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Minimum Compliance Topology Optimization of
Shell-Infill Composites for Additive Manufacturing

Jun Wua,∗, Anders Clausenb, Ole Sigmundb

aDepartment of Design Engineering, Delft University of Technology, Delft, The Netherlands
bDepartment of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark

Abstract

Additively manufactured parts are often composed of two sub-structures, a solid shell forming
their exterior and a porous infill occupying the interior. To account for this feature this paper
presents a novel method for generating simultaneously optimized shell and infill in the context
of minimum compliance topology optimization. Our method builds upon two recently developed
approaches that extend density-based topology optimization: A coating approach to obtain an op-
timized shell that is filled uniformly with a prescribed porous base material, and an infill approach
which generates optimized, non-uniform infill within a prescribed shell. To evolve the shell and
infill concurrently, our formulation assigns two sets of design variables: One set defines the base
and the coating, while the other set defines the infill structures. The resulting intermediate den-
sity distributions are unified by a material interpolation model into a physical density field, upon
which the compliance is minimized. Enhanced by an adapted robust formulation for controlling
the minimum length scale of the base, our method generates optimized shell-infill composites
suitable for additive manufacturing. We demonstrate the effectiveness of the proposed method
on numerical examples, and analyze the influence of different design specifications.

Keywords: Topology optimization, additive manufacturing, two-scale structure, infill, coating,
composite

1. Introduction1

Topology optimization has been recognized as an important design method for additive man-2

ufacturing, as it fully leverages the manufacturing flexibility enabled by the layer-upon-layer3

additive process. It finds an optimized material distribution in the design space to maximize4

the structural performance under given boundary conditions and constraints [1]. Early works in5

topology optimization are summarized in the book [2], and recent developments until 2013 are6

reviewed in [3, 4].7

While topology optimized material distributions mostly represent solid models, engineering8

practices in additive manufacturing seem to favour porous structures [5, 6]. In fused deposi-9

tion modeling (FDM), a commonly used additive manufacturing technology, the interior of 3D10
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models is often represented by repetitive infill patterns (e.g., triangles and hexagons). The porous11

infill is introduced to control the cost associated with material usage and printing time. The shell-12

infill composite involves a few parameters, including the shell thickness, infill pattern, and infill13

volume percentage. These parameters are specified by designers to roughly balance cost and14

mechanical properties. In general a larger shell thickness and a larger infill volume percentage15

lead to a stronger print, while consuming more material and prolonging the printing time.16

Our current research is motivated from two perspectives. First, post-processing topologi-17

cally optimized solids into shell-infill composites guarantees no optimality on the final structure,18

thereby wasting the efforts of the sophisticated numerical optimization. It is thus of high in-19

terest to consider such a shell-infill composite directly in the structural optimization routine,20

eliminating the conversion from optimized solids to sub-optimal shell-infill composites. Second,21

shell-infill composites can obtain significantly increased stability with respect to buckling [7]22

and unpredicted loading conditions [8] at the expense of a minor increase in compliance. Given23

the manufacturing flexibility enabled by additive manufacturing, such two-scale structures have24

a high potential to be widely employed in industrial metal printing (e.g., using selective laser25

melting).26

Two recent developments (partially) address the optimal design of shell-infill composites by27

extending density-based topology optimization known as SIMP (Solid Isotropic Material with28

Penalization) [9]. These two extensions are complementary in the sense that they optimize one29

component in the composite, i.e., shell or infill, while assuming the other component prescribed.30

Specifically, Clausen et al. [10, 11] proposed a method to design coated structures, i.e., a compo-31

sition of a solid shell and base material. The base material can be interpreted as a uniform infill,32

with a homogenized stiffness smaller than the stiffness of the solid coating material. The coating-33

base structure is obtained by introducing a two-step filtering process to separate the base and the34

coating from a scalar field of design variables. Conversely, to optimize infill within a prescribed35

shell, Wu et al. [8] presented a method to design bone-inspired micro-structures as porous infill.36

This is achieved by introducing an upper bound on a local volume measure, in order to regulate37

the local material distribution. The idea of local upper bounds is similar to maximum length38

scale [12, 13]. The resulting porous infill is dominated by crossing sub-structures, distributed in39

the entire space enclosed by the prescribed solid shell, and following principal stress directions.40

The optimized infill performs much stiffer under given boundary conditions than the commonly41

used, uniformly repetitive infill patterns.42

This paper moves a step further and presents a complete solution to the optimal design of43

shell-infill composites by concurrently evolving the shell interface and the micro-structural in-44

fill. In particular, we propose a novel formulation to consider both the coating-base and infill45

constraints in density-based topology optimization. Two design fields are utilized to respectively46

derive the coating-base distribution and the infill distribution. The intermediate distributions are47

unified by a material interpolation scheme into the final physical density field, based on which the48

compliance is minimized. Furthermore, the robust formulation [14] is adapted to ensure length49

scale in the composite, leading to distinct infills.50

The design of shell-infill composites is among recent developments addressing geometric51

constraints for additive manufacturing. Langelaar [15], Qian [16], and Gaynor and Guest [17]52

proposed methods to ensure the property of self-support in optimized structures. Such methods53

follow the filtering scheme proposed by Guest et al. [18] and extended in [19, 12, 20] which are54

also the basis of our current work. Wu et al. [21] proposed a rhombic pattern as a special self-55

support infill, and performed infill optimization by adaptively subdividing the rhombic cells. The56

length scale problem relevant to manufacturing technologies in general is thoroughly examined57
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Figure 1: A shell-infill composite obtained from optimizing a simply supported beam.

