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Abstract

A pathological tremor is an involuntary and periodic motion of a body part. The
detection and quantification of a pathological tremor are essential for diagnosis
and therapy. The goal of this research is to detect the frequency of the patholo-
gical tremor. Instead of detecting tremors by using a specific medical device, we
propose a new architecture jointly using a state-of-the-art pose estimation method
and periodicity detection technology to identify pathological tremors from a video.
In our approach, an advanced deep neural network is deployed for human pose
estimation. A pixel-wise method for frequency estimation is designed to spatially
integrate the spectral information of pixels to refine an estimate.

Compared with conventional methods, our method offers significant conveni-
ence for both patients and medical staff. Our approach does not need a specific
device. Thus it eliminates the error caused by the additional mass of the sensor
[22]. The procedure of the test is simple for non-technical staff so that the method
decreases the possible operational error.

Each module is evaluated on a real dataset by a series of experiments. Compared
with a classic 1D surrogate signal method, our pixel-wise method has a smaller
error and deviation on both synthetic videos and real videos. The architecture is
finally evaluated on patient videos and shows a promising result. For 21 periodic
videos, 13 of our frequency estimations have an absolute error lower than 1 Hz.
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Chapter 1

Introduction

In this chapter, Section 1.1 introduces the background and motivations for devel-
oping the work. Section 1.2 defines the problem that our research will tackle and
Section 1.3 lists related works. Finally, Section 1.4 presents the basic idea behind
our solution and our contributions.

1.1 Background

A tremor is defined as an involuntary rhythmic movement of a body part [6]. As a
key feature of some diseases like Parkinson, pathological tremors affect millions of
patients. Before finding a cure, an accurate and objective quantification of patholo-
gical tremors provides valuable information for diagnosis and therapy. Among all
measurements for characterizing tremors, one primary parameter is frequency.

To detect the frequency of a pathological tremor, a tremor signal is collected
and analyzed. The power spectrum of the signal is informative. Compared to a
physiological tremor, a pathological tremor is more regular, less noisy and contain-
ing sharp concentrations in the power spectrum. A broad spectrum indicates that
many different frequency components contribute to the spectrum, while a sharp
peak shows that only one dominant frequency for the tremor exists [4].

Conventionally, sensors are attached to a patient’s body skin to collect force,
displacement or acceleration data and spectrum analysis is performed to get the
frequency of the pathological tremor. Electromyography (EMG) is another widely
used technique. It offers rich information for tremor frequency and motor unit syn-
chronization [4]. Recently three-dimensional cameras like the Leap [14] are used
to record position and acceleration data. These cameras do not require physical
contact and result in more accurate estimations.

Perhaps the biggest disadvantage of the conventional methods is that all of them
need a specific medical hardware for data collection. Besides, the complicated pro-
cedure increases the possibility of an operational error. In this research, we propose
to detect the frequency of the pathological tremor from a video. All one needs is a
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commodity camera with at least HD resolution. Depending on the patient, the fre-
quency of a pathological tremor varies from 2Hz to 12Hz [1]. According to NTSC
and PAL television system, the frame rate of a video file is more than 25. Based on
the Nyquist theorem, it is possible to detect tremor frequency directly from a video
signal.

1.2 Research Problem

Given a video in which a patient performs specific actions, the task of this research
is to identify and quantify the pathological tremors of body joints. As one can
imagine, the first step of a naive solution is to locate the target joint in a video.
Then we collect the tremor signal and transform the signal to the frequency domain.
Finally, the periodicity is detected and the frequency is estimated. Following the
idea, the task can be split into two main parts.

• Each body joint should be estimated correctly from the frame.

• A rule should be defined to tell the existence of a pathological tremor. A
method should be proposed to quantify the tremor frequency along time.

Given the diversities of body profile and pose shape, detecting joints from an
image is extremely hard. And for real videos, varieties of backgrounds add more
complexities to the problem. As far as we know, there is no completely reliable
algorithm or technology available that can perform the task. With the development
of pattern recognition technology, for example, neural networks, the problem now
becomes more popular and a solution is possible if the target pose is consistent
with the training pose data.

The detection and quantification of a pathological tremor in a video are similar
to a periodic motion analysis problem, where the scale of a tremor is tinier and
the frequency is higher. A tiny action is hard to capture since the signal can be
easily covered by the noise. The problem becomes more complicated when the
tiny action is accompanied with a large motion. And some tremors only happen
when a patient performs a particular action. For example, a tremor appears when a
patient raises his hand.

All in all, it is still an open question to detect and quantify the tremor from a
video. No existing model is provided as a solution.

1.3 Related Work

As far as we know, there is no existing model for the whole problem, but there
exists well-performing approaches for each individual part.
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1.3.1 Pose Estimation

A pictorial structure (PS) model is a classic model used for articulated human pose
estimation [11]. PS generates a tree graphical model for the spatial constraints
between different body parts. The local prediction for a joint is refined by coher-
ently learning the spatial information from body configuration. To improve the
performance, some augmented tree models [9, 21, 24] are proposed to add edges
to a tree structure or use multiple trees, such that it additionally captures occlusion,
symmetric and long-range co-relations.

Since 2014, a number of approaches based on convolutional neural networks
(CNN) for pose estimations are designed and supersede previous work [7, 16, 3,
17, 5, 19, 25]. Most of these approaches regress the image to belief maps and
sequentially send the map to a graphical model. A partitioning and labeling for-
mulation of joint candidates is generated by a dedicated CNN in [19]. And the
candidates are suppressed and grouped to form the configuration of the human
body.

The Pose Machine [20] provides a sequential framework to detect articulated
human pose in an image. Based on an inference model, the Pose Machine takes
advantage of interactive spatial information between different parts in the image
for pose prediction. For example, an elbow part is a strong cue for predicting a
shoulder part. In addition, a sequential modular model makes it convenient to be
implemented with any feature extractor and predictor [25]. With the advantages
of the Pose Machine, the Convolutional Pose Machine (CPM) [25] substitutes the
feature computation module with a CNN. A sequential CNN architecture increases
the receptive area with the depth of the network, which allows the network co-relate
different body part predictions and thus improves the accuracy.

