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Summary

This study presents a comprehensive adaptation of the tri-level Operator-Attacker-Defender (OAD)
model, tailored for the design of resilient supply chains capable of withstanding various disruptions,
including supplier failures, production shortfalls, and transportation breakdowns. These disruptions
pose significant challenges to a supply chain’s ability to meet customer demand, making resilience a
critical component of supply chain design. Originally introduced by Alderson et al. in 2011, the OAD
model incorporates three levels of decision-making: the operator, who optimizes system performance;
the attacker, who seeks to disrupt the system; and strategic design decisions that mitigate potential
disruptions.

Our conceptual model involves a multi-commodity flow network, which includes a defined performance
metric to evaluate the supply chain’s performance. To resolve the complex tri-level model, we employed
a decomposition-based solution strategy, breaking down the problem into master problem and an at-
tacker sub-problem. Extensive computational experiments have been conducted to test the model’s
tractability across various supply chain scenarios, demonstrating its ability to handle complex, real-
world situations effectively.

In addition to the computational experiments, we conducted a case study on a global pharmaceutical
supply chain, focusing on its vulnerability to climate-related disruptions. This case study provided a
practical demonstration of the OAD model’s effectiveness, showing how it can identify weak points
in the supply chain and suggest optimal strategies to enhance resilience. The model’s ability to bal-
ance trade-offs between operational efficiency, costs, and resilience makes it a valuable tool for supply
chain managers. From a computational standpoint, the model’s performance is influenced by several
factors, including the size of the decision network and the complexity of the value chain. Larger deci-
sion networks, which involve more system design variables, typically lead to longer solve times due to
the increased complexity. However, more complex value chains do not always result in longer solve
times; instead, they may be easier to disrupt, enabling quicker identification of optimal solutions. Addi-
tionally, the interplay between attack and defense budgets significantly impacts solve time, with larger
budgets generally expanding the solution space and increasing computational effort. The comparison
between deterministic optimization and simulation approaches reveals the deterministic method’s su-
perior efficiency in identifying optimal disruptions. The deterministic attacker sub-problem outperforms
the simulation-based approach, particularly as the attack budget increases, underscoring its value for
critical supply chain analysis.

Overall, our findings confirm that the OAD model is a robust and computationally tractable framework
for studying resilience in supply chains. It meets the objectives set out at the beginning of the study,
including the development of a valid OAD model, the exploration of various supply chain topologies
and complexities, and the analysis of different disruption types and operational responses. Extending
the model to include a temporal dimension could provide deeper insights into how time-related factors
like delays and expiration dates impact supply chain resilience. Incorporating such elements would
allow the model to support not only strategic-level decisions but also more tactical-level considerations.
This would be interesting further research. Finally, the test case study highlights the importance of
accurately defining attack costs and budgets for identifying vulnerable parts of the supply chain. While
our study suggests using climate hazard data as a basis for determining these costs, further research
is needed to develop more robust methods grounded in theoretical risk analysis. Such advancements
would enhance the model’s ability to inform strategic design decisions and contribute to the ongoing
development of resilient supply chains.
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1
Introduction

The global chip shortage of the early 2020s, intensified by geopolitical tensions and the COVID-19
pandemic, exposed significant vulnerabilities in global supply chains (SCs) and led to widespread pro-
duction delays across various industries sweney2021chipshortage. Whether arising from geopolitical
conflicts or natural occurrences, such as the early 2020s pandemic, recent disruptive events highlight
the vulnerability of supply chains and their far-reaching effects on global trade, manufacturing, and the
economy. In the complex and dynamic world of global commerce, supply chains play a pivotal role in en-
suring the smooth flow of goods and services. The growing interconnectedness and interdependence
of SC networks expose them to uncertainties and disruptions, necessitating a more robust integration of
resilience into their design and operation. The increasing effects of climate change further underscore
the importance of researching resilient supply chain strategies to navigate uncertainties and effectively
mitigate the impact of disruptions.

This document presents a research proposal focused on investigating the integration of resilience into
the design and operation of SC networks using a mathematical programming-based solution. The pri-
mary goal is to formulate a three-level Mixed-Integer Programming (MIP) model, termed the Operator-
Attacker-Defender (OAD) model. This model integrates base operator, attacker, and defender com-
ponents into a single optimization framework, tailored to simulate the impact of potential disruptions
and incorporate mitigation strategies at strategical and operational decision levels. A more detailed
exploration of the three progressively expanding models constituting the OAD model will follow in sub-
sequent sections of this proposal. The overarching aim of this research is to contribute valuable insights
to the field of resilient SC optimization, assisting organizations in developing SCs that can effectively
manage and respond to the most critical disruptions, thereby enhancing their overall resilience. The
central research question guiding this study is: How can resilience effectively be integrated into the
strategic design and operation of supply chain networks in the face of disruptions?

1.1. Problem significance
The significance of the problem this study aims to address is motivated for multiple reasons. The at-
tacks on the Suez Canal highlight the geopolitical dimensions that can severely impact critical trade
routes. Such incidents underscore the need to not only address traditional disruptions like natural
disasters but also to develop strategies against intentional threats by intelligent agents, which have be-
come more prevalent in the contemporary global landscape, showing an uptick in geopolitical tensions.
Furthermore, the cascading effects of disruptions extend beyond immediate economic losses. They
can lead to long-term repercussions such as erosion of customer trust, damage to brand reputation,
and geopolitical ramifications (Manners-Bell, 2014). The interconnectedness of supply chains means
that a disruption in one part of the world can have a ripple effect, affecting businesses and consumers
across various regions. Therefore, understanding and mitigating the multifaceted consequences of
disruptions are crucial for maintaining the stability and integrity of global supply chains. In the context
of the ongoing global shift towards sustainability, there is an increasing focus on the environmental
impact of supply chain disruptions. Climate change-induced events, such as extreme weather events
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1.2. Document structure 2

and rising sea levels, pose a significant threat to the resilience of supply chains. Incorporating envi-
ronmental considerations into the design and operation of supply chain networks is not only a matter
of risk management but also aligns with the broader societal goals of sustainability and environmental
stewardship.

Resilience in supply chain system design is explored extensively in the literature with various ap-
proaches including scenario-based stochastic programming, robust optimization, and other non-deter-
ministic models to address uncertainties and disruptions. The literature review has revealed some
limitations in the current state-of-the-art. Existing models often struggle with representative scenario
generation, conservatism-tractability trade-offs, and insufficient consideration of both natural and delib-
erate disruptions (Alderson et al., 2011). Many models focus on specific aspects: either on mitigation or
post-disruption decisions, without offering an integrated decision-making framework (Govindan et al.,
2017). Trade-offs between cost, operational performance, and resilience are often insufficiently under-
stood through the proposed approaches. The OAD model introduced above aims to overcome these
challenges by incorporating game theory principles, forming a comprehensive model that integrates of-
fensive and defensive strategies. It provides deterministic insights into critical network components and
allows for a nuanced analysis of operational and defensive investment trade-offs. Adapting this model
to the challenges of resilient supply chain design and operation is proposed as a valuable avenue for
advancing the field.

1.2. Document structure
The structure of this research proposal unfolds as follows: after this introduction, a literature review
in section 2 will delve into existing research on disruptions and resilience in supply chains. Following
that, section 3 will outline the proposed research goals and contributions, while section 4 will introduce
the conceptual and mathematical models, providing an overview of the three-level optimization model.
Section 5 will then present a resolution strategy. Finally, the model results will be presented through
computational experiments in 6.1 and a realistic case study regarding climate resilience in a global
pharmaceutical company in 6.2.



2
Literature review

This section of the research proposal consists of a literature review on resilience in supply chain network
design (SCND) and operations. Following a brief introduction to various SC principles, we explore
supply chain resilience. We, examining sources of uncertainties in SCND, as well as disruptions and
risk management. The subsequent segment entails a review of the literature on optimisation of resilient
supply chains under conditions of uncertainty. Finally, we investigate the applications of the attacker-
defender model, a optimisation model for network defence, within various contexts.

A supply chain is a, usually complex, logistics network comprising facilities that transform raw materi-
als into finished products and subsequently distribute them to end consumers or customers (Harrison
& Godsell, 2003). Concurrently, supply chain management (SCM) focuses on optimizing the flow of
goods within the supply chain for maximum efficiency (Wieland & Wallenburg, 2011). In SC manage-
ment, decisions involve strategic choices like network design and tactical and operational consider-
ations like production scheduling, location allocation and product flow. Used products can rejoin a
supply chain to be recycled in reverse supply chains (RSC). Although interesting, the rest of this liter-
ature review will focus on forward SC. Supply chain network design (SCND) is an important planning
problem in SCM involves optimizing the configuration of production facilities, distribution centers, and
transportation routes to enhance overall efficiency and meet strategic objectives. SCND can be likened
to a network flow problem where nodes represent supply chain entities, such as suppliers, productions
sites, distribution centers, and edges depict transportation paths (Zhen et al., 2016). The optimization
goal of such a problem is generally to efficiently allocate resources, minimize costs, and meet logistical
demands within the interconnected network.

2.1. Resilience in supply chains
Wieland et al. (2021) define supply chain resilience as ”the capacity of a supply chain to persist, adapt,
or transform in the face of change” (Wieland & Durach, 2021). Resilience involves the ability to navigate
through various changes. It is more about the inherent characteristics and robustness of the system,
rather than the external risks (Sheffi, 2007). The older perspective on supply chain resilience, engi-
neering resilience, treats the supply chain as a controllable system with a focus on quick restoration to
the initial setup after disruptions. In contrast, a newer perspective, socio-ecological resilience, views
the supply chain as a dynamic, fluid entity capable of continuous adaptation and even transformation
in response to external conditions. The system need not return to its initial stage (Folke, 2006).

Uncertainty in SC network design
The supply chain network design (SCND) problem involves multiple decision-making levels. At each
level, there may be uncertainties during the design process. SCND problems encompass parameters
like costs, demand, and supply with inherent uncertainty. Additionally, major disruptions such as nat-
ural disasters or economic crises can impact SC networks. The aim is to configure SCND to excel
under these uncertain scenarios, according to the decision-maker performance criteria. Rosenhead
et al., 1972 categorize uncertain SCND decision-environments into three groups: (1) environments

3
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with known probability distributions for random parameters, often modeled using a scenario approach,
(2) environments with random parameters but without information on their probability distributions, of-
ten modeled using robust optimization models, and (3) fuzzy decision-making environments involving
ambiguity and vagueness in objective function components, variable coefficients, and constraint satis-
faction (Rosenhead et al., 1972). Examples of SCND models in the first group include E. Huang and
Goetschalckx, 2014 and Kumar and Tiwari, 2013, Aliakbar Hasani and Nikbakhsh, 2015 and Zokaee
et al., 2017 in the second group, and Mousazadeh et al., 2015 in the third group.

SC networks involve various facilities organized into layers or echelons and material flows from suppli-
ers to customers. Layers or echelons consist of facilities with similar tasks. Studies differ on the number
of location layers over which decisions are made, e.g., Subulan et al., 2015 use a single layer, Yılmaz
Balaman and Selim, 2014 use two, and Babazadeh et al., 2017 three. Studies also differ on the num-
ber of different product types: single (Q. Li & Hu, 2014) or multiple commodities (Subulan et al., 2015).
Different material flow configurations may be considered. Some papers consider only single-sourcing,
but Zeballos et al., 2014 considers flows within a same layer, and Tong et al., 2014 also includes di-
rect product flows between customers and suppliers. Real-life applications often require addressing
multi-product problems. The SCND may involve a different number of decision periods: while most
models consider only a single period (e.g., E. Huang and Goetschalckx, 2014, Q. Li and Hu, 2014),
some studies explore multiple tactical/operational (e.g., Pasandideh et al., 2015, Mousazadeh et al.,
2015) or strategic time periods (Pimentel et al., 2013). SCND decisions may consider different time
spans: strategic (multiple years), tactical (multiple months), or operational decisions (hourly to weekly).
Parameters that may be subject to uncertainty in SCND include the product demand, various costs
(transportation, production, operations), facility and transport link capacities or supplier or producer
capacities. Uncertain parameters may also include the parameters of distribution functions (e.g., of
demand), processing times (production, transportation, supply) or uncertainties in the actual nature of
the performance goal (Pasandideh et al., 2015). The up-time (availability) of network links and facilities
are also subject to uncertainty due to risks of disruptions (Govindan et al., 2017).

Disruptions and risk management in SC
There is a lack of clear consensus regarding the meaning of the concept of supply chain risk. Risk
is usually defined around the potential loss in a supply chain’s objectives due to uncertain variations
triggered by events (Ho et al., 2015). In the previous section 2.1, sources of so-called operational
risks have been listed. Operational risks are risks that stem from intrinsic uncertainties in supply chain
elements. A second type of risk category found in the literature on the SCND problem is disruption risks.
Disruption risks result from events such as natural or human-caused disasters that have undesired
effects on the supply chain’s goals and performance. Disruptions can affect the functionality of supply
chain elements, either partially or completely, for an uncertain duration (Tomlin & Wang, 2011).

According to Fattahi et al., 2020, SC resilience to disruptions involves designing networks ”that can
return to their initial or a more desirable state” after disruptions (Fattahi et al., 2020). If a SC network
can operate efficiently in normal conditions as well as during disruptive events, it can be considered
resilient according to most of the literature. It is difficult to measure resilience; decision-makers ought
to define their indicator according to their needs and views (Christopher & Peck, 2004). Indeed, there
are different views, or paradigms, regarding risk management in SC. For some organizations, a re-
silient SC is a responsive one: it prioritizes flexibility and adaptability to events (Harrison & Godsell,
2003). For others, it involves developing green SCs, which incorporate environmental considerations
(such as Babazadeh et al., 2017, and sustainable SCs, which balance multiple aspects - economic,
environmental, and social - to design SCs that also take into account the needs of future generations
(govindan2022supplyREVIEW). Resilience principles also apply to contexts outside of businesses,
such as disaster relief (Liu & Guo, 2014). Such SCs are described as humanitarian. Snyder et al., 2014
have created a comprehensive overview of SC disruptions and various mitigation strategies. Strate-
gies against disruptions can involve preventive actions (also called mitigation), or responsive actions
(or contingency) during and directly following a disruption. Some mitigation strategies against disrup-
tions, according to their overview, include facility fortification, involving the selection and fortification of
specific facilities within the SC network, strategic stock management, wherein inventory is strategically
held across different SC layers to meet customer demands and support manufacturing processes, and
sourcing strategies (multiple and backup sourcing) where multiple suppliers are used simultaneously
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or as a backup during disruptions (Snyder et al., 2014).

2.2. Resilient supply chain optimisation
Various approaches to optimising the design and operations of supply chains when faced with uncer-
tainties, such as disruptions, can be found in the literature. These different approaches often reflect
the decision-environment groups distinction introduced in section 2.1.

Approaches to SC optimisation under uncertainty
A first approach to optimise SCND with uncertain parameters is by using scenarios in a scenario-based
stochastic program. Scenarios need to be generated in a set, and they have known probabilities. In
two-stage stochastic programs, there are separate decision-makings before and after the realization
of random parameters. In the first stage, strategic decisions are made. The second decision stage
involves optimising operational decisions based on an expected objective. In multi-stage stochastic
programs, multiple decision stages are included, with a sequence of random parameters (Pimentel
et al., 2013). In this approach, one obtains a scenario-tree, which branches at each decision stage
(Fattahi et al., 2018). However, generating accurate and representative scenarios poses a challenge,
potentially leading to large-scale optimization problems as the scenario tree can explode in the numbers
of scenario combinations (Kazemi Zanjani et al., 2016).

Another approach to SCND, where the model parameters have a stochastic continuous known dis-
tribution, involves solving a mixed-integer nonlinear programming (MINLP) model. The non-linearity
present in most of these models requires specific solving methods that improve solve efficiency. This
model type is usually tackled using Lagrangian Relaxation (LR) embedded into the Branch and Bound
(B&B) algorithm, such as done in Tanonkou et al., 2008 or Yongheng et al., 2014. Occasionally, a
column generation algorithm is included, such as in Shen et al., 2003. In cases where certain con-
straints in SCND optimization problems must be satisfied with a specified probability or reliability level,
the chance-constrained programming approach is employed. This technique involves modeling con-
straints to meet pre-specified probabilities (S. Huang et al., 2023)), particularly suitable for scenarios
where the availability or reliability of facilities or transportation links is considered with predetermined
probabilities. Traditional optimization approaches often optimize the expected value of an objective
(Klibi et al., 2010)). However, when there are large variations in stochastic parameters, a risk measure
may be defined, see Hamed Soleimani and Kannan, 2014. This is a function that maps a random
outcome to a real value and is often used in the context of economics.

Robust optimization is another way of handling uncertainties in SCND in the literature. It involves
finding solutions that are robust given an area of uncertainty for certain parameters. Robust SCND
models may use discrete scenarios, others use a certain interval uncertainty. The idea is usually to
optimize for the most optimal solution in the worst scenario: min-max cost/regret objectives are used
(seeMozafari and Zabihi, 2020 or Zokaee et al., 2017), and various risk measures are applied to ensure
robustness. However, achieving a balance between conservatism in robust solutions and maintaining
tractability poses a challenge (Keyvanshokooh et al., 2016). Fuzzy mathematical programming is used
where uncertainties are characterized by vague goals, soft constraints, and ambiguous coefficients
(Soleimani et al., 2017). Utilizing flexible programming, this approach is particularly beneficial when
decision-makers have fuzzy preferences or lack precise information.

SC optimisation against disruptions
Disruptions can essentially be viewed as a specific type of yield uncertainty. Yield uncertainty repre-
sents uncertainty in the delivered product quantity, often modeled as a stochastic variable influenced
by customer order quantity. Similarly, capacity uncertainty can be depicted as a stochastic variable,
generally independent of order quantity. Notably, disruptions differ from yield and capacity uncertain-
ties as they are typically discrete events, while the latter variables are treated as continuous (Snyder
et al., 2014). Most models distinguish between up/wet and down/dry SC network states for normal and
disrupted supply situations respectively, assuming that a network can transition between both states in
time-periods following an exponential distribution (Ross et al., 2008). Redundancy is key in managing
supply-side disruptions, and various optimization approaches exist in the literature.

The first strategy involves optimizing inventory replenishment, determining the optimal timing, quantity,
and sourcing of material orders within the network. While models for normal inventory management
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exist, those addressing disruptions usually involve added complexity. These models can make periodic
(Karakatsoulis & Skouri, 2023) or continuous (Qi, 2013) inventory decisions. They are often based on
the Economic Order Quantity (EOQ) model from economics, with integration of a disruption component,
forming an Economic Order Quantity with Disruptions (EOQD) model (Karakatsoulis et al., 2024).

Another approach focuses on modeling flexibility in sourcing. When dealing with unreliable suppliers
susceptible to disruptions, retailers may place similar orders with multiple suppliers, a practice known
as routine sourcing. Hosseini et al., 2019 proposes a model for optimizing flexible supplier selection.
Alternatively, if backup suppliers are only used when a disruption occurs, this is referred to as contingent
rerouting and is explored in Birge et al., 2022. Models considering backup sourcing must also include
decisions regarding corresponding backup capacity requirements. Alternatively, Gupta et al., 2021
suggests a demand-side model optimizing pricing adjustments during capacity disruptions.

Additionally, facility location models can also address disruptive events. Location decisions may involve
rerouting post-disruptions (a contingent strategy), or more strategic decisions that have to be made in
advance. Models allowing reallocation of customers to facilities during disruptions, such as Wang et
al., 2023, may require optimization of facility locations beforehand. Other strategic decisions involve
fortification, determining which location should receive improvement investments before disruptions (X.
Li et al., 2018). Some models focus on external parties, optimizing insurance strategies and fostering
cooperation and competition between suppliers (Chakraborty et al., 2019).

Attacker-defender model
An intriguing possible approach to resilient network design is the attacker-defender model, also known
as the operator-attacker-defender (OAD) or defender-attacker-defender (DAD)model. This approach is
found in various other domains where a certain network has to be designed and protected against harm.
This game theory-based approach introduces multiple decision layers to the optimization model, con-
sidering both offensive actions, i.e., disruptive events that harm normal operational performance, and
defensive strategies integrated under a unified optimization objective. The attacker-defender model
has found applications in diverse domains where network-like systems require protection against ex-
ternal disruptions.

The paper by Alderson et al., 2011 presents a defender-attacker-defender (DAD) model tailored for
planning defenses in infrastructure systems, specifically enhancing resilience against intelligent adver-
sary attacks on transportation networks. The DAD model involves the defender selecting infrastructure
investments, the attacker observing and executing an attack, and the operator (defender) assessing
both, managing the system to minimize operating costs. The authors develop a decomposition algo-
rithm for solving instances of the DAD model and showcase its application on a transportation network
example, demonstrating the versatility and applicability of the approach (Alderson et al., 2011).

Addressing the vulnerability of power grids to terrorist attacks, Yuan et al., 2014 propose an enhanced
solution framework based on the defender-attacker-defender model. They introduce a Column-and-
Constraint Generation algorithm to efficiently solve their DAD model, outperforming existing methods.
The study emphasizes the superiority of the DAD model in improving grid survivability over a traditional
attacker-defender model, providing valuable insights and an efficient algorithm for enhancing protec-
tion in critical infrastructure networks (Yuan et al., 2014). Again in the power system protection domain,
Xiang and Wang, 2019 present the Multiple- Attack-Scenario Defender-Attacker-Defender (MAS DAD)
model to address uncertainties in defending electric power systems. This extended model focuses
on optimizing defensive resource allocation to minimize damage in the face of uncertain attacker ca-
pabilities. The use of a Column-and-Constraint Generation algorithm allows for the decomposition of
the MAS DAD model, providing an interesting solution method when dealing with uncertainties in the
attacker budget (Xiang & Wang, 2019).

Additionally, Xu et al., 2016 integrates a defender-attacker game with military supply chain risk manage-
ment, revealing the benefits of risk management tools for the defender. However, certain protection
strategies were found to have no impact on the attacker’s resource allocation. This emphasizes the
complex dynamics involved in defender-attacker interactions within supply chain systems (Xu et al.,
2016).