by Lazarov and Wang in [22]. Our method involves and justifies the use of multiple filtering58

steps ( four smoothing steps and three projections in particular ), in addition to the interpolation59

of two design fields and a gradient norm operator. Arguably, it sets a new extreme with respect60

to the number of the involved filtering operations — The most complicated combo of filters61

so far seems to be the four successive filters for the open-close operation suggested in [19].62

Here the four filtering steps and their associated projections are used to control both macro and63

microstructures. Thus beyond proving the new capability of filtering schemes, our method also64

demonstrates the good scalability of multiple filtering in density-based optimization.65

The remainder of this paper is organized as follows. Section 2 describes the shell-infill com-66

posite our method is aiming at. Section 3 presents the material model of shell-infill composites,67

considering the base, coating, and infill. Section 4 presents the optimization formulation, in-68

cluding local and global volume constraints and sensitivity analysis. Section 5 demonstrates the69

effectiveness of the proposed formulation on numerical examples. Section 6 concludes the paper.70

2. Problem Statement71

Before we rigorously define the optimization problem in the following sections, let us il-72

lustrate what optimized structures we are aiming at. The composites resulting from numerical73

optimization, without post-processing, shall fulfill a few geometric features. The optimized com-74

posite for a sample beam design problem is shown in Fig. 1. Specifically, the composite structure75

has a shell with a prescribed thickness (t), and an infill with a prescribed local volume fraction76

(γ) at each point in the infill. In the discretized setting, the localized volume fraction of ele-77

ment e is defined as the number of solid elements over the total number of elements in a small78

neighbourhood around element e. In this example, the prescribed local volume fraction is 0.6.79

In the topology optimization process, the shell, including its shape and topology, evolves80

while maintaining the thickness t. Concurrently evolving is the infill which spreads over the re-81

gion defined by the (dynamically changing) shell. The infill evolves to non-uniformly distributed82

micro-structures, regulated by a constraint on local volume fractions. The concurrent evolution83

of shell-infill is governed by the objective for achieving the highest stiffness under prescribed84

external loads, while respecting a constraint on the global material volume.85
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(a) (b) (c) (d)

ρ(ϕ, τ, ψ) τ ϕ ψ

Figure 2: Conceptual illustration of shell-infill composites. The shell-infill structure (a) is composed of a solid shell (b)
and a porous infill (d). The shell and infill are related by a base region (c): The shell forms the boundary of the base
region, while the infill falls into the base region. A wave infill pattern is used for the illustrative purpose.

3. Material Model86

Figure 2 illustrates a conceptual composition of the shell-infill composite (a). It is composed87

of a solid shell (b) and a porous infill (d). These two sub-structures are related by a base region88

(c). The solid shell forms the interface (also called coating in the following) between base region89

and void, and the porous infill spreads across the entire base region. The physical density field90

of the shell-infill composite, ρ(ϕ, τ, ψ), is a function taking as input three intermediate fields, the91

base (ϕ), the coating (τ), and the infill (ψ).92

The intermediate density fields are derived from two scalar fields of design variables, defined93

on the design domain Ω. From the first field of design variables a two-step filtering process is94

applied to separate the base structure and the coating structure (Section 3.1). From the second95

field of design variables we obtain what can be called an enrichment field, by imposing con-96

straints on a local volume measure (Section 3.2). The integration of intermediate fields into the97

final physical density field is realized by a material interpolation model (Section 3.3).98

3.1. Coating-Base Structure99

A two-step filtering process [10] is applied to derive the base and coating structures. As100

illustrated in the left of Fig. 3, the design field, µ, is smoothed to get rid of checkerboard patterns,101

giving µ̂. The smoothed field is subsequently projected, leading to a sharp base structure, ϕ = ¯̂µ.102

The smoothing radius (R1) and projection parameters (η1 and β1) indirectly control the length103

scale of the base region. The details of the filter implementation are postponed to Section 3.4.104

To derive the coating layer, a second smoothing (with a filter radius R2 smaller than R1) is105

applied, giving ϕ̂. This smoothing is necessary since the base density field ϕ is non-smooth106

across the sharp edges, and the gradient therefore is not defined. The interface between the base107

region and void is defined by a gradient norm of the smoothed base field ϕ̂,108

‖∇ϕ̂‖α ≡ α‖∇ϕ̂‖. (1)

Here ‖∇ϕ̂‖ refers to the Euclidean norm of the spatial gradient of ϕ̂. α is a normalization factor109

defined as the inverse of the maximum possible gradient norm of the field ϕ̂. It can be analytically110

determined that α relates to R2 as111

α =
R2
√

3
. (2)

The shell thickness, t, of the projected sharp coating, τ, is prescribed through the smoothing112

radius R2:113

R2 =

√
3

ln(2)
t ≈ 2.5 t. (3)
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µ

µ̂

ϕ = ¯̂µ

ϕ̂

‖∇ϕ̂‖α

τ = ‖∇ϕ̂‖α

υ

υ̂

ψ = ¯̂υ

ψ̂

ψϕ

ρ(ϕ, τ, ψ)

ρ

Smoothing, R1

Smoothing, R2

Smoothing, R3

Smoothing, R4

Gradient norm

Projection, η1, β1

Projection, η2, β2

Projection, η3, β3

Figure 3: Left, top-down: The first design variable µ allows to identify the base region ϕ and the coating τ. The dashed
lines indicate the interface as a visual reference. Top right: The second design variable υ defines the infill field ψ, and the
local material measure ψ̂. A wave infill pattern is used for the illustrative purpose. The actual infill field evolves under
constraints imposed on ψ̂. Bottom right: The intermediate field ϕ, τ, and ψ are interpolated to obtain the final physical
density field ρ.