1.3.2 Frequency Estimation

There is also extensive research in the detection and quantification of periodic mo-
tions from videos. One of the most popular methods is to convert a video signal
to one-dimensional surrogate signal and do analysis either in the frequency or time
domain. For example, the boundary contour of the target object is computed in
[12]. And the frequency is estimated by peak detection in the frequency domain us-
ing 1D statistic signal of the contours. Mutual information (MI) signal between the
reference frame and other frames is computed in [26] and the frequency is estim-
ated by analyzing the peaks of the MI time series. Compared with the frequency-
domain approaches, a time-domain approach is not limited to the resolution that
DFT can determine and it is able to deal with a periodic impulsive signal.

Another method widely used is self-similarity matrix (SSM) introduced by [8],
while the similarity can be defined in different ways. [8] not only describes a
theorem for period detection, but also proposes a robust method based on the 2D
power spectrum of SSM to quantify the period. Compared with other methods,
SSM approach is able to detect the periodicity when a video contains significant
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non-Gaussian noise or the period is not constant.

1.4 Proposed Solution

We propose a new architecture (see Figure 1.1) using a combination of a state-of-
the-art pose estimation method and a periodicity detection technology to solve the
problem. We name it Tremor Frequency Detector (TFD). The structure is designed
as a pipeline consisting of three modules, a pose estimation module, a frequency
estimation module and a visualization module (see Figure 1.1).

Pose 

Estimation

...

...

Figure 1.1: Architecture of TFD. A yellow box indicates a functional module. The red
point labels the target joint and red dash box denotes the region of interest. Cropped frames
form a time series proceeding to the next module. We make the frequency-domain analysis
in the subsequent module. Finally, the results are visualized.

We utilize a deep neural network from [25] as our first module, since the model
offers informative belief maps and achieves a competitive performance on our data-
set. In the second module, we apply a frequency-domain approach like the method
in [8]. However, instead of using a surrogate signal like similarity, we propose
a pixel-wise method that spatially integrates the spectral information of pixels and
estimates the frequency on the composite spectrum. The spatial information is gen-
erated by the pose estimation module. We design the approach based on the idea
that the frequency estimation should focus on the signal around the target object
and ignore the noise from the background.

We evaluate our work on real patient videos provided by Leiden University Med-
ical Center (LUMC). The frequency estimation module is evaluated on both syn-
thetic videos and real videos. And we compare our work with one of the similarity
methods from [8], since it also achieves a competitive performance on our dataset.

The main contributions of this work include:

• designing a new architecture for detecting and quantifying human patholo-
gical tremors from videos,

• proposing a spatial-temporal method for estimating the frequency of the peri-
odic motion from videos,

• creating a series of experiments to evaluate each module and the whole ar-
chitecture.

This research provides the first complete solution for the problem described in
Section 1.2. Compared with conventional methods, the approach increases the
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convenience and simplifies the operations. It offers patients a comfortable test that
can be easily done anywhere with a common device. Besides, our approach also
eliminates the error caused by the additional mass of the sensor [22] and achieves
a promising result on our dataset. Furthermore, if extended, our approach could
be used for real-time multi-patient monitoring, which saves the cost for medical
devices and labors.
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Chapter 2

Method

This chapter describes the methodology of our work. Section 2.1 explains the
structure of the whole design. Then we explain the principals behind each module.
Section 2.2 describes how body pose is estimated by using a deep neural network.
It starts from the original model and then introduces the CNN-based model. Sec-
tion 2.3 presents how we generate a time series and detect the frequency.

2.1 Architecture

We design the architecture of TFD as the following pipeline (Figure 2.1). A video
file is taken as the input of the pipeline. The pose estimation module predicts the
locations of different body parts and generates belief maps telling the confidence of
the predictions. Based on the predictions, the second module crops the frame and
creates a time series consisting of cropped joint boxes. Then it detects the existence
of a tremor and computes its frequency. Finally, for the convenience of diagnosis,
the results are analyzed and visualized in a web page. The visualization module
is implemented by using Bootstrap framework and D3.js library, which will not
be covered in this chapter. A visualization example of final results is shown in
Figure B.1.

Input Video
Pose 

Estimation

Prediction

& Belief Map
Frequency

Detection

Estimated 

Frequency
Visualization Visual Web

Figure 2.1: Structure of TFD. A white box represents the input or output of a module
and a yellow box indicates a functional module.

2.2 Pose Estimation

The goal of this module to estimate the location of human body parts in a video. We
make use of the Convolutional Pose Machine from [25] since it offers informative
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belief maps and shows competitive performance on several state-of-the-art human
pose datasets like LEEDS [15] and MPII[2].

2.2.1 Pose Machines

h1 g1
Input 

image

Feature 

maps x

Belief 

maps b1

Context 

feature �2

g2
Belief 

maps b2

Context 

feature �T

gT

Feature 

maps x'

Feature 

maps x'

Belief 

maps bT

Stage 1 Stage 2

...

Figure 2.2: Structure of the pose machine [25]. The leftmost inset shows the first stage
operating only on the feature maps. The subsequent inset presents the second stage oper-
ating on both the feature maps and the belief maps from the previous stage. The third inset
shows a repeated structure for following stages.

The pose machine is a sequential model composed of a series of multi-class
predictors [20]. The structure is shown in Figure 2.2, which consists of T stages.
In stage t ∈ {1...T}, the predictor gt outputs belief maps bt for M joints and
passes them to the next stage.

In the first stage, the feature extractor h1 generates feature maps x from the input
image and proceeds to the predictor g1 to produce belief maps b1. To capture the
spatial information between different body parts, the subsequent stage maps input
belief maps bt−1 to contextual feature maps by function ψt(·), where t ≥ 2. Based
on the feature maps x′ and the additional contextual information ψt, the classifier
gt refines the spatial information and makes new belief maps bt. For the feature
maps x′, they are not necessarily the same as the initial maps x.

2.2.2 Convolutional Pose Machines
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Figure 2.3: Structure of the CPM [25]. We show the convolutional structure of the
CPM. The left inset shows that the first stage extracts features from the image evidence and
regresses to belief maps. The right inset shows the repeated subsequent stages operating
on the image evidence and belief maps.

