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Abstract
Background Surgical Process Modelling (SPM) offers the possibility to automatically gain insight in the surgical workflow, 
with the potential to improve OR logistics and surgical care. Most studies have focussed on phase recognition modelling of 
the laparoscopic cholecystectomy, because of its standard and frequent execution. To demonstrate the broad applicability of 
SPM, more diverse and complex procedures need to be studied. The aim of this study is to investigate the accuracy in which 
we can recognise and extract surgical phases in laparoscopic hysterectomies (LHs) with inherent variability in procedure 
time. To show the applicability of the approach, the model was used to automatically predict surgical end-times.
Methods A dataset of 40 video-recorded LHs was manually annotated for instrument use and divided into ten surgical 
phases. The use of instruments provided the feature input for building a Random Forest surgical phase recognition model 
that was trained to automatically recognise surgical phases. Tenfold cross-validation was performed to optimise the model 
for predicting the surgical end-time throughout the procedure.
Results Average surgery time is 128 ± 27 min. Large variability within specific phases is seen. Overall, the Random Forest 
model reaches an accuracy of 77% recognising the current phase in the procedure. Six of the phases are predicted accurately 
over 80% of their duration. When predicting the surgical end-time, on average an error of 16 ± 13 min is reached throughout 
the procedure.
Conclusions This study demonstrates an intra-operative approach to recognise surgical phases in 40 laparoscopic hysterec-
tomy cases based on instrument usage data. The model is capable of automatic detection of surgical phases for generation 
of a solid prediction of the surgical end-time.

Keywords Workflow · Phase recognition · Patient safety · Hysterectomy · Instrument tracking

The Operating Room (OR) complex is a cost-intensive part 
of the hospital, as it typically accounts for more than 40% 
of a hospital’s total revenue and a similarly large proportion 
of its total expenses. Almost 60% of the patients admitted 
to hospitals receive operative surgical care [1]. Thus, effi-
cient usage of OR capacity is crucial. To ensure sufficient 
organisational capacity, it is of utmost importance that the 
OR scheduling is well planned and managed timely.

Optimisation of OR scheduling is a complex task, as 
surgical procedure times are inherently linked to uncer-
tainties. Various factors can alter the surgical time, such as 
procedure-related problems (unexpected bleeding and other 
adverse events) and personnel-related issues (e.g. miscom-
munication). However, also equipment/instrument-related 
issues (malfunctioning or wrong positioned) and environ-
mental-related problems (such as disturbances by telephone 
or radio) are described [2].

Surgical time duration is determined by a broad range of 
factors such as patient characteristics, individual surgical skills 
and occurrence of complication. However, the current methods 
of OR planning are often based only on either average surgery 
durations or estimates by the surgical staff [3]. As both aver-
age surgery duration and estimates made by the surgical staff 
provide suboptimal predictive value on the real duration of 
the surgery, this limited approach on OR planning leads to 
inconsistencies between planned and actual surgery durations 
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[4, 5]. If a procedure takes longer than scheduled, subsequent 
procedures have to be postponed or cancelled. On the other 
hand, when operations run short, the operating rooms are unu-
tilised at the end of the day [2].

One aspect of managing OR logistics is to keep the sched-
ule updated as the day progresses. OR schedulers typically use 
visual inspection to check the status of a procedure. Still, the 
progress is not always recognisable and one must be familiar 
with many procedures. An alternative is making phone calls or 
actually entering the OR, which is a disturbance of the surgical 
team. Thus, there are still major improvements to make when 
it comes to real-time progress monitoring.

Over the years, the interior of ORs has evolved into high-
end technological masterpieces. The OR is storing a wealth 
of useful information through many different sources. This 
could range from the OR door movements and lights to the 
details of the anaesthetic device and the use of surgical instru-
ments. Analysis of these data can reveal behavioural patterns, 
which we call the surgical workflow. With the use of intelligent 
algorithms, a model can be built to autonomously detect and 
identify different steps in the surgical procedure [6]. Through 
recognition of different phases during a procedure, we can also 
estimate how long the procedure will take and thus optimise 
our schedule.