Analytical derivations are omitted here but the details can be found in [10].114

3.2. Enrichment Field and Local Volume Measure115

Rather than prescribing a fixed infill pattern which limits design flexibility [10], the infill116

evolves from a second design field and is decided by the numerical optimization process. The117

enrichment field, as we call the infill field, will be superimposed on the plain base region to create118

fine structures.119

As illustrated in the top right of Fig. 3, the second design field, υ, is smoothed (giving υ̂) and120

projected, resulting in a sharp infill field, ψ = ¯̂υ. Similar to the first design field, the smoothing121

is to get rid of checkerboard patterns. The smoothing radius (R3) and projection parameters (η3122

and β3) indirectly control the length scale, this time, of the infill details.123

Upon the infill field (ψ), a further smoothing is applied, giving ψ̂. This smoothing is meant to124

quantify the local material accumulation. By imposing an upper bound on this measure, material125

is prevented from forming large solid regions, which thus effectively leads to a porous distribu-126

tion [8]. The constraint will be explained in Section 4.1. For ψ̂e = 1 (resp. ψ̂e = 0) it means that127

all the elements located in the filtering region Ne are black (resp. white). The filtering region for128

element e is defined as129

Ne = {i| ||xi − xe||2 ≤ R4}. (4)

A value of ψ̂e between 0 and 1 means that some elements in Ne are black and some others130

are white, yet it does not specify which particular elements are black (or white). This allows131

flexibility for the infill evolving to increase the structural stiffness.132
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3.3. Material Interpolation133

3.3.1. Density Interpolation134

After getting the intermediate density fields (ϕ, τ, and ψ), the physical density ρ is defined as135

an interpolation:136

ρ(ϕ, τ, ψ) = m0 [
ψϕ + (1 − ψϕ)τ

]
, (5)

where m0 is the mass density of the base material. For simplicity let us assume m0 = 1 as in the137

standard SIMP. The interpolated density ρ has values in the interval [0, 1], since ϕ, τ, and ψ obey138

the same bound. Considering ψϕ as an integral part, the interpolation of the three fields can be139

interpreted as an interpolation of ψϕ and τ. This type of interpolation has been studied in [23].140

We examine this interpolation by considering three extreme cases where the base and coating141

fields converge to a discrete 0/1 solution.142

• In the sharp interface defined by τ = 1 in the coating field, the density interpolation (Eq. 5)143

reduces to144

ρ(ϕ, 1, ψ) = ψϕ + (1 − ψϕ) · 1 = 1. (6)

• In the base region enclosed by the sharp interface, i.e., defined by ϕ = 1 and τ = 0, the145

density interpolation reduces to146

ρ(1, 0, ψ) = ψ · 1 + (1 − ψ · 1) · 0 = ψ. (7)

In other words, in the base region the enrichment infill field ψ will be the output.147

• In the void region outside the sharp interface, i.e., defined by ϕ = 0 and τ = 0, the density148

interpolation reduces to149

ρ(0, 0, ψ) = ψ · 0 + (1 − ψ · 0) · 0 = 0. (8)

3.3.2. Stiffness Interpolation150

In line with the density interpolation from three density fields, the stiffness is interpolated151

from three stiffness fields, each of which resembles the standard SIMP stiffness for one density152

field,153

E(ϕ, τ, ψ) = E0 [
ψpϕp + (1 − ψpϕp)τp] , (9)

where E0 is the stiffness of the base material. The penalization parameter p = 3 is the same for154

the three fields. The composite stiffness interpolation differs from the standard SIMP interpola-155

tion where the stiffness is defined as an explicit function of the physical density ρ.156

For the three extreme cases (the coating, the base, and the void regions) the stiffness function
reduces, respectively, to

E(ϕ, 1, ψ) = E0, (10)

E(1, 0, ψ) = ψpE0, (11)
E(0, 0, ψ) = 0. (12)
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3.3.3. Two-Material Formulation157

The above interpolations assume that the infill and shell have the same material with a mass
density of m0 = 1 and a stiffness of E0. To allow the possibility of using a different material for
the infill, a scaling factor λm for mass density and a factor λE for stiffness are applied to the infill
field. The interpolations become

ρ(ϕ, τ, ψ) = λmψϕ + (1 − λmψϕ)τ, (13)

E(ϕ, τ, ψ) = E0 [
λEψ

pϕp + (1 − λEψ
pϕp)τp] . (14)

The scaling factors λm and λE are contained in the interval [0, 1], meaning that the infill158

is (optionally) made of a lighter, and softer material than the shell material. We use this two-159

material formulation in optimization due to its generality.160

This two-material formulation reduces to simpler forms in extreme cases. In case of λm = 1161

and λE = 1, the two materials have identical mass and stiffness properties, i.e., reducing to the162

formulation of a single material. In case of ψ = 1, i.e., prescribing a fully solid infill field, the163

two-material formulation reduces to the standard coating approach [10].164

3.4. Filters165

Two types of filters are commonly used in density-based topology optimization. A smoothing166

filter applies a convolution operator to smooth the density field. A projection filter thresholds grey167

scale values between 0 and 1 into white-or-black values, i.e., either 0 or 1.168

3.4.1. Smoothing169

Smoothing filters are applied four times for different purposes. The smoothing of µ→ µ̂ and170

