I. MOTIVATION

The motivation of this paper is to quickly find suitable
grasp for flat objects (shown as the Fig.1 (a)), specifically, this
grasping algorithm is specially designed for under actuated
grippers like the Lacquey gripper (shown as the Fig.1 (b)) or
parallel grippers like the PR2 gripper (shown as the Fig.1 (c)).
In order to enhance grasping stability, force balance and torque
balance are taken into consideration. The stability is divided
into two parts: one is the stability when the grasp action is
being executed; the other is the stability while the object is
being transported. These two parts of stability can ensure that
the object is securely grasped during the whole process when
the object is being grasped and manipulated. Inspired by [1]
and [2], a novel grasping algorithm is proposed for flat
unknown objects. [1] and [2] only concentrate on the objects
themselves without considering the geometry property of the
gripper. We are illuminated to combine the force closure
grasping and caging grasping. In this paper, we propose to
consider both force and torque balance, as well as the geometry
property of the robot gripper, for example, hand width and
grasping range, when the robot tries to execute the grasp. Then
the gravity of the object is considered when the robot tries to
manipulate the object after it is grasped. This grasping
algorithm has several advantages. First, it is simple to
implement, which can lead to sound computational efficiency.
Second, considering both force balance and torque balance and
the geometry property of the gripper can ensure the grasp is
executed successfully. Third, the grasping quality during the
manipulation of the object is also guaranteed by considering
the gravity of the object.

 (a) (b) (c)
Fig. 1 The motivation of this paper, (a) shows an example of a flat object, (b)
and (c) show the Lacquey gripper and the PR2 gripper respectively. The
motivation of this paper is to quickly find suitable grasp on flat objects for
under-actuated grippers like the Lacquey gripper or parallel grippers like the
PR2 gripper.

(a) (b) (c) (d)
Fig. 2 Inspiration of this paper, (a) shows an image cited from [1] which uses
caging method by introducing a discrete set of finger points allocating along the
object’s boundary to grasp the target object. (b) shows our inspiration.
Inspiration from [1] promotes us to generate finger candidates (the purple lines)
along the object boundary. (c) shows the result of force balance computation
for all grasp candidates (one grasp candidate can be obtained by combining any
two finger candidates in (b)). (d) shows the final grasp execution.

II. INTRODUCTION

Caging grasping is becoming increasingly popular in recent
years. Since caging grasping was first introduced by [3] and
[4], the analysis and synthesis of caging grasps has become an
active research area. The basic idea of caging grasping is that
the manipulators or fingers constitute a set of constraints in the
object’s configuration space that prevent it from escaping
arbitrarily far. [5] proposed the first two-finger caging grasping
for polygonal objects. Since the early works, many algorithms
have been invented for finding two or three finger caging grasp
for polygonal planar objects. [6] and [7] present comprehensive
two-finger caging synthesis algorithms by formulating the
caging grasping problem in the four dimensional configuration
space of the two-finger hand. Afterwards, [1] formulates the
caging set synthesis problem in two dimensional contact space
which parameterizes the finger locations along the object’s
boundary. Several papers go further to consider the problem of
planning and controlling the caging manipulation of an object
by a team of mobile disc robots [8], [9], [10]. All above caging
grasping algorithms by two/three-finger hand or by a team of
mobile disc robots illuminate us to use a discrete of finger
candidates allocating along the object’s boundary to generate
the grasp candidates. Fig.2 (a) and (b) show our inspiration of
using caging grasping to generate grasp candidates.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted Author Manuscript. Link to published article (IEEE): Proceedings 2016 14th International Conference on Control, Automation,
Robotics and Vision, http://dx.doi.org/10.1109/ICARCV.2016.7838638

 (a) (b) (c)
Fig.3 Construction of the oriented bounding box (OBB), (a) shows the virtual
setup in simulation environment, an Asus Xtion sensor is installed at the end
of the robot arm. (b) shows the point cloud acquired by the Asus Xtion sensor.
(c) shows the OBB box, the red rectangular frame stands for the OBB box,
the blue rectangular frame represents the axis-aligned bounding box (AABB).