The Convolutional Pose Machine [25] (see Figure 2.3) integrates convolutional
neural network (CNN) to the structure of the pose machine. CNN equips the CPM
a better capability of extracting features from both raw and contextual information.
Furthermore, the differentiable property of CNN makes it possible to be trained
end-to-end.
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The first stage of the CPM consists of a feature extractor h1 composed of four
convolutional layers and a classifier composed of one convolutional layer and two
1× 1 convolutional layers in fully convolutional structure. The stage outputs M +
1 belief maps representing the possibility that a joint exists at the location. L2
loss function f1 supervises the learning progress to prevent ’gradient vanishing’
problem. Subsequent stages are in the same structure as stage two. Based on the
feature maps extracted by another sub-network and the additional belief maps from
the last stage, the classifier of the next stage refines the information and generates
new M + 1 belief maps.

In the whole structure, we feed the image forward the network and take the
locations with the maximum confidence in the belief maps of the last stage bT as
joint predictions. The predictions and belief maps then proceed to the next module.

2.3 Frequency Estimation

The goal of this module is to detect and quantify the periodicity of the joint tremor
in a video. We create spatial-temporal series and analyze the series in the frequency
domain. The whole procedure is summarized as follows.

• Crop the frames based on the pose estimations and form an intensity series
for each pixel in the cropped box.

• Preprocess the signal spatially and temporally.

• Perform the frequency-domain analysis.

• Integrate the frequency-domain signal spatially to one-dimensional signal.

• Determine the periodicity and frequency of the signal.

2.3.1 Cropping and Tracking

While the whole image includes too much redundant information and analyzing
the entire image is computationally expensive, we crop the joint part based on
the prediction and track its movement. Two coordinate systems can be used for
cropping [27].

The Eulerian coordinate system (see Figure 2.4a) observes the target object from
a fixed location. In a video, object movement is observed in a specific box whose
position is fixed. In practice, for a sequence of frames, the target object is cropped
based on the prediction from one reference frame.

The Lagrangian coordinate system (see Figure 2.4b) follows the movement of an
object as it moves along time and space. For a sequence of frames, the target object
is cropped based on the prediction for each frame. While the Eulerian method
focuses on the target’s mobility, the Lagrangian method pays more attentions to
the object itself.
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t
(a) Eulerian coordinate system

t
(b) Lagrangian coordinate system

Figure 2.4: Cropped frame series for two coordinate systems. The red point labels the
center of the target object. The blue line connects the center of the frame and the green
line connects the center of the target. While the Lagrangian coordinate locks the target, the
Eulerian coordinate observes the movement of the target.

2.3.2 Preprocessing

Before analysis, each cropped frame is blurred by Gaussian function to reduce the
noise. The two-dimensional Gaussian function is presented as Equation 2.1, where
x and y are the coordinates and σ is the standard deviation of the Gaussian distri-
bution. The function generates a circular surface satisfying Gaussian distribution,
which is used to produce a convolution matrix. A new pixel value is computed as
the weighted average of neighbour pixel values.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.1)

Then the signal is filtered by 4th-order Butterworth band-pass filter to eliminate
high- or low-frequency signal that is not of interest. Finally, the offset is extracted
from the signal to remove direct-current part.

2.3.3 Time-Frequency Analysis

Given a discrete time series x(n), Short-time Fourier Transform (STFT) [18] is ap-
plied to transform a signal from the time domain to the frequency domain. STFT
decomposes a window of signal to a series of sinusoidal components, as the win-
dow slides over the time. The discrete-time STFT function is shown in Equa-
tion 2.2, where x(n) is the signal to be transformed, w(n) is the window function
and m is the window shift.

X(m, f) =
∞∑

n=−∞
x(n)w(n−m)e−j2πfn (2.2)

Different from the similarity method proposed in [8], we apply STFT to each
pixel intensity series and compute the power spectral density (PSD), thus called
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’pixel-wise’ method. An adjustable window, Tukey window is chosen as our ana-
lysis window, because window size is important for the Eulerian approach and it
is necessary that we pick a window that is flexible for different window sizes. The
function of the Tukey window is presented in Equation 2.3, where w(n) is the win-
dow function, N is the window size and α is the shape parameter indicating the
proportion of the window inside the cosine tapered region [13].

w(n) =


1
2 [1 + cos(π( 2n

α(N−1) − 1))] if 0 ≤ n < α(N−1)
2

1 if α(N−1)2 ≤ n ≤ (N − 1)(1− α
2 )

1
2 [1 + cos(π( 2n

α(N−1) −
2
α + 1))] if 0 ≤ n < α(N−1)

2

(2.3)

2.3.4 Signal Integration

From the frequency-domain analysis, we get PSD for each pixel intensity series.
We utilize the spatial information learned from the first module to integrate the
frequency-domain information over the image. In detail, we use power spectrum P
and belief map b in combination to generate a new PSD for the joint.
Px,y is the PSD generated by the time series of the pixel at the location (x, y)

in the cropped box B. Since we only care the target in the frame, we normal-
ize the PSD and calculate the accumulated PSD with belief bx,y as the weight as
Equation 2.4.

P =

∑
x,y∈B Px,y · bx,y∑

x,y∈B bx,y
(2.4)

An advantage of this method is that it decreases the effect of the background signal
and focuses on the region of interest.

2.3.5 Periodicity Detection and Quantification

To determine whether a sequence is periodic, we detect the frequency fi with the
maximum power from the power spectrum P (f). A time series is estimated as
periodic if fi is dominant in the spectrum, and fi is the final estimate. As in [8],
we define a frequency fi is dominant if

P (fi) > µP +KσP (2.5)

where µP is the mean of the power spectrum P , K is a constant factor and σP is
the standard deviation of P . K of 3 is recommended by the paper.
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Chapter 3

Evaluation

This chapter describes how we evaluate our work. In Section 3.1, we describe the
dataset used for the tests. Section 3.3 and Section 3.4 show the evaluation methods
for the pose estimation module and the frequency detection module. The final test
in Section 3.5 presents the general performance of the work.