ν → ν̂ gets rid of checkerboard patterns (i.e., regions of alternating black and white elements)171

resulting from numerical instabilities [24]. The smoothing of ϕ → ϕ̂ is to identify the interface172

of the base structure. The smoothing of ψ→ ψ̂ is to quantify the local material accumulation.173

We use the so-called PDE-filter based on a Helmholtz-type partial differential equation [25].174

The PDE-filter is efficient for handling large filter radii. Hence, it is beneficial in the current175

work, since the length scale of the base structure necessitates a large filter radius, e.g., R1 = 24 in176

some of test cases. The smoothed density field is implicitly defined as a solution to the Helmholtz177

PDE:178

−r2∇2 x̂ + x̂ = x, x ∈ {µ, ϕ, ν, ψ}. (15)

The scalar-valued r is a length scale parameter. Its value is determined by the filter radius, R, in179

the standard filtering technique by a convolution operator,180

r =
R

2
√

3
. (16)

The filter radius R indirectly controls the length scale of the respective field. The four radii in the181

four smoothing steps generally have different values.182

The PDE-filter in ψ → ψ̂ serves the same purpose as the convolution filter in the origi-183

nal infill approach [8]: to quantify the local material accumulation. They differ slightly on the184

weighting factors: The convolution filter in the original infill approach has a constant weight-185

ing factor, while the PDE-filter has a weighting factor gradually decreasing along the outwards186

radial direction. We consistently use the PDE-filter for the four smoothing steps in our current187

implementation.188
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3.4.2. Projection189

Smoothing operators create density values between 0 and 1. Such grey values are thresholded190

to obtain black-and-white designs by projection methods [18, 19]. Differentiable projections are191

used to facilitate gradient-based numerical optimization. We use the projection function proposed192

in [14]:193

x̄i =
tanh (βη) + tanh (β (xi − η))
tanh (βη) + tanh (β (1 − η))

, x ∈ {µ̂, ‖∇ϕ̂‖α, ν̂}. (17)

m The projection is parametrized by two values, the ’sharpness’ value, β, and the threshold value,194

η ∈ [0, 1]. The differentiable function approaches a discontinuous step function in the limit of195

β → ∞. A parameter continuation process starting from a small β value is applied to improve196

convergence behaviour, in contrast to directly starting with a very large β value.197

Denote the projected field for η = 0.5 as a reference field. A larger threshold value of η > 0.5198

results in an eroded field compared to the reference field. As η approaches 1 the projection199

becomes similar to the modified Heaviside step function [19]. A smaller threshold value of200

η < 0.5 results in a dilated field compared to the reference field. As η approaches 0 the projection201

becomes similar to the Heaviside step function [18].202

In the three projection steps resulting in the physical density field, we choose the same thresh-203

old value of η1,2,3 = 0.5. We note that an eroded projection by η > 0.5 can be applied to control204

the length scale. This will be discussed in Section 4.3 where we explore this possibility to control205

the length scale of the base structure.206

4. Shell-Infill Optimization207

We consider a standard compliance minimization problem. However, besides a constraint
on the global volume as in standard topology optimization, a constraint is imposed on the local
volume measure obtained from the second design field. The optimization problem is defined as
follows.

min
µ,υ

c = UT KU, (18)

s.t. KU = F, (19)
l(υ) ≤ 0, (20)
g(µ, υ) ≤ 0, (21)
µe, υe ∈ [0, 1], ∀e. (22)

Here c is the compliance. U, K, and F are displacement vector, stiffness matrix, and force vector,208

respectively. The functions l and g represent local and global volume constraint, respectively. µ209

and υ are vectors of element values in the design fields µ and υ, respectively. The subscript210

e indicates an element in the design domain. The global stiffness matrix K is assembled from211

element stiffness matrix ke, which is defined as:212

ke = Ee(ϕe, τe, ψe)k0, (23)

where k0 is the element stiffness matrix for an element with unit Young’s modulus. To prevent213

the global stiffness matrix from becoming singular, a small minimum stiffness λE,minE0 is used214

to represent void element. This modifies the term λEψ
pϕp in Eq. 14 to λE,min + (λE −λE,min)ψpϕp.215
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In the following we discuss the local volume constraint (Section 4.1), the global volume216

constraint (Section 4.2), the application of a length scale (Section 4.3), and the sensitivity analysis217

(Section 4.4). The optimization problem is solved based on sensitivities using the method of218

moving asymptotes (MMA) [26].219

4.1. Local Volume Constraints (Infill)220

Local volume constraints regulate the local (infill) material distribution. For each element in221

the second design field, a constraint is imposed,222

ψ̂e ≤ γ, ∀e (24)

with γ being the upper bound on the local volume fraction. The upper bound is a fixed parameter223

specified by the designer. For a prescribed value smaller than 1, the local volume constraint224

prevents material from forming large solid parts. For instance, γ = 0.5 leads to a material225

distribution where, in the neighbourhood of each element, at most 50% elements can become226

solid. The neighbourhood is defined by the filter radius R4. This upper bound thus controls the227

local porosity.228

The number of local volume constraints equals the number of elements. To facilitate efficient229

numerical optimization, we use the p-norm to approximate the maximum value in ψ̂,230

‖ψ̂‖pn =

(∑
e
ψ̂

pn
e

)1/pn

≈ max
∀e

(ψ̂e). (25)