Force closure grasping is a popular approach in the field of
robotic grasping. Vast amount of research has been conducted
in the domain of force closure grasping [11], [12]. Given the
3D meshed model of the target object and the friction
coefficients, force closure grasping employs a grasp quality
scoring function defined in terms of contact points and surface
normal on the object to generate force stable grasp candidates
[13], [14]. Force closure grasping confirms well with human’s
grasping synthesis. If given the 3D model of the target object,
human can synthesize suitable grasp candidates by using the
geometry information of the 3D model and the force closure
requirement. Therefore, force closure grasping is a very
promising method to solve the problem of unknown object
grasping. Our previous works [15, 16] create a new method to
compute force balance grasp directly on the partial point cloud
of the target object. [15, 16] do not require the 3D meshed
model and the friction coefficients of the target object, which
makes it more practical for unknown object grasping. The
advantage of force closure grasping sheds illumination on using
force balance and torque balance on robot grasping. Fig.2 (c)
shows the inspiration of using force balance analysis on object
grasping, and the idea of force balance searching from [15, 16]
will be used in this paper.

Inspired by the advantage of caging grasping and force
closure grasping, we propose to use the method that caging
grasping adopts to generate finger candidates along the object’s
boundary. After that, force closure analysis is employed to do
force balance and torque balance computation. Specifically,
force and torque balance computation is divided into two parts:
one is the balance during the grasping execution; the other is
the balance during the object manipulation after it is grasped.
The purpose of the force balance and torque balance during the
grasp execution is to assure that big movement and rotation
will not occur (exact explanation is given in section E). The
aim of considering the force balance and torque balance during
the manipulation of the object is to ensure that the possibility of
the object sliding from the gripper is minimized. Grasping
quality during the manipulation of the object is guaranteed by
considering the gravity of the object.

 This paper is organized as following: section III contains a
detailed explanation of our algorithm, section IV shows the
simulation results, section V demonstrates the experiment
results, section VI discusses the comparison between our
algorithm and [1], section VII is a conclusion of this paper.

III. DETAILED ALGORITHM
This section contains a detailed explanation of the whole

grasp algorithm. Part A shows how to borrow the idea from
caging grasping to generate finger candidates. Part B
demonstrates the details about how to use force closure
analysis to work out good grasp candidates. Part C shows the
gravity analysis.

A. Grasp candidates generation
The existing work about flat polygonal object grasping

usually have a hypothesis, that is, the polygonal object is on the
desk. In this paper, we make a progress to enable the robot to
find the main plain by employing the oriented bounding box
(OBB), which can ensure that the robot finds the main plane on

which to project the point cloud of the object. Even if the
object is held in the air, the robot can find the polygonal
contour of the object.
A.1 Construct the Oriented Bounding Box

A teddy bear is used to explain our algorithm. Fig.3 (a)
shows a virtual setup in a simulation environment. An eye-in-
hand system is established by installing an Asus Xtion sensor at
the end of the robot arm, which is used to capture the point
cloud of the target object. After the point cloud of the target
object (shown as Fig.3 (b)) is obtained, the Oriented Bounding
Box (OBB) algorithm is used to find the main plane to project
the point cloud.

There are two ways to obtain a bounding box, that is the
axis-aligned bounding box (AABB) and the oriented bounding
box (OBB). The axis-aligned bounding box for a given point
set is its bounding box subject to the constraint that the edges
of the box are parallel to the Cartesian coordinate axes. The
oriented bounding box is the bounding box calculated subject
to no constraints as to the orientation of the result. By using the
eccentricity and moment of inertia, a position vector and a
rotation transform matrix can be obtained. And then, each
vertex of the given AABB must be rotated with the given
rotation transform matrix and then positioned to get the OBB.
The blue and the red rectangular frames in Fig.3 (c)
respectively stand for the Oriented Bounding Box and the axis-
aligned bounding box. We can easily find that the oriented
bounding box is more generous and better suitable for the
grasping purpose.