3.1 Dataset

35 videos for different patients offered by LUMC are utilized to test our approach.
The frame size is 1920×1280 and the frame rate is 30 frames per second. De-
pending on the patient, either the left or right wrist is selected to detect the tremor
frequency. An accelerometer is adhered to patient’s wrist, as the red point in Fig-
ure 3.1. The collected acceleration data is analyzed as the benchmark (see Sec-
tion 3.4 for further details). Two of these videos will be used to compare two
proposed cropping approaches and two frequency detection approaches separately.

For each video, a patient performed 8 different actions as shown in Figure 3.1.
Different actions are essential for detecting different kinds of tremors for dia-
gnosis. According to [4], mainly two kinds of tremors are classified. One is a
rest tremor, which happens when muscles are inactive. Another kind is an action
tremor, which occurs when muscles are activated, for example, postural or action-
specific tremors. Each video has been separated into independent parts based on
different actions. Only one of these actions will be employed for testing the overall
performance.

3.2 Experimental Set-up

We utilize a model pre-trained on ’MPII’ dataset from [25] for pose estimation. The
parameters for evaluating the frequency estimation module are listed in Table 3.1
and Table 3.2, for controlled experiments and real experiments separately. The
frame color of the synthetic video is in gray scale.
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(a) Duimen (b) Handen (c) Rust (d) Maaden (e) Top-top

(f) 100-7 (g) Top neus links (h) Top neus rechts

Figure 3.1: Example real videos. The patient did different actions in the video, which
helps to collect comprehensive tremor data. A red point labels the detecting point of the
accelerometer. A blue label and a green line shows the moving joint and its movement
trajectory.

3.3 Pose Estimation

3.3.1 Evaluating Pose Estimation Methods

In this section, we describe how we evaluate the first module, the pose estimation
module. The results are compared with another state-of-the-art work.

To evaluate the performance of the pose estimation, 15 frames are evenly sampled
over time from each video. Some frames include external interference, for example
when medical staff help to deploy the experiments, they inevitably cover patient’s
body. And this exceeds the scope of the test, so before the evaluation we manually
filter these frames. Besides, the interference is also eliminated when segmenting
the videos. Finally, the prediction results are compared with manual annotations.

To make a comparison, we introduce another work in the field and do the same
test. The DeepCut CNN is an advanced network made by [19], which first gen-
erates a set of body-part hypothesis and then partitions and labels the joints. It
is shown that the DeepCut has an outstanding performance on several different
human pose datasets.

14



Property Value Property Value

Frame Size 32×32 px Window Size 121
Ball Size 8 px Overlap 60
Ball Color 130 Tukey α 0.25
Background Color 220 Filter 2-14 Hz
Vibration Magnitude 8 px Blur Kernel 5×5 px
Vibration Frequency 0-14 Hz FPS 30 frame/sec
Gaussian noise σ 0-2.0 Disturbance 0-16 px

Table 3.1: Parameters for controlled experiments

Property Value Property Value

Window Size 121 Overlap 60
Box Size 1 head size Blur Kernel 5×5 px
Filter 2-14 Hz Constant K 3
Tukey α 0.25

Table 3.2: Parameters for real experiments

We use a state-of-the-art metric to describe the performance of the pose estim-
ations, Percentage Correctness Keypoint (PCK) [2]. PCK computes the distance
between the prediction and the ground truth and regards it as a match if the dis-
tance is lower than a threshold. PCKh is a modified metric that normalizes the
error tolerance based on target’s head size.

3.3.2 Pose Estimation Results

A PCKh curve over error tolerance is drawn in Figure 3.2. It can be seen that
both approaches have an impressive performance on our data, approximately 73%
correctness. Notice that each real video has its own filming angle and character,
which makes the prediction hard. In addition, the benchmark is annotated by only
one person who has some bias in the annotating pattern. If adding some diversities
to the annotating pattern, the result is expected to be better.
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Figure 3.2: Quantitative results of pose estimation on customized dataset. Both ap-
proaches have an overall correctness of 73%. The CPM performs better than the DeepCut
on upper-body estimations.
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The CPM supersedes a little at upper body recognition, including an improve-
ment of 0.7% for the arm and 0.3% for the head, and the DeepCut has a better
capability of leg recognition, which has a 2.8% improvement.

(a) PE positive results

(b) PE negative results

Figure 3.3: Visualized results of pose estimations. Figure (a) shows four correct predic-
tions made by the CPM for complex poses. Green boxes in Figure (b) show some typical
mistakes caused by self-occlusion and object occlusion.

Some examples of correct predictions are shown in Figure 3.3a, which show
that the CPM has an outstanding performance on our data. Even a relatively com-
plicated pose can be accurately predicted, for example, the third example in Fig-
ure 3.3a. A slight change of perspective can not affect the final prediction, for
example, the first and third example. An image with a small occlusion on the body
can also be predicted, for instance, in the fourth example, part of the leg is covered
by the desk.

Some typical mistakes are shown in Figure 3.3b. A large area of occlusion
is still a problem for the prediction, which is reasonable since the lower part is
totally covered and even a human is not able to annotate accurately. Self-occlusion
is also a problem. Like the second and third example, the forearm covers the
shoulder part. Filming angle is another factor. In the fourth example, the patient’s
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face is not shown completely, for which the head top is not labeled correctly. In
the experiments, we also found out that a lying pose was not able to be detected,
because the training dataset does not include such pose.

We finally choose the CPM as our first module, because the CPM shows a com-
petitive performance and belief maps offer rich location information of the target
for further modules.

3.4 Frequency Estimation

In this section, we evaluate our frequency estimation method. Firstly, independent
from the first module, controlled experiments are made to prove that our method is
valid on the synthetic data under three different conditions. Then we make tests on
the real data with different approaches described in Section 2.3. For both datasets,
we compare our method with a classic frequency detection technique.

3.4.1 Controlled Test for Frequency Estimation

Test Methods

Synthetic videos in gray scale are made for controlled tests. A ball does simple
harmonic vibration in the vertical direction as in the Figure 3.4a, the frequency
is manually set. The movement trajectory follows a sine curve, which is set to
simulate human tremors. In the experiments, we assume that the movement is
tracked without error by using the Eulerian coordinate system. The confidence
map is simulated by using the Gaussian distribution.