Here pn denotes the p-norm parameter, to distinguish from the penalization p. This approxima-231

tion reduces constraints Eq. 24 to a single, differentiable constraint,232

‖ψ̂‖pn ≤ γ. (26)

As pn goes to infinity, the approximation error between the p-norm and max function becomes233

zero. To account for the approximation error when the value of pn is not infinitely large, we234

modify the aggregated constraint to235 (∑
e
ψ̂

pn
e

)1/pn

≤

(∑
e
γpn

)1/pn

, (27)

yielding the local volume constraint,236

l(υ) =

(
1
n
∑
e
ψ̂

pn
e

)1/pn

− γ ≤ 0, (28)

where n is the number of elements.237

4.2. Global Volume Constraint238

The global volume is accumulated from the physical density field ρ. A straightforward global239

volume constraint takes the form240 ∑
∀e
ρeve ≤ V∗, (29)

where ve is the (constant) element volume, and V∗ is the maximum allowed volume.241
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Figure 4: Left: The shell-infill composite obtained with the global volume constraint Eq. 29. Multiple large void parts
appear in the base region, counteracting the intent to have distributed infill. Right: Composite obtained with the up-
dated global volume constraint Eq. 31. Infill spreads over the entire base, making a clearly distinguishable shell-infill
composite. The compliance is 98.2 (left) and 108.0 (right).

Figure 5: Left: The infill (ψ) obtained with an upper bound γ = 0.6 as local volume constraints, assuming the entire
design space is a prescribed base region. No global volume constraint is imposed. Middle: The field of local volume
measure ψ̂. The local volume measures reach the upper bound γ in the entire base region. Right: When a global volume
constraint of ratio 0.5 is imposed, the infill shrinks to satisfy this constraint, leaving large void parts in the base region.

However, experimental tests show that when combined with local volume constraints for242

the infill, this global volume formulation leads to unintended structures. See Fig. 4 (left) for243

instance. Inside the base region, there are large void parts. These large voids counteract the244

design intention to have distinct shell-infill structures where the infill spreads over the entire base245

region enclosed by the shell.246

To explain this, let us consider the simple case where the design space is a prescribed base247

region, i.e., the standard infill approach [8]. When the local volume constraints are imposed248

while the global volume constraint is inactive, the infill will spread over the entire base region249

(see Fig. 5 left): At each element, the local volume measure will reach the prescribed upper bound250

(see Fig. 5 middle for the field ψ̂). This is in line with compliance minimization: The optimal251

structure always tries to exploit the full amount of material. If the global volume allowance for252

this region is smaller than necessary to spread the infills, (unintended) large void parts will have253

to be created (see Fig. 5 right).254

Since the amount of base region in the concurrent optimization is not known a priori, the idea255

is that the allowed volume for infill shall be proportional to the area of the base region, rather256

than merely the area occupied by the sparse infill as in Eq. 29. In particular, assuming that every257

element takes the grey value of the upper bound γ, the physical density field becomes258

ρ́(ϕ, γ, τ) = λmγϕ + (1 − λmγϕ)τ. (30)

The updated global volume constraint, in its normalized version, is259

g(µ, γ) =

(∑
e
ρ́eve

)
/V∗ − 1 ≤ 0. (31)

As can be seen on the right of Fig. 4, the updated global volume constraint serves the purpose260

of having infill spread over the base region. This updated global volume constraint is conserva-261
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Figure 6: The shell-infill composite degenerates to a partial shell segment enclosing no infill, indicated by the arrow.

tive, in the sense that the global volume from the real physical density ρ is smaller than that from262

the approximated density ρ́, i.e.,263 ∑
∀e
ρeve ≤

∑
e
ρ́eve. (32)

The two volumes become equal when the infill field takes the upper bound γ for every element.264

As the infill converges to a discrete 0/1 solution, the left becomes smaller. Consider the simple265

case of Fig. 5 where the entire design space is a prescribed base region. An upper local volume266

bound γ = 0.6 leads to a global volume ratio of 0.53 (Fig. 5 left).267

4.3. Length Scale268

Length scale of the base is an additional option to help achieving distinct shell-infill com-269

posites. When the width of the base region is small, shell-infill locally degenerates to a shell270

enclosing no infill (See Fig. 6 for an example). To prevent this, we adapt the robust formula-271

tion [14, 27] to ensure a minimum length scale of the base. The robust formulation applies an272

erosion and a dilation projection, along with the intermediate projection. The projection parame-273

ter has been explained in Section 3.4.2, Eq. 17. By optimizing the structural performance on the274

worst scenario among the three projections, a minimum length scale on the solid and void phase275

can be ensured, resulting from the erosion and dilation projection, respectively.276

In the context of compliance minimization, the worst case (i.e., the highest compliance value)277

among the three projections is the density field associated with erosion, since it uses the least278

amount of material. In the context of shell-infill optimization, while minimizing this worst case279

indeed ensures a length scale of the base, the coating at some locations is not clearly defined. An280

example is shown in Fig. 7 (top) for the standard coating approach, i.e., the infill constraint is not281

yet imposed for simplicity. The left and right are the coating-base structures corresponding to282

the intermediate and erosion projection, respectively. The coating in the intermediate projection283

(a) does not contribute in any way to the objective function, since the objective considers only284

the erosion projection which has a larger compliance value.285

To encourage the appearance of a well-defined coating in the intermediate projection, the286

idea is to consider both the erosion projection and the intermediate projection in the robust for-287

mulation. Specifically, the following objective is minimized,288

c = ωUT KU + (1 − ω)UeT KeUe, (33)

where ω is a weighting factor, and the superscript e in the second term indicates the eroded289

version. Figure 7 (bottom) demonstrates that the coating in the intermediate version is restored.290
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(a) c = 173.94 (b) c = 180.39

(c) c = 162.18 (d) c = 183.64

Figure 7: Coating in the intermediate density field (a) is not well defined if only the compliance of the eroded version (b)
is minimized in the objective function. Bottom: By minimizing both the intermediate and eroded versions, it encourages
the appearance of the coating in the intermediate version (c). Both are tested with v = 0.3, γ = 1, λm = 0.6, and
λE = 0.33.