A.2 Project the point cloud to the main plane of the OBB
A local object coordinate system can be established by

using the Oriented Bounding Box shown in the Fig.4 (a). The
red, green and blue lines respectively stand for the X, Y and Z
axis of the local object coordinate system. Then the point cloud
is projected to the XOY plane (the main plane) to obtain the
main silhouette of the target object shown as Fig.4 (b). The
concave hull (Fig.4 (c)) of the projected point cloud is
extracted to work as the main silhouette of the target object.
The points making up the concave hull are conveniently stored
in serial order for later processing. As can be seen from Fig.5
(b), which is an enlarged image of the red rectangle in Fig.5
(a), the points are stored in serial order.

A.3 Finger candidates generation
After the main silhouette of the target object is obtained,

finger candidates need to be first generated to do further
analysis. The specific procedures to generate finger candidates
are as follows.

 (a) (b) (c)
Fig.4 Abstraction of the object contour. (a) shows the point cloud in the OBB
box. (b) shows the point cloud projected to the main plane of the OBB. (c)
shows the object boundary acquired by abstracting the concave hull of (b).

 (a) (b)
Fig.5 The points on the concave hull of the object is stored in serial order.

A.3.1 Step points searching
Employing the property that all the boundary points are in

serial order, two adjacent boundary points can be connected to
form a polygon. Fig.6 (a) shows the corresponding partial
polygon for the boundary points in Fig.5 (b). Two adjacent
points in Fig.6 (a) are connected by an orange line. As it is can
be seen from Fig.6 (b), a step distance (r) is used to work as the
search radius. The distance between point 1 to point n is
defined as 1_ nd , the distance between point 1 to point n+1 is

defined as 1_ 1nd + . if 1_ nd and 1_ 1nd + satisfy one of the equation
(1), an intersection point can be found to work as the step point.
If several intersection points are found at the same time, the
point with the minimum serial number is chosen as the step
point. In another word, if there are m intersection points, the

1 2min(n ,n ...n)m will be chosen as the step point. Fig.7 shows
the result of step point searching. The blue and red points
respectively stand for the boundary points and step points.

 1_ 1_ 1

1_ 1 1_

n n

n n

d r d
d r d

+

+

< <
 < <

 (1)

 (a) (b)
Fig.6 The step point searching process. (a) shows the orange polygon formed
by connecting two adjacent boundary points. (b) shows how to compute the
step points.

 (a) (b)
Fig.7 The result of step point searching. The blue points are the boundary
points and the red points are the step points. (a) shows all the step points and
(b) is an enlarged image of (a).

A.3.2 Obtain the finger candidates
After all the step points are obtained, the finger width is

taken into consideration. In last section, if the step point is
located on the line between point n (nP) and point n+1 (1nP +),
a point cloud Ω can be constructed by adding nP , 1nP + until
the last point of the concave hull boundary in Fig.5 (a). fw is
used to describe the width of the finger, and the method of
finding step points in Fig.6 can be employed to find the end
point of the finger candidate. The step point works as the start
point of the finger candidate and fw works as the searching
radius. An intersection point can be found on Ω by using the
start point and the searching radius fw . The line between the
start point and the end point stands for a finger candidate. Fig.8
shows all the finger candidates. Every purple line in Fig.8
represents a finger candidate.

 (a) (b)
Fig.8 The result of finger candidate computation, every purple line stands for a
finger candidate. (a) shows all the finger candidates, (b) is an enlarged image of
(a).

A.3.3 Obtain the grasping direction for finger candidates
After the finger candidates are obtained, the first thing need

to be done is to find the grasping direction. For every finger
candidate, there are two possible grasping directions shown as
Fig.9 (a). The blue line and the orange line respectively
demonstrate the inside and outside grasping direction. Fig.9 (b)
shows random grasping directions for all finger candidates,
some lines are toward inside the object, some others are toward
outside the object. How to find all the inside grasping
direction?

 (a) (b)
Fig.9 There are two possible grasping directions for a finger candidate. (a)
shows two grasping direction (the orange line and the blue line) for a finger
candidate. (b) shows all the random grasping direction for all the finger
candidates.