The frame size is referred to the size of a joint box cropped from a real video.
The ball size is set to one-third of the whole frame size, which equals to the ap-
proximate proportion of a joint in the box. An interval from 2Hz to 14Hz is the
range that can be detected in a video. It is also the range of the frequencies to be
tested in the experiments.

We compare our pixel-wise frequency detection method with the similarity method
proposed by [8], which converts 2D image signal I(x,y) to 1D similarity inform-
ation S. We use the absolute correlation as the similarity metric as in the paper,
which can be represented as the following function, for the moment t1 and t2:

S(t1, t2) =
∑
x,y∈B

|It1(x, y)− It2(x, y)| (3.1)

where Iti(x, y) is the pixel intensity at position (x, y) at time ti. It simply cal-
culates the difference between two intensity matrices at different moments. Com-
pared with our pixel-wise method, 1D similarity signal brings convenience to the
frequency analysis, while for the pixel-wise method we need to consider how to
integrate the information over the image and generate a global estimate. However,
a drawback of the similarity method is that it drops the location information in the
image.
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(a) Normal trajectory

(b) Trajectory with disturbance

Figure 3.4: Movement trajectory of the synthetic video. A gray ball does simple har-
monic motion in the frame box. Red line indicates a sine movement trajectory. In the lower
figure, a blue line shows a disturbed sine movement trajectory.

Experiment 1: Synthetic Video

A typical power spectral density (PSD) for the normal case is shown in Figure 3.6a.
In this case, two obvious peaks are shown in the spectrum. The higher peak is for
the main frequency of the movement. Another peak is the harmonic component of
the main frequency. In our tests, frequencies of 2Hz to 14Hz are detected correctly
without any error by our method and the similarity method.

Experiment 2: Synthetic Video with Gaussian Noise

To further test the performance of the method, 6Hz is chosen as the main frequency
of the tremor and Gaussian white noise is added to each frame in the video to
simulate the real environment. For the statistic characteristics of the experiment,
we run it for 100 times and compute the mean squared error (MSE).

σ=0 σ=0.1 σ=0.2 σ=0.3 σ=0.4 σ=0.5

Figure 3.5: Synthetic video frame with Gaussian noise. The target object is ambiguous
in a noisy frame.

For the synthetic video with noise, the mean of spectrum raises with the standard
deviation σ of the Gaussian noise as shown in Figure 3.6b. The relation between the
MSE and σ is shown in Figure 3.7a. The MSE increases with σ. A high deviation
means that the pixel intensity is far from the original value as in Figure 3.5, which
destroys the original time series and thereby makes it hard to detect the frequency
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of the signal. As a comparison, the similarity method has a poor performance on
this kind of interference, because the noise greatly affects the similarity between
two frames, thus affect the analysis of the time series in the frequency domain.
However, our method looks at the general PSD for the whole frame and focus on
the signal around the target object, which decreases the error from the noise in the
background.

Experiment 3: Trajectory with Disturbance

In the third experiment, uniformly distributed disturbance on random direction is
made to the motion. For each frame, a random shift in the vertical or horizontal
direction is generated in the motion like in Figure 3.4b. The goal is to test the
performance under the situation that the pose prediction or the camera shifts irreg-
ularly.

For the synthetic video with disturbance, the spectrum raises with the magnitude
of the disturbance as Figure 3.6c. The spectrum is more erratic than that of the syn-
thetic video with noise. In Figure 3.7b, the MSE increases with the magnitude of
the disturbance. When the disturbance is significant, the spectrum is too noisy to
distinguish the tremor frequency. This results from the truth that a large-scale devi-
ation from original track destroys the periodic motion, which confuses the detector.
Compared to the similarity method, our method has a more stable PSD and lower
MSE, mainly because our method looks at the general weighted PSD, thus weaken
the effect of the useless signal from the background.
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(a) Synthetic video
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(b) Synthetic video with noise
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(c) Synthetic video with disturbance

Figure 3.6: PSD for synthetic videos. We set the vibration frequency to 6Hz. For the
normal case, both methods have an obvious peak in the spectrum. For a video with noise
or disturbance, the PSD from the similarity method is significantly raised or erratic, but the
pixel-wise method has a relatively stable and clean PSD.

3.4.2 Frequency Estimation on Real Data Examples

Frequency Estimation Methods

Synthetic video tests prove that the proposed detection method is valid in controlled
environments. In the real test, the whole architecture is implemented and tested on
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0 2 4 6 8 10 12 14
Disturb Magnitude (Pixel)

0

2

4

6

8

10

12

14

16

M
ea

n 
Sq

ua
re
d 
Er
ro
r

MSE - Disturbance
Pixel-wise
Similarity

(b) MSE vs Disturbance Magnitude

Figure 3.7: MSE for synthetic videos. The MSE increases with the Gaussian noise de-
viation and the magnitude of the disturbance. In both tests, the pixel-wise method outper-
forms the similarity method.

real videos. It is compared with the benchmark computed from acceleration data.
In the first experiment, two approaches based on different coordinate systems (see
Section 2.3) are compared by using two selected periodic videos. The method with
a better performance is taken as a part of the pipeline for further tests. Then our
method is compared with the similarity method again.

Frequency Estimation Benchmark

3-axis acceleration data is collected from the sensor adhered on a patient’s left or
right wrist. The acceleration data is preprocessed and transformed to the frequency
metric to be compared with the results from our approach. The process is summar-
ized as follows.

• Filter the components that are lower than 2Hz or higher than 14Hz, by using
4th-order Butterworth band-pass filter. This is to eliminate some physiolo-
gical frequencies, for example, breathing.

• Extract the offset from the signal to remove the direct-current component.

• Perform STFT to the signal with a Tukey window.

• Compute the average PSD over time and determine the periodicity.

• Take the frequency with the maximum power as the estimation and compute
the average of the 3-axis frequencies as the final result.