2.3. Research gap and contribution 7

2.3. Research gap and contribution
The literature reviewed indicates that resilience in the design and operation of supply chain systems is a
well-studied topic with various approaches employed. While enlightening, the approaches introduced
in 2.2 and 2.2 have limitations identified through our analysis and by respective authors. Scenario-
based stochastic programming faces challenges in generating representative scenarios, leading to
large-scale optimization problems. The challenge of representative scenario generation and its impact
on optimization efficiency and model accuracy is a drawback (Fattahi et al., 2018). Robust optimization
struggles to balance conservatism and tractability. Non-deterministic models depend on hard-to-find
disruption probability data, diminishing their validity. Many models focus solely on mitigation or post-
disruption decisions. Resilience is found at the interplay of both; an integrated decision model would
be beneficial (Govindan et al., 2017). Furthermore, Insights into cost, operational performance, and
resilience trade-offs are often limited. A truly resilient system, as argued by Alderson et al., 2011, must
perform well for all events, not just the most likely ones. Probabilistic models optimising on expected
objectives have difficulty accounting for this. Parts identified as ”most critical” by stochastic models
differ from worst-case analysis. Finally, they argue that both natural and deliberate disruptions should
be involved and that sensibly combining both disruption types remains an unexplored research area
(Alderson et al., 2011).

The Attacker-Defender model from 2.2 offers a promising solution. Applied successfully in various do-
mains, its application to resilient supply chains and the SCND problem is an unexplored research gap.
This game theory-based model considers both offensive actions (disruptions) and defensive strategies,
allowing for in-depth analysis of operational and defensive investment trade-offs. Unlike probabilistic
approaches, the attacker component provides deterministic insights into critical network components
without relying on unreliable probability data. The model’s setup permits flexible expansion by incor-
porating and comparing evermore disruptive impacts and defensive strategies. All in all, adapting the
attacker-defender model to address the unique challenges and dynamics of resilient supply chain de-
sign and operation opens a valuable avenue for research, promising to advance the field of supply
chain resilience, and shaping the remainder of this proposal.



3
Problem statement

The primary aim of this research is to develop an integrated mathematical framework for enhancing
resilience in supply chain network design and operation in the face of disruptions. By applying a quan-
titative approach, we aim to tackle the Supply Chain Network Design and Operation Problem (SCDOP)
using the Operator-Attacker-Defender (OAD) model. Our version of the model will be a three-level
Mixed-Integer Programming (MIP) framework that incorporates supply chain system design decisions,
potential disruptions, and mitigation strategies into a unified optimization framework.

3.1. Research question and objectives
The main question guiding this research is: How can resilience effectively be integrated into the strate-
gic design and operation of supply chain networks in the face of disruptions?

This will be approached using the following objectives:

Obj 1 Develop a valid and computationally tractable OAD model adapted for studying resilience in
supply chains.
Obj 2 Be able to explore a multitude of supply chain topologies and value chain complexities.
Obj 3 Be able to explore a multitude of disruption types and operational responses.

The study will focus on forward supply chains, as opposed to reverse logistics/recycling supply chains,
featuring a unidirectional flow of products from suppliers to customers through a network of locations.
This model concentrates on the strategic level (decisions regarding system design and aggregate net-
work flows) and does not involve a temporal dimension. However, for potential future research, section
7.2 will introduce an adaptation that incorporates a temporal component, allowing for more tactical-level
studies.

3.2. Interdiction and OAD models
In an interdiction model, two opposing agents, the operator and the interdictor or attacker, engage in a
strategic game where the operator aims to maximize performance while the attacker seeks to minimize
it. This sequential decision-making process mirrors the Stackelberg game, where a leader makes
decisions first, considering the follower’s potential responses. The interdictor identifies strategic targets
to disrupt the operator’s activities, aiming to minimize their effectiveness. OAD models extend this
concept by introducing a third level where the operator allocates defensive resources to accomplish its
objectives while mitigating the impact of potential attacks. In our supply chain model, this is represented
through three decision layers within a single mathematical program:

1. The base operator layer, in which the operator determines the optimal system operation and
performance, given the system design and operational setting,

2. The attacker layer, in which the attacker determines the worst-case operational set (set of events)
that minimize optimal performance,

8
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3. The design/defender layer, in which the operator chooses the best system design, in anticipation
of a worst-case operational setting.

Figure 3.1: Tri-levels of interdiction interaction.

[Generic OAD] (3.1)

min
xD

max
xA

min
xO

Γperformance(xO,xA,xD)

s.t. xO ∈ XO (xA,xD)

Γattacks (xA) ≤ bdgatt

Γdesign (xD) ≤ bdgdef

We can formulate this in a generic mathematical program format like in Eq. 3.1. The operations xO,
operational setting xA and system design xD decision variables compete in a tri-level objective func-
tion to minimize or maximize a performance cost function Γperformance. xO is constrained to the set
of valid system operations, a function of xA and xD. The interdictor’s cost of attacking Γattacks is con-
strained to an attack budget bdgatt. The design costs Γdesign are constrained by a design budget bdgdef .
Achieving Obj 1 will involve formulating a version of the model suited for supply chains, that remains
computationally tractable.

3.3. Value chains and supply chain topologies
A supply chain is a network of facilities enabling the flow of commodities, handling their production,
transformation, and distribution. These systems vary in size and complexity. Obj 2 requires that the
proposed model adapts to various network configurations. The physical, spatial layout of system loca-
tions and their interconnections is referred to as the supply chain’s topology. We identify four location
types: suppliers, producers, warehouses, and customers. Conceptually, at the strategic level, they
only differ in how they are involved in commodity flows: suppliers are sources of goods, customers
are sinks thereof, producers transform goods and warehouses handle transient flows. The network
topology varies in possible connections, including intra-layer and direct customer connections. Trans-
portation connections are often multi-modal, depending on the connected layer types.

More fundamental than the supply chain’s topology is the underlying value chain. The value chain
encompasses the activities a business performs to deliver goods to end customers. Deliverables may
result from a single production step with few raw materials or a complex network of interconnecting
steps involving many suppliers and production sites. In complex value chains, goods can followmultiple
paths to the end customer. Figure 3.2 depicts a complex value chain in the iron/steel goods industry.
Complex chains have more points of failure, making resilience studies more pertinent. Our model
should remain agnostic to the value chain layout, as dictated by Obj 2.

3.4. Cascading disruptions and operational responses
Supply chain resilience is ”the capacity of a supply chain to persist, adapt, or transform in the face of
change” (Wieland & Durach, 2021). Disruptions are a form of supply chain uncertainty, typically through
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Figure 3.2: The value chain of the iron/steel goods industry.

discrete events. Disruptions affect yield uncertainty, the uncertainty in the quantity of delivered product.
Regarding Obj 3, this paper focuses on supply-side disruptions, including partial or full reductions in
facility and link capacities, but not demand-side uncertainties like customer demand fluctuations. Dis-
ruptions can disable facilities (e.g., due to war) or processes at suppliers (supply failure), producers
(machine breakdown), or warehouses. Transport links can also be disabled (e.g., Suez Canal closure).
Strategies against disruptions include preventive actions (mitigation) and responsive actions (contin-
gency) after a disruption. Mitigation strategies modeled include flexible/multi-sourcing for unreliable
suppliers and redundant production/storage capacity planning. Post-disruption rerouting of commodity
flows is a contingent strategy, the success of which also relies on prior strategic decisions. Our model
should enable the study of cascading effects in complex value chains (see 3.3).



4
Model

This study introduces a mathematical programming-based solution to integrate resilience into supply
chain network design and operation. The proposed framework, inspired by the work of Alderson et al.,
2011, is a three-level Mixed-Integer Programming (MIP) model termed the Operator-Attacker-Defender
(mOAD) model. It comprises three hierarchical decision levels: the operator, the attacker, and the de-
fender. In section 4.1, we introduce a conceptual model for the supply chain, which forms the foundation
for our approach. Subsequently, in 4.2, we construct the tri-level mathematical program step-by-step.
The resolution approach for this complex model is detailed in the subsequent chapter, section 5.

4.1. Supply chain conceptual model
4.1.1. Components of a production-distribution supply chain
Conceptually, a supply chain consists of various components that interact with each other. We de-
fine the following components. Commodities are the goods traversing the network, encompassing
raw materials, intermediates, and finished products. This system does not differentiate between these
categories, viewing them all as items flowing through the network, subject to transformation and dis-
tribution. BillOfMaterials describe a production step, similar to a recipe, detailing how one or more
input commodities can be transformed into one or more output commodities. They include data on
the amounts of each input and output commodity the production step consumes and produces. Each
commodity has its unit of measurement (e.g., kg, or each). The supply chain system consists of var-
ious Locations, which include the following four types: Suppliers, Producers, Warehouses, and
Customers. Suppliers provide commodities to producers, who transform them according to various
BillOfMaterials. Warehouses store commodities before distribution to customers. Customers exhibit
demand for one or more types of commodities and are served from warehouse locations. Producers
may be interconnected to form more complex chains of production steps.

Locations are connected to each other via Links. A single link may connect a pair of locations and has
a distance based on the coordinates of the locations it connects. A link may have a flow of one or more
commodities, with the flow volume measured in the commodity’s unit. One or more TransportModes
may be available on a link. TransportModes can be defined individually per link, depending on the input
data. For simplification, links connecting similar location types usually have the same available modes.
The number of trips performed per TransportMode on a link are referred to as link loads. A Process
connects a location to a commodity or BillOfMaterial and is also input data. A Supply process defines
the supply of a commodity from a supplier. Similarly, a Production process defines the production
of a BillOfMaterial process at a producer, and a Storage process defines the storage of a commodity
at a warehouse. The process definitions include the associated process capacity and unit cost. A
TransportMode trip on a specific link has an associated trip cost. In our model, we assume that a trip
cost between two locations using a particular mode can be calculated as the sum of a fixed mode-
dependent trip-start cost and a variable distance-based cost. For simplicity, it is assumed that on a link,
different commodities may share a trip using the same mode. Furthermore, each TransportMode has

11
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Figure 4.1: Overview of the conceptual model components and their attributes.

an average load size, defined in a standard unit. A commodity’s unit can be converted to this standard
unit using the commodity’s unit load conversion attribute.

We define the network consisting of one or more suppliers and one or more interconnected producers as
theProductionChain. This network represents (of part of) the value chain - the progression of activities
used to deliver goods to an end customer. The Production Chain is defined up to the warehouse. A
warehouse could technically be connected to a supplier directly. The network consisting of warehouses
and customers is referred to as the Distribution Chain. Connected together, they form the full supply
chain, a flow network where resources flow between nodes. This chain facilitates the movement of
goods from storage to end-users, ensuring the fulfillment of demand.

4.1.2. Supply Chain Decision Network
The model will make decisions on the Supply Chain Decision NetworkGSC , a non-complete directed
graph of all possible locations and links. The Supply Chain Decision Network is constructed by com-
bining the input data on the physical network, i.e. the locations and transport links, and the Production
Graph GPROD. The Production Graph is a representation of the value chain of a supply chain. It is an
abstract graph where the nodes represent specific production steps and the arcs represent commodity
flows between those steps. Figure B.1 depicts an example of a Production Graph.

Figure 4.2: Example Production Graph GPROD (with some locations listed).

Figure B.3 depicts a Supply Chain Decision Network and the model’s parameters. A procedure for
constructing GPROD and GSC can be found in Appendix B.
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Figure 4.3: Overview of the Supply Chain Decision Graph GSC(L,A), our supply chain model.

4.1.3. System operational performance
To study the resilience of the supply chain system, its operational performance needs to be defined.
Operational performance measures how well the system functions. In the context of supply chain
resilience, it will be used to assess the impact of various disruptive settings compared to the normal
operational setting. The operational performance will be a function of various operational costs incurred
over a defined lifetime. These costs include supply, production, storage, transportation, and fixed costs.
However, this is not sufficient to measure resilience. A disruption affects the capacity of a supply chain
to deliver goods to customers, for example, due to reduced capacity at a location or transport link.
Therefore, the operational performance will also include a penalty cost for the failure to deliver demand
to customers.

4.2. Mathematical model construction
Building on the conceptual model introduced in the previous section, we now construct the tri-level opti-
mization model. This model will be built-up step by step, starting by introducing the model parameters,
decision variables, objective and constraints relating the operations of a supply chain. Following that,
the model will be expanded by including the variables and constraints relating to the attacker compo-
nent. The model is then similarly expanded further to include the design / defence components, in order
to finally form the complete tri-level model.

4.2.1. Base operator model
The operator components should model the decisions an operator would make in order to efficiently
operate a supply chain, assuming a given system design and operational setting. These decisions
involve managing the flow of commodities across the Production / Distribution networks, including the
various production processes at the different facilities and the transportation between them. As will be
made clear in section 5, it is important that the operator components form a continuous linear program
(LP) for the full model to be tractably solvable.

Operator sets and parameters

We define the operator sets for the different location types, commodities, bill of materials, transport
modes and the network graph upon which the flow decisions are made. Operator parameters describe
location capacities, system costs, transport mode characteristics, bill of material compositions, and
customer demands. Table 4.1 outlines the sets, their indices, and the model parameters.
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Table 4.1: Notations - Operator sets and parameters.

Set Description

i, j ∈ L Physical locations in the supply chain
h ∈ LS ⊆ L Supplier locations
i ∈ LP ⊆ L Producer locations
j ∈ LW ⊆ L Warehouse locations
k ∈ LC ⊆ L Customer locations
(i, j) ∈ A Links between locations i and j
p ∈ P Commodities, including raw materials and products
b ∈ B Bills of Materials (BoM), specifying conversion processes
p ∈ P (i, j) Commodities flowing on link (i, j)
m ∈M(i, j) Transport modes available on link (i, j)

Table 4.2: Notations - Parameters related to operations and costs.

Parameter Description

capSh,p Maximum supply capacity of commodity p by supplier h
capPi,b Maximum production capacity of bill of material b by producer i
capWj,p Maximum storage capacity of commodity p at warehouse j
demC

k,p Demand of commodity p by customer k
ginb,p Input amount of commodity p required per production unit of bill of mate-

rial b
goutb,p Output amount of commodity p produced per production unit of bill of

material b
cfix,Sh Fixed operating cost of using supplier h
cfix,Pi Fixed operating cost / rent of using producer i
cfix,Wj Fixed operating cost / rent of using warehouse j
cpr,Sh,p Cost of buying a unit of commodity p from supplier h
cpr,Pi,b Cost of producing a unit of bill of material b at producer i
cpr,Wj,p Cost of storing a unit of commodity p at warehouse j
crv,Ck,p Penalty cost for failing to deliver a unit of commodity p to customer k
ctri,j,m Total trip cost between facilities i and j using mode m
ctripm Fixed cost to start a trip using mode m
cdistm Variable cost per unit of distance using mode m
di,j Distance between two locations i and j
lsm Average load size of mode m
lcp Transport load unit conversion of commodity p

Operator decision variables

The first group of operational decision variables, qSh,p, qPi,b, qWj,p, are process variables. These variables
quantify the amounts of commodities (raw materials) supplied, (bills of material) production processes
produced, and commodities (final products) stored at warehouses. Variables qCk,p and q̄Ck,p represent
the amount of final products delivered to the customer and the amount not delivered (i.e., the shortfall
in meeting customer demand), respectively. See Table 4.3 for an overview of all the variables of the
operator model. Decision variables yi,j,p represent the flow of commodities between different locations,
in the commodity’s unit. The final operational variables are the link transport loads, denoted as zi,j,m.
These variables represent the number of trips using transportation mode m between the various facil-
ities. For the resolution approach, we require the operator variables to be continuous, even though
some processes may be more realistically modelled as integers (e.g the number of transport trips).
Continuous variables can however sufficiently approximate integer variables when the values are large
enough and the appropriate feasibility measures are included. For a more concise notation, we define
the vector of operational variables: xO =

[
qS qP qW qC q̄C y z

]
Operator objective: system operational performance
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Table 4.3: Notations - Operator decision variables xO

Operations xO

qSh,p Amount of commodity p supplied from supplier h
qPi,b Amount of bill of material b produced at producer i
qWj,p Amount of commodity p stored at warehouse j
qCk,p Amount of commodity p delivered to customer k
q̄Ck,p Amount of commodity p not delivered to customer k (difference from demand)
yi,j,p Commodity flow - amount of commodity p between locations i and j
zi,j,m Transport load - number of trips between locations i and j using mode m

The operator aims to achieve optimal operational performance. The objective of the operator model
is to minimize a cost function Γtotal, comprising two components: Γoper and Γpenal. Γoper represents
operational costs over the defined lifetime (e.g., a full year), while Γpenal penalizes the non-delivery
of customer demand, serving as a soft constraint to model resilience. These terms are weighted by
user-chosen parameters ρc and ρr, where ρc + ρr = 1.

min
xO

Γtotal = ρr · Γpenal + ρc · Γcosts (4.1)

= ρr · Γpenal + ρc · (Γproc + Γtrans)

Here, Γoper comprises process costs Γproc and transport costs Γtrans. The process costs Γproc consist
of Γproc,S , Γproc,P , and Γproc,W , representing costs related to resource utilization in the supply, produc-
tion, and storage process steps. See 4.1a. Transport costs Γtrans are calculated by summing the
product of the transport load volumes per mode (z·), i.e. the number of trips of a certain mode between
two facilities, and their associated trip cost coefficients (ctr,·), according to equation 4.1b.

Γproc = Γproc,S + Γproc,P + Γproc,W (4.1a)

Γproc,S =
∑
h∈LS

∑
p∈p

cpr,Sh,p · q
S
h,p

Γproc,P =
∑
i∈LP

∑
b∈B

cpr,Pi,b · qPi,b

Γproc,W =
∑

j∈LW

∑
p∈P

cpr,Wj,p · qWj,p

Γtrans =
∑

(i,j)∈A

∑
m∈M(i,j)

ctri,j,m · zi,j,m =
∑

(i,j)∈A

∑
m∈M(i,j)

(ctripm + cdistm · di,j) · zi,j,m (4.1b)

Finally, the non-delivery penalty costs Γpenal are associated with penalties incurred for failing to deliver
a commodity (final product) to a customer. We include the non-delivery of commodities as a penalty
term to the objective, instead of including hard demand-satisfying constraints. This is such that the
objective function can be used to explore supply chain resilience by allowing the amount of customer
deliveries to be impacted by events. Equation 4.1c calculates these costs as the product of the amount
of final products not delivered (q̄Ck,p) and the associated lost revenue (c

rv,C
k,p ) over all customers and final

products.

Γpenal =
∑
k∈LC

∑
p∈P

crv,Ck,p · q̄
C
k,p (4.1c)

Operator constraints

Wedefine the facility capacity constraints 4.2, 4.3, and 4.4 which ensure that the amount of commodities
(raw materials) supplied, bill of material processes produced or commodities (final products) stored at
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a facility does not exceed its capacity, respectively.

qSh,p ≤ capSh,p ∀h ∈ LS , ∀p ∈ P (4.2)
qPi,b ≤ capPi,b ∀i ∈ LP , ∀b ∈ B (4.3)
qWj,p ≤ capWh,p ∀j ∈ LW , ∀p ∈ P (4.4)

We then define various balance constraints that link the process variables to the incoming and outgoing
commodity flows. The supply constraints 4.5 guarantee that the amount of raw materials supplied by
a supplier is equal to the total outgoing flows of those commodities. The warehouse flow balance
constraints 4.6 maintain the balance of commodities flowing into and out of warehouses. Constraints
4.7 link the amount of delivered final products to a customer to the sum of the incoming product flows.

qSh,p =
∑

i∈nout(h,p)

yh,i,p ∀h ∈ LS , ∀p ∈ P (4.5)

qWj,p =
∑

i∈nin(j,p)

yi,j,p =
∑

k∈nout(j,p)

yj,k,p ∀j ∈ Lw, ∀p ∈ P (4.6)

qCk,p =
∑

j∈nin(k,p)

yj,k,p ∀k ∈ LC , ∀p ∈ P (4.7)

Where nin(i, p) returns all locations from which location i has a possible incoming flow of commodity
p, and nout(i, p) returns all locations to which location i has a possible outgoing flow of commodity p.
Furthermore, the production balance constraints, or bill of material (BOM) balance constraints 4.8 and
4.9 ensure that for each production process, there is a balance in input and output materials, based on
the process’ BOM definition. The customer demands constraints 4.10 ensure that the delivered and
undelivered amounts of final products sum up to the customer demand of that product.∑

b∈B

qPi,b · ginb,p ≤
∑

h∈nin(i,p)

yh,i,p ∀i ∈ LP , ∀p ∈ P (4.8)

∑
b∈B

qPi,b · goutb,p ≥
∑

j∈nout(i,p)

yi,j,p ∀i ∈ LP , ∀p ∈ P (4.9)

qCk,p + q̄Ck,p = demC
k,p ∀k ∈ LC , ∀p ∈ P (4.10)

The transportation constraints 4.11 ensure that, for each link between two facilities, a sufficient number
of trips using the different transport modes are operated to carry the flow of commodities. The total
number of trips using all available modes between two locations, multiplied by the mode’s average trip
load size, should be at least as large as the item flow between them. The commodity flow variables
are multiplied by a load conversion parameter lcp, in order to convert the flow, specified in the com-
modity’s own unit, into a standardized transportation unit. These constraints assume that commodities
transported between to specific locations may share a transport trip. This is a simplification that may
not always hold in reality but is useful for now.∑

p∈P (i,j)

yi,j,p · lsm ≤
∑

m∈M(i,j)

zi,j,m · lcp ∀(i, j) ∈ A (4.11)

4.2.2. Incorporating the operational setting
In this subsection, we expand the previously introduced operator model by incorporating the notion of
an operational setting. This setting describes events outside the operator’s control that may affect the
system’s operations and performance. Disruptions of facilities or transport links, such as attacks by a
disruptive agent, are encoded in an operational setting state, defining simultaneous events affecting
the system. A setting state with no disruptive or unusual event is also considered, i.e., the ”normal
operations” setting.

Operational setting (attacker) sets and parameters
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The following attacker set and parameters are now introduced. We model events through a disruptive
agent making operational setting decisions in order to affect the system’s operations. We introduce a
total attack budget bdgatt and cost catt,. parameters to model how a disruptive agent needs to allocate
their resources to impact a system. This is relevant for intentional disruptive agents, but also random,
natural disruptions, as it is unlikely that every facility in an entire systemmay be affected simultaneously.
To model partial disruptions, we introduce a new set of disruption impact levels F that quantify varying
degrees of perturbation to a process.

Table 4.4: Notations - Attacker set and parameters.