In order to solve the problem of finding correct grasping
direction, let’s first look at how to judge whether a given point
is inside or outside the contour of the object. First, the contour
of the target object is used to construct a polygon (Φ). An
effective way to find whether a given point is inside or outside
a polygon is to cast many random rays from the given point to
any direction. The intersects between the casting ray and the
polygon are used to judge whether the given point is inside or
outside the polygon. If the number of intersects is an odd
number, the given point lies inside the polygon, otherwise, it
lies outside the polygon. Fig.10 shows the idea of how to judge

whether a give point is inside or outside of a polygon. The red
point and the orange point are two given points. The green and
the purple points are two random points. The line between the
red point and the green point has two (even number) intersects
with the polygon. The line between the orange point and the
purple point has three (odd number) intersects with the
polygon. Specifically, a given point (gP) is first given, and
then, a controlled number of random points (rnP , 1, 2...n m= .
m is the total number of the random points) are generated by
system, A straight line (_ 1g rl) can be constructed by connecting

the given point (gP) and the first random point (1rP). lΦ is used
to represent one side of the polygon (Φ). The intersect point
between _ 1g rl and the lΦ will be found. If the intersect point is
on the polygon, it means there is a real intersect point. A for-
loop is used to go through all the sides of the polygon (Φ) to
find all the intersection points. The number of the intersects
between _ 1g rl and the polygon (Φ) is defined as 1n . Then, the

second line _ 2g rl can be constructed by connecting another

random point (2rP) and the given point (gP). The number of

intersects between _ 2g rl and the polygon (Φ) is defined as 2n .

The line between gP and rmP is defined as _g rml , the number

of intersects between _g rml and the polygon (Φ) is defined as

mn . If all the numbers (1n , 1n … mn) are odd numbers (that
is, 1 2(, ...)%2 1mn n n =), the given point is inside the polygon
(Φ), otherwise it is outside the polygon.

Fig.10 The method to judge whether a given point is inside or outside a
polygon. If a given point is outside a polygon, the line between the given point
and the random point has even number of intersects with the polygon. If a given
point is inside a polygon, the line between the given point and the random point
has odd number of intersects with the polygon.

After we known how to judge whether a given point is
inside or outside of a polygon, we can use it to find the
grasping direction for the first finger candidate. As can be seen
from Fig.11 (a), a step value (δ) is used to do step searching
along the middle vertical line of the first finger candidate. A
pair of step points are set along the green arrow and the black
arrow with the step of δ . Then, above method can be used to
judges whether the two step points are inside or outside of the
object contour. If the two step points are both inside the object
boundary, then the algorithm continues to search along the
direction of the green arrow and the black arrow. The step
searching process stops until one step point is inside the object
boundary and the other step point is outside the object
boundary. The direction from the middle point of the first
finger candidate to the step point inside the object boundary is
used to work as the grasping direction.

After the grasping direction of the first finger candidate is
obtained, a coordinate system can be established (seen as
Fig.11 (b)). The middle point of the finger candidate works as
the origin, the direction from the start point of the finger
candidate to the end point of the finger candidate works as the
X axis. The Z axis is vertical to the main plane. If 1Y is the
grasping direction, the grasping direction is the cross product of
X and Z, that is, 1Y X Z= × . If 2Y is the grasping direction, the
grasping direction is the cross product of Z and X, that is,

2Y Z X= × . The grasping direction of other finger candidates
can be worked out by using the same cross product. Fig.11 (c)
shows inside grasping directions for all finger candidates.

 (a) (b) (c)
Fig.11 Grasping direction searching process. (a) shows how to find the grasping
direction for the first finger candidate. (b) shows how to use the grasping
direction of the first finger candidate to build a cross product, which can be
used to work out the grasping direction of the rest finger candidates. (c) shows
grasping direction for all the finger candidates.