Most studies have focussed on phase recognition modelling 
of the laparoscopic cholecystectomy, because of its standard 
and frequent execution [7–10]. However, to add more chal-
lenge to the phase recognition system and to extend the range 
of applications, more diverse and complex procedures need to 
be studied. By this rationale, we choose to analyse the more 
complex laparoscopic hysterectomy, the minimal invasive 
removal of the uterus. With over 600,000 hysterectomies 
performed yearly in the US, it is the second most common 
gynaecological surgical procedure [11]. Since the 1990s, a 
shift is seen from the traditional abdominal surgical approach 
to the laparoscopic or robotic one [12]. We assume this is a 
very suitable procedure for surgical phase recognition, due to 
its variability in total duration (between 98 and 214 min) [2]. 
The aim of this study is to find to what extent accurate phase 
recognition can be beneficial for long and complex procedures. 
Therefore, we monitor the instrument use and investigate the 
accuracy reached in a clinically relevant task, like surgical end-
time prediction.

Materials and methods

Recording and transformation of surgical data

The dataset used contains 40 cases of laparoscopic hysterec-
tomy (LH), which were recorded between November 2010 
and April 2012 in the Bronovo Hospital in The Hague, The 
Netherlands, for the purpose of a study on surgical flow 

disturbances by Blikkendaal et al. [2]. The procedures were 
recorded using three cameras and four audio signals using an 
audiovisual recording system (MPEG Recorder 2.1, Noldus 
Information Technologies, Wageningen, The Netherlands). 
More detailed information about the methods used can be 
found in a previous publication [13].

The LH surgery was separated into 10 surgical phases 
and 36 surgical steps based on the method of perioperative 
analysis of surgeries by Den Boer et al. [2, 13], see Table 1 
for a description. The phases do not necessarily occur in a 
chronological order. The annotated event log was exported 
to a plain-text file for further analysis and contained start 
and endpoints of all observed surgical steps, together with 
the 12 instruments used in predefined steps. These events 
represent the features used in building the surgical phase 
model (SPM). A single entry in the time-based log does 
not capture all relevant information that could be used 
to train the model to distinguish phases. Therefore, extra 
features, such as surgical time, cumulative used time of 
each instrument and total number of instruments currently 
in use, were derived from the indicators of instrument to 
improve the model performance. These additional data 
transformation and the model generation were performed 
using the R programming language (R Foundation for Sta-
tistical Computing, Vienna, Austria) [14] and RStudio IDE 
(RStudio Inc., Boston, U.S.A.) [15].

Surgical phase modelling

For the purpose of this study, a Random Forest (RF) surgical 
phase recognition model was used [16]. This is an ensemble 
model consisting of a collection of decision trees, where 
each node represents a subset of the data and poses a certain 
question (e.g. x < 5). The answer to this question is used to 
further split the dataset and leads to another question at the 
following node. Finally, at the so-called leaf node, a cat-
egorical or numerical prediction of the outcome variable is 
obtained. Each decision tree is trained on a random subset of 
the training set and considers a random subset of features at 
each split. The prediction of each tree counts as a vote for the 
overall prediction. The modal (in case of classification) or 
mean (in case of regression) prediction of all trees provides 
the final prediction of the model.

Model optimisation

An important aspect of modelling is out-of-sample valida-
tion, which involves the partitioning of the data into test and 
training sets. The model is generated based on the training 
data; validation of the model is performed on a set of unseen 
test data. In the current study, we use k fold cross-validation, 
in which the data are split into k folds, in which each acts as 
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a single out-of-sample test set, while the model is trained on 
the remaining data.

Another important consideration is the choice of a per-
formance metric for use in the out-of-sample validation. In 
case of a numerical prediction, a commonly reported metric 
is the mean absolute error (MAE). Further, at each split in 
the tree, a random subset of features is evaluated for deciding 
the best split. The number of features to select at each split 
is one of the most important parameters in RF. The default 
value for the number of selected features is floor

�
√

D

�

 , with 

D being the number of features of the object [17].
In this paper, model optimisation was performed using 

10 mutually exclusive folds, each containing four surgeries. 