Experiment 1: Cropping Method Comparison

In the first experiment, two videos, video code ’T008’ and ’T011’, are selected
to test the performance of two cropping methods based on the Eulerian and the
Lagrangian coordinate systems. For both videos, we detect the tremor frequency

20



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency Estimations for T008

0 5 10 15 20 25

Time (s)

0

5
F

 (
H

z
)

Rust

0 5 10 15 20 25

Time (s)

0

5

F
 (

H
z
)

Handen in pronatie

0 2 4 6 8 10 12

Time (s)

0

5

F
 (

H
z
)

100-7

0 1 2 3 4 5 6

Time (s)

0

5

F
 (

H
z
)

Maanden terug

0 5 10 15 20 25

Time (s)

0

5

F
 (

H
z
)

Duimen omhoog

0 5 10 15 20 25 30

Time (s)

0

5

F
 (

H
z
)

Top-top

0 1 2 3 4 5 6 7 8

Time (s)

0

5

F
 (

H
z
)

Top neus links

0 1 2 3 4 5 6

Time (s)

0

5

F
 (

H
z
)

Top neus rechts

Accelerometer

Eulerian

Lagrangian

Figure 3.8: Frequency estimations of different cropping methods on ’T008’. Both
methods have an impressive accuracy on 7 videos. The Eulerian approach has lower MSE
for most videos. An exception is ’Top neus rechts’ because of a large motion inside.

of the patient’s right wrist. All 8 videos of ’T008’ and 7 of 8 videos of ’T011’
have been examined as periodic. ’Top neus links’ of ’T011’ is regarded as non-
periodic. The frequency estimations from videos are compared with those from
the accelerometer in Figure 3.8 and Figure 3.9. The mean squared error (MSE)
for two videos are computed and presented in Figure 3.11a and Figure 3.11b. The
standard deviation (STD) results are listed in Table A.1a and Table A.2a.

For video ’T008’, the estimations of both cropping methods are accurate for
most of the actions, while the Eulerian method has a slight advantage over the
Lagrangian method. The only exception is ’Top neus rechts’, in which patient
waved the target arm. The error is significant since a large motion is hard to track
for the Eulerian method. One will lose the target if the target moves out of the
cropped box, which means that a good box size and a proper frame sequence length
are important for the Eulerian approach.

The Lagrangian method has a better performance for the video ’Top neus rechts’
since it always tracks joint’s motion. However, the estimation is still far from
correct, mainly because the perspective is changing with the movement (see Fig-
ure 3.10). And the shape of the joint is changing. However, our method assumes
that the shape of the object is consistent. Our approach regards it another object
when a different perspective is applied, which leads to a significant error of the
frequency estimation. Besides, the background changes with the movement of the
joint, which results in a significant disturbance for the pose estimation.

The estimations for the video ’T011’ show the advantage of the Eulerian method,
which has a smaller MSE in 6 cases. For the STD, the estimations from the Lag-
rangian method are not stable compared with the Eulerian method, because of the
disturbance when tracking the target. When looking into some videos, we also
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Figure 3.9: Frequency estimations of different cropping methods on ’T011’. Notice
that the Eulerian method performs better in most of the videos, only with exceptions ’Top
neus rechts’ and ’Top neus links’.

t

Figure 3.10: ’Top neus rechts’ tracking pose example. The interval between two frames
is 0.33s. Notice that pose estimations are well performed, but the perspective is changing
so that the shape of the target object is changing.

observe that a medical crew instructed or helped the patient to complete the ac-
tion, which results in a wrong pose prediction and thereby affect the frequency
estimation. Nevertheless, as ’T008’, for a large motion like ’Top neus rechts’, the
estimation from tracking method has a better performance.

In most cases, the Eulerian method is better than the Lagrangian method, re-
garding the accuracy and the stability. For computation complexity, the Lagrangian
method consumes more resources since it requires a pose prediction for each frame.
Finally, the Eulerian method is taken as a part of the work.

Experiment 2: Parameter Selection

As described in Experiment 1, window size plays an important role in the Eulerian
approach. In the previous experiment, we use a general number recommended
by LUMC and it shows a good performance for most cases, except for a large-
motion video. A basic idea to improve the performance for a large-motion video is
decreasing the window size to limit the joint in the cropped box.

The MSE results for an additional test on window size on video ’T008’ is shown
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Figure 3.11: MSE of different cropping methods. Generally, the Eulerian method has
lower MSE, except for a large motion ’Top neus rechts’.

in Figure 3.12. The MSE shows an increasing trend with the window size. The
curve is erratic because when the head or the tail of the signal does not include a
complete period, it leaks part of the power and causes some error. A drawback of
this method is that a small window size also decreases the resolution of the spec-
trum, and thus decreases the accuracy. This means that we should find a balance
such that keeps spectrum resolution and also limit the motion.
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Figure 3.12: MSE vs Window size - T008 ’Top neus rechts’. If a large motion is estim-
ated by the Eulerian approach, the MSE increases with the window size.

To choose a proper window size for a large motion, we extract a window of
frames and limit the joint in the cropped box. Thus we find an upper limit for the
window size. To avoid the problem of spectrum leakage, we test different window
sizes and observe the power spectrum. If a dominant peak exists, we regard the
window size as a proper number.

Experiment 3: Performance Comparison

We compare our method with the similarity method as in the controlled experiment.
Both methods use the same pose estimation module and cropping method. We eval-
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uate two approaches on video ’T008’ and ’T011’. The estimations are presented
in Figure 3.13 and Figure 3.14. The MSE results are shown in Figure 3.15a and
Figure 3.15b. The STD results are listed in Table A.3a and Table A.4a.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency Estimation for T008

0 5 10 15 20 25

Time (s)

0

5

F
 (

H
z
)

Rust

0 5 10 15 20 25

Time (s)

0

5

F
 (

H
z
)

Handen in pronatie

0 2 4 6 8 10 12

Time (s)

0

5

F
 (

H
z
)

100-7

0 1 2 3 4 5 6

Time (s)

0

5

F
 (

H
z
)

Maanden terug

0 5 10 15 20 25

Time (s)

0

5

F
 (

H
z
)

Duimen omhoog

0 5 10 15 20 25 30

Time (s)

0

5
F

 (
H

z
)

Top-top

0 1 2 3 4 5 6 7 8

Time (s)

0

5

F
 (

H
z
)

Top neus links

0 1 2 3 4 5 6

Time (s)

0

5

F
 (

H
z
)

Top neus rechts

Accelerometer

Pixel-wise

Similarity

Figure 3.13: Frequency estimations of different approaches on ’T008’. Both ap-
proaches have an accurate estimation on 7 videos. And the pixel-wise method performs a
bit better on ’Top neus links’ video.
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Figure 3.14: Frequency estimations of different approaches on ’T011’. The pixel-wise
method has a better performance on 7 videos.
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Figure 3.15: MSE of different approaches. The pixel-wise method has a lower error on
most videos, except for a large-motion video.