B. Force closure analysis
After the grasping directions for all finger candidates are

worked out, any two finger candidates can form a grasp
candidate. Force closure analysis is used to do further analysis.
Specifically, force balance and torque balance are used to do
balance computation to choose the stable grasp candidates.
Then, grasping range is considered to remove grasp candidates
of which the distances between the two grasp sides are bigger
than grasping range. Afterwards, the local geometry property of
the grasp candidates is considered to remove those grasp
candidates with big variance, which may lead to grasp failure.
Then, the operability analysis is used to remove those grasp
candidates of which the robot gripper may collide with the
object when the robot tries to grasp it.

B.1 Force balance computation
After the grasping directions for all finger candidates are

worked out, any two finger candidates can form a grasp
candidate. For every grasp candidate, force balance
computation is used to analyze the resultant force applied on
the object. If the total number of the finger candidates is m ,

if (1,2,...,i m=) is used to represent the thi finger candidate
and iF is used to stand for the force applied on the object by

if . If the force along the grasping direction for every finger
candidate is a unite force, the angle between the two unite
forces can represent the intensity of the resultant force. In
Fig.12, the orange line and the red line respectively stand for
the grasping direction for two example finger candidates
(if and jf). The angle (ijγ) is used to describe the intensity of

the resultant force of iF and jF . ijγ is used to evaluate the
stability of the grasp candidate consisting of if and jf . If

i and j go from 1 to m , the result of force balance
computation for every grasp candidate can be obtained (shown
as Fig.13 (a)). Specifically, this figure shows all the resultant
force. The red areas mean the maximum resultant force and the
blue areas stand for the minim resultant force. Fig.13 (b) is the
projected image of Fig.13 (a), we can clearly see that the
resultant force is maximum when it satisfies i j= , that is the
area between the two green parallel lines. The bigger the
resultant force is, the more unstable the grasp is. The centers of
the blue circles in Fig.13 (b) mean the minimum resultant
force. At that point, the resultant force is almost zero, which
means the grasp is the most stable.

Fig. 12 Force balance computation, the orange line and the red line respectively
stand for the grasping direction for the finger candidate if and jf . The angle

(ijγ) is used to describe the intensity of the resultant force of iF and jF . The

smaller ijγ is, the more stable the grasp is.

 (a) (b)
Fig.13 The result of force balance computation. (a) shows the result of force
balance computation, the red areas mean the maximum resultant force and the
blue areas stand for the minim resultant force. (b) is the projected image of (a).

B.2 Torque balance computation
After the above steps, the grasps candidates ,i jg (consisting

of if and jf) satisfying the force balance requirement set by
the system are chosen out. However, only use of force balance
cannot make sure the grasp stability. Fig.14 shows an example
grasp on the bear’s head, which satisfies the force balance
requirement. However, if the robot tries to grasp the bear using
this grasp configuration, the bear would rotate around the green
point, which may lead to grasp failure. Therefore, the torque of
every grasp ,i jg should be taken into consideration. ,i jT is

used to stand for the torque of a grasp candidate ,i jg . A

function is used to represent the relation between ,i jT and ,i jg ,

that is , ,()i j i jT f g= . If ,i jT is bigger than the threshold (sT) set
by the system, then the grasp ,i jg is removed, otherwise, ,i jg is
kept. All the grasp candidates left are used to do following
analysis.

 (a) (b)
Fig.14 Torque balance analysis. (a) shows a possible grasp candidate satisfying
the force balance requirement. (b) shows the torque balance analysis. Big
torque may lead to big rotation of the object, which may result in grasping
failure.

B.3 grasping range computation
After the force balance and torque balance computation,

grasping range of robot hand should be considered. If the
distance ,i jd between the two grasp sides of a grasp candidate

,i jg is bigger than the grasp range, the robot cannot grasp the

object. Therefore, if the distance ,i jd of the two grasp sides of

every grasp ,i jg is smaller than the grasping range, the grasp is
remained, otherwise it is removed.