The number of features considered per split was varied with 
a grid search of 12 log-spaced integers between 1 and 99. 
During the optimisation, n = 100 trees were grown for each 
RF model. The model performance was assessed by the out-
of-sample accuracy, defined as the fraction of correct predic-
tions on an unseen set of test data.

Surgical end‑time prediction

The performance of the RF model is evaluated with respect 
to a relevant task in clinical practice in the OR: the pre-
diction of surgical end-times. This refers to the number of 
minutes that the prediction is off compared to the real dura-
tion of the surgery. For this, a second model is obtained 

Table 1  Intra-operative surgical 
phases and steps commonly 
occurring during a laparoscopic 
hysterectomy procedure. Table 
copied from Blikkendaal et al. 
[2], based on earlier work by 
Den Boer et al. [13]

Phase Step

1. Create  CO2 pneumoperitoneum 1.1 First incision and insert Veress or Hasson
1.2 Insufflate the abdomen

2. Insert access ports 2.1 Insert first (optical) port
2.2 Insert laparoscope
2.3 Inspect abdomen (active bleeding, 360 look, operatability)
2.4 Insert second port under direct sight
2.5 Inspect and judge operatability/unexpected pathology
2.6 Insert third port under direct sight
2.7 Insert fourth port under direct sight

3. Preparation operative area 3.1 Dissect adhesions to uterus/ovaria/intestine in pelvis
3.2 Mobilise intestine out of pelvis

4. Expose uterine arteries 4.1 Dissect ligaments and mobilise uterus
4.2 Skeletonised uterine arteries
4.3 Push off bladder
4.4 Identify location of ureters

5. Transect uterine arteries 5.1 Transect left uterine artery
5.2 Transect right uterine artery
5.3 Check colour of uterus
5.4 Check if bladder and arteries are skeletonised enough

6. Separate uterus from vagina 6.1 Colpotomy
6.2 Pneumoperitoneum is lost

7. Specimen retrieval 7.1 Morcellated uterus
7.2 Extract uterus through vagina

8. Closure of the vaginal cuff 8.1 Insert needle
8.2 Suture vaginal cuff
8.3 Extract needle

9. Final check and irrigation 9.1 Check hemostasis
9.2 Check vaginal cuff stump

10. Close-up patient 10.1 Remove instruments
10.2 Remove accessory operating ports (under direct sight)
10.3 Check access wounds/bleeding
10.4 Release  CO2 from abdomen
10.5 Remove laparoscope and first trocar port
10.6 Suture port wounds
10.7 Remove draping
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that uses the phase predictions to estimate the remaining 
surgical time. The end-time prediction is given by a multiple 
linear regression model using the elapsed surgical time, the 
phase, the number of seconds that the surgery has been in 
that phase and the interaction terms between phase and sec-
onds in phase as independent variables. The mean absolute 
error (MAE) in the end-time prediction was also calculated.

Results

Laparoscopic hysterectomy

The analysed laparoscopic hysterectomies (n = 40) had an 
average surgery time of 128 min (± 27 min SD), with the 
individual surgical phases also showing a high variance 
in duration between cases (Fig. 1). In 33 of the LH cases, 
all ten phases occurred. The preparation of the operative 
area (phase 3) was omitted in seven cases, the closure of 
the vaginal cuff (phase 8) was not annotated in two cases. 
Although each surgery started in the first phase and ended 
in the last phase, phase transitions occurred 19 (± 6 SD) 
times per procedure on average. Most transitions, 70%, 
were between adjacent states, such as a transition from 
state one to state two. During all procedures, 68% of the 
state transitions were towards higher phases. A trace of 
the surgical phase during a representative case is shown 
in Fig. 2.