We can see that both methods have an impressive performance on video ’T008’.
Our method has a more accurate estimation on video ’Top neus links’, while the
similarity method does poorly. However, both methods fail on the moving action
’Top neus rechts’ and the similarity method has a slight advantage. The test on
video ’T011’ shows the advantage of our method except for the moving action.
Besides, generally our method has a good stability for all estimations.

3.5 Frequency Estimation on Complete Real Data

3.5.1 Evaluation Methods

In this section, the proposed method is evaluated on all 35 ’Rust’ videos to show
the overall performance. To get a benchmark, we first examine the periodicity of
the motion by using acceleration data and transforming it to frequency as discussed
in Section 3.4.2. In the first experiment, we detect the periodicity and estimate the
tremor frequency along time for each video. In the second experiment, we estimate
a frequency for each periodic video and compute the absolute error.

3.5.2 Frequency Estimations Along Time

From the benchmark, 21 out of 35 videos are determined as periodic. The aver-
age PSD from the benchmark and our approach are shown in Figure 3.19. The
frequency estimations are plotted in Figure 3.18.

After experiments, 8 out of 35 videos are detected as periodic videos by our
method, 1 of 8 videos is quantified wrongly. The correct detection rate is 33.33%.
For the video whose frequency is detected correctly, the spectrum is close to the
spectrum from acceleration data, including video ’T008’, ’T013’, ’T027’ and ’T036’.
However, though some periodic video is detected correctly, the spectrum is noisy,
for example, video ’T011’, ’T015’ and ’T037’. Mainly the noise comes from the

25



hardware, a camera in our case. The magnitude of the noise mainly depends on the
light and complexity of the image.

For those periodic videos that cannot be detected, two cases may exist. For one
case, only part of the video shows a periodic property, which includes 6 videos,
’T006’, ’T014’, ’T016’ ’T018’, ’T025’ and ’T034’. The periodic signal is short
and intermittent and the determination of periodicity is based on the general PSD,
which leads a negative result. For this case, part of the frequency estimations from
the video is still possible to be correct, though the entire video is not regarded as
periodic.

For another case, there’s no obvious tremor shown in the video, or there is
no dominant peak presented in all spectrum along time. This includes 7 videos,
’T002’, ’T003’, ’T005’, ’T009’, ’T010’, ’T035’ and ’T041’. One possibility is
that only a small part of the signal in the cropped box shows periodicity. This can
be caused by multiple factors, for example, self-occlusion or only finger trembles.
Our method looks at the weighted spectrum over the whole cropped box. If only
a small part of the power spectrum shows a power peak, it is highly possible that
the potential peak is covered by the noise power. Another reason is that the video
frame is a 2-dimensional signal, the direction of the tremor could be vertical to the
video plane, so that no obvious tremors show in the video. Or the tremor is too
weak to be captured by a video camera.

The spectrum of a non-periodic video is typically in trapezoid shape like the
spectrum of video ’T021’ which is different from that of the non-periodic acceler-
ation signal. Low-frequency components are dominant since the object in a frame
is continuous. Trapezoid shape results from a band-pass filter that eliminates the
low- and high-frequency components(smaller than 2Hz or higher than 14.5Hz).
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Figure 3.16: MSE for all detected periodic videos. Most of the estimations are accurate,
only the estimations for ’T029’ is far from correct.

The MSE of the estimations for the detected periodic videos is shown in Fig-
ure 3.16. From the results, we can see that if a periodicity is detected, our es-
timations are close to those from accelerations. There’s a special case that the
periodicity is detected, but the estimated frequency is far from a correct value be-
cause the video frame in ’T029’ flickers at 10 Hz, which is wrongly taken as the
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frequency estimation.

3.5.3 Frequency Estimations for Videos
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Figure 3.17: Absolute error of estimations for all periodic videos. We show absolute
error for our estimations on each periodic video. 13 out of 21 videos have an error lower
than 1 Hz.

We design another experiment against the situation that the tremor is short and
intermittent. Instead of estimating the tremor frequency along time, we determine
an overall value for each video by taking the frequency with the maximum score.
The score is calculated by Equation 3.2 for each window of the signal, where Sfi
is the score for the frequency fi, P (fi) is the power of the frequency, µP is the
mean of the spectrum P and σP is the standard deviation. We simply accumulate
the scores for each unique frequency along time. In this case, only the spectrum
containing a strong periodic signal will be useful for an estimation.

Sfi = P (fi)− µP −KσP (3.2)

The absolute error of the estimations is shown as Figure 3.17. For 13 periodic
videos, the error of the estimation is lower than 1, which shows a competitive
performance.
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Figure 3.18: Frequency estimations for real videos.
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Figure 3.18: Frequency estimations for real videos. 21 periodic videos detected from the
acceleration data are labeled with a gray background. Among them, 7 videos are correctly
detected and quantified by our approach. T029 is detected but wrongly quantified. 6
periodic videos are not detected but hit by part of the estimations. The rest 7 videos are not
able to be detected.
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Figure 3.19: PSD for all videos.