B.4 Variance analysis
After finishing all steps mentioned above, the grasps left

satisfy the force requirement, torque requirement and grasping
range requirement. However, the local geometry property of
grasp candidates is not yet considered. Fig.15 shows a grasp
candidate, right up and right down are the enlarged images of
the two grasp sides (the green points). The distance between
one green point to the purple line is defined as id , 0 i n< ≤ ,
n is the total number of the green points. All the distances are

added together to get the variance v of the grasp,
1

i n

i
i

v d
=

=

= ∑ .

The bigger the variance is, the larger possibility of grasp failure
is. If the variance is smaller than the threshold set by the
system, the grasp is saved, otherwise, it is removed.

Fig.15 Variance analysis. The left image shows a possible grasp candidate. The
right images are enlarged images of the two grasp sides. Variance of the points
of the two grasp sides is used to evaluate the grapping quality.

B.5 Operability analysis
Operability in this section means whether the grasps found

in above section can be executed or not. Not all grasp
candidates obtained by above steps can be executed
successfully, Fig.16 shows an example, the two purples lines
stand for a grasp candidate, the two orange lines represent the
biggest open width of the robot hand. For the example grasp
candidate, the robot finger will collide with the bear at the red
circle. Therefore, it is necessary to analyze the operability of
grasp candidates. In order to simplify computation, a local

coordinate system is established and the concave hull boundary
of the object is transferred into the local coordinate system. The
biggest open width of the robot hand is defined as ow and the
hand width is defined as hw , the distance between the two
grasp sides is defined as d . If the points on the concave hull
boundary satisfy equation (2), then it means there is collision
when the robot try to execute this grasp, otherwise, there is no
collision. Using the above steps repeatedly, we can find all the
grasp candidates satisfying the operability requirement.

0.5* 0.5*
0.5* || 0.5*

h h

o o

w x w
w y d d y w

− ≤ ≤
− ≤ ≤ − ≤ ≤

 (2)

 (a) (b)
Fig.16 Grasping operability analysis. (a) shows an example grasp candidate that
the robot finger will collide with the object. (b) shows the local coordinate
system which is used to do point cloud transformation.

C. Gravity analysis
When an object is under manipulation after it is grasped,

its gravity inevitably brings instability to the grasp. How to
take the gravity of the object into consideration is a key
problem which can decide whether a grasp action is reliable or
not. In this paper, we propose to use the distance between the
gravity center and the grasping line (between the two grasping
points) to evaluate the grasp candidates. For example, if the
robot already grasped the teddy bear and the robot wants to
move the bear in the air. At this moment, the gravity needs to
be considered to prevent the object falling from the robot
gripper. Fig.17 (a) shows an example grasp, specifically, the
two purple lines stand for the grasp and the red point represents
the gravity center. If the robot grasps the teddy bear and moves
in the air, the object may rotate around the red line, the
corresponding torque is defined as T , T can lead to instability
which may result in grasp failure. The distance (d) between
the gravity center and the grasping line is used to evaluate the
grasp quality after the object is grasped. The shorter the
distance is, the smaller the torque is. The smaller the torque is,
the more stable the grasp is. Fig.17 (b) shows the result of
gravity analysis, the grasp with the smallest gravity torque is
chosen as the final grasp (shown as the two bold red lines in
Fig.17 (b)).

 (a) (b)
Fig.17 Gravity analysis. (a) the distance (d) between the gravity center and the
grasping line is used to evaluate the effect of the object’s gravity. (b) the final
grasp obtained.

IV. SIMULATION
In order to test the algorithm, various objects are chosen to

conduct simulation to determine the grasping performance. The
simulation system consists of Robot Operating System (ROS),
Gazebo (a Standalone Open Dynamics Engine based simulator)
and MoveIt! (a state of art software for mobile manipulation,
incorporating the latest advances in motion planning,
manipulation, 3D perception, kinematics, control and
navigation). In the Gazebo simulation environment, A Lacquey
under-actuated gripper and an Asus Pro Live sensor are
installed at the end of the Universal arm (UR5). The Asus Pro
Live sensor is used to acquire the point cloud of the target
object in the simulation environment. The Lacquey under-
actuated gripper is used to execute the final grasp found by the
algorithm.