Sets
F Set of disruption impact levels f

Parameters
bdgatt Total available attack budget
catt,loci Attack cost of fully disabling facility i
catt,pr,Sh,p,f Attack cost of partially disabling the supply of commodity p at supplier h by impact level f
catt,pr,Pi,b,f Attack cost of partially disabling the production of bill of material b at producer i by impact level f
catt,link
ijm Attack cost of fully disabling transport mode m on link (i, j)

uf Impact (% disabled) of disruption impact level f

Operational setting decision variables

The following decision variables are introduced enabling the disruptive agent to make ”choices” on how
to affect the supply chain system, i.e. to cause (disruptive) events. All event decisions are binary: an
event occurs, or it does not. Attack variables ϕSh , ϕPi and ϕWj relate to whether a supplier, producer
or warehouse location is completely disabled. This may reflect real life events such as flooding or
supplier bankruptcy that can partially or fully disrupt the operations of a location. ψS

h,p,f and ψP
i,b,f affect

whether a particular process at a facility, i.e. the supply of a certain commodity from a supplier or the
production of a certain bill of material process, is disrupted with a disruption impact level f . Finally,
variables τi,j,m, affect whether a particular transport mode m on a particular link (i, j) is fully disabled.
This could represent a real-life disruption to a shipping lane or railway link, for example. We could
also define a commodity-specific storage disruption at a warehouse ψW

j,p,f , but this has been omitted in
our implementation. For a more concise notation, we define the operational setting (attacks) variables
vector: xA =

[
ϕS ϕP ϕW ψS ψP τ

]
Table 4.5: Notations - Attacker decision variables xA

Attack xA

ϕS
h Binary variable, 1 if supplier location h is fully disabled
ϕP
i Binary variable, 1 if producer location i is fully disabled
ϕW
j Binary variable, 1 if warehouse location j is fully disabled
ψS

h,p,f Binary variable, 1 if the supply of commodity p from supplier h is disrupted by level f
ψP

i,b,f Binary variable, 1 if the production of bill of material b at producer i is disrupted by level f
τi,j,m Binary variable, 1 if transport mode m between locations i and j is fully disabled

Operational setting objective function

With the attacker component introduced, we can turn the model into a bi-level program. This entails
modifying the objective to include the second-level optimisation operator. The objective function as
redefined below, aims to optimise for worst performance, i.e. maximize the minimal cost function value.

max
xA

min
xO

Γtotal = ρr · Γpenal + ρc · (Γproc + Γtrans) (4.1)

Operational setting constraints

A new constraint relating to the resources allocation of the attacker should be included. It relates the
costs of performing various attacks to the attack budget parameter. The total attack costs include costs
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for fully disabling locations Γatt,loc, partially disrupting supply and production processes Γatt,proc, and
disabling transport links Γatt,trans, and are defined as follows.

Γattacks ≤ bdgatt (4.12)

Γattacks = Γatt,loc + Γatt,proc + Γatt,trans (4.12a)

Γatt,loc =
∑
h∈LS

catt,loch · ϕSh +
∑
i∈LP

catt,loci · ϕPi +
∑

j∈LW

catt,locj · ϕWj

Γatt,proc =
∑
f∈F

(
∑
h∈LS

∑
p∈P

catt,pr,Sh,p,f · ψS
h,p,f +

∑
i∈LP

∑
b∈B

catt,pr,Pi,b,f · ψP
i,b,f )

Γatt,trans =
∑

(i,j)∈A

∑
m∈M(i,j)

catt,transi,j,m · τi,j,m

Finally, the previously defined facility capacity constraints 4.2 - 4.4 should be modified and split into 4.2a
- 4.4a and 4.2b - 4.3b to account for the location and process-specific attacks, respectively. These con-
straint modifications ensure that the attack variables have an actual effect on the operational capacities
of the facilities. The transportation constraints 4.11 are also modified in a similar way.

qSh,p ≤ capSh,p (1− ϕSh) ∀h ∈ LS , ∀p ∈ P (4.2a)
qPi,b ≤ capPi,b (1− ϕPi ) ∀i ∈ LP , ∀b ∈ B (4.3a)
qWj,p ≤ capWh,p (1− ϕWj ) ∀j ∈ LW , ∀p ∈ P (4.4a)
qSh,p ≤ capSh,p (1− uf · ψS

h,p,f ) ∀h ∈ LS , ∀p ∈ P, ∀f ∈ F (4.2b)
qPi,b ≤ capPi,b (1− uf · ψP

i,b,f ) ∀i ∈ LP , ∀b ∈ B, ∀f ∈ F (4.3b)∑
p∈P (i,j)

yi,j,p · lsm ≤
∑

m∈M(i,j)

zi,j,m · lcp · (1− τi,j,m) ∀(i, j) ∈ A (4.11)

4.2.3. Incorporating system design and defence decisions
The third optimisation level will now be introduced to complete the tri-level model. This decision level
involves strategic decisions regarding the design of the system. As the system design will aim to be
resilient against various, possibly disruptive operational settings, this decision level can also be referred
to as the defence layer. These decisions allow the operator or designer to invest some initial budget in
the initiation or modification of the strategic design of the system in anticipation of various operational
settings. In our case, the design decisions mainly regard the supply chain network layout, i.e. the used
facility locations.

System design parameters

Similar to the parameters introduced in the attacker’s component, the designer parameters consist of a
certain total initial investment budget bdgdef and investment costs for using / opening a location cinit,.i . In
the real world, the initial cost of using a supplier may consist of administrative costs incurred by forming
a deal with that supplier. Producer and warehouse initial costs may involve building, renovation, or land
purchase costs. These costs could be set to zero if the location already exists within the system.

Table 4.6: Notations - System design parameters.

Parameters
bdgdef Total available system design / defence budget
cinit,S
h Initial investment cost of using supplier h
cinit,P
i Initial investment cost of using producer i
cinit,W
j Initial investment cost of using warehouse j

System design decision variables
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The design variables involve binary decisions x.i regarding the facility locations to be used. In this
model, no particular distinction is made between locations that already exist within a supply chain
system, and those that are candidates to be newly opened. Similarly, suppliers are generally external
parties but the decision to use one is modelled in the same way as any other facility location decision.
At this step, for a particular location one could introduce different levels of investment. For simplicity
this is not included for now. For a more concise notation, we define the system design variables vector:
xD =

[
xS xP xW

]
Table 4.7: Notations - System design decision variables xD

System design xD

xSh Binary variable, 1 if supplier location h is used
xPi Binary variable, 1 if producer location i is used
xWj Binary variable, 1 if warehouse location j is used

System design objective function

At this step, an extra term representing the fixed operational costs Γfixed is added to the performance
function and represents the fixed costs incurred from using a facility. These costs may for example
include rent, administrative, energy costs, and are calculated, according to equation 4.1d. These costs
are not to be confused with the initial investment costs, which are one-time strategic costs.

Γfixed = Γfixed,S + Γfixed,P + Γfixed,W (4.1d)

Γfixed,S =
∑
h∈LS

cfix,Sh · xSh

Γfixed,P =
∑
i∈LP

cfix,Pi · xPi

Γfixed,W =
∑

j∈LW

cfix,Wj · xWj

The third optimisation level is added to the objective function of the full tri-level model. The full model’s
objective is to minimize the operational costs including penalties, assuming an optimal (minimized)
operational response to the most disruptive operational setting - i.e. min−max−min total costs. The
components of the objective function are summarize in table 4.8.

min
xD

max
xA

min
xO

Γtotal = ρr · Γpenal + ρc · (Γfixed + Γproc + Γtrans) (4.1)

Table 4.8: Overview of objective function components

Costs
Γtotal Performance (cost) function
Γcosts Operational costs
Γpenal Penalty cost term for non-delivery of demand

Γfixed Total fixed operational facility use costs
Γfixed,S Fixed operational supplier use costs
Γfixed,P Fixed operational producer use costs
Γfixed,W Fixed operational warehouse use costs
Γproc Total process costs
Γproc,S Commodity (raw materials) supply costs
Γproc,P Bill of material production costs
Γproc,W Commodity (final product) storage costs
Γtrans Transportation costs

System design constraints
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A new constraint 4.13 is added to model the designer’s resources allocation, relating the initial design
investment budget bdgdef to the design costs Γdesign.

Γdesign =
∑
h∈LS

cinit,Sh · xSh +
∑
i∈LP

cinit,Pi · xPi +
∑

j∈LW

cinit,W · xWj ≤ bdgdef (4.13)

New facility capacity constraints 4.2c - 4.4c should be added to ensure that a facility’s capacity can only
be used if that facility is actually included in the system design.

qSh,p ≤ capSh,p · xSh ∀h ∈ LS , ∀p ∈ P (4.2c)
qPi,b ≤ capPi,b · xPi ∀i ∈ LP , ∀b ∈ B (4.3c)
qWj,p ≤ capWh,p · xWj ∀j ∈ LW , ∀p ∈ P (4.4c)

As there are nowmultiple capacity constraints defined per location (4.2a - 4.4c), a more concise notation
using the min function can be introduced to redefine (4.2 - 4.4):

qSh,p ≤ capSh,p · min(xSh ; 1− ϕSh ; 1− uf · ψS
h,p,f ∀f ∈ F ) ∀h ∈ LS , ∀p ∈ P (4.2)

qPi,b ≤ capPi,b · min(xPi ; 1− ϕPi ; 1− uf · ψP
i,b,f ∀f ∈ F ) ∀i ∈ LP , ∀b ∈ B (4.3)

qWj,p ≤ capWh,p · min(xWj ; 1− ϕWj ) ∀j ∈ LW , ∀p ∈ P (4.4)

4.3. Full Operator-Attacker-Defender model: mOAD
Finally, the full tri-level model is written down as follows. The variable domain constraints (vector form)
have been defined in 4.14 - 4.16 and the capacity constraints 4.2 - 4.4 have been rewritten using
the min function for brevity. We will name this model OAD model adapted to the operation of a supply
chainmOAD. It should be obvious that the different levels of decisions can be adapted according to the
circumstances. Different operational variables could be defined if the operations involve other activities.
Likewise, different disruptive events or system design / defence choices could be introduced. In any
case, the three levels of intertwined decisions cause this model to be difficult to solve using classic
approaches. A resolution strategy is required to solve it and this will be discussed in detail in the next
chapter.
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[mOAD]
min
xD

max
xA

min
xO

Γtotal = ρr · Γpenal + ρc · (Γfixed + Γproc + Γtrans) (4.1)

s.t. qSh,p ≤ capSh,p ·min(xSh ; 1− ϕSh ; 1− uf · ψS
h,p,f∀f ∈ F ) ∀h ∈ LS , ∀p ∈ P (4.2)

qPi,b ≤ capPi,b ·min(xPi ; 1− ϕPi ; 1− uf · ψP
i,b,f∀f ∈ F ) ∀i ∈ LP , ∀b ∈ B (4.3)

qWj,p ≤ capWh,p ·min(xWj ; 1− ϕWj ) ∀j ∈ LW , ∀p ∈ P (4.4)

qSh,p =
∑

i∈nout(h,p)

yh,i,p ∀h ∈ LS , ∀p ∈ P (4.5)

qWj,p =
∑

i∈nin(j,p)

yi,j,p =
∑

k∈nout(j,p)

yj,k,p ∀j ∈ Lw, ∀p ∈ P (4.6)

qCk,p =
∑

j∈nin(k,p)

yj,k,p ∀k ∈ LC , ∀p ∈ P (4.7)

∑
b∈B

qPi,b · ginb,p ≤
∑

h∈nin(i,p)

yh,i,p ∀i ∈ LP , ∀p ∈ P (4.8)

∑
b∈B

qPi,b · goutb,p ≥
∑

j∈nout(i,p)

yi,j,p ∀i ∈ LP , ∀p ∈ P (4.9)

qCk,p + q̄Ck,p = demC
k,p ∀k ∈ LW , ∀p ∈ P (4.10)∑

p∈P (i,j)

yi,j,p · lsm ≤
∑

m∈M(i,j)

zi,j,m · lcp · (1− τi,j,m) ∀(i, j) ∈ A (4.11)

Γattacks ≤ bdgatt (4.12)
Γdesign ≤ bdgdef (4.13)

y, z,q, q̄ ≥ 0 (4.14)
ϕ,ψ, τ ∈ {0, 1} (4.15)
x ∈ {0, 1} (4.16)



5
Resolution strategy

The tri-level mOAD model with hierarchical decision-making cannot trivially be solved without a reso-
lution strategy. In this section, we present a decomposition approach inspired by the methods of alder-
son2011solving and ghorbani2021decomposition. The core idea of our approach is to decompose the
tri-levelmOADmodel into two parametrized models: a single-level master problem (mOAD-MASTER),
which provides a lower bound, and a bi-level attacker sub-problem (mOA-SUB), which determines the
upper bound on the solution of the tri-level optimization.

First, in 5.1, a family of parameterized models are introduced, where some of the decision variables
of mOAD are fixed as given parameters. Then, in 5.2, a method is introduced for decomposing the
tri-levelmOAD problem into a relaxed master problem mOAD-MASTER and an attacker sub-problem
mOA-SUB, a solution for which is provided in 5.3.

5.1. Parameterized models
FrommOAD, we can create a family of parameterized models by fixing some of the decision variables
as given parameters. As such, we will define the following parameterized models: 1. mO, 2. mOA,
and 3. mOD.
1. mO (x̂A, x̂D) → xO

∗ (the base operator model): its solution provides the optimal operational re-
sponse xO

∗ for a given fixed system design x̂D and fixed operational setting / attack plan x̂A. It is

22
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defined below. Note that for a fixed design x̂D, the Γfixed(x̂D) term is a constant.

[mO]

min
xO

Γtotal (x̂A, x̂D) = ρr · Γpenal + ρc · (Γfixed(x̂D) + Γproc + Γtrans) (4.1)

s.t. (5.1)

qSh,p ≤ capSh,p · min(x̂Sh ; 1− ϕ̂S
h ; 1− uf · ˆψS

h,p,f ∀f ∈ F ) ∀h ∈ LS , ∀p ∈ P (4.2)

qPi,b ≤ capPi,b · min(x̂Pi ; 1− ϕ̂P
i ; 1− uf · ˆψP

i,b,f ∀f ∈ F ) ∀i ∈ LP , ∀b ∈ B (4.3)

qWj,p ≤ capSh,p · min( ˆxWj ; 1− ϕ̂W
j ) ∀j ∈ LW , ∀p ∈ P (4.4)

qSh,p =
∑

i∈nout(h,p)

yh,i,p ∀h ∈ LS , ∀p ∈ P (4.5)

qWj,p =
∑

i∈nin(j,p)

yi,j,p =
∑

k∈nout(j,p)

yj,k,p ∀j ∈ Lw, ∀p ∈ P (4.6)

qCk,p =
∑

j∈nin(k,p)

yj,k,p ∀k ∈ Lc, ∀p ∈ P (4.7)

∑
b∈B

qPi,b · ginb,p ≤
∑

h∈nin(i,p)

yh,i,p ∀i ∈ LP , ∀p ∈ P (4.8)

∑
b∈B

qPi,b · goutb,p ≥
∑

j∈nout(i,p)

yi,j,p ∀i ∈ LP , ∀p ∈ P (4.9)

qCk,p + q̄Ck,p = demC
k,p ∀k ∈ LW , ∀p ∈ P (4.10)∑

p∈P (i,j)

yi,j,p · lsm ≤
∑

m∈M(i,j)

zi,j,m · lcp · (1− ˆτi,j,m) ∀(i, j) ∈ A (4.11)

y, z, q, q̄ ≥ 0 (4.14)

2. mOA (x̂D)→ xO
∗,xA

∗ (the bi-level attacker model): its solution provides the ”optimal” attack plan
xA

∗ (from the interdictor’s perspective) for a given fixed system design x̂D to cause as much harm to
the operational performance of the system. Of course, it assumes that the operator will react optimally
to the operational setting.

[mOA]
max
xA

min
xO

Γtotal (x̂D) = ρr · Γpenal + ρc · (Γfixed(x̂D) + Γproc + Γtrans) (4.1)

s.t. Operator constraints
(4.2) - (4.11)

Γattacks ≤ bdgatt (4.12)
y, z, q, q̄ ≥ 0 (4.14)
ϕ, ψ, τ ∈ {0, 1} (4.15)

3. mOD (x̂A)→ xO
∗,xD

∗ (the bi-level designer model): its solution provides the optimal system design
xD

∗ for a given operational setting x̂A. This model may not directly have a realistic implementation in
the real world as the previous ones do, as one cannot predict the operational setting before a system
is designed. It will however still be useful for solving mOAD later on.

[mOD]
min

xO ,xD

Γtotal (x̂A) = ρr · Γpenal + ρc · (Γfixed + Γproc + Γtrans) (4.1)

s.t. Operator constraints
(4.2) - (4.11)

Γdesign ≤ bdgdef (4.13)
y, z, q, q̄ ≥ 0 (4.14)
ϕ, ψ, τ ∈ {0, 1} (4.15)
x ∈ {0, 1} (4.16)



5.2. mOAD decomposition 24

5.2. mOAD decomposition
One can notice that for a given operational setting k: x̂Ak, there exists a corresponding operational
response x̂Ok forming a pair (x̂Ak, x̂Ok). Using this, we can decompose the mOAD into a relaxed
master problem mOAD-MASTER and an attacker sub-problem mOA-SUB. mOAD-MASTER returns
an optimal system design xD

∗ given a set of possible attacks plans, and the associated optimal attack-
response pair (xA

∗,xO
∗). mOA-SUB returns an optimal attack plan xA

∗, given a system design x̂D.
One could enumerate all possible attack plans give a system design and solve the master problem,
but this set would be too large. Instead, we can create a subset of possible attack plans X̂K

A =
{x̂A1, ..., x̂Ak}. The key to the solution approach is to iteratively solve the master and sub-problems:
solve the attacker sub-problem to update the set of possible attack plans, and then re-solve the master
problem for the optimal design. This process is repeated until a stopping criteria is met.

5.2.1. Iterative resolution algorithm
The procedure described above is turned into a more precisely defined iterative algorithm, the pseudo-
code of which is presented in 1. The algorithm initialisation requires the specification of the full input
data thatmOAD requires. It furthermore requires that a certain optimality gap ε where 0 ≤ ε < 1 and a
maximum number of iterationsKMAX be defined. An optimality gap larger than zero (but possible very
small) is advised to get the algorithm to terminate reliably. At each iteration, the attacker sub-problem
may update the upper bound to the optimal operational costs z∗ (zUP ) and the master problem provides
a lower bound (zLO). If the normalized difference between these bounds is less than ε, the optimality
condition is said to be met.

Algorithm 1 | mOAD iterative resolution

Input: Full mOAD input data, optimality tolerance ε, maximum iterations KMAX

Output: (xD
∗,xA

∗,xO
∗): optimal solutions

1 Initialize an empty set of attack vectors X̂0
A ← {∅}

2 Select an initial feasible operational setting x̂A0 (e.g., ”no attack / normal setting”)

3 Solve mOD(x̂A0) for optimal xD1 and z∗

4 Initialize zLO ← z∗, zUP ← +∞,K ← 1

5 while zUP − zLO > |zLO| · ε and K < KMAX do
6 Solve mOA-SUB(x̂DK ) for xAK and z

7 if z < zUP then
8 xD

∗ ← x̂DK ; xA
∗ ← xAK ; zUP ← z

9 end
10 Add xAK to the set of attacks: X̂K

A ← X̂K
A ∪ {xAK}

11 Solve mOAD-MASTER(X̂K
A ) for xDK+1 and z

12 if z > zLO then
13 xD

∗ ← xDK+1; zLO ← z
14 end
15 K ← K + 1

16 end
17 Solve mO(xD

∗,xA
∗) for xO

∗

18 return (xD
∗,xA

∗,xO
∗)

5.2.2. Master problem: mOAD-MASTER
The master problem mOAD-MASTER optimizes the system design xD

∗ given a subset of possible
disruption vectors x̂K

A . It takes as input a subset of all possible attack plans X̂K
A and optimises for

the optimal system design xD
∗, i.e. the design that minimizes the operational cost function given the

attacks that may happen from the set (the attack vectors x̂Ak are thus parameters inmOAD-MASTER,
and not decision variables). Apart from the system design variables, the other decision variables that
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Figure 5.1: Overview of mOAD resolution decomposition procedure. The master problem and the attacker sub-problem are
solved iteratively in a loop until the end criteria is met.

are included inmOAD-MASTER are Z, a single helper variable representing the total operational cost,
and the operational variables xO1, ...,xOK associated with each operational setting / attack vector in
X̂K

A . The design variables need to satisfy to the designer constraints. In our case the set of designer
constraints essentially boil down to satisfying to the design/defence budget constraint 4.13. In the
program definition below, we will write this more generally and concisely using constraint 5.3, where
XD denotes the set of all possible valid/feasible design vectors xD. Similarly, the operational variables
xO1, ...,xOK associated with each attack vector x̂A1, ..., x̂AK need to satisfy to all the operational
constraints 4.2 - 4.11. This implies that for each attack vector in X̂K

A , all the operator constraints
need to be added again, with the appropriate xD and x̂Ak. This is notated concisely using constraints
5.4, where XO(xD, x̂Ak) is the set of valid operational variables for design xD and setting x̂Ak. The
number of variables and constraints grows rapidly for each addition of x̂Ak to X̂K

A . Finally, constraints
5.5 ensure that the objective value of the master problem is not smaller than the operational cost
associated with each attack-operational response pair (x̂Ak, x̂Ok).

[mOAD-MASTER]
min

Z,xD ,xO1,...,xOK

Z (5.2)

s.t. xD ∈ XD (5.3)
xOk ∈ XO (xD, x̂Ak) ∀k ∈ K (5.4)

Z ≥ Γtotal(xD, x̂Ak,xOk) ∀k ∈ K (5.5)

5.3. Resolution of the attacker sub-problem: mOA-SUB
The decomposition algorithm described above implies that a method exists to solve the bi-level attacker
sub-problem mOA-SUB. A solution to the sub-prblem involving duality theory is proposed in this sub-
section. The use of the strong duality theorem in this solution implies that the base operator model
mO needs to be a continuous linear problem (LP). If the operator model was not an LP, solving the
sub-problem would require another decomposition, which would seriously affect the tractability of the
resolution.

5.3.1. Resolution approach overview
We employ a ”dualize-and-combine approach”. The first step in our approach to solve mOA-SUB is to
find the dual linear problem,mO-DUAL, of the base operator modelmO. According to the strong duality
theorem, if mO represents a feasible linear program with an optimal solution, its dual counterpart, mO-
DUAL, will also possess an optimal solution, with equivalent objective function values. Given that mO
is aimed at minimization, its dual, mO-DUAL, naturally is a maximization problem. This shift allows for
the the bi-level sub-problem mOA-SUB to be collapsed into a single-level quadratic problem dubbed
mOA-MIQP. With a predetermined system design vector xD, solving mOA-MIQP provides insight
into the ”optimal” attack plan xA

∗ — identifying attacks that inflict the most damage on the operator’s
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performance function within the given system design. While solving the dual problem does not directly
yield solutions to its primal counterpart, solving mO with the designated system design xD and the
identified optimal attack plan xA

∗ allows for deriving the corresponding optimal operational response
xO

∗. As such, we can solve the sub-problem by redefining mOA-SUB := mOA-MIQP.