29



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PSD for Real Videos

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T014 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T015 Rechts

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T016 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T018 Links

0 5 10 15

Frequency (Hz)

0

0.5

1
P

S
D

T019 Rechts

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T021 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T022 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T023 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T024 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T025 Rechts

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T026 Rechts

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T027 Links

Accelerometer

Video

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PSD for Real Videos

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T029 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T031 Rechts

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T033 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T034 Rechts

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T035 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T036 Rechts

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T037 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T039 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T040 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T041 Links

0 5 10 15

Frequency (Hz)

0

0.5

1

P
S

D

T042 Rechts

Accelerometer

Video

(c)

Figure 3.19: PSD for all videos. The periodic videos detected from the acceleration data
are labeled with a gray background.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

We design a new architecture to detect and quantify the frequency of pathological
tremors in a video, which jointly uses pose estimation and periodicity detection
techniques. We use a state-of-the-art convolutional neural network, Convolutional
Pose Machine, to predict the pose in the frame. Based on the prediction, we pro-
pose to crop the joint boxes by using two different coordinate spaces. We finally
prove that the approach with the Eulerian coordinate generally has a better perform-
ance than the approach using Lagrangian coordinate. A further reason to prefer
the Eulerian approach is that the Lagrangian method is computationally more ex-
pensive. We propose a new frequency detection method that integrates spectral
information using belief maps generated by the pose estimation module. We prove
that our frequency estimation method has a better performance on both synthetic
videos and real videos, compared with a classic similarity method.

We finally evaluate our approach on real videos. We estimate the frequency
along time for each video and our method shows a limited performance because
compared to a synthetic video signal, a real video signal contains more complex
frequency components and thus is noisier. And some tremor signal is too tiny
and short to be detected. The frequency estimation for individual video presents a
promising result that our estimations on 13 out of 21 periodic videos have an error
lower than 1 Hz.

4.2 Future Work

We prove that our strategy is able to detect a human pathological tremor from a
video under certain circumstances. However, it is far from complete. To further
improve the performance of the work, one could apply more techniques on different
levels.

From Chapter 3, the power spectrum of a real video is noisy. One of the methods
to reduce the noise is using phase information decomposed from an image instead
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of directly using pixel intensity. An image can be decomposed to phase and radial
information and specifically phase shift records the motion contents [27], which is
especially useful for our case. Besides, to resolve the deficiency of some invisible
tremor in 2D plane, one solution is using multiple cameras capturing from different
angles to record more information.

For pose estimation, the neural network is not able to accurately predict a pose
with self-occlusion. Since patients did several specific actions in the video, the
network can be fine tuned on the customized dataset, so that the network is more
familiar with our pose and has a better prediction.

Our frequency detection module cannot detect a weak tremor in a video. An
additional magnification module is expected to improve the performance, which
magnifies implicit motion signal in a video. Several related approaches [23, 10, 27]
have been published.

From system level, the structure is designed to be convenient to deploy. Based
on this structure, some changes to further improve the overall performance is pos-
sible. For example, a frequency heat map is found to be useful to refine the pose
estimation from the first module. All in all, there is still some work to do before
applying the approach to the real life.
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Appendix A

Evaluation results

Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Eulerian 0.1602 0.1644 0 0 0.2444 0.1187 0.1753 0.3120 0.1305
Lagrangian 0.1602 0.4368 0 0 0.2270 0.1535 1.4876 0.1240 0.2877

(a) STD

Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Eulerian 0.5087 0.0422 0.0223 0.0070 0.7504 0.0128 0.1232 14.7594 1.8029
Lagrangian 0.5087 0.2218 0.0223 0.0070 0.7570 0.0192 2.2691 13.7484 1.9504

(b) MSE

Table A.1: Video ’T008’-Cropping Methods Comparison

Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Eulerian 0.5823 0.2257 0.1244 0 0.2111 0.2980 1.2883 1.1913 0.4357
Lagrangian 1.7697 1.6469 3.0216 0.7762 0.1874 0.6294 1.6842 1.4357 1.2390

(a) STD

Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Eulerian 0.4338 0.0180 0.2787 0.9212 0.0168 0.0165 3.5416 6.5127 1.3044
Lagrangian 3.0022 2.5283 12.0235 2.2400 0.0167 0.5650 2.4152 1.7864 2.7308

(b) MSE

Table A.2: Video ’T011’-Cropping Methods Comparison
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Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Pixel-wise 0.1602 0.1644 0 0 0.2444 0.1187 0.1753 0.3120 0.1305
Similarity 0.2024 0.2191 0 0 0.2231 0.1533 0.9698 0.5498 0.2575

(a) STD

Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Pixel-wise 0.5087 0.0422 0.0223 0.0070 0.7504 0.0128 0.1232 14.7594 1.8029
Similarity 0.4253 0.0504 0.0223 0.0070 0.7489 0.0244 1.0351 12.1972 1.6123

(b) MSE

Table A.3: Video ’T008’-Different Approach Comparison

Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Pixel-wise 0.5823 0.2257 0.1244 0 0.2111 0.2980 1.2883 1.1913 0.4357
Similarity 0.8801 0.2561 0.6067 0.1109 0.2270 1.2153 1.3857 1.3231 0.6672

(a) STD

Methods Rust Handen 100-7 Maanden Duimen Top Links Rechts Average

Pixel-wise 0.4338 0.0180 0.2787 0.9212 0.0168 0.0165 6.5127 3.5416 1.3044
Similarity 1.1770 0.1515 0.5903 0.9260 0.0522 2.7695 6.4765 2.6648 1.6453

(b) MSE

Table A.4: Video ’T011’-Different Approach Comparison

T008 T011 T013 T015 T027 T029 T036 T037 Average

0.5087 0.4338 0.0187 2.1410 0.0144 17.0059 0.2042 0.5782 2.3228

Table A.5: MSE for all detected periodic videos

T002 T003 T005 T006 T008 T009 T010 T011 T013 T014 T015

2.4035 2.6362 4.3604 0.4048 0.0721 3.1283 5.5583 0.1759 0.0759 0.0645 0.1607

T016 T018 T025 T027 T029 T034 T035 T036 T037 T041 Average

0.0872 0.0872 0.0645 0.0759 3.0852 0.5604 3.1359 0.0683 0.0721 4.6007 1.4704

Table A.6: Absolute error of estimations for all periodic videos
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Appendix B

Visualization Module

Figure B.1: Visualization Module We show the visualization of the final results, mainly
including 4 parts. Animations with two charts are possible.
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