Five objects with different geometry shapes are used to do
simulations. These objects are a teddy bear, an electric drill, a
pistol, a spray bottle and a pan. Fig.18 shows the simulation
results. The first column shows the simulation setup. The
second column shows the OBB box to process the point cloud.
The third column shows the finger candidates and the grasping
directions. The fourth column shows the final grasp found by
the algorithm. The two bold red lines stand for the final grasp.
The fifth column shows the grasp area on the point cloud of the
target object. The sixth column shows the grasp execution. The
algorithm can find good grasp for all these tested objects,
which proved the effectiveness of this algorithm.

V. EXPERIMENT
The experiments are conducted using a six degrees of

freedom Universal arm UR5 and an underactuated Lacquey
Fetch gripper. An Xtion pro live sensor is installed on the tool
tip of the robot. The whole experiment setup can be seen in
Fig.19. Five objects with different geometry shapes are used to
do experiment. These objects include an electric drill, a spray
bottle, a hammer, a pan and a juice box. Fig.20 shows some
snapshots of the grasping process of these objects. The first
column is the initial state of the robot and the target objects.
The second column is result of grasping computation, the two
red lines stand for the final grasp found by this algorithm. The
third column shows the grasp area on the point cloud of the
target object. The fourth column shows the gripper arriving at
grasping point. The fifth column shows objects grasped by the
gripper.

Fig. 19 Experiment setup. A Lacquey under-actuated gripper and an Asus Pro
Live sensor are installed at the end of the Universal arm (UR5).

 Fig. 18 Simulation results.
 1From this experiment, authors can safely draw three

conclusions. The first is that this grasping algorithm is very
fast. Grasping computation of the these objects can finish
within one second. The second one is that this grasping
algorithm is reliable. All the grasps found for these objects
have good force balance and torque balance, as well as the
gravity optimization. The third is that this grasping algorithm
has a good tolerance. Point clouds of the electric drill, the spray
bottle and the pan missed a lot of pixels because of the
restriction of the Asus Xtion pro live sensor. However, the
grasping algorithm can still work out good grasps for the target
objects. The experiment also proved the effectiveness of our
algorithm

VI. COMPARISON
As mentioned in the first part of motivation, inspiration of

this paper comes from [1]. Let’s look at the outcomes of [1]
and our algorithm. Fig.21 shows the comparison between [1]
and our algorithm. We made several improvements over [1].

The first one is [1] did not tell how they get the boundary of the
object. We propose to use Oriented Bounding Box to obtain the
boundary of the object, which is proved to be efficient in our
experiments. The second is [1] did not consider the geometry
property of the gripper. Actually, the grasps found by [1] in the
red circle are impossible to be executed by grippers like the
PR2 gripper, because [1] did not consider the geometry
property of the gripper. [1] just uses one single point to
represent the finger. On the contrary, we consider the geometry
shape of the finger from the beginning of our algorithm. The
third is [1] did not consider gravity of the object, which plays
an important role in object grasping. On the contrary, we
choose the nearest grasp to the gravity center to work as the
final grasp. This grasp can not only make sure the grasp can be
executed successfully, but also ensure the grasp quality during
the manipulation of the object after it is grasped. To sum up,
our algorithm combines the advantage of caging grasping and
force closure grasping, which is much more practical for flat
object grasping than [1].

Fig. 20 Snapshots from the experiments: Fist column is the initial state of the
robot and the target objects. Second column is the result of grasping
computation. Third column shows the grasp area on the point cloud of the
target object. Fourth column shows the gripper arriving at grasping point. Fifth
column shows objects grasped by gripper.

No details
about

how to
project

the point
cloud

Fig. 21 Comparison between [1] and our algorithm. The top is the algorithum
form [1]. The bottom is our algorithm. Three improvements are made. The first
is that [1] did not give details about how to project the point cloud. We use to
OBB to find main plane to project point cloud. The second is that some grasps
found by [1] are not practical for two finger gripper because [1] did not
consider the geometry property of the robot hand. We consider the geometry
properry of robot hand like the hand width, grasp range and the local geometry
of every finger candidate on the boundary. The third is that [1] did not consider
gravity of the object. Our algrithm consider graveity to make it more reliable.