5.3.2. Dualization of the operator model: mO-DUAL
The linear operator programmO has a dual problemmO-DUAL. Let xΩ be the vector of dual operator
variables, we can define mO-DUAL as follows:

[mO-DUAL]
max
xΩ

∆oper,dual (x̂A, x̂D) (5.15)

s.t. υS
h,p + νSh,p +

∑
f∈F

γS
h,p,f − αS

h,p ≤ cpr,Sh,p · ρ
c h ∈ LS , ∀p ∈ P (5.6)

υP
i,b + νPi,b +

∑
f∈F

γP
i,b,f −

∑
p∈P

(ginb,p · bini,p − goutb,p · bouti,p ) ≤ cpr,Pi,b · ρc i ∈ LP , ∀b ∈ B (5.7)

υW
j,p + νWj,p − αW,in

j,p − αW,out
j,p ≤ cpr,Wj,p · ρc j ∈ LW , ∀p ∈ P (5.8)

δCk,p − αC
k,p ≤ 0 k ∈ LC , ∀p ∈ P (5.9)

δCk,p ≤ crv,Ck,p · ρ
r k ∈ LC , ∀p ∈ P (5.10)

αS
i,p + αW,in

j,p + αW,out
i,p + αC

j,p + βin
i,p + βout

i,p + lcp · µi,j ≤ 0 (i, j) ∈ A, ∀p ∈ P (i, j) (5.11)

− lsm · (1− ˆτi,j,m) · µi,j ≤ ctri,j,m · ρc (i, j) ∈ A, ∀m ∈M(i, j) (5.12)
υ, ν, γ, β, µ ≤ 0 (5.13)
α, δ ∈ R (5.14)

Each constraint in the primal is associated with a decision variable in the dual, an overview of which
is found in table 5.1. Each variable in the primal is associated with a constraint in the dual, see the
mO-DUAL definition and table 5.2 below. The objective of mO-DUAL is defined as in 5.15 and reuses
the constant Γfixed(x̂D) term from mO.

∆oper,dual (x̂A, x̂D) = Γfixed(x̂D) + ∆cap,S(x̂A, x̂D) + ∆cap,P (x̂A, x̂D)

+ ∆cap,W (x̂A, x̂D) + ∆dem (5.15)

∆cap,S(x̂A, x̂D) =
∑

h∈LS

∑
p∈P

capSh,p · (x̂Sh · υ
S
h,p + (1− ϕ̂S

h) · ν
S
h,p

+
∑
f∈F

(1− uf · ˆψS
h,p,f ) · γ

S
h,p,f )

∆cap,P (x̂A, x̂D) =
∑
i∈LP

∑
b∈B

capPi,b · (x̂Pi · υ
P
i,b + (1− ϕ̂P

i ) · ν
P
i,b

+
∑
f∈F

(1− uf · ˆψP
i,b,f ) · γ

P
i,b,f )

∆cap,W (x̂A, x̂D) =
∑

j∈LW

∑
p∈P

capWj,p · ( ˆxWj · υ
W
j,p + (1− ϕ̂W

j ) · νWj,p)

∆dem =
∑

k∈LC

∑
p∈P

demC
k,p · δCk,p

5.3.3. Single-level operator-attacker model: mOA-MIQP
mO-DUAL defined above will not be solved directly, but will be used to constructmOA-MIQP. By replac-
ing the inner (minimization) problem of the bi-levelmOA by its dual (maximization) problemmO-DUAL,
one can create a single-level maximization problem mOA-MIQP. Note that the x̂A, x̂D parameters in
mO-DUAL, become decision variables xA,xD in mOA-MIQP. This also means that mOA-MIQP is a
quadratic, i.e. a non-linear, program (MIQP). Its quadratic terms may be linearized, but modern solvers
can handle this type of MIQP relatively efficiently. See table 28 for an overview of the models presented
in the paper.
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Table 5.1: mO-DUAL dual variable definitions.

Constraints mO Description Dual variables mO-DUAL
4.2 Supplier capacity υS

h,p, νSh,p, γS
h,p,f

4.3 Producer capacity υP
i,b, νPi,b, γP

i,b,f

4.4 Warehouse capacity υW
j,p, νWj,p

4.5 Supplier flow balance outgoing αS
h,p

4.6 Warehouse flow balance αW,in
j,p , αW,out

j,p

4.7 Customer flow balance incoming αC
k,p

4.8 Production BOM balance incoming flows βP,in
i,p

4.9 Production BOM balance outgoing flows βP,out
i,p

4.10 Demand and delivery balance δCk,p

4.11 Transport load µi,j

Table 5.2: mO-DUAL dual constraints definitions.

Primal variables mO Sets Dual constraints mO-DUAL
qSh,p ∀h ∈ LS , ∀p ∈ P 5.6
qPi,b ∀i ∈ LP , ∀b ∈ B 5.7
qWj,p ∀j ∈ LW , ∀p ∈ P 5.8
qCk,p ∀k ∈ LC , ∀p ∈ P 5.9
q̄Ck,p ∀k ∈ LC , ∀p ∈ P 5.10
yi,j,p ∀(i, j) ∈ A, ∀p ∈ P (i, j) 5.11
zi,j,m ∀(i, j) ∈ A, ∀p ∈M(i, j) 5.12

mOA-MIQP (x̂D)→ xΩ
∗,xA

∗ is defined as follows:

[mOA-MIQP]
max
xΩ,xA

∆oper,dual (x̂D) (5.15)

s.t. υS
h,p + νSh,p +

∑
f∈F

γS
h,p,f − αS

h,p ≤ cpr,Sh,p · ρ
c h ∈ LS , ∀p ∈ P (5.6)

υP
i,b + νPi,b +

∑
f∈F

γP
i,b,f −

∑
p∈P

(ginb,p · bini,p − goutb,p · bouti,p ) ≤ cpr,Pi,b · ρc i ∈ LP , ∀b ∈ B (5.7)

υW
j,p + νWj,p − αW,in

j,p − αW,out
j,p ≤ cpr,Wj,p · ρc j ∈ LW , ∀p ∈ P (5.8)

δCk,p − αC
k,p ≤ 0 k ∈ LC , ∀p ∈ P (5.9)

δCk,p ≤ crv,Ck,p · ρ
r k ∈ LC , ∀p ∈ P (5.10)

αS
i,p + αW,in

j,p + αW,out
i,p + αC

j,p + βin
i,p + βout

i,p + lcp · µi,j ≤ 0 (i, j) ∈ A, ∀p ∈ P (i, j) (5.11)

− lsm · (1− τi,j,m) · µi,j ≤ ctri,j,m · ρc (i, j) ∈ A, ∀m ∈M(i, j) (5.12)

Γattacks ≤ bdgatt (4.12)

υ, ν, γ, β, µ ≤ 0 (5.13)
α, δ R (5.14)
ϕ, ψ, τ ∈ {0, 1} (4.15)

5.4. Overall resolution approach
The general resolution approach is outlined in Algorithm ??. It returns the optimal values for oper-
ational (xO), attacker (xA), and defender (xD) variables. The algorithm demonstrates that the full
tri-level model (mOAD) is only required when both attacker (bdgATT ) and defender (bdgDEF ) budgets
are nonzero. If either budget is zero, only the relevant sub-model needs to be solved, providing a
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simple optimization. An overview of the different models presented in this section is given in table 28.

Algorithm 2 | General resolution approach
Input: bdgATT , bdgDEF , x̂A (optional), x̂D (optional)
Output: xO,xA,xD

19 if bdgATT ≤ 0 then
20 if bdgDEF ≤ 0 then
21 Solve mO(x̂A, x̂D) for xO

∗ xO ← xO
∗

22 else
23 Solve mOD(x̂A) for (xO

∗,xD
∗) (xO,xD)← (xO

∗,xD
∗)

24 else
25 if bdgDEF ≤ 0 then
26 Solve mOA-MIQP(x̂D) for (xO,dual

∗,xA
∗) Solve mO(x̂D,xA

∗) for xO
∗ (xO,xA) ←

(xO
∗,xA

∗)
27 else
28 Solve mOAD for (xO

∗,xA
∗,xD

∗) using algorithm 1 (xO,xA,xD)← (xO
∗,xA

∗,xD
∗)



6
Results

This section presents the results of our study, divided into two main subsections. The first involves an
exploration of the model’s computational performance, and the second delves into a real-world case
study: climate resilience of pharmaceutical company.

6.1. Computational performance
We examine the computational performance ofmOAD by conducting multiple experiments with various
system instances. These instances are defined by different combinations of system attributes to explore
their impact on performance and identify the limits of tractability.

6.1.1. Instance definition
We define four main attributes according to which we define our supply chain run instances. The first
attribute is the layout of the value chain (or production graph), which refers to the number of steps and
interconnections within the production graph. The second attribute is the decision network size, which
encompasses the number of customers and facilities, such as suppliers, producers, and warehouses,
involved in model’s system design and operational decisions. The third is the attack budget bdgATT ,
which are the varying amounts of resources used by the attacker component of the model to cause
system disruptions. Lastly, the design / defense budget bdgDEF involves varying levels of initial invest-
ment for system design and expansion. The systems for these experiments were generated randomly
(random locations, commodity/production step/location names, demand, and supply capacities) but
remained consistent across the runs.

Network size and complexity

The value chain of the supply chain is modeled through the production graph, consisting of CONVERT
nodes for each bill of material/production step, and SOURCE, STORE, and SINK nodes for each commodity.
Complexity arises not only from the number of steps but also from their interconnections and the various
paths commodity flows can take. A previously noted, the production graph does not represent actual
locations but abstract steps that can occur at any number of locations. This distinction between network
complexity and size is important in our experiments. We define the four different value chain layouts,
figure 6.1 depicts their layouts.

Value chain layout VC-Simple involves single production step with two input raw materials and one
output final product, e.g. a simple food production process. VC-LinSingl represents a linear value
chain with multiple production steps, two input raw materials, and one output final product, e.g. a
basic manufacturing process. VC-LinMulti involves multiple parallel linear chains producing multiple
final products, such as in a diversified manufacturing supply chain. VC-Complex is a complex chain
with many input raw materials and production steps, and four output finished goods. This models a
complex, industrial business such as an automotive manufacturer.

We vary the size of the decision network, which impacts both the number of possible system design

29
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configurations and operational settings/disruptions by the interdictor. The mathematical tri-level model
does not distinguish between current and potential future locations. Three levels of decision network
sizes are defined: Small, for a small, generally local supply chain with only a handful suppliers, produc-
ers, warehouses, and customers/demand points. Medium is an intermediate-sized decision network.
Large has numerous (potential) facilities and demand points, i.e. a global-level supply chain.

(a) VC-Simple (b) VC-LinSingl

(c) VC-LinMulti (d) VC-Complex

Figure 6.1: Production graphs of the different value chains.

Table 6.1: Instance definition - Value chains and decision network sizes

Value chain # Production steps # Commodities Size # Suppliers # Producers # Warehouses # Customers
VC-Simple 1 3 Small 10 5 5 10
VC-LinSingl 5 8 Medium 30 15 15 50
VC-LinMulti 15 24 Large 50 25 25 200
VC-Complex 43 74

Attack and system design budgets

We conduct separate runs for different combinations of attack and defense/design budgets, represent-
ing resources for causing disruptions and for designing/expanding the system to be more resilient
and efficient. These budgets are generally expressed in monetary units, with the exact values being
less relevant than their relative impact. For disruptions, we first define four disruption levels f ∈ F :
Minor, Heavy, Major and Fatal. These disruption levels correspond to varying (10, 20, 50 and 100%)
reductions in process capacity at a location, and have increasing attack costs. The attack budgets
determine how many simultaneous disruptions can be caused (see Table 6.2). Similarly, defense bud-
gets determine the number of new facilities that can be established. By convention, existing facilities in
the network have their initial costs set to zero. Introducing a new supplier incurs a relatively low initial
cost, whereas establishing a new producer entails a significantly higher expense. The cost for a new
warehouse falls somewhere in between. the relation between bdgDEF and the cost of establishing a
new facility is shown in table 6.2.
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Table 6.2: Instance definition - Attack and design budgets

Disruption level New facilities
bdgATT Minor Heavy Major Fatal Link mode bdgDEF # Suppliers # Producers # Warehouses
None 0 0 0 0 0 None 0 0 0
Mild 1 0 0 0 1 Minimal 1 0 0
Moderate 25 5 1 0 2 Moderate 10 0 1
Severe 50 12 2 0 4 Extensive 100 1 10
Catastrophic 200 50 8 2 6 Global 500 5 50

6.1.2. Results - Location-bound process disruptions
The following section presents the results and analysis of our computational experiments focusing on
location-bound process disruptions, while neglecting link-based transport mode attacks. All compu-
tations were performed using the Gurobi solver with Python bindings on a core i5 processor. Tables
6.3 to 6.6 display the results. Each run was constrained by a time limit of 90 minutes (5400 seconds).
We report the solve time in seconds and the remaining gap between the upper bound of the attacker
sub-problem and the lower bound of the master problem, denoted as zUP and zLO respectively. The
minimum gap ε was set to 10−5. Instances with non-negligible gaps are highlighted in bold. Addition-
ally, we report Delivery, a resilience metric indicating the percentage of total demand delivered, as a
sanity check.

Figure 6.2: Performance grid of bdgATT and bdgDEF , and network size and value chain complexity versus average solve
time.

Regarding the computational performance ofmOAD, we find that the decision network size significantly
impacts solve time. This is predictable, as a larger decision network involves more system design de-
cision variables (xD), which results in a larger mOAD-MASTER, the performance bottleneck of the
algorithm. Interestingly, the complexity of the value chain and its production graph does not directly
correlate with solve time. While more production steps introduce more operational setting decision
variables (xA), this does not necessarily lead to longer solve times. Instead, complex value chains
with more interconnections between steps are likely easier to disrupt due to the higher number of com-
mon processes involving large parts of the system. Consequently, such systems are more vulnerable,
allowing the solver to find an optimal attack solution more quickly. The model performs worse when
multiple disconnected graphs are involved, such as in the case of VC-LinMulti.

The size of bdgATT and bdgDEF , relative to the available disruption and system design costs, also
affects solve time. Generally, larger budgets result in longer solve times because problems with larger
budgets are less constrained in xA and xD, leading to a wider solution space. Conversely, lower
budgets cause the model to discard solutions more quickly. There is also an interplay between bdgATT

and bdgDEF regarding solve time, as seen in figure 6.2. When both are large, the solution space
grows non-linearly. Specifically, setting either budget to zero simplifies the tri-levelmOAD into the more
straightforward mO, mOD, and mOA-MIQP problems, which are solvable almost instantly, typically in
less than a second. Our findings indicate thatmOAD’s solve time is most sensitive to decision network
size, compared to value chain complexity. Overall, the computational experiments demonstrate that
the model is solvable within a reasonable time frame for a wide range of realistically sized cases.

6.1.3. Deterministic attacker sub-problem versus simulation
An interesting experiment to further demonstrate the model’s computational capability is to compare
it to a simulation approach. The attacker sub-problem mOA-MIQP returns the optimal (i.e., worst)
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Table 6.3: Computational results for VC-Simple

Network size Small Medium Large

bdgDEF None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

bdgATT Results

None
Solve time [s] 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.10 0.42 0.12 0.04 0.06 0.39 2.06 2.62
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.03 0.18 0.24 0.10 0.08 0.13 1.12 3.78 5.59 0.60 0.53 2.20 71.39 3.88 4.43
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00

Moderate
Solve time [s] 0.03 0.15 0.30 0.12 0.12 0.12 0.59 41.98 261.42 0.81 0.47 2.25 392.79 3.90 4.44
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Severe
Solve time [s] 0.04 0.14 0.26 0.19 0.12 0.12 0.63 42.23 263.82 0.73 0.46 2.25 382.06 4.05 4.70
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Catastrophic
Solve time [s] 0.03 0.24 0.24 2.49 5.34 0.13 1.63 1.49 5400.00 1787.82 0.53 5.34 5.88 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 173.64 0.00 0.00 0.00 0.00 174.23 0.58
Delivered [%] 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 100.00 0.00 0.00 0.00 100.00 100.00

Table 6.4: Computational results for VC-LinSingl

Network size Small Medium Large

bdgDEF None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

bdgATT Results

None
Solve time [s] 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.22 0.32 0.14 0.06 0.07 0.29 1.43 1.77
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.06 0.53 0.77 0.57 0.69 0.21 1.11 4.41 12.80 9.48 0.73 2.96 1023.97 586.64 387.14
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00

Moderate
Solve time [s] 0.06 0.41 0.62 2.60 0.59 0.29 1.15 5.86 84.93 21.81 0.61 3.00 57.81 5400.00 5190.04
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.96 0.21
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Severe
Solve time [s] 0.05 0.24 0.55 1.38 0.81 0.20 0.88 5.66 11.84 11.38 1.62 4.60 107.02 2132.22 5283.48
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Catastrophic
Solve time [s] 0.08 0.28 0.73 3.70 4.35 0.27 1.26 6.04 2299.32 5400.00 0.68 3.10 7.71 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 102.87 0.00 0.00 0.00 101.71 103.23
Delivered [%] 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 100.00

disruption set, x∗
A, given a system design, xD, using deterministic optimization. We can define mOA-

SIMUL, another version of the attacker sub-problem that employs Monte Carlo simulation to identify
suitable attacks given an attack budget bdgATT . mOA-SIMUL takes a system design, xD, as input and
generates a set of N randomly generated valid operational setting vectors, xk

A. It then measures their
effect on system performance by solving mO(x̂A

k, x̂D).

Figure 6.3: Objective value of optimal mOA-MIQP disruption x∗
A (orange line) versus 200 random attacks, per budget (blue

pointcloud).

Figure 6.3 presents the results of running themOA-MIQP versusmOA-SIMUL experiment on a random
MEDIUM-sized supply chain for various attack budgets, withmOA-SIMUL using 200 random attacks per
bdgATT . For most budgets, mOA-MIQP is solved in under a second. Running numerous instances of
mO is significantly more resource-intensive, as evidenced by Figure 6.3, wheremOA-SIMUL struggles
to find attacks that are anywhere near optimal. The higher the bdgATT , and thus the larger the solution
space, the more simulations are required to find optimal attacks. This highlights why a deterministic
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Table 6.5: Computational results for VC-LinMulti

Network size Small Medium Large

bdgDEF None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

bdgATT Results

None
Solve time [s] 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.11 0.17 1.22 0.09 0.12 0.63 2.44 2.73
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.10 0.47 0.49 0.42 0.50 0.32 1.42 6.73 62.16 2885.99 2.37 10.10 594.24 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.73 10.98
Delivered [%] 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 100.00 96.67 96.67 96.67 100.00 100.00

Moderate
Solve time [s] 0.22 0.49 0.47 0.75 0.49 0.42 1.59 65.08 3977.50 5357.82 2.24 16.78 4290.81 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.08 66.13
Delivered [%] 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 83.33 100.00 80.00 80.00 86.67 93.33 100.00

Severe
Solve time [s] 0.22 0.58 0.61 0.80 0.54 0.39 2.65 11.62 568.13 1077.06 1.24 15.65 92.26 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.42 108.72
Delivered [%] 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 100.00 66.67 66.67 66.67 100.00 100.00

Catastrophic
Solve time [s] 0.31 0.93 1.47 2.39 1.42 0.54 5.25 5.13 195.72 5400.00 1.36 14.35 161.47 2857.83 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.29 0.00 0.00 0.00 0.00 221.10
Delivered [%] 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 100.00 33.33 33.33 33.33 33.33 100.00

Table 6.6: Computational results for VC-Complex

Network size Small Medium Large

bdgDEF None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

bdgATT Results

None
Solve time [s] 0.02 0.01 0.03 0.02 0.03 0.09 0.26 0.10 0.08 0.15 0.17 0.17 0.34 0.34 0.48
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.55 2.27 2.04 2.48 2.70 1.24 4.10 4.30 3.62 3.58 2.06 9.39 24.80 77.03 1672.71
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

Moderate
Solve time [s] 0.67 2.28 2.36 2.44 2.32 0.99 4.39 7.66 4.41 4.32 3.35 10.88 24.99 200.51 4175.57
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Severe
Solve time [s] 0.44 2.16 2.19 1.96 2.05 0.88 6.42 6.60 3.62 3.59 2.50 11.37 40.83 166.07 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Catastrophic
Solve time [s] 0.55 3.82 3.16 3.19 3.22 0.80 3.51 3.63 3.60 3.54 2.15 9.74 17.85 33.09 92.05
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

approach for identifying critical aspects of a supply chain network is better suited than a simulation
approach.

6.2. A case study: climate resilience of a global pharmaceutical
company

This case study revolves around an international pharmaceutical company. While the data has been
anonymized and slightly randomized, the production steps remain realistic, and the facility locations
are approximate. Expansion plans are invented to provide a practical application of our resilient supply
chain model.

6.2.1. Case study description
The pharmaceutical company produces three drugs: ProductA, ProductB, and ProductC. These prod-
ucts are primarily sold in the US and Europe, with additional demand in Latin America, South Africa, and
the Asia-Pacific region. The production process includes drug substance production, vial filling, and
packaging. Each drug substance is produced from raw materials supplied by various biological suppli-
ers. ProductA and ProductB are filled into vials with varying contents: 10, 20, and 30 mg for ProductA,
and 5, 10, 15, 20, and 25 mg for ProductB. The filled vials are then packed into units containing 1, 2,
5, 6, or 10 vials, which are subsequently distributed to customers worldwide.

Figure 6.4: Diagram of production steps.

Figure 6.4 presents a simplified version of the company’s value chain. This simplified representation is
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Figure 6.5: Commodities.

expanded to depict the various product combinations in Figure 6.5, illustrating some of the commodities
involved, including raw materials, intermediate, and final goods. The production graph for this system,
shown in Figure 6.6, was constructed as described in section 4.1. It displays, from left to right, the
array of SOURCE nodes for different raw materials, CONVERT nodes for substance production, filling, and
packaging, and STORE and SINK nodes for the final products. This expanded value chain reveals the
inherent complexity of the production process.

Figure 6.6: Production graph of the pharmaceutical company.

Current network

The company’s current supply chain comprises suppliers, production sites, warehouses, and demand
cities. There are four production facilities: MU-UnitedStates, MU-Belgium, MU-Italy, and MU-Ireland.
These facilities differ in the production steps they handle and the products they produce. Each facility
manages various production resources, including substance production units, filling units, and packag-
ing units. For instance, the MU-Belgium facility has multiple filling lines, or machines: TL, Syntegon,
and Bosch. Packs of 5 and 10 vials are produced exclusively in the US, while packs of 1 and 6 vials
are produced in Europe, and packs of 2 vials are produced in both regions. Figure 6.7 details the
production resources at each facility.