We note that this combined objective function is an approximate approach to ensure length scale,291

since it involves a weighting factor. A small ω value leads to a shell which is not well defined,292

while a large ω value may lead to a structure violating the length scale. A continuation is applied293

in our test: ω is gradually increased from 0.1 to 0.8, by an increment of 0.1 every 50 iterations.294

4.4. Sensitivity Analysis295

For solving the optimization problem defined by Eqs. 18-22 using the gradient-based MMA296

solver, the following sensitivities are needed:297

∂c
∂µe

,
∂c
∂υe

,
∂l
∂µe

,
∂l
∂υe

,
∂g
∂µe

, and
∂g
∂υe

. (34)

All these sensitivities are elaborated in the following paragraphs.298

(1) ∂c/∂µe and ∂c/∂υe. From adjoint analysis the sensitivities of the compliance objective are:299

∂c
∂xe

= −UT ∂K
∂xe

U = −
∑
i

∂Ei

∂xe
(uT

i k0ui), x ∈ {µ, υ} (35)

To derive ∂Ei/∂µe and ∂Ei/∂υe, we rewrite the stiffness interpolation (Eq. 14) by300

E(ϕ, τ, ψ) = E0 [
λEψ

pϕp + (1 − λEψ
pϕp)τp] = E0

λEψ
pϕp︸   ︷︷   ︸

AE

+ τp︸︷︷︸
BE

− λEψ
pϕpτp︸      ︷︷      ︸
CE

 . (36)

Considering that ψ(υ) is independent of the first design variable µ, and applying the chain rule301

and product rule, we arrive at302

∂Ei

∂µe
= E0

[
∂AE

∂ϕi

∂ϕi

∂µe
+
∂BE

∂τi

∂τi

∂µe
−

∂CE

∂(ϕiτi)

(
τi
∂ϕi

∂µe
+ ϕi

∂τi

∂µe

)]
, (37)

12



with ∂AE/∂ϕi = λEψ
b
i bϕb−1

i , ∂BE/∂τi = bτb−1
i , and ∂CE/∂(ϕiτi) = λEψ

b
i b(ϕiτi)b−1.303

Similarly, considering ϕ(µ) and τ(µ) are independent of υ, this leads to304

∂Ei

∂υe
= E0

[
∂AE

∂ψi

∂ψi

∂υe
−
∂CE

∂ψi

∂ψi

∂υe

]
, (38)

with ∂AE/∂ψi = λEϕ
p
i pψp−1

i and ∂CE/∂ψi = λEϕ
p
i τ

p
i pψp−1

i .305

(2) ∂l/∂µe and ∂l/∂υe. The sensitivities of the local volume constraint with respect to the design306

variables has the form307

∂l
∂xe

=
∑
i

(∑
j

(
∂l
∂ρ̂ j

∂ρ̂ j

∂ρi

)
∂ρi

∂xe

)
, x ∈ {µ, υ} , (39)

with308

∂l
∂ρ̂ j

=
1
n

(
1
n
∑
e
ρ̂

pn
e

)1/pn−1

ρ̂
pn−1
j . (40)

To derive ∂ρi/∂µe, Eq. 13 is rewritten as309

ρ(ϕ, τ, ψ) = λmψϕ + (1 − λmψϕ)τ = λmψϕ︸︷︷︸
Am

+ τ︸︷︷︸
Bm

− λmψϕτ︸ ︷︷ ︸
Cm

. (41)

Again, considering that ψ(υ) is independent of µ, and applying the chain rule and product rule, it310

leads to311

∂ρi

∂µe
=
∂Am

∂ϕi

∂ϕi

∂µe
+
∂Bm

∂τi

∂τi

∂µe
−

∂Cm

∂(ϕiτi)

(
τi
∂ϕi

∂µe
+ ϕi

∂τi

∂µe

)
, (42)

with ∂Am/∂ϕi = λmψi, ∂Bm/∂τi = 1, and ∂Cm/∂(ϕiτi) = λmψi.312

For the design variable υ, we have313

∂ρi

∂υe
=
∂Am

∂ψi

∂ψi

∂υe
−
∂Cm

∂ψi

∂ψi

∂υe
, (43)

with ∂Am/∂ψi = λmϕi and ∂Cm/∂ψi = λmϕiτi.314

(3) ∂g/∂µe and ∂g/∂υe. The derivative of the total volume constraint with respect to the design315

variables is:316

∂g
∂xe

=
∑

j
ρ́ j

∑
i

∂ρ́i

∂xe
, x ∈ {µ, υ} . (44)

The modified density ρ́ is independent of υ, leading to317

∂ρ́i

∂υe
= 0. (45)

∂ρ́i/∂µe is a modified version of Eq. 42 by replacing ψ therein with γ,318

∂ρ́i

∂µe
= λmγ

∂ϕi

∂µe
+
∂τi

∂µe
− λmγ

(
τi
∂ϕi

∂µe
+ ϕi

∂τi

∂µe

)
. (46)

(4) Elementary Derivatives. In above formulations, some elementary derivatives (e.g., ∂ϕ/∂µ,319

∂τ/∂µ, and ∂ψ/∂υ ) are not included here, but can be found in [10, 8].320
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Figure 8: The shell-infill composite during the iterative optimization process. From left to right and top to down, the
density distribution at the iterations of 100, 200, 300, 400, 500, 1000.