VII. CONCLUSION
In this paper, a novel grasping algorithm is presented for

flat object grasping by combining the merits of caging grasping
and force balance grasping. The idea of caging points is
borrowed to generating grasp candidates. After that, force
balance computation is carried out to find out suitable grasps
by considering the gripper geometry properties, for example,
the grasping range and the hand width. Gravity of the target
object is also considered to ensure the grasping quality during
the manipulation of the object after it is grasped. This
algorithm can quickly work out the best grasp with good force
balance and torque balance. In order to prove the validity of our
grasping algorithm, several objects with different geometry
shapes are used to do simulations and experiments. And good
results are obtained.

ACKNOWLEDGEMENT

The work leading to these results has received funding from
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 609206.

REFERENCES
[1] T. Allen, J. Burdick, and E. Rimon, “Two-fingered caging of polygons

via contact-space graph search, ” in ICRA, pp. 4183-4189, 2012.
[2] Jianhua Su, Hong Qiao, Zhicai Ou, Zhiyong Liu, “Vision-Based Caging

Grasps of Polyhedron-Like Workpieces With a Binary Industrial
Gripper,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 3, pp. 1033–1046, 2015.

[3] E. Rimon and A. Blake, “Caging 2D bodies by 1-parameter two-fingered
gripping systems,” in ICRA, vol. 2, pp. 1458-1464, 1996.

[4] Elon Rimon, Andrew Blake, “Caging Planar Bodies by One-Parameter
by Two-Fingered Gripping Systems,” The Int. J. of Robotics Research,
vol.18, no.3, pp. 299-318, 1999.

[5] A. Sudsang and J. Ponce, “On grasping and manipulating polygonal
objects with disc-shaped robots in the plane,” in ICRA, vol. 3, pp. 2740-
2746, 1998.

[6] P. Pipattanasomporn and A. Sudsang, “Two-finger caging of nonconvex
polytopes,” IEEE Trans. Robot., vol. 27, no. 2, pp. 324-333, 2011.

[7] M. Vahedi and A. van der Stappen, “Caging polygons with two and
three fingers,” Int. J. Robot. Res., vol. 27, no. 11-12, pp. 1308-1324,
2008.

[8] G. Pereira, M. Campos, and V. Kumar, “Decentralized algorithms for
multi-robot manipulation via caging,” Int. J. Robot. Res., vol. 23, no. 7-
8, pp. 783-795, 2004.

[9] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via
caging in environments with obstacles,” in ICRA, pp. 1471-1476, 2008.

[10] Yanyan Dai, Yoon-Gu Kim, Dong-Ha Lee, and SukGyu Lee,
“Symmetric caging formation for convex polygon object transportation
by multiple mobile robots,” in IEEE International Conference on
Advanced Intelligent Mechatronics (AIM), pp. 595-600, 2015.

[11] H. Kruger, E. Rimon, and A.F. van der Stappen, “Local force closure,”
in ICRA, pp. 4176-4182, 2012.

[12] J. Li and J. Xiao, “Progressive generation of force-closure grasps for an
n-section continuum manipulator,” in ICRA, pp. 4016-4022, 2013.

[13] Andrew Miller and Peter K. Allen, “Graspit!: A Versatile Simulator for
Robotic Grasping,” IEEE Robotics and Automation Magazine, vol. 11,
no. 4, pp.110–122, 2004.

[14] B. Le´on, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A.
Morales,T. Asfour, S. Moisio, J. Bohg, J. Kuffner, and R. Dillmann,
“OpenGRASP: A toolkit for robot grasping simulation,” in SIMPAR,
pp. 109–120, 2010.

[15] Qujiang Lei, Martijn Wisse, “Fast grasping of unknown objects using
force balance optimization”, in IROS, 2014, pp. 2454–2460.

[16] Qujiang Lei, Martijn Wisse, “Unknown object grasping using force
balance exploration on a partial point cloud”, in AIM, 2015, pp. 7–14.