The distribution network includes approximately 30 warehouses worldwide, connected to 189 demand
cities. Each demand point may require different sub-products. The transportation modes defined on
links between suppliers, producers, and warehouses are truck, rail, and sea (where logical), while
connection to customers is primarily through LTLs.

Network expansion

The business aims to expand the current system by incorporating potential new locations to handle
increased demand, particularly from Asia. These new locations are also included in the Supply Chain
Decision Network. Potential new production sites have been identified in Germany, India, Indonesia,
Egypt, and Brazil, each with varying production resources and capacities. Additionally, ten new raw
material suppliers and 30 potential warehouse locations have been identified, each with different in-
vestment costs. Figure 6.8 shows the current locations in color and potential locations in grey.
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Figure 6.7: Current production resources.

Figure 6.8: Location map of the case study.

6.2.2. Determining attack costs: A climate resilience approach
Our mathematical model introduces the concepts of attacker budget bdgATT and attacker costs cATT

. ,
representing the resources consumed by the interdictor in their optimisation of most disruptive opera-
tional setting. A deliberate design choice of the model is that users are responsible for defining these
attack costs. In this case study, we will however provide an example based on climate hazards and
geopolitical risks. To investigate the impact of resilience to climate risks, we associate attack costs with
the risk of being impacted by various hazards. Each location i is assigned a risk score θi,r between
0 and 1 for each hazard r ∈ R. A risk-score of 0 indicates that the location should not realistically be
affected by hazard r before 2050 while a score of 1 indicates a very high likelihood of being affected by
the hazard before 2050. The attack cost cATT

i,f for disrupting facility i by disruption level f is defined by
Equation 6.1. Disruption levels are defined in table 6.7 and range from minimal impact (-10% capacity)
to total disruption.

cATT
i,f = kf (1−

∑
r∈R

Kr,f · θi,r) (6.1)

In this equation, θi,r represents the susceptibility of facility i to hazard r. Kr,f relates hazard r to dis-
ruption level f , with 0 ≤ Kr,f ≤ 0.05. As such, we can model the different impacts different hazards
may have. An earthquake is more likely to cause a FATAL disruption while heat may cause MINOR to
HEAVY ones. kf is the level bias, a constant specific to the disruption level. We can assume for example
that a MINOR disruption is more likely to occur than a FATAL one. Figure 6.9 shows the risk scores for the
drought hazard, compiled using the femanrinationalriskindexdataandinternalclimateriskmodelsfromclimaterhdhv.Theclimatehazarddataisapproximate; thegoalisnottoprovidethemostaccuratedataonclimatehazards, butrathertodemonstratehowusersofthemodelcandefinetheirattackcostweightsandincorporateclimateresilienceinapracticalexample.
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Table 6.7: Climate hazard and disruption level definitions

Disruption level f Impact uf [%] Level bias kf Risks Kr,f Heat Cold Rain Snow TropicalStorm Wildfire AirQuality Flood Drought Earthquake HumanConflict

MINOR 10 1 0.020 0.020 0.020 0.020 0.005 0.005 0.010 0.005 0.020 0.005 0.005
HEAVY 20 4 0.020 0.020 0.020 0.020 0.010 0.010 0.005 0.010 0.020 0.010 0.010
MAJOR 50 25 0.010 0.010 0.010 0.010 0.050 0.050 0.005 0.050 0.010 0.050 0.050
FATAL 100 100 0.005 0.005 0.005 0.005 0.050 0.050 0.001 0.050 0.010 0.050 0.050

Figure 6.9: Map showing the climate risk factors for ”Drought” for the relevant case study locations.

6.2.3. Use case analyses
We will now explore how the model can be utilized for resilient supply chain design and operations. We
identify four main use cases for which this model is particularly relevant:

UC1 Operating an efficient supply chain.
UC2 Identifying vulnerable parts of a supply chain.
UC3 Designing / Expanding an efficient supply chain.
UC4 Designing / Expanding an efficient supply chain assuming disruptions may occur.

These use cases are common in supply chain management. UC1 and UC3 involve standard supply
chain operations and design. While these aren’t the primary focus of our model, they can still be
effectively addressed within the same framework. UC2 and UC4, however, emphasize resilience, with
UC4 allowing us to explore the trade-offs between efficiency and resilience in supply chain design. The
different use cases can be addressed usingmOAD by defining different values for bdgATT and bdgDEF .
UC1 involves setting both bdgATT and bdgDEF to 0. SolvingmOAD with these budgets is equivalent to
solvingmO. UC2 involves setting bdgATT > 0 and bdgDEF to 0, equivalent to solvingmOA-MIQP. UC3
involves setting bdgATT to 0 and bdgDEF > 0, which boils down to solving mOD. Finally, UC4 involves
setting both bdgATT and bdgDEF > 0. Here, we solve the iterative tri-level mOAD.

UC1 Operating an efficient supply chain

This use case is illustrated in Figures 6.10 and 6.11, which show the result of mO: optimal operations
of the current supply chain without disruptions. mO essentially solves a multi-commodity flow problem,
where commodities flow from suppliers to demand cities, being transformed at production facilities. In
Figure 6.10, facilities are represented as nodes, and commodity flows are shown as links between
nodes, with thickness proportional to flow volume. For producers, the facilities are divided into main
production processes (drug substance, filling, packaging) to better illustrate intra-facility flows. Each
figure displays the values of the objective function terms: operational costs Γcost and penalties Γpenal,
weighted by ρc and ρr. In the base case, not all demand can be fulfilled yet.
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Figure 6.10: Flow diagram, bdgATT = 0, bdgDEF = 0.

Figure 6.11: Map, bdgATT = 0, bdgDEF = 0.

UC2 Identifying vulnerable parts of a supply chain

This use case is demonstrated in Figures 6.12 and 6.13, showing the impact of the worst-case com-
bination of simultaneous disruptions with bdgATT = 1 (minor disruption) and bdgATT = 100 (major
disruption or multiple smaller disruptions), respectively. The effect of the bdgATT = 1 scenario is rela-
tively negligible, while the bdgATT = 100 scenario causes almost total system disablement. Attacked
locations are marked in black. Table 6.8 lists the disrupted facilities at various disruption levels for
different bdgATT values, with bdgDEF = 0. It is noteworthy that for different attack budgets, the critical
facilities identified change considerably, indicating that supply chain vulnerabilities are often due to a
combination of multiple weak links rather than a single weak point.
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Table 6.8: Disrupted facilities, by bdgATT , and with bdgDEF = 0.

Facility bdgATT 0 1 5 25 50 100 200 300

MU Belgium PACKAGING MINOR MINOR HEAVY MAJOR FATAL
MU UnitedStates DRUGPROD MINOR MINOR HEAVY FATAL FATAL
MU UnitedStates PACKAGING HEAVY MAJOR MAJOR FATAL
SU CellBoost US MINOR MINOR
MU Ireland DRUGPROD MINOR HEAVY MAJOR FATAL
WH Germany GRIESHEIM MINOR MINOR
WH NETHERLANDS Nijmegen MINOR
MU Italy PACKAGING FATAL

Figure 6.12: Flow diagram, bdgATT = 1, bdgDEF = 0.

Figure 6.13: Flow diagram, bdgATT = 100, bdgDEF = 0.

UC3 - Designing / Expanding an efficient supply chain.

Strategic decisions are involved for the first time in this use case, addressing system design decisions.
By solving mOD using an initial/expansion investment budget, the model outputs the optimal system
design for best system performance. Given a lower budget, the model may only establish a new sup-
plier to improve operational performance, as shown in Figure 6.14. With a much higher budget, the
model decides to open various new facilities, such as new producers and new warehouses, to lower
operational transportation costs, as in Figure 6.15. The model makes no distinction between new and
current locations, with current locations being distinguished solely by their nil initial cost. The model
may also decide to stop using currently open locations if their advantages do not outweigh their fixed
costs, such as rent and staff. On the flow diagrams, new locations in the system design are marked in
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magenta, while locations that were open but not included anymore are marked in blue. Table 6.9 shows
the new locations established for various bdgDEF and, similarly to the previous attack table, whether a
certain location is included or not changes considerably with each different budget.

Table 6.9: Newly included facilities in the design, by bdgDEF , and with bdgATT = 0..

New facility 0 10 000 20 000 5 000 000 10 000 000 20 000 000 50 000 000 100 000 000 200 000 000

SU CellBoost US TEXAS ✓ ✓ ✓
SU CellBoost United Kingdom ✓ ✓ ✓
WH USA LEWISBERRY, PENSILVANIA ✓ ✓ ✓ ✓ ✓
WH Australia PERTH ✓ ✓ ✓
WH Canada CALGARY ✓ ✓
WH Germany KARLSRUHE ✓
MU Brazil ✓ ✓ ✓
MU Germany PACKAGING ✓ ✓
WH Brazil VINHEDO ✓ ✓
SU CellBoost Singapore ✓
MU India ✓
MU Egypt ✓

Figure 6.14: Flow diagram, bdgATT = 0, bdgDEF = 10000.

Figure 6.15: Flow diagram, bdgATT = 0, bdgDEF = 100000000.

UC4 - Expanding an efficient supply chain assuming disruptions may occur

In this use case, we solve the full tri-level mOAD, considering operational settings and potential dis-
ruptions. Figures 6.17 and 6.18 show the results of optimal system designs for maximum system
performance, anticipating worst-case disruptions. This trade-off between efficiency and resiliency is
crucial in strategic system design. By running multiple scenarios with various combinations of bdgATT

and bdgDEF , we visualize the resilience of the system using resilience grids. These grids plot the bud-
gets versus system performance, objective function value, or raw delivery satisfaction, as shown in
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Figure 6.2. Cells in dark purple are instances that couldn’t be solved with a optimality gap lower than
1% within the cut-off time of 90 minutes. Overall, these various runs highlight the model’s capability to
handle multiple types of strategies in response to disruptions. It can handle strategic decisions, such as
multi-sourcing and capacity increases through the establishment of new facilities, as well as contingent
decisions, like rerouting commodity flows during disruptions. This adaptability leads to more resilient
supply chains capable of maintaining efficiency under varying operational settings.

Figure 6.16: Resilience grids of bdgATT and bdgDEF versus the objective value and the demand delivered [%].

Figure 6.17: Flow diagram, bdgATT = 50, bdgDEF = 5000000.

Figure 6.18: Flow diagram, bdgATT = 100, bdgDEF = 100000000.

6.2.4. Adjusting system performance weights
To enhance flexibility, the proposed system performance function, which serves as the objective function
of mOAD, includes weights ρc and ρr for the two main cost terms: operational costs Γcosts and penalty
costs Γpenal (where ρc + ρr = 1). This allows model users to determine the emphasis placed on
optimizing system resilience versus operational costs. Up to this point, every model run in this paper
has used ρc = ρr = 0.5. We will now perform several runs varying ρr between 0 and 1, focusing on the
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case where bdgATT = 50 and bdgDEF = 100000000. As anticipated, solutions with a low value of ρr will
prioritize reducing operational costs over fulfilling demand, resulting in a higher tolerance for penalties.
When ρr = 0%, no demand is met, whereas when ρr = 100%, all demand is fulfilled regardless of
the cost. The optimal balance lies somewhere in between these extremes, and it is up to the user to
determine a suitable middle ground for their specific needs. Of course, the model has been set up with
this particular formulation of the performance cost function, but it can be adapted for other definitions
of system performance.

Figure 6.19: Performance function term values and solve time for different values of ρr .
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Potential model extensions

7.1. Trans-shipments and multi-modal trips
When incidents like the Ever Given getting stuck in the Suez Canal or a ship colliding with a bridge
in the Port of Baltimore occur, entire shipping lanes can grind to a halt, disrupting all supply chains
reliant upon them. We can currently simulate such disruptions using the link attack variables τi,j,m
within the operational setting vector xA. However, a more practical approach involves modeling these
bottlenecks through transshipment nodes, which may model ports and canals.

In our production graph, we introduce a new category of STORE nodes specifically designed for this
purpose. These transshipment nodes can be targeted by the attacker model like any other facility,
thereby disrupting all flows passing through them in a single event. This approach enables to identify
crucial and vulnerable nodes in the network, and also the modeling of truly multi-modal trips, where
journeys involve multiple modes of transportation (e.g., sea and truck).

Figure 7.1: Example Production Graph with additional Transshipment node to model ports, canals, etc.

7.2. Going tactical: incorporating a temporal component
Up until now, our focus has predominantly been on the strategic level of supply chain resilience, ana-
lyzing the spatial dynamics of supplier networks, production facilities, and distribution channels. The
model’s decisions involved regard system design and aggregate network flows over a single, ”longer”
time-period. and does not involve a temporal dimension. However, to truly understand and enhance
resilience, we must incorporate a temporal dimension into our analysis. A significant improvement to
our study of resilience is the incorporation of a time component. Supplier orders, production processes,
and transportation of goods all take time, and some commodities may have expiration dates or late-
delivery penalties that affect the system’s performance. Transforming our purely spatial supply chain
conceptual model into a spatial-temporal one and adapting the mathematical model accordingly is an
important topic for further research.
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Figure 7.2: Incorporating a temporal component: a time-space diagram as conceptual model.

In Figure 7.2, we propose a time-space representation of the multi-commodity flow supply chain model
as a starting point. This model includes different locations and the links between them, and also mul-
tiple time-steps. Links connect two time-space nodes and can represent commodity transport arcs
between different locations (in black) and process arcs within a location (in blue), which may span mul-
tiple time-steps. Process arcs could represent production processes as shown, or the supply or storage
of commodities that require some minimal process durations, and these arcs may have some storage
capacity. The mathematical formulation should ensure that these minimal durations are respected. Fig-
ure 7.2 illustrates two examples of commodity flows within the time-space decision network. The left
side presents a solution under normal conditions, while the right side depicts a solution in a disrupted
scenario. Disruptions will have a duration, adding a temporal impact on operational responses in the
form of delays and expired deliveries (dotted arcs). The disrupted scenario shows how Supplier 1 ex-
periences a disruption between time-steps t5 and t6, leading to a supply delay. This delay propagates
to Producer 3 at time-step t8, ultimately causing the delivery of final goods to customers to be delayed.
Consequently, some deliveries expire and are redirected to a dummy non-delivery node at t14. Pe-
nalizing late or expired deliveries will surely require non-continuous variables in the operator problem,
however. Note that item inventory and supplier order decisions per time-step can also be modeled.
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Conclusion

This study adapts the Operator-Attacker-Defender (OAD) model for resilient supply chain design and
operation. The tri-level optimization model addresses disruptions such as supplier failures, production
shortfalls, and disabled transportation links through capacity reduction. It enables contingent rerouting
and strategic design of supply chains for increased capacity and multi-sourcing. The model is decom-
posed into an attacker sub-problem and a master problem, solved iteratively.

The model was evaluated using a multitude of computational experiments and a real-life case study.
The computational performance analysis reveals that decision network size significantly impacts solve
time, while value chain complexity has a more nuanced effect. Larger decision networks involve more
system design variables, leading to longer solve times due to the increased complexity of the master
problem. Conversely, more complex value chains do not necessarily result in longer solve times; in-
stead, they may be easier to disrupt, allowing the solver to find optimal solutions more quickly. The
interplay between attack and defense budgets also influences solve time, with larger budgets generally
expanding the solution space and increasing computational effort. The comparison between determin-
istic optimization and simulation approaches underscores the efficiency of the deterministic method
in identifying optimal disruptions. The deterministic attacker sub-problem outperforms the simulation-
based approach, particularly as the attack budget increases, highlighting the superiority of the deter-
ministic framework for critical supply chain analysis. The real-world case study further validates the
model’s practicality. By analyzing an international pharmaceutical company’s supply chain, we demon-
strate how the model can identify vulnerable parts of the supply chain and suggest optimal expansions
to enhance resilience. The case study showcases the model’s ability to handle complex, real-world
data and provide actionable insights for supply chain managers.

Based on our findings, we believe the OAD model is a valuable approach for supply chain managers
to design and operate more resilient supply chains. This approach allows for a comprehensive assess-
ment of vulnerabilities and optimal strategies to mitigate disruptions. The deterministic approach is
particularly suitable for identifying critical vulnerabilities and optimal disruptions, as it finds more critical
(combinations of) disruptions with less computational effort, especially for larger solution spaces. We
conclude that Obj 1 - Develop a valid and computationally tractable OAD model adapted for studying
resilience in supply chains - has been achieved. The different experiments have also shown that sub-
goals Obj 2 - Be able to explore a multitude of supply chain topologies and value chain complexities
- and Obj 3 - Be able to explore a multitude of disruption types and operational responses - are also
achieved.

Our implementation has some limitations, as does any model. The resolution strategy of dualizing
and collapsing the lower two levels in the sub-problem means that the operator problem should be
a continuous LP. Nonlinear operator problems, which can model more realistic operational decisions,
require a different resolution strategy, for example, by also using decomposition for the lower levels.
Further research could investigate the use and resolution of non-LP continuous operator problems,
which can model more interesting scenarios, albeit at a significant computational cost. We propose an
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important model extension for further research: extending the operator model to integrate a temporal
dimension into the analysis of supply chain resilience, expanding beyond the current focus on spatial
dynamics. By incorporating time, we can better understand how delays, expiration dates, and other
temporal factors impact supply chains. The multi-commodity network flow will now be on a time-space
decision graph, allowing for not only strategic-level decisions but also more tactical-level decisions.
Such an operator model is highly likely to not be a continuous LP, further highlighting the importance
of research into non-continuous LP operator problems. Finally, as discussed in the test case study, the
model requires the user to define appropriate attack costs and budgets for the attacker sub-problem.
We propose a method based on climate hazard data as a simple demonstration. However, further
research could focus on developing more robust methods for determining attack budgets and costs,
grounded in theoretical risk analysis. These costs will ultimately have a significant impact on how the
model identifies critical parts of the supply chain and informs strategic design decisions.
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Abstract

This paper introduces the Operator-Disruptor-Resilience designer (mODR) model, a tri-level optimization model designed to en-
hance supply chain resilience against disruptions such as supplier failures and production shortfalls. The underlying supply chain
conceptual model allows for both physical network as well as value chain flexibility. The model can model contingent rerouting and
strategic resilience measures: increased capacity and multi-sourcing. The tri-level model is solved by being decomposed into an
disruptor sub-problem and a master problem, solved iteratively. mODR efficiently solves realistically sized cases, as demonstrated
in various computational experiments. The model’s application to a pharmaceutical supply chain highlights its ability to integrate
climate hazards into resilience planning. Comparative analysis with deterministic optimization confirms mODR’s effectiveness in
identifying optimal disruptions, and proves to be a valuable tool for supply chain managers.

Keywords: Resilience, Supply Chain, Game Theory

1. Introduction

The global chip shortage of the early 2020s, intensified by geopo-
litical tensions and the COVID-19 pandemic, exposed signifi-
cant vulnerabilities in global supply chains (SCs) and led to
widespread production delays across various industries (Sweney,
2021). These events underscore the critical need for resilience
in supply chain design and operation, as interconnected global
SC networks face increasing exposure to a range of disruptions,
from natural disasters to deliberate attacks. Ensuring the stabil-
ity and integrity of these systems requires a deep understanding
of disruption impacts and the integration of resilience strategies.

This research presents a novel approach to resilient supply chain
design through the development of a three-level Mixed-Integer
Programming (MIP) model, termed the Operator - Disruptor -
Resilience designer (mODR) model. The mODR model in-
tegrates the roles of the operator, disruptor, and resilience de-
signer into a comprehensive optimization framework, simulat-
ing potential disruptions and embedding both strategic and op-
erational mitigation measures. This model provides actionable
insights for enhancing supply chain resilience by addressing
both natural and intentional threats. The disruptor component
of the model allows for incorporating location-based climate
risk data, which is demonstrated in a case study in Section 6.3
to introduce a framework for studying climate resilience.

Additionally, this research introduces a conceptual supply chain
model that integrates both the physical network and the under-
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lying value chain. Traditional supply chain design models, in-
cluding those focused on resilience, typically address the phys-
ical network, such as location-allocation decisions, while as-
suming a fixed configuration of facility layers. However, the
actual value chain—specifically the production chain, which
encompasses the sequence of activities required to convert raw
materials into finished products—can be complex, with multi-
ple possible configurations. This research addresses this com-
plexity by incorporating both aspects into the supply chain de-
sign process: the conceptual model allows for flexibility in both
the physical network and the value chain.

The paper is structured as follows: Section 2 reviews the lit-
erature on supply chain resilience optimization. Section 3 de-
scribes the problem and introduces the supply chain concep-
tual model. Section 4 presents the mODR mathematical model,
and Section 5 outlines the resolution strategy. Finally, Section
6 applies the model, including computational experiments, an
analysis of system resilience through value chain and physical
network flexibility, and a climate resilience case study.

2. Literature review

This section reviews the literature on resilience in supply chain
network design and operations (SCNDO) problem. We discuss
supply chain uncertainty and disruptions, and state-of-the-art
resilience optimization models. We also briefly explore attacker-
defender models, deterministic multi-level optimisation models
found in various domains where resilience occurs.

A supply chain (SC) is a complex network of facilities that
transform raw materials into finished products and distribute
them to consumers (Harrison and Godsell, 2003). Supply chain
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management (SCM) focuses on optimizing this flow of goods
for maximum efficiency (Wieland and Wallenburg, 2011). Sup-
ply chain network design (SCND) is a key SCM problem, in-
volving the strategic configuration of production facilities, dis-
tribution centers, and transportation routes to enhance efficiency
and meet objectives (Zhen et al., 2016). Supply chain resilience
is defined as the capacity to persist, adapt, or transform in the
face of change (Wieland and Durach, 2021). The concept has
evolved from a focus on restoring the system to its original
state (engineering resilience) to a more dynamic approach that
emphasizes continuous adaptation (socio-ecological resilience)
(Folke, 2006). SCND involves decisions under uncertainty, cat-
egorized into three types: (1) environments with known proba-
bility distributions, modeled using scenario approaches; (2) en-
vironments with unknown distributions, addressed with robust
optimization; and (3) fuzzy environments with ambiguity and
vagueness (Rosenhead et al., 1972). Studies on SCND models
vary in the number of location layers, product types, material
flows, and decision periods they consider, reflecting the com-
plexity of real-world applications (Govindan et al., 2017).

Supply chain risks are categorized into operational risks, stem-
ming from inherent uncertainties, and disruption risks, resulting
from events like natural disasters (Ho et al., 2015). Resilient
SCs are those that can operate efficiently both under normal
and disruptive conditions. Strategies for managing disruptions
include facility fortification, strategic stock management, and
flexible sourcing (Snyder et al., 2014). Resilience is seen as
essential in various contexts, including green and sustainable
supply chains, as well as disaster relief operations (Govindan
et al., 2017; Liu and Guo, 2014).