5. Results321

In this section we demonstrate the effectiveness of the proposed topology optimization for322

different examples. Variations of the optimized structures with respect to different design speci-323

fication will be analyzed, to explain the consequence of the involved parameters.324

The following parameters are the same for all examples. The constraints aggregation is cal-325

culated with a p-norm value of pn = 8. A penalization p = 3 is used in the stiffness interpolation326

(Eq. 9) for ψ, ϕ, and τ. A projection threshold 0.5 is used for η1, η2, and η3, while the eroded327

version of the base takes a value of 0.7. Parameter continuation is applied for the sharpness pa-328

rameters. The coating sharpness is initialized with β2 = 8 to get a sharp coating already from the329

beginning of the optimization, and doubled at every 100th iteration (or at convergence) until it330

is increased to 64. The sharpness of base and infill starts from β1,3 = 1, and is doubled together331

with β2.332

5.1. Simply supported beam333

The first example is a simply supported beam, as shown in Fig. 1. Due to symmetry only one334

half of the design domain is simulated. The half design domain is discretized by square elements335

with a resolution of 300 × 600 to accommodate fine scale infill structures.336

The problem is optimized using a total volume fraction of 40%, and an upper local volume337

bound of 0.6. The four smoothing filter radii are R1 = 24 for the base, R2 = 15 for the coating338

(i.e., leading to a coating thickness of t = 6), R3 = 2 for the infill, and R4 = 8 for quantifying the339

local volume fraction, all measured in terms of elements. The intermediate domains are extended340

from the design domain by a size of the largest filter radius (R1) in order to ensure the length scale341

on the boundary [28].342

Figure 8 shows a sequence of the shell-infill composite during the design progression. As the343

optimization progresses, a clear shell-infill structure emerges from the grey density distribution.344

The optimized result shows two scales. The coarser scale defined by the shell looks familiar to345

standard topology optimization. Enclosed by the shell, the infill varies in different subregions,346

following the direction of the internal uni-axial stresses. This can be attributed to the fact that347

on the coarse scale as in standard topology optimization the optimized structure receives highly348

uni-axial stresses (compression or tension). At the joints connecting two bars, there are crossing349
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µ

µ̂

ϕ = ¯̂µ

ϕ̂

‖∇ϕ̂‖α

τ = ‖∇ϕ̂‖α

υ

υ̂

ψ = ¯̂υ

ψ̂

ψϕ

ρ(ϕ, τ, ψ)

ρ

Smoothing, R1

Smoothing, R2

Smoothing, R3

Smoothing, R4

Gradient norm

Projection, η1, β1

Projection, η2, β2

Projection, η3, β3

Figure 9: The intermediate density distributions involved in the shell-infill optimization of the sample beam.

structures which naturally flow in from the infills in the adjacent branches, indicating bi-axial350

stresses in the crossings.351

Figure 9 displays the intermediate density distributions involved in the shell-infill compo-352

sition. The layout of this figure follows the schematic illustration in Fig. 3. On the left, from353

top to bottom, the density field of the first design variable is smoothed and projected to obtain a354

black-white base field ϕ. The base is smoothed, allowing its interface to be extracted by the gra-355

dient norm. The interface is further projected to obtain a sharp coating layer τ. On the right, the356

density field of the second design variable evolves to a porous infill ψ. Due to the local volume357

constraints, the material forms small scale geometrical details in the region corresponding to the358

(black) base on the left. Since the enrichment field outside the base region does not affect the359

stiffness of the final composite structure, this outside region shows a uniform grey.360

5.2. Cantilever Beam361

The second numerical test is a cantilever beam. The design domain and boundary conditions362

are illustrated in Fig. 10. Due to symmetry only one half of the design domain is optimized, by363

using a discretization of 150× 500 square elements. The resulting half structure is completed by364

its mirrored image to illustrate a complete structure.365

The problem is optimized using a total volume fraction of 36%. Different local volume upper366

bounds (0.4 ∼ 0.7) are applied to analyze the variations. The four filter radii in these tests are367

R1 = 16, R2 = 10, R3 = 2, and R4 = 8, all measured in terms of elements.368

Figure 11 shows the four shell-infill composites with different infill porosities. As the local369

volume upper bound increases, the infill becomes denser. Since the same total volume constraint370
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Figure 10: The design domain and boundary condition of the cantilever beam.

(a) γ = 0.4, v = 0.285, c = 181.43 (b) γ = 0.5, v = 0.309, c = 144.69

(c) γ = 0.6, v = 0.337, c = 125.40 (d) γ = 0.7, v = 0.353, c = 115.97

Figure 11: Cantilever beam example with different local volume upper bounds.

is applied, the denser infill results in a reduction of the base region. The compliance value also371

reduces as the infill becomes denser. To exclude the influence of the different volume values372

(which result from the infill approximation explained in Section 4.2), the compliance-volume373

ratios (c/v) are calculated. In the order of an increasing infill fraction the ratios are 636.6, 468.3,374

372.1, and 328.5, respectively.375

5.3. Multiple Loads376

Triangular-shaped (macro-)structures perform well for multiple, individually applied loads.377

Also, so-called rank-3 materials are optimal for microstructures subjected to multiple load cases.378

Hence, it is interesting to see whether such triangular-shaped structures also appear in the opti-379

mized infill when considering multiple load cases. Fig. 12 shows the design domain of a simply380

supported beam, upon which five vertical loads are applied individually. The objective function is381

the average of five compliances, each of which corresponds to an individual load. Fig. 13 shows382

the optimized shell-infill in this multi-load case. The multiple loads result in more variations of383

infill pattern than seen in the previous single load case problems. In particular, some triangular384
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Figure 12: Design domain of a simply supported beam. The five loads have the same magnitude, and are applied
individually.