Optimizing SCND under uncertainty typically involves scenario-
based stochastic programming, robust optimization, or fuzzy
programming. These approaches balance between achieving
optimal solutions and managing the complexity of large-scale
optimization problems (Klibi et al., 2010; Hamed Soleimani
and Kannan, 2014). However, challenges remain, such as gen-
erating representative scenarios and balancing conservatism in
robust solutions (Fattahi et al., 2018; Keyvanshokooh et al.,
2016). Disruptions, treated as a form of yield uncertainty, can
be managed through strategies like optimizing inventory replen-
ishment and flexible sourcing (Snyder et al., 2014). Facility
location models also play a crucial role in disruption manage-
ment, involving decisions on rerouting, fortification, and exter-
nal collaboration (Wang et al., 2023; Li et al., 2018).

The attacker-defender model, a game theory-based approach,
optimizes network resilience by integrating offensive (disrup-
tive events) and defensive strategies into a unified framework.
This model has been successfully applied in various domains,
such as infrastructure and power systems, but remains under-
explored in supply chain contexts (Alderson et al., 2011; Yuan
et al., 2014; Xu et al., 2016).

The literature reveals gaps in addressing the interplay between
mitigation and post-disruption strategies, as well as in integrat-
ing responses to both natural and deliberate disruptions. The
attacker-defender model offers a promising approach to enhanc-

ing resilient supply chain network design (SCND) by providing
deterministic insights and flexible adaptation, thereby address-
ing these gaps and advancing the field of supply chain resilience
(Alderson et al., 2011; Govindan et al., 2017). Moreover, the re-
viewed models typically fix the physical layout configuration of
the supply chain, such as the number of location layers. These
models primarily focus on decisions related to the physical net-
work, whereas, in reality, the network of production steps or
the value chain can assume various forms. Models don’t usu-
ally consider flexibility within the value chain in addition to
physical network decisions.

3. Problem description

We consider a supply chain as a network of facilities that enable
the flow of commodities through production, transformation,
and distribution stages. Commodities, including raw materials,
intermediates, and finished products, are transformed according
to the Bill of Materials (BoM), which specifies the input quan-
tities needed for each output unit. The network comprises four
types of locations: Suppliers, Producers, Warehouses, and Cus-
tomers. Locations are connected through a multi-modal trans-
portation system, with each transport mode having its associ-
ated costs and capacity.

Supply chain resilience is defined as ”the capacity of a sup-
ply chain to persist, adapt, or transform in the face of change”
(Wieland and Durach, 2021). Disruptions introduce yield un-
certainty, affecting the quantity of products delivered. These
disruptions can disable production facilities (e.g., due to war),
disrupt supplier processes (e.g., supply failures), affect produc-
ers (e.g., machine breakdowns), impair warehouse operations,
or halt transportation networks (e.g., the Suez Canal closure).
Strategies to counter disruptions include mitigation measures
like flexible sourcing, multi-sourcing, and redundant produc-
tion and storage capacity, as well as contingency actions such
as post-disruption rerouting. The success of contingency ac-
tions heavily depends on prior mitigation decisions.

We aim to develop a framework for enhancing supply chain re-
silience in the face of disruptions. Our focus is on strategic
decisions regarding supply chain design, evaluating resilience
through an interdiction model. We model supply chain disrup-
tion as a Stackelberg game consisting of two opposing agents:
the operator and the interdictor. The operator seeks to maxi-
mize performance, while the interdictor aims to minimize it. To
improve supply chain resilinece, we introduce a third agent to
allocate mitigation measures against disruptions. These agents
interact in a tri-level optimization problem, resulting in strate-
gies to enhance supply chain resilience.

In the following part, we outline our approach to developing
a conceptual representation for the supply chain. This model
will provide a baseline for analyzing and enhancing resilience
against disruptions.

3.1. Conceptual model of supply chain operation
We model supply chain operations using two foundational con-
cepts: the physical network and the value chain. The physical
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network depicts the handling and movement of commodities
through various stages of the supply chain, including suppliers,
manufacturers, warehouses, distribution centers, and end-users.
In contrast, the value chain represents the sequence of activities
required to convert raw materials into finished products deliv-
ered to customers.

Let p ∈ P represent the set of commodities, encompassing items
from raw materials to final products, and let b ∈ B denote the
set of conversion steps defined by bills of materials (BoMs).
For each commodity p, we define three nodes: nS ource

p as the
entry point of the commodity into the system, nS tore

p as the stor-
age point for the commodity, and nS ink

p as the point where the
commodity reaches the end customer. Additionally, for each
conversion process b ∈ B, we define the node nConvert

b to repre-
sent the conversion process based on the BoM. Each conversion
process utilizes a set of inbound commodities to produce a set
of outbound commodities.

We present the operational flow within the value chain using the
Production Graph GPROD = {N, E}, where N = {nConvert

b | b ∈
B} ∪ {nS ource

p , nS tore
p , nS ink

p | p ∈ P}. The set of arcs E represent
commodity flows between different production steps.

Example: Consider a value chain with six commodities,P =
{RM1,RM2,RM3, IP1, IP2, FG}, and three production steps,
B = {BoM1, BoM2, BoM3}. From these, we form the set of
activity nodes N shown in Figure 1. The corresponding Pro-
duction Graph GPROD = {N, E} is depicted in Figure 2.

Figure 1: Example Production Graph nodes N. For each production step b,
a Convert node nConvert

b is added. For each commodity p, Source nS ource
p ,

Store nS tore
p , and Sink nS ink

p nodes are added. Circles represent possible con-
nections for each node.

Figure 2: Example Production Graph GPROD = {N, E}, formed by adding valid
commodity flow arcs between relevant nodes.

Let LS , LP, LW , and LC be the sets of locations associated with
suppliers, producers, warehouses, and customers, respectively.
We define the graph GPHYS = {L,E} to represent the physical
network. Here, L = LS ∪LP∪LW ∪LC is the set of all locations,
and E denotes the set of transport options (i.e., multiple arcs)
between each pair of nodes, see Figure 3.

By integrating GPHYS and GPROD, we define the Supply Chain

Figure 3: Illustration of the physical network of a supply chain GPHYS = {L,E}.
It depicts supplier, producer, warehouse and customer locations and the trans-
port links connecting them. Note that two locations may be connected by mul-
tiple different transport modes through a connection (i, j,m).

Decision Network as GS C = {L, A}. Similar to GPHYS , the set
of nodes is based on the physical locations. The supply chain
decision network maps suppliers, producers, warehouses, and
customers to the corresponding Source, Convert, Store, and
Sink nodes in the Production Graph. The set of arcs is created
based on the movement of commodities between locations. It
is important to note that this conceptual representation assesses
supply chain resilience not only based on the physical move-
ment of commodities but also includes various value chains in-
volved in processing the products. Figure 4 shows the Supply
Chain Decision Network of the illustrative example.

Figure 4: The resulting Supply Chain Decision Graph GS C = {L, A f lows}. Mul-
tiple steps can be performed at a same facility, and multiple facilities can handle
the same step. In our example, production steps BoM1 and BoM2 are performed
at a single potential producer location Prod1, while BoM3 is performed at two
potential sites, Prod2 and Prod3. Each arc in GS C corresponds to a valid po-
tential commodity flow between the locations.

4. Mathematical Formulation

We focus on the system design aspect of the supply chain and
model resilience through the interactions between three key agents:
the Operator (O), the Disruptor (D), and the Resilience De-
sign (R). The Operator is responsible for managing the sup-
ply chain to ensure the efficient fulfillment of customer demand
with the minimum cost. The Disruptor seeks to identify and
target critical components of the supply chain to maximize dis-
ruptions, aiming to increase unsatisfied demand. The sever-
ity of these disruptions is controlled by the disruptor’s budget,
bdgD. The Resilience Design is designed to anticipate potential
disruptions and implement strategies to mitigate their impacts,
thereby maintaining the stability and continuity of supply chain
operations. The extent to which the system can be modified is
governed by the resilience design budget, bdgR.

In the optimization problem (4.1), the operator, disruptor, and
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resilience designer compete in a tri-level objective function to
optimize the performance cost function ΓO. The operator’s de-
cisions xO are constrained by the valid system operations set
XO, which is influenced by the decisions of both the disruptor
xD and the resilience designer xR. The details of each agent’s
model are discussed in the following sections.

min
xR

max
xD

min
xO

ΓO(xO, xD, xR) (4.1)

s.t. xO ∈ XO(xD, xR),

ΓD(xD) ≤ bdgD,

ΓR(xR) ≤ bdgR.

4.1. Operator Problem

The operator’s problem is formulated as a multi-commodity
network flow problem on the graph GS C . The vector of opera-
tional variables is xO =

[
qS qP qW qC q̄C y z

]
, where qS,

qP, and qW represent decision variables for raw materials, pro-
duction, and warehouse storage, respectively. Variables qC and
q̄C denote products delivered and not delivered to customers.
The movement of commodities is denoted by y, and z represents
the number of transport trips between locations. A summary of
the notations is provided in the Appendix.

The operator’s problem includes constraints related to facility
capacity, commodity continuity, production rates, and trans-
portation. The detailed formulations of these constraints are
provided below.

Facility Capacity. The facility capacity constraints (4.2) – (4.7)
ensure that the quantities of commodities do not exceed the
processing capacities of the respective facilities. Specifically,
these constraints limit the amount q of raw materials p sup-
plied at supplier h, the amount b processed at producer i, and
the amount p stored at warehouse j to their respective capacity
limits cap••,•. The constraints are defined as follows:

qS
h,p ≤ capS

h,p ∀h ∈ LS ,∀p ∈ P (4.2)

qP
i,b ≤ capP

i,b ∀i ∈ LP,∀b ∈ B (4.3)

qW
j,p ≤ capW

j,p ∀ j ∈ LW ,∀p ∈ P (4.4)

qS
h,p ≥ 0 ∀h ∈ LS ,∀p ∈ P (4.5)

qP
i,b ≥ 0 ∀i ∈ LP,∀b ∈ B (4.6)

qW
j,p ≥ 0 ∀ j ∈ LW ,∀p ∈ P (4.7)

Continuity of Commodities. Constraints (4.8) – (4.14) en-
sure the movement of processed commodities between facili-
ties, represented by the variable yi, j,p. Let n−(i, p) denote the
set of locations from which location i receives commodity p,
and n+(i, p) denote the set of locations to which location i sends
commodity p.

The supply constraints (4.8) ensure that raw materials qS
h,p sup-

plied by a supplier h move to producers. The warehouse flow
balance constraints (4.9) maintain the balance of commodities

flowing into and out of warehouses j. Constraints (4.10) ensure
the delivery of final products qC

k,p to customers k.

qS
h,p =

∑
i∈n+h,p

yh,i,p ∀h ∈ LS ,∀p ∈ P (4.8)

qW
j,p =

∑
i∈n−j,p

yi, j,p =
∑

k∈n+j,p

y j,k,p ∀ j ∈ LW ,∀p ∈ P (4.9)

qC
k,p =

∑
j∈n−k,p

y j,k,p ∀k ∈ LC ,∀p ∈ P (4.10)

yi, j,p ≥ 0 ∀(i, j) ∈ A,∀p ∈ P(i, j) (4.11)

Constraints (4.12) ensure that the sum of the delivered amount
qC

k,p and the unfulfilled amount q̄C
k,p of final products equals the

customer demand demC
k,p.

qC
k,p + q̄C

k,p = demC
k,p ∀k ∈ LC ,∀p ∈ P (4.12)

qC
k,p ≥ 0 ∀k ∈ LC ,∀p ∈ P (4.13)

q̄C
k,p ≥ 0 ∀k ∈ LC ,∀p ∈ P (4.14)

Production Rate. The Bill of Materials (BoM) specifies all
raw materials, sub-assemblies, and components required to pro-
duce an end product. In production processes, gin

b,p denotes the
quantity of commodity p needed as input per unit of the final
product according to BoM b, while gout

b,p denotes the quantity of
commodity p produced as output per unit of the final product
from BoM b.

Constraints (4.15) and (4.16) ensure the balance between input
and output flows of commodities for each production process
qP

i,b. This balance is dictated by the BoM input and output re-
quirements, represented by the terms

∑
yi, j,p.∑

b∈B

qP
i,b · g

in
b,p ≤

∑
h∈n−(i,p)

yh,i,p ∀i ∈ LP, ∀p ∈ P (4.15)∑
b∈B

qP
i,b · g

out
b,p ≥

∑
j∈n+(i,p)

yi, j,p ∀i ∈ LP, ∀p ∈ P (4.16)

Transportation. The expected number of trips between each
pair of locations is used to estimate the transportation cost. Let
lcp denote the standardized transportation unit for each com-
modity p and lsm the average load size per trip using mode m.
Constraints (4.17) estimate the number of trips required with
mode m between each pair of locations (i, j) ∈ A.∑

p∈P(i, j)

yi, j,p · lcp ≤
∑

m∈M(i, j)

zi, j,m · lsm ∀(i, j) ∈ A (4.17)

zi, j,m ≥ 0
∀(i, j) ∈ A,∀m ∈ M(i, j) (4.18)

4.2. Disruption Problem
Supply chain vulnerability is defined as the set of simultane-
ous disruptions in the system. The disruption variables vector
is xA =

[
ϕS ϕP ϕW ψS ψP

]
, where ϕS, ϕP, and ϕW are
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binary variables indicating full disablement of a supplier, pro-
ducer, or warehouse, respectively. Partial disruptions to spe-
cific processes at facilities are represented by ψS and ψP. These
partial disruptions are modeled using disruption impact levels
f ∈ F, which represent a loss of capacity. The list of notations
is provided in the appendix.

Let u f represent the percentage of capacity lost due to a par-
tial failure. Using these variables and parameters, the disrup-
tion problem impacts the facility’s capacity. Consequently, con-
straints (4.2)–(4.4) are revised to model both partial and com-
plete disruptions. The modified constraints are:

qS
h,p ≤ capS

h,p ·min(1 − ϕS
h , 1 − u f · ψ

S
h,p, f )

∀ f ∈ F,∀h ∈ LS ,∀p ∈ P (4.2)

qP
i,b ≤ capP

i,b ·min(1 − ϕP
i , 1 − u f · ψ

P
i,b, f )

∀ f ∈ F,∀i ∈ LP,∀b ∈ B (4.3)

qW
j,p ≤ capW

j,p ·min(1 − ϕW
j ) ∀ j ∈ LW ,∀p ∈ P (4.4)

ϕS
h ∈ {0, 1} ∀h ∈ LS (4.19)

ϕP
i ∈ {0, 1} ∀i ∈ LP (4.20)

ϕW
j ∈ {0, 1} ∀ j ∈ LW (4.21)

ψS
h,p, f ∈ {0, 1} ∀h ∈ LS ,∀p ∈ P,∀ f ∈ F (4.22)

ψP
i,b, f ∈ {0, 1} ∀i ∈ LP,∀b ∈ B,∀ f ∈ F (4.23)

The min function handles multiple capacity-constraining terms.
The term q·i,p ≤ cap·i,p(1 − ϕ·i) reduces facility i’s capacity for
process p to zero if fully disabled by ϕ·i. For each disruption
impact level f , the term q·i,p ≤ cap·i,p(1 − u f · ψ

·
i,p, f ) models

capacity reduction due to the partial process disruption variable
ψ·i,p, f .

Finally, we introduce ΓD and bdgD as the disruptor’s disruption
costs and budget, respectively. This budget controls the severity
of disruptions. Constraint (4.24) ensures that disruption sever-
ity remains within the budget bdgD.

ΓD =
∑
h∈LS

cD,loc
h · ϕS

h +
∑
i∈LP

cD,loc
i · ϕP

i +
∑
j∈LW

cD,loc
j · ϕW

j

+
∑
f∈F

∑
h∈LS

∑
p∈P

cD,pr,S
h,p, f · ψ

S
h,p, f +

∑
i∈LP

∑
b∈B

cD,pr,P
i,b, f · ψ

P
i,b, f


≤ bdgD (4.24)

Total disruption costs ΓD include the costs of fully disabling
facilities, represented by cD,loc

i · ϕ·i for each facility i. They also
include the costs of partially or fully disrupting specific supply
and production processes at a facility, modeled by cD,pr,·

i,·, f · ψ
·
i,·, f

for each process p or b at each facility i and for each disruption
impact level f . The total disruption costs must remain within
the available budget.

4.3. Resilience Design Problem

The Resilience Design encompasses system design actions such
as flexible sourcing, multi-sourcing, and redundant production

and storage capacity. These actions are represented by the vec-
tor xD =

[
xS xP xW

]
, where xS, xP, and xW are binary deci-

sions regarding the establishment of facility locations for sup-
pliers h, producers i, and warehouses j. Each decision enhances
the network’s capacity to manage disruptions and maintain op-
erations under diverse conditions, thereby increasing the overall
resilience of the system.

To incorporate these design decisions, we modify the facility
capacity constraints (4.2)–(4.4). The revised constraints ensure
that a facility’s capacity for process p can only be utilized if
the facility is included in the system design through the binary
variable x·i. The modified constraints are:

qS
h,p ≤ capS

h,p ·min(xS
h , 1 − ϕ

S
h , 1 − u f · ψ

S
h,p, f )

∀ f ∈ F,∀h ∈ LS ,∀p ∈ P (4.2)

qP
i,b ≤ capP

i,b ·min(xP
i , 1 − ϕ

P
i , 1 − u f · ψ

P
i,b, f )

∀ f ∈ F,∀i ∈ LP,∀b ∈ B (4.3)

qW
j,p ≤ capW

j,p ·min(xW
j , 1 − ϕ

W
j ) ∀ j ∈ LW ,∀p ∈ P (4.4)

xS
h ∈ {0, 1} ∀h ∈ LS (4.25)

xP
i ∈ {0, 1} ∀i ∈ LP (4.26)

xW
j ∈ {0, 1} ∀ j ∈ LW (4.27)

Additionally, the operator is subject to a budget constraint, en-
suring that the total system design costs ΓR do not exceed the
budget bdgR. The total cost is the sum of the initial investment
costs cinit,·

i · x·i for establishing each supplier h, producer i, and
warehouse j.

ΓR =
∑
h∈LS

cinit,S
h · xS

h +
∑
i∈LP

cinit,P
i · xP

i +
∑
j∈LW

cinit,W
j · xW

j ≤ bdgR

(4.28)

4.4. Tri-level Operator-Disruption-Resilience Model

The mODR (Operator-Disruption-Resilience) model integrates
the operator, disruptor, and resilience design problems into a
tri-level optimization problem. The objective function (4.29),
ΓO, evaluates the system’s operational performance, which the
operator aims to minimize and the disruptor aims to maximize.

[mODR]

min
xR

max
xD

min
xO

ΓO = ρc · Γcosts + ρr · Γpenal (4.29)

s.t.
Operator Constraints: (4.2) − (4.14)
Disruptor Constraints: (4.24) − (4.23)
Resilience Designer Constraints: (4.28) − (4.27)

The supply chain performance, ΓO, is defined as a function of
operational costs, Γcosts, and penalty costs, Γpenal, due to unmet
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customer demand. The parameters ρc and ρr, where ρc+ρr = 1,
balance the importance of these costs. The penalty costs, Γpenal,
account for the penalties associated with non-delivery of final
products p to customers k. Instead of imposing strict demand-
satisfaction constraints, we incorporate non-delivery penalties
in the objective function to better model supply chain resilience.
These penalty costs are calculated based on the non-delivered
quantities q̄C

k,p and the associated penalty costs crv,C
k,p (represent-

ing lost revenue), using:

Γpenal =
∑
k∈LC

∑
p∈P

crv,C
k,p · q̄

C
k,p (4.30)

Operational costs, Γcosts, are decomposed into fixed operational
costs Γ f ixed, process costs Γproc, and transport costs Γtrans:

Γcosts = Γ f ixed + Γproc + Γtrans (4.31)

Fixed Operational Costs. The fixed operational costs, Γ f ixed,
include expenses such as rent and administrative costs for sup-
pliers, producers, and warehouses. Let xS

h , xP
i , and xW

j be binary
variables indicating the utilization of supplier h, producer i, and
warehouse j, respectively. These costs are calculated as:

Γ f ixed =
∑
h∈LS

c f ix,S
h · xS

h +
∑
i∈LP

c f ix,P
i · xP

i +
∑
j∈LW

c f ix,W
j · xW

j

(4.32)

Process Costs. Process costs, Γproc, are incurred during the
supply, production, and storage stages. Let qS

h,p be the amount
of commodity p supplied by supplier h, qP

i,b be the amount of
bill of material b produced at producer i, and qW

j,p be the amount
of commodity p stored at warehouse j. The process costs are:

Γproc =
∑
h∈LS

∑
p∈P

cpr,S
h,p · q

S
h,p +

∑
i∈LP

∑
b∈B

cpr,P
i,b · q

P
i,b +
∑
j∈LW

∑
p∈P

cpr,W
j,p · q

W
j,p

(4.33)

Transport Costs. Transport costs, Γtrans, are associated with
the movement of goods between locations. Let zi, j,m denote the
number of trips between locations i and j using transport mode
m. Each trip incurs a cost ctr

i, j,m, which includes a fixed trip

start cost ctrip
m and a variable distance-based cost cdist

m · di, j. The
transport costs are:

Γtrans =
∑

(i, j)∈A

∑
m∈M(i, j)

(ctrip
m + cdist

m · di, j) · zi, j,m (4.34)

5. Resolution Approach

In Section 4, the supply chain resilience problem is formulated
as a tri-level optimization problem (mODR) with hierarchical
decision-making. In this section, we present a decomposition
approach inspired by the methods of Alderson et al. (2011)
and Ghorbani-Renani et al. (2021). The core idea of our ap-
proach is to decompose the tri-level mODR model into two

parametrized models: a single-level master problem (mODR-
Master), which provides a lower bound, and a bi-level dis-
ruptor sub-problem (mOD-Sub), which determines the upper
bound on the solution of the tri-level optimization.

Given a disruption vector x̂D k, there exists a corresponding op-
erational response x̂O k forming a pair (x̂D k, x̂O k). This allows
the mODR to be decomposed into a relaxed master problem
(mODR-Master) and a disruptor sub-problem (mOD-Sub).

For clarity, vectors with a hat (e.g., x̂R) represent fixed param-
eters. Vectors without a hat (xR) are decision variables, and
vectors with a star (xR

∗) denote optimal values.

The mODR-Master yields an optimal system design xR
∗ for

a given set of potential disruptions and the associated optimal
disruption-response pair (xD

∗, xO
∗). Conversely, the mOD-Sub

determines the optimal disruption vector xD
∗ for a given system

design x̂R.

Our algorithm iteratively generates the disruption vectors x̂K
D
=

{x̂D1, ..., x̂D k} instead of enumerating all possible disruption vec-
tors. The solution approach involves solving the sub-problem
to update the disruption vector subset. Then, the master prob-
lem is re-solved for the optimal design. This process iterates
until convergence.

The decomposition approach is executed through an iterative
algorithm, detailed in the pseudo-code in 1. The algorithm be-
gins with the initialization of the full input data required by
mODR, an optimality gap ε (where 0 ≤ ε < 1), and a maximum
number of iterations KMAX . During each iteration, the disrup-
tor sub-problem updates the upper bound on the optimal opera-
tional costs, denoted as zUP. Concurrently, the master problem
updates the lower bound, denoted as zLO. The algorithm con-
cludes when the normalized difference between these bounds is
less than ε.

Algorithm 1: mODR Iterative Resolution
Input: Optimality tolerance ε, maximum iterations KMAX

Output: (xR
∗, xD

∗, xO
∗)

1 Initialize an empty set of disruption vectors x̂D
0 ← {∅};

2 Select an initial feasible disruption vector x̂D0 (e.g., ”no
disruption”);

3 Solve mOD(x̂D0) for optimal xR1 and z∗;
4 Initialize zLO ← z∗, zUP ← +∞,K ← 1;
5 while zUP − zLO > |zLO| · ε and K < KMAX do
6 Solve mOD-Sub(x̂R K) for xDK and z;
7 if z < zUP then
8 xR

∗ ← x̂R K; xD
∗ ← xDK ; zUP ← z;

9 end
10 Add xDK to the set of attacks: x̂D

K ← x̂D
K ∪ {xDK};

11 Solve mODR-Master(x̂D
K) for xRK+1 and z;

12 if z > zLO then
13 zLO ← z;
14 end
15 K ← K + 1;
16 end
17 Solve mO(xR

∗, xD
∗) for xO

∗;
18 return (xR

∗, xD
∗, xO

∗);
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5.1. Master Problem mODR-Master
mODR-Master optimizes the system design xR

∗ given a subset
of possible disruption vectors x̂K

D
. Besides the design variables,

mODR-Master includes Z, a continuous variable representing
the system performance, and operational variables xO1, ..., xOK
for each disruption vector. The design variables must satisfy
the designer constraints, noted as (5.2), where XR denotes the
set of valid design vectors xR.

[mODR-Master]
min

Z,xR,xO1,...,xOK

Z (5.1)

s.t. xR ∈ XR (5.2)
xOk ∈ XO(xR, x̂Dk) ∀k ∈ K (5.3)

Z ≥ Γtotal(xR, x̂Dk, xOk) ∀k ∈ K (5.4)

Operational variables xO1, ..., xOK must satisfy all operational
constraints (4.2) - (4.17) for each disruption vector x̂D1, ..., x̂DK ,
as expressed in (5.3), where XO(xR, x̂Dk) denotes the set of valid
operational variables for design xR and setting x̂Dk. Finally,
constraints (5.4) ensure that the objective value of the master
problem is at least the operational cost associated with each
disruption-response pair (x̂Dk, x̂Ok).

5.2. Disruptor Sub-Problem mOD-Sub
To solve the bi-level disruptor sub-problem mOD-Sub, we em-
ploy a ”dualize-and-combine” approach based on the duality
theory presented in Dempe and Zemkoho (2020). In this prob-
lem, the operator model is a linear programming problem. As
a result, the bi-level sub-problem mOD-Sub is reformulated
as a single-level quadratic problem (named mOD-MIQP) by
replacing the inner minimization problem with its dual maxi-
mization problem. The solution identifies the optimal disrup-
tion vector xD

∗, which maximizes the damage to the operator’s
performance function, given a predetermined system design x̂R.
The full sub-problem mOD-MIQP definition is presented in
the Appendix Appendix B.

6. Results

All experiments were conducted using Python and Gurobi 11.0.2
on a Core i5 processor with 16GB of RAM. In Section 6.1,
we evaluate the computational performance of our approach,
demonstrating its efficiency in solving a wide range of realisti-
cally sized cases within a reasonable timeframe. In Section 6.2,
we analyze network resilience by varying flexibility in the value
chain and the physical network, finding that incorporating value
chain flexibility significantly enhances system resilience within
the same design budget. Finally, in Section 6.3, we present a
resilience analysis of a real-life pharmaceutical supply chain,
showing how our model integrates climate hazards into the re-
silience modelling.

Instance Definition. A supply chain instance consists of a
value chain and physical network configuration. The value chain
details the sequence and interconnectivity of production steps

within the supply chain, represented as a Production Graph GPROD.
The physical network specifies the number of facilities, such as
suppliers, producers, warehouses, and end-customers.

Scenarios. A scenario is defined by a disruptor budget bdgD

and a system design budget bdgR, representing the resources
available to the disruptor and designer, respectively. System
design budgets bdgR are represented in monetary units, with
existing facilities initially costing zero. Disruptor budgets bdgD

are in the same unit as disruption costs cD,.. A facility i can be
fully disrupted at cost cD,loc

i , or a process p at a facility i can be
partially disrupted at cost cD,pr

i,p, f , where f ∈ F is the disruption
impact level. The disruption impact levels are defined as F =
Minor (-10% capacity), Heavy (-20%), Major (-50%), Fatal
(-100%).

6.1. Computational Performance

To assess the computation performance of the proposed resolu-
tion approach, we generated twelve instances of supply chain
networks: 12 combinations of three possible value chain lay-
outs and four physical network sizes.

Value Chain Layout. We define the following four generic
randomly generated value chains. The details of these are pre-
sented in Table 1 and illustrated in Figure 5.

• VC-Simple: A straightforward single-step process utiliz-
ing two raw materials to produce one final product, typi-
cal of basic food production.

• VC-LinSingl: A linear sequence involving multiple pro-
duction steps that transform two raw materials into a sin-
gle final product, common in elementary manufacturing
settings.

• VC-LinMulti: Multiple parallel linear processes that gen-
erate several final products, representing diversified man-
ufacturing operations.

• VC-Complex: A complex network characterized by nu-
merous inputs and outputs, similar to those found in au-
tomotive manufacturing.

((a)) VC-Simple ((b)) VC-LinSingl

((c)) VC-LinMulti ((d)) VC-Complex

Figure 5: Production graphs of the different value chains.

Physical Network. To evaluate the impact of decision net-
work size on computational performance, we vary the physi-
cal network’s size, which in turn influences the potential sys-
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Table 1: Computational performance instance definition - Value chains

Value chain # Production steps # Commodities

VC-Simple 1 3
VC-LinSingl 5 8
VC-LinMulti 15 24
VC-Complex 43 74

tem design configurations and the operational responses to dis-
ruptions. We categorize the network into three sizes: Small,
Medium, and Large, representing the decision network size of
a localized supply chain up to a global-scale supply chain with
numerous facilities and demand points. For each network size,
locations and capacities are randomly assigned to reflect the re-
alistic variability and complexity inherent in supply chain man-
agement. Table 2 outlines the specific characteristics of each
physical network configuration.

Table 2: Computational performance instance definition - Decision network
sizes

Size # Suppliers # Producers # Warehouses # Customers

Small 10 5 5 10
Medium 30 15 15 50
Large 50 25 25 200

Scenarios. For each configuration, we assess the computational
performance by varying the disruption and resilience budgets.
In contrast to the following experiments where the budgets are
presented in monetary terms, for the computation experment
we present the budgets in relative terms, focusing on their rel-
ative influence rather than absolute values. Introducing a new
supplier incurs a relatively low initial cost, whereas establish-
ing a new producer entails a significantly higher expense. The
cost for a new warehouse falls somewhere in between. The ta-
ble below explains the value for each unit in terms of disruption
impact levels and the corresponding number of new facilities
that can be established within each resilience budget. Details of
each budget are presented in Table 3.

Table 3: Scenarios - Disruptor and Design Budgets and their relative resource
value.

Disruption Level New Facilities

ΓD Minor Heavy Major Fatal ΓR # Suppliers # Producers # Warehouses

None 0 0 0 0 None 0 0 0
Mild 1 0 0 0 Minimal 1 0 0
Moderate 25 5 1 0 Moderate 10 0 1
Severe 50 12 2 0 Extensive 100 1 10
Catastrophic 200 50 8 2 Global 500 5 50

Computational performance analysis. As presented in the ta-
bles below, the computational experiments demonstrate that the
model is solvable within a reasonable time frame for a wide
range of realistically sized cases. For all runs, the minimum
gap ε was set to 10−5, and the maximum computation time was
set to 90 minutes (5400 seconds). Overall, 291 cases out of 300
were solved within the selected time limit. As can be seen in
these tables, three factors contribute to the computational per-

formance of our model: (1) network size, (2) the budget of dis-
ruption, and (3) the budget considered for resilience design. By
increasing the network size, we increase the number of design
decisions (xR), which enlarges the size of the mODR-Master
problem, considered the performance bottleneck of the algo-
rithm, see mean solve time in Table 5. On the other hand, the
complexity of the value chain and its production graph does not
directly correlate with solve time. Although the complex value
chain introduces additional operational settings (i.e., xD), this
does not necessarily lead to longer solution times, see Table 4.

Additionally, increasing the budgets for disruption and resilience
design (i.e., bdgD and bdgR) affects the solve time. In general,
higher budgets result in increased computational time, see Ta-
bles 6 and 7. The main reason is that higher budget values result
in fewer constraints on xD and xR, which ultimately increases
the possible pool of solutions. On the other hand, with lower
budgets, the model discards solutions more easily. The full re-
sults are reported in Appendix Appendix C.

Tables 4 through 7 present the impact of individual variables on
the mean, minimum, and maximum solve times and the final
gap. Table 8 provides these results for each specific instance,
i.e. each combination of value chain and network size. Com-
prehensive results for each scenario, and for each combination
of disruption and design budget, are detailed in Tables C.18 to
C.22 in Appendix Appendix C.

Table 4: Value chain

Simple Linear (single) Linear (multi) Complex

Time [s], min 0.00 0.01 0.01 0.01
Time [s], mean 260.30 518.60 869.80 161.29
Time [s], max 5400.00 5400.00 5400.00 5400.00
Gap [%], min 0.00 0.00 0.00 0.00
Gap [%], mean 4.65 4.79 6.71 0.00
Gap [%], max 174.23 103.23 221.10 0.00

Table 5: Computational performance - Network size

Small Medium Large

Time [s], min 0.00 0.01 0.04
Time [s], mean 0.86 353.98 1002.66
Time [s], max 5.34 5400.00 5400.00
Gap [%], min 0.00 0.00 0.00
Gap [%], mean 0.00 3.12 8.99
Gap [%], max 0.00 173.64 221.10

Table 6: Computational performance - Disruption budget bdgD

None Mild Moderate Severe Catastrophic

Time [s], min 0.00 0.02 0.03 0.04 0.03
Time [s], mean 0.33 300.53 674.01 441.43 846.17
Time [s], max 2.73 5400.00 5400.00 5400.00 5400.00
Gap [%], min 0.00 0.00 0.00 0.00 0.00
Gap [%], mean 0.00 0.36 2.20 2.40 15.21
Gap [%], max 0.00 10.98 66.13 108.71 221.10
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Table 7: Computational performance - Design budget bdgR

None Minimal Moderate Extensive Global

Time [s], min 0.00 0.01 0.01 0.01 0.01
Time [s], mean 0.54 2.87 121.18 860.94 1276.96
Time [s], max 3.34 16.78 4290.80 5400.00 5400.00
Gap [%], min 0.00 0.00 0.00 0.00 0.00
Gap [%], mean 0.00 0.00 0.00 9.36 10.81
Gap [%], max 0.00 0.00 0.00 174.23 221.10

Table 8: Computational performance - Instances

Value chain VC-Simple VC-LinSingl VC-LinMulti VC-Complex

Network size Small Medium Large Small Medium Large Small Medium Large Small Medium Large

time mean 0.42 312.62 467.87 0.77 315.18 1239.88 0.55 785.08 1823.77 1.72 3.02 479.14
time min 0.00 0.01 0.04 0.01 0.01 0.06 0.01 0.02 0.09 0.01 0.08 0.17
time max 5.34 5400.00 5400.00 4.35 5400.00 5400.00 2.39 5400.00 5400.00 3.82 7.66 5400.00
gap mean 0.00 6.95 6.99 0.00 4.11 10.25 0.00 1.41 18.73 0.00 0.00 0.00
gap min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gap max 0.00 173.64 174.23 0.00 102.87 103.23 0.00 35.29 221.10 0.00 0.00 0.00

6.2. Value chain-based network analysis
In this subsection, we investigate a hypothetical steel manufac-
turing supply chain and the impact of considering both value
chain and physical network flexibility on supply chain resilience.

Instance definition.We define four instances that differ in their
value chain and physical network flexibility:

I0 - Single path production chain, no physical flexibility (base
case);
I1 - Single path production chain, flexible physical network;
I2 - Multiple paths production chain, no physical flexibility;
I3 - Multiple paths production chain, flexible physical network.

Instance I0. In this base case instance, we explore a steel manu-
facturing supply chain without flexibility in its production chain
or physical network. The fictional steel manufacturing process
takes crude coal and crude iron as initial input commod-
ity, and through a linear chain of transformation processes, pro-
duces finished goods, delivered to customers. The produc-
tion steps and the single commodity flow path are shown in
Figure 6.

Figure 6: Production graph with a single possible commodity flow path, for
instances I0 and I1. Only the Convert (bill of material) nodes are shown.

The physical network consists of the following open locations.
Their positions are randomized.

2 suppliers - providing crude coal and crude iron, respec-
tively;
4 producers - handling various stages of production;
10 warehouses - storing finished goods;
100 customers - demanding finished goods.

Instance I1. Instance I1 introduces physical network flexibility
by including additional potential facilities. The expanded deci-
sion network includes 10 potential suppliers, 16 producers, and
30 warehouses. The number of customers remain constant.

Instance I2. Instance I2 adds flexibility to the production chain
by introducing alternative production paths. We add a main pro-
duction path which includes iron pellets, direct reduced

iron (DRI), and electric arc furnace. This path does not
require coal but takes scrap metal as new input commodity.
The production graph, shown in Figure 7, illustrates these addi-
tional paths. It also illustrates further possible production paths
due to liquid iron being an output of two different steps and
an input to two different steps.

Figure 7: Production graph with multiple possible commodity flow paths, for
instances I2 and I3. Only the Convert (bill of material) nodes are shown.

The physical network is the same as instance I0, with the ad-
ditional bill of materials, and scrap metal input commodity,
spread over the existing facilities.

Instance I3. Instance I3 combines the production chain flexi-
bility from I2 with the physical network flexibility from I1, pro-
viding the most comprehensive flexibility.

System Performance. The performance (P) of a system design
xR under a given disruption setting xD is quantified as the total
percentage of demand fulfilled for customer cities k ∈ LC:

P(xD, xR) =
∑
k∈LC

∑
p∈P

qC
k,p

demC
k,p

(6.1)

System Resilience. The resilience score (R-score) of a system
design is defined as the area under the performance curve (P)
over varying disruptor budgets (Eq. 6.2). For a discrete set of
disruptor budgets m, this is calculated using the trapezoidal rule
in Eq. 6.3:

R-score(xR) =
∫ ∞

0
Pd(bdgD) (6.2)

=
1
2

∑
m

(bdgD
m+1 − bdgD

m)(Pm + Pm+1) (6.3)

Considering value chain flexibility. System performance (P)
was analyzed as a function of the disruption budget (bdgD).
Figure 8 illustrates this relationship for simple and complex
value chains without network flexibility (instances I0 and I2).
Figure 9 shows the impact of network flexibility by varying the
design budget (bdgR) on system performance (instances I1 and
I3). The black line represents the performance degradation with
different disruption budgets (x-axis). The left y-axis displays
the performance value, while the right y-axis shows the objec-
tive function value, broken down into various cost components.
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The resilience scores R-score, representing the area under the
performance curve for different instances, are presented in Fig-
ure 10.

((a)) Instance I0, bdgR = 0 ((b)) Instance I2, bdgR = 0

Figure 8: Performance P and objective function components for instances I0
and I2.

Increasing the design resource budget (bdgR) enhances system
resilience, particularly in instances with value chain flexibil-
ity. Figure 10 shows resilience scores R-score (y-axis) for
different instances and design budgets (x-axis). A black line
indicates the resilience score of the base case (I0) without flex-
ibility. The numbers above the bars indicate the percentage in-
crease in resilience compared to the base case. Without value
chain flexibility, resilience improves by 254% at the highest
design budget (bdgR = 5, 000, 000). With value chain flexi-
bility, resilience increases by 30.6% at a smaller design bud-
get (bdgR = 1, 000, 000) and by 284% at the larger budget
(bdgR = 5, 000, 000). This demonstrates that incorporating
value chain flexibility, in addition to location flexibility, sig-
nificantly enhances system resilience within the same design
budget.

((a)) Instance I1, bdgR = 1, 000, 000 ((b)) Instance I3, bdgR = 1, 000, 000

((c)) Instance I1, bdgR = 2, 000, 000 ((d)) Instance I3, bdgR = 2, 000, 000

((e)) Instance I1, bdgR = 5, 000, 000 ((f)) Instance I3, bdgR = 5, 000, 000

Figure 9: Effect of physical flexibility on performance P and objective function
components for instances I1 and I3, with various design budgets bdgR.

When examining the objective function components in Figures
8 and 9, we observe that incorporating value chain flexibility
reduces production costs (shown in orange) by enabling the
model to make more efficient production decisions. However,
this benefit typically results in a slight increase in transportation
costs (shown in green).

Figure 10: Resilience score R-score of the difference instances and design
budgets bdgR.

6.3. Assessing Resilience in a Global Pharmaceutical Supply
Chain

In this section, we examine a global pharmaceutical company’s
supply chain and propose a method for studying climate re-
silience. The company produces three drugs, named ProductA,
ProductB, and ProductC. These products are primarily sold in
the US and Europe, with additional demand in Latin America,
South Africa, and the Asia-Pacific region. The production pro-
cess includes drug substance production, vial filling, and pack-
aging. The products are filled into vials of varying dosages (5,
10, 15 mg, etc.) and packed into units containing 1, 2, 5, 6, or
10 vials, which are then distributed globally. Figures 11 and 12
illustrate the production steps and the involved commodities.

Figure 11: Diagram of production steps.

Physical network. The company’s current supply chain con-
sists of suppliers, production sites, warehouses, and demand
cities. There are four production facilities in the United States,
Belgium, Italy, and Ireland, each handling different production
steps and products. Production resources, such as filling lines
and packaging units, vary across these facilities. Figure 13 de-
tails these resources. The studied distribution network includes
30 warehouses connected to 189 demand nodes (i.e., cities),
with transportation modes including truck, rail, and sea for sup-
pliers and producers, and LTLs for customer connections.

Figure 12: Overview of the commodities involved at each production step.
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Figure 13: Distribution of existing resources across production steps. The fig-
ure illustrates that a single facility can manage multiple production steps, in-
cluding various versions of those steps with different bills of materials.

The company plans to expand its network to meet increased
demand, especially from Asia. Potential new production sites
have been identified in Germany, India, Indonesia, Egypt, and
Brazil, along with ten new raw material suppliers and 30 poten-
tial warehouse locations.

Value chain layout. The three main production steps, when
expanded to include all sub-products, various resource config-
urations, and competing production processes, result in a large,
interconnected complex production graph.

Instance definition. We define two instances in this experi-
ment. A base case IBase and a climate resilience case IClim. The
share the same value chain and physical network, but differ in
the facility disruption costs. IBase assumes that facilities have
equal disruption costs, unrelated to their location. The cost of
disrupting facility i by impact level f is thus simply equal to a
constant impact level-specific cost cD,level

f :

cD
i, f = cD,level

f (6.4)

Climate location-based disruption costs. In IClim, we now
want to incorporate location-specific facility disruption costs,
based on climate risks. Let θClim

i, f be a risk factor denoting how
vulnerable location i is to various climate hazards to cauase a
disruption of impact level f . We can decrease the disruption
costs by 1 − θClim

i, f :

cD
i, f = cD,level

f (1 − θClim
i, f ) (6.5)

We estimate θClim
i, f using (slightly randomized) data from (FEMA)

and RoyalHaskoningDHV (2023) on 11 different climate and
geopolitcal hazards. Let θi,r be a risk score for hazard r at lo-
cation i, that ranges from 0 (no risk before 2050) to 1 (high
risk before 2050), and let Kr, f relate hazards r to impact levels
f , we can define the total risk factor of location i as θClim

i, f =∑
r∈R Kr, f · θi,r, and thus:

cD
i, f = cD,level

f (1 −
∑
r∈R

Kr, f · θi,r) (6.5)

The impact level and associated risks are presented in Appendix
Appendix D. Figure 14 shows the risk scores for drought haz-
ards.

Scenarios. We run IBase to explore the effects of various Dis-
ruption and Resilience budget allocations on decision-making,

Figure 14: Map showing the climate risk factors for ”Drought” for the studied
case.

system design, and commodity flow. With zero budgets, the
model purely optimizes operations. A nonzero disruption bud-
get identifies vulnerabilities, while a nonzero resilience budget
focuses on building a robust supply chain. When both budgets
are nonzero, the model assesses supply chain robustness under
disruption scenarios.

Figures 15, 16, and 17 illustrate commodity flows with disrup-
tion and resilience budgets set to (0, 0), (100, 0), and (100,
100,000,000), respectively. New and existing facilities are dis-
tinguished by initial costs; new locations are marked in ma-
genta, and locations to close in blue. These markings are for
analytical purposes and not actual model decisions.

Figure 15: Operational flow diagram, bdgD = 0, bdgR = 0.

Figure 16: Operational flow diagram, bdgD = 100, bdgR = 0.

Effect of climate resilience. In the base case (IBase), all facili-
ties i have the same disruption cost cD

i, f , varying only by impact
level f . In the climate resilience case (IClim), we reduce the dis-
ruption cost using a location-specific risk factor θClim

i, f . There-
fore, each facility has a unique disruption cost in the climate
resilience scenario. We investigate how the model’s decisions
regarding facility disruptions and system design inclusion differ
between the base and climate resilience cases.

Figures 18 and 19 display the frequency of facility disruptions
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Figure 17: Operational flow diagram, bdgD = 100, bdgR = 100, 000, 000.

Figure 18: Frequency of disruptions per facility. Facilities in bold were not in
the original system design (i.e., they have a nonzero initial cost).

Figure 19: Frequency of facility inclusion in the design. Facilities in bold were
not in the original system design (i.e., they have a nonzero initial cost).

and their inclusion in the system design for the base case (IBase).
The model primarily identifies production sites as critical vul-
nerabilities within the supply chain.