Figure 13: Optimized shell-infill for 5 individually applied loads.

sub-structures do appear and other regions have laminations that do not cross at right angles as385

was the rule in the single load case structures.386

The domain has a resolution of 300 × 600 in terms of square finite elements. It is optimized387

with a maximum total volume fraction 36%, a local volume upper bound 0.6, R1 = 16, R2 = 10,388

R3 = 2, and R4 = 8.389

5.4. Comparison of Infills390

We compare the present optimization of shell-infill composites against the standard coating391

approach. The uniform infill in the standard coating approach can be interpreted as a prescribed,392

repetitive infill pattern. We first run the concurrent optimization with a local volume upper bound393

γ = 0.6, and a total volume constraint of 0.4. The obtained physical density field amounts to a394

total volume of 0.368. With this total volume, we run the standard coating approach. Here, we395

assume the density of the uniform infill is 0.6, the same value as the local upper bound in the396

shell-infill composite. The uniform infill is made of the same material as the coating. According397

to the Hashin-Shtrikman bounds for isotropic material [29], a density of 0.6 leads to a maximum398

effective stiffness of 1/3. The two structures obtained using these two approaches are shown in399

Fig. 14. The numerical analysis suggests that the non-uniform infill performs much stiffer than400

the uniform infill for the same material volume.401

The same conclusion can be drawn from a comparison performed on the cantilever beam402

model. The structures are shown in Fig. 15. The shell in these two designs has the same topology,403
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(a) γ = 0.6, λm = 1.0, c = 106.92 (b) γ = 1.0, λm = 0.6, c = 146.08

Figure 14: Left: The shell-infill composite with an infill varying according to the stress distribution. Right: The infill is
uniform. Both design use the same amount of total volume (v = 0.368).

(a) γ = 0.6, λm = 1.0, c = 125.40 (b) γ = 1.0, λm = 0.6, c = 176.98

Figure 15: A comparison of the non-uniform infill (left) and uniform infill (right) on the cantilever beam model. Both
design use the same amount of total volume (v = 0.337).

while its contour varies slightly. The uniform infill (right) has a larger compliance value.404

The improved performance of the optimized infill structures come at the cost of an ex-405

pected decreased local buckling stability in the uni-axially loaded compression regions. Here406

single scale laminates will have low buckling stability but this may potentially be avoided by an407

anisotropic filtering approach suggested for the same reasons in our previous work [8].408

5.5. Two Materials409

In above tests we have assumed that the infill is made of the same material as the coating410

layer. The formulation (Eqs. 13 and 14) allows to use a different material representing the infill.411

Figure 16 shows an optimized cantilever beam using two different materials. The infill density412

field is grey, representing a relative density of λm = 0.6. A relative stiffness of λE = 0.6 is tested413

for the infill material. Note that when using two different materials, the relative stiffness is not414

restricted to the Hashin-Shtrikman bounds as in the standard coating approach, which interprets415

the infill as a structural pattern made of the coating material. In this example it can be observed416

that in the opening at the left hand side the shell is not well formed around the left corner. This417

is a side effect of the introduced length scale control, as discussed in Section 4.3. Further studies418

and modifications may alleviate the issue, but since it only appears sporadically we leave this419

issue for future studies.420
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Figure 16: The shell-infill composite with a stiff material (black) for the shell, and a softer material (grey) for the infill.

6. Conclusion421

We have presented a topology optimization method for evolving the shell and non-uniform422

infill concurrently. The composite maintains a prescribed shell thickness, and its interior is filled423

with non-uniform sparse structures up to a prescribed local volume fraction. The effectiveness424

of the proposed shell-infill interpolation model has been confirmed through numerical tests.425

Our results demonstrate that optimized, non-uniform infill performs better than uniform in-426

fill for the same material volume. The optimized shell-infill shows some interesting geometric427

patterns. Elongated infill is found in the uni-axially loaded bars, while crossing infill can be428

observed at the joints connecting these bars. These results conform to, and can be explained by429

our understanding of optimal structures. With the increasing fabrication flexibility offered by430

additive manufacturing, it is expected that such tailor made structures will find many industrial431

applications.432

Extending the shell-infill formulation from 2D to 3D is straightforward. The 3D results for433

the coating and the porous infill have been reported in [11] and [8], respectively. Closed-walled434

(infill) structures are efficient for stiffness. However, they might trap unsintered powders in435

powder-based fabrication. To steer closed-walled structures into truss-like structures, a possi-436

ble solution is to restrict the local volume bound such that the locally allowable volume is not437

sufficient to create closed-walled structures [8].438

Despite a rather complicated optimization model that includes four successive filter opera-439

tions the algorithm is remarkably robust to parameter and geometric variations. Additional runs440

for other volume fractions and e.g., the classical MBB beam are easily solved and result in similar441

conclusions and are hence left out for space reasons.442
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