Figure 20: Relationship between a facility’s climate risk factor θClim
i, f and the

difference in frequency of facility disruption between IClim and IBase. Linear
regression between both variables shows a lack of correlation.

Figures 20 and 21 illustrate the difference in disruption fre-
quency and system design inclusion for the climate resilience
case (IClim) compared to the base case (IBase). The scatter plots
show the risk factor θClim

i, f on the x-axis and the frequency dif-
ference between IClim and IBase on the y-axis. Notably, there is
no correlation between increased risk hazard and disruption fre-
quency or system design inclusion. This indicates that the facil-
ity’s specific importance (e.g., single production site vs. outly-

Figure 21: Relationship between a facility’s climate risk factor θClim
i, f and the

difference in frequency of facility inclusion in design between IClim and IBase.
Linear regression between both variables shows a lack of correlation.

ing warehouse) has a greater impact on determining criticality.
While this finding is case-specific, we show that our model al-
lows for incorporating climate hazards into the resilience study
of supply chains.

Deterministic disruptions versus simulation. In reality, dis-
ruptions have a stochastic nature that influences supply chain
performance. Motivated by the stochastic nature of disruptions,
in this part, we investigate whether defining disruption as an
expected value differs from the deterministic case. To test our
hypothesis, we compare the effectiveness of our approach to
a case where disruptions are treated stochastically. We use a
Monte Carlo simulation approach to identify potential disrup-
tions within a given budget bdgD. We generate a set of N ran-
domly valid operational setting vectors, xk

A, and evaluate their
impact on system performance. We compare the results with
our model, which determines the optimal operational settings
x∗A, given a system design xD.

Figure 22: Objective value of optimal mOD-MIQP disruption x∗D (orange line)
versus 200 random disruptions (blue pointcloud, and mean shown), per disrup-
tion budget.

Figure 22 illustrates the results of this comparison for various
disruption budgets, with the simulation approach using 200 ran-
dom disruptions per bdgD. As can be seen in this figure, the
simulation approach requires significantly more iterations to
determine the combinations that can lead to system failure. Due
to the correlation between disruptions, the simulation model re-
quires a significantly larger number of draws to identify the
entire scenario. The average (disrupted) objective value lays
around 25% lower for bdgD = 50 and 40% lower for bdgD =

200. As a result, relying on simulation to determine the average
or most common disruptions may significantly deviate from the
most severe cases, which can be determined by the mode.
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7. Conclusion

This paper has presented mODR, a model for resilient supply
chain design and operation. The tri-level optimization model
models disruptions such as supplier failures and production short-
falls through capacity reduction. It enables contingent rerout-
ing and strategic design of supply chains for increased capacity
and multi-sourcing. The model is decomposed into an disruptor
sub-problem and a master problem, which are solved iterative.

The computational performance of our approach proved effi-
cient in solving a diverse set of realistically sized cases within
reasonable time frames. Our analysis demonstrated that incor-
porating value chain flexibility, in addition to physical network
flexibility, enhances the system’s resilience, especially with in-
creasing design budgets. Furthermore, applying our model to
a real-life pharmaceutical supply chain highlighted its capabil-
ity to integrate climate hazards into resilience modeling, under-
scoring its practical utility. Finally, the comparison between
deterministic optimization and simulation approaches under-
scores the efficiency of the deterministic method in identifying
optimal disruptions.

We conclude that the mODR model is a valuable tool for supply
chain managers in designing resilient supply chains. It effec-
tively meets the goals of developing a computationally tractable
model capable of addressing facility capacity disruptions and
implementing both contingent and strategic resilience measures.
Our findings demonstrate that supply chain resilience is rooted
not only in the physical network’s flexibility but also in the
adaptability of the value and production chains.

However, the model has limitations, including its reliance on a
continuous LP for the operator problem. Future research should
explore non-LP operator problems. Further research should in-
corporate a temporal component into the spatial supply chain
model to account for time-dependent factors like production
processes, transportation delays, and perishable goods, enhanc-
ing the model’s ability to assess resilience at both strategic and
tactical levels. Additionally, further studies should develop more
robust methods for determining disruption budgets and costs
based on theoretical risk analysis, as these significantly impact
the model’s effectiveness in identifying critical supply chain
vulnerabilities.
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Appendix A. Table of Notations

Table A.9: Notations for Value Chain

Sets Description

p ∈ P Commodities, including raw materials and products
b ∈ B Bills of Materials (BoM), specifying conversion processes

Parameters

gin
b,p Input quantity of commodity p per BoM b

gout
b,p Output quantity of commodity p per BoM b

Table A.10: Notations for Physical Network

Sets Description

i, j ∈ L Physical locations in the supply chain
h ∈ LS ⊆ L Supplier locations
i ∈ LP ⊆ L Producer locations
j ∈ LW ⊆ L Warehouse locations
k ∈ LC ⊆ L Customer locations
(i, j) ∈ A Links between locations i and j
p ∈ P(i, j) Commodities flowing on link (i, j)
m ∈ M(i, j) Transport modes available on link (i, j)

Parameters

capS
h,p Supply capacity of p by supplier h

capP
i,b Production capacity for BoM b at producer i

capW
j,p Storage capacity of p at warehouse j

demC
k,p Demand for p by customer k

cinit
i Initial investment cost for location i

c f ix
i Fixed operational cost for location i

cpr
i,p Processing cost for p at location i

ctrip
m Fixed cost to start a trip using mode m

cdist
m Variable cost per unit distance using mode m

di, j Distance between locations i and j
lsm Load size capacity of mode m
lcp Load unit conversion factor for p
ctr

i, j,m Transport cost between i and j using mode m

Table A.11: Notations - Operational setting parameters

Operational setting

bdgD Total available attack budget
catt,loc

i Attack cost of fully disabling facility i
catt,pr,S

h,p, f Attack cost of partially disabling the supply of commodity p at sup-
plier h by level f

catt,pr,P
i,b, f Attack cost of partially disabling the production of bill of material b

at producer i by level f
u f Impact (% disabled) of disruption level f

Table A.12: Notations - System design parameters

System design

bdgR Total available system design / defence budget
cinit,S

h Initial investment cost of using supplier h
cinit,P

i Initial investment cost of using producer i
cinit,W

j Initial investment cost of using warehouse j
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Table A.13: Notations - Operator decision variables xO

Operations xO

qS
h,p Amount of commodity p supplied from supplier h

qP
i,b Amount of bill of material b produced at producer i

qW
j,p Amount of commodity p stored at warehouse j

qC
k,p Amount of commodity p delivered to customer k

q̄C
k,p Amount of commodity p not delivered to customer k (difference from

demand)
yi, j,p Amount of commodity p between locations i and j
zi, j,m Number of trips between locations i and j using mode m

Table A.14: Notations - Disruption decision variables xD

Disruption xD

ϕS
h Binary variable, 1 if supplier location h is fully disabled
ϕP

i Binary variable, 1 if producer location i is fully disabled
ϕW

j Binary variable, 1 if warehouse location j is fully disabled
ψS

h,p, f Binary variable, 1 if the supply of commodity p from supplier h is
disrupted by level f

ψP
i,b, f Binary variable, 1 if the production of bill of material b at producer i

is disrupted by level f

Table A.15: Notations - System design decision variables xR

System design xR

xS
h Binary variable, 1 if supplier location h is used

xP
i Binary variable, 1 if producer location i is used

xW
j Binary variable, 1 if warehouse location j is used

Appendix B. Full mOD-MIQP definition

Tables B.16 and B.17 show the dual variables and constraints
of mO. We define mOD-MIQP (x̂R)→ xΩ∗, xD

∗ as follows:

[mOD-MIQP]

max
xΩ ,xD

∆oper,dual (x̂R) (B.1)

s.t. υS
h,p + ν

S
h,p +

∑
f∈F

γS
h,p, f − α

S
h,p ≤ cpr,S

h,p · ρ
c

∀h ∈ LS , ∀p ∈ P (B.2)

υP
i,b + ν

P
i,b +
∑
f∈F

γP
i,b, f −

∑
p∈P

(gin
b,p · b

in
i,p − gout

b,p · b
out
i,p ) ≤ cpr,P

i,b · ρc

∀i ∈ LP, ∀b ∈ B (B.3)

υW
j,p + ν

W
j,p − α

W,in
j,p − α

W,out
j,p ≤ cpr,W

j,p · ρc

∀ j ∈ LW , ∀p ∈ P (B.4)

δC
k,p − α

C
k,p ≤ 0 ∀k ∈ LC , ∀p ∈ P (B.5)

δC
k,p ≤ crv,C

k,p · ρ
r ∀k ∈ LC , ∀p ∈ P (B.6)

αS
i,p + α

W,in
j,p + α

W,out
i,p + αC

j,p + β
in
i,p + β

out
i,p + lcp · µi, j ≤ 0

∀(i, j) ∈ A, ∀p ∈ P(i, j) (B.7)

− lsm · µi, j ≤ ctr
i, j,m · ρ

c ∀(i, j) ∈ A, ∀m ∈ M(i, j) (B.8)

ΓD ≤ bdgD (4.24)

υ, ν,γ,β,µ ≤ 0 (B.9)

α, δ ∈ R (B.10)

ϕ,ψ ∈ {0, 1} (4.19) - (4.23)

The objective function (B.1) of mOD-MIQP is defined as fol-
lows. Note that it reuses the fixed cost term Γ f ixed(x̂R) from the
objective function of mODR (4.29).

∆oper,dual(x̂R) = Γ f ixed(x̂R) + ∆cap,S (x̂R) + ∆cap,P(x̂R) + ∆cap,W (x̂R) + ∆dem

(B.1)

Where the individual objective terms are calculated as follows:

∆cap,S (x̂R) =
∑
h∈LS

∑
p∈P

capS
h,p · (x̂S

h · υ
S
h,p + (1 − ϕS

h ) · νS
h,p

+
∑
f∈F

(1 − u f · ψ
S
h,p, f ) · γS

h,p, f )

∆cap,P(x̂R) =
∑
i∈LP

∑
b∈B

capP
i,b · (x̂P

i · υ
P
i,b + (1 − ϕP

i ) · νP
i,b

+
∑
f∈F

(1 − u f · ψ
P
i,b, f ) · γP

i,b, f )

∆cap,W (x̂R) =
∑
j∈LW

∑
p∈P

capW
j,p · (

ˆxW
j · υ

W
j,p + (1 − ϕW

j ) · νW
j,p)

∆dem =
∑
k∈LC

∑
p∈P

demC
k,p · δ

C
k,p

mOD-MIQP is nonlinear due to its objective function, where
dual operator variables are multiplied by disruption variables.
Specifically, the nonlinearity arises from the terms (1− ϕi) · νi,p

and (1 − u f · ψi,p, f ) · γi,p, f .

Table B.16: mO-Dual dual constraints definitions.

Variables mO Sets Constraints mO-Dual

qS
h,p ∀h ∈ LS , ∀p ∈ P B.2

qP
i,b ∀i ∈ LP, ∀b ∈ B B.3

qW
j,p ∀ j ∈ LW , ∀p ∈ P B.4

qC
k,p ∀k ∈ LC , ∀p ∈ P B.5

q̄C
k,p ∀k ∈ LC , ∀p ∈ P B.6

yi, j,p ∀(i, j) ∈ A, ∀p ∈ P(i, j) B.7
zi, j,m ∀(i, j) ∈ A, ∀p ∈ M(i, j) B.8

Table B.17: mO-Dual dual variable definitions.

Constraints mO Description Variables mO-Dual

4.2 Supplier capacity υS
h,p, νS

h,p, γS
h,p, f

4.3 Producer capacity υP
i,b, νP

i,b, γP
i,b, f

4.4 Warehouse capacity υW
j,p, νW

j,p
4.8 Supplier flow balance outgoing αS

h,p
4.9 Warehouse flow balance αW,in

j,p , αW,out
j,p

4.10 Customer flow balance incoming αC
k,p

4.15 BoM balance incoming flows βP,in
i,p

4.16 BoM balance outgoing flows βP,out
i,p

4.12 Demand and delivery balance δC
k,p

4.17 Transport load µi, j

Appendix C. Computational results tables

Table C.18: Computational performance - Budget combinations

None None Mild None Moderate None Severe None Catastrophic Minimal None Minimal Mild Minimal Moderate Minimal Severe Minimal Catastrophic Moderate None Moderate Mild Moderate Moderate Moderate Severe Moderate Catastrophic Extensive None Extensive Mild Extensive Moderate Extensive Severe Extensive Catastrophic Global None Global Mild Global Moderate Global Severe Global Catastrophic

time mean 0.05 0.58 0.79 0.68 0.62 0.07 2.53 3.66 3.96 4.12 0.19 122.63 407.56 57.66 17.90 0.61 512.94 1278.21 712.84 1800.11 0.78 863.99 1679.86 1432.04 2408.14
time min 0.00 0.03 0.03 0.04 0.03 0.01 0.18 0.15 0.14 0.24 0.01 0.24 0.30 0.26 0.24 0.01 0.10 0.12 0.19 2.39 0.01 0.08 0.12 0.12 1.42
time max 0.17 2.06 3.35 2.50 2.15 0.26 9.39 16.78 15.65 14.35 0.63 1023.97 4290.81 382.06 161.47 2.44 5400.00 5400.00 5400.00 5400.00 2.73 5400.00 5400.00 5400.00 5400.00
gap mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 5.50 2.95 37.47 0.00 0.91 5.53 9.06 38.59
gap min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gap max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.73 50.96 35.42 174.23 0.00 10.98 66.13 108.72 221.10
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Table C.19: Computational results for VC-Simple

Network size Small Medium Large

ΓR None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

ΓD Results

None
Solve time [s] 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.10 0.42 0.12 0.04 0.06 0.39 2.06 2.62
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.03 0.18 0.24 0.10 0.08 0.13 1.12 3.78 5.59 0.60 0.53 2.20 71.39 3.88 4.43
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00

Moderate
Solve time [s] 0.03 0.15 0.30 0.12 0.12 0.12 0.59 41.98 261.42 0.81 0.47 2.25 392.79 3.90 4.44
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Severe
Solve time [s] 0.04 0.14 0.26 0.19 0.12 0.12 0.63 42.23 263.82 0.73 0.46 2.25 382.06 4.05 4.70
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Catastrophic
Solve time [s] 0.03 0.24 0.24 2.49 5.34 0.13 1.63 1.49 5400.00 1787.82 0.53 5.34 5.88 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 173.64 0.00 0.00 0.00 0.00 174.23 0.58
Delivered [%] 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 100.00 0.00 0.00 0.00 100.00 100.00

Table C.20: Computational results for VC-LinSingl

Network size Small Medium Large

ΓR None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

ΓD Results

None
Solve time [s] 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.22 0.32 0.14 0.06 0.07 0.29 1.43 1.77
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.06 0.53 0.77 0.57 0.69 0.21 1.11 4.41 12.80 9.48 0.73 2.96 1023.97 586.64 387.14
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00 90.00 90.00 90.00 100.00 100.00

Moderate
Solve time [s] 0.06 0.41 0.62 2.60 0.59 0.29 1.15 5.86 84.93 21.81 0.61 3.00 57.81 5400.00 5190.04
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.96 0.21
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Severe
Solve time [s] 0.05 0.24 0.55 1.38 0.81 0.20 0.88 5.66 11.84 11.38 1.62 4.60 107.02 2132.22 5283.48
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
Delivered [%] 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00 50.00 50.00 50.00 100.00 100.00

Catastrophic
Solve time [s] 0.08 0.28 0.73 3.70 4.35 0.27 1.26 6.04 2299.32 5400.00 0.68 3.10 7.71 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 102.87 0.00 0.00 0.00 101.71 103.23
Delivered [%] 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 100.00

Table C.21: Computational results for VC-LinMulti

Network size Small Medium Large

ΓR None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

ΓD Results

None
Solve time [s] 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.11 0.17 1.22 0.09 0.12 0.63 2.44 2.73
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.10 0.47 0.49 0.42 0.50 0.32 1.42 6.73 62.16 2885.99 2.37 10.10 594.24 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.73 10.98
Delivered [%] 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 100.00 96.67 96.67 96.67 100.00 100.00

Moderate
Solve time [s] 0.22 0.49 0.47 0.75 0.49 0.42 1.59 65.08 3977.50 5357.82 2.24 16.78 4290.81 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.08 66.13
Delivered [%] 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 83.33 100.00 80.00 80.00 86.67 93.33 100.00

Severe
Solve time [s] 0.22 0.58 0.61 0.80 0.54 0.39 2.65 11.62 568.13 1077.06 1.24 15.65 92.26 5400.00 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.42 108.72
Delivered [%] 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 100.00 66.67 66.67 66.67 100.00 100.00

Catastrophic
Solve time [s] 0.31 0.93 1.47 2.39 1.42 0.54 5.25 5.13 195.72 5400.00 1.36 14.35 161.47 2857.83 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.29 0.00 0.00 0.00 0.00 221.10
Delivered [%] 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 100.00 33.33 33.33 33.33 33.33 100.00

Table C.22: Computational results for VC-Complex

Network size Small Medium Large

ΓR None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global None Minimal Moderate Extensive Global

ΓD Results

None
Solve time [s] 0.02 0.01 0.03 0.02 0.03 0.09 0.26 0.10 0.08 0.15 0.17 0.17 0.34 0.34 0.48
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mild
Solve time [s] 0.55 2.27 2.04 2.48 2.70 1.24 4.10 4.30 3.62 3.58 2.06 9.39 24.80 77.03 1672.71
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

Moderate
Solve time [s] 0.67 2.28 2.36 2.44 2.32 0.99 4.39 7.66 4.41 4.32 3.35 10.88 24.99 200.51 4175.57
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Severe
Solve time [s] 0.44 2.16 2.19 1.96 2.05 0.88 6.42 6.60 3.62 3.59 2.50 11.37 40.83 166.07 5400.00
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Catastrophic
Solve time [s] 0.55 3.82 3.16 3.19 3.22 0.80 3.51 3.63 3.60 3.54 2.15 9.74 17.85 33.09 92.05
Gap [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Delivered [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Appendix D. Case study tables

.

Table D.23: Climate hazard and impact level definitions

Impact level f Impact u f [%] Level bias k f Risks Kr, f Heat Cold Rain Snow TropicalStorm Wildfire AirQuality Flood Drought Earthquake HumanConflict

MINOR 10 1 0.020 0.020 0.020 0.020 0.005 0.005 0.010 0.005 0.020 0.005 0.005
HEAVY 20 4 0.020 0.020 0.020 0.020 0.010 0.010 0.005 0.010 0.020 0.010 0.010
MAJOR 50 25 0.010 0.010 0.010 0.010 0.050 0.050 0.005 0.050 0.010 0.050 0.050
FATAL 100 100 0.005 0.005 0.005 0.005 0.050 0.050 0.001 0.050 0.010 0.050 0.050
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B
Network graph construction

The Supply Chain Decision Network, as described above, is the graph of all possible locations and
links upon which decisions can be made by the optimization model. This graph, denoted GSC(L,A),
is constructed from the input data. First, after loading in the data on the components described above,
a so-called Production Graph GPROD is created from the BillOfMaterials and Commodities data. This
is an abstract graph of the different process steps and how commodity flows may connect these steps
(akin to the system’s value chain), and is constructed using procedure 3. The definition of the Production
Graph is essential to the allowed topology of the Supply Chain Decision Network. Note that in the
GPROD resulting from procedure 3, CONVER nodes can be connected directly to STORE and SINK
nodes, which would allow for direct connections between producers and customers.

Figure B.1: Example Production Graph GPROD (with some locations listed).

Figure B.2: Example Production Graph input for GPROD .
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Algorithm 3 | Production Graph GPROD construction

Input: Input data on BillOfMaterial processes and Commodities
Output: Production graph GPROD

29 Initialize an empty graph GPROD

30 foreach BillOfMaterial process b do
31 Add a CONVERT node for b to GPROD

32 end
33 foreach Commodity p do
34 Add a SOURCE node for p to GPROD

35 Add a STORE node for p to GPROD

36 Add a SINK node for p to GPROD

37 end
38 foreach Commodity p do
39 foreach pair of nodes N1 and N2 in GPROD do

// A SOURCE node associated with a Commodity p has an output of p. Its STORE node has
both an input and output, and its SINK node has only an input.

// A CONVERT node has an input of Commodity p if p is a required input of the associated
BillOfMaterial b, or an output of p if it is an output product b

40 if N1 has an output of p and N2 has an input of p then
// There is a potential flow of p between N1 and N2

41 if not edge (N1, N2) exists in GPROD then
42 Add edge (N1, N2) to GPROD

43 end
44 Add p to the commodities attribute of edge (N1, N2)

45 end
46 end
47 end

If customers can only be connected to warehouses, one should remove the edges between CONVERT
and SINK nodes; SINK nodes will then only be connected to STORE nodes. Alternatively, STORE nodes
can be removed altogether if dealing with a purely production system instead of a production-distribution
system. More complex layouts can be devised at this step as well. We can define multiple types of
STORE nodes and their allowed links to simulate systems with multiple storage steps (e.g., for interna-
tional flows) or systems with trans-shipments. The Supply Chain Decision Graph GSC(L,A) can be
constructed by combining the Production Graph GPROD and the location data using procedure 4.
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Algorithm 4 | Supply Chain Decision Graph GSC(L,A) construction

Input: Production graph GPROD; Input data on Locations L
Output: Supply Chain Decision Graph GSC(L,A)

48 foreach BillOfMaterial b do
49 foreach Producer i ∈ LP do
50 if Capacity of b at i ≥ 0 then
51 Add i to locations of CONVERT node for b
52 end
53 end
54 end
55 foreach Commodity p do
56 foreach Supplier h ∈ LS do
57 if Supply capacity of p at h ≥ 0 then
58 Add h to locations of SOURCE node for p
59 end
60 end

// Do the same for the Warehouses and Customers and the STORE and SINK nodes, respectively.
61 end
62 Initialize an empty graph GSC

63 foreach Location i ∈ L do
64 Add a node i to GSC

65 end
66 foreach Edge (N1, N2) in GPROD do
67 Add edges (i, j) to GSC for each location i in N1 and each location j in N2

68 Update the possible flows on link (i, j) with the defined Commodities on (N1, N2)

69 end

Figure B.1 depicts an example of a Production Graph. Figure B.3 provides an overview of the sup-
ply chain model, depicting the location layers and the interconnecting links. The diagram illustrates a
specific supply chain solution (colored nodes and darkened links) atop all potential supply chain con-
figurations which form the Supply Chain Decision Graph GSC(L,A) (grayed-out nodes and links).

Figure B.3: Overview of the Supply Chain Decision Graph GSC(L,A), our supply chain model.
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