Instrument use

The patterns of used instruments and devices differ per 
surgical phase (Fig. 3). With nine different phases, the 
grasper and forceps are most broadly used throughout the 
surgery, followed by the bipolar and ultrasound coagula-
tion tools, which were both observed in six distinct surgi-
cal phases. Five tools and devices were exclusively used 
in one phase: the Hasson trocar and Veress needle (phase 
1), the monopolar coagulation device and monopolar loop 
(phase 6) and the morcellator (phase 7). Some tools are 
observed systematically across different cases: the bipolar 
coagulation device is used in phase 4 and 5 in all 40 cases, 
the grasper/forceps in 39 cases during the fourth phase, the 
needle driver in 37 cases during phase 8 and the ultrasound 
coagulation device in 38 cases during phase 6.

Model optimisation

The RF model was optimised by varying the number of 
evaluated features per split (Fig. 4). The ideal value was 
found to be 6 randomly sampled features, providing an 
accuracy of 76.8% (± 5.2% SD) and a mean absolute error 
of 0.39 phase (± 0.13 phase SD).

The overall accuracy of the model was shown to be 
76.8%; however, the performance differs per phase 
(Fig. 5). Six of the phases are predicted accurately over 
80% of their duration; phase 1 (81%), phase 2 (81%), phase 
6 (86%), phase 7 (85%), phase 8 (91%), phase 10 (90%). 
The performance in phase 9 is lowest with an error rate of 
99.7%. Again, the MAE is shown to be strongly correlated 
to the accuracy (r = − 0.93), and hence shows a similar 
performance pattern across the different phases.

Surgical end‑time prediction

The model performance was evaluated by application to 
a clinically relevant task: surgical end-time prediction. 
The multiple linear regression model predicts the surgi-
cal time left as the dependent variable, using surgical time 
passed, phase, duration within the phase and the cross terms 
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Fig. 1  The duration of surgical phases is different per phase, but 
also varies strongly between procedures. The fourth phase, exposing 
the uterine arteries, takes the longest time to complete on average 
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Fig. 2  Progression of the surgi-
cal phase during a representa-
tive laparoscopic hysterectomy 
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Fig. 3  Heat map showing 
the frequency of instrument 
use per surgical phase. The 
fraction indicates the share of 
procedures during which the 
instrument or tool was used 
in the specified phase, with 
one indicating use in all forty 
LH cases. Grasper/Forceps 
are observed in nine out of ten 
phases, while the morcellator, 
Hasson cannula, Veress needle, 
monopolar coagulation and 
monopolar loop are only used in 
a single phase
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bars indicate 95% confidence interval of the mean
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between the phase and duration within the phase. Using 
ground-truth phases, we obtained a mean absolute error of 
16.2 min (± 14.2 min SD) over all cases. For the regres-
sion model based on the RF-predicted phases, a MAE of 
15.6 min (± 12.9 min SD) was found. Two hours before 
the end of the surgery, the end-time is predicted with an 
MAE = 17.8 min (± 14.9 min SD). This error stays rather 
constant for 60 min (MAE = 16.0 ± 14.0 min SD) and 45 min 
(MAE = 17.4 ± 11.7 min SD). At 30 min before the end of 
the surgery, the error drops to MAE = 12.6 ± 13.2 min SD.

Discussion

This study demonstrates an intraoperative approach to rec-
ognise surgical phases in 40 laparoscopic hysterectomy 
cases based on manually annotated instrument usage data, 
with application to surgical end-time prediction and surgi-
cal phase extraction. The accuracy of phase detection is 
77%. The performance differs per phase, ranging from 91 to 
0.03%. Large variability in duration is seen between phases. 
For example, the phase in which the uterine arteries are 
exposed takes 29 min ± 13 min SD. Evaluation of the end-
time prediction task shows an MAE of 15.6 min (± 12.9 min 
SD), which means that throughout the procedure the end-
time can be calculated with an error of roughly 16 min.

In this study, we found major differences in the variabil-
ity of the duration of the various phases. A high variabil-
ity of a phase has a high influence on the total procedure 
time. Therefore, when this subset of phases has passed, the 
procedural time can be calculated most accurately. In this 
dataset phases 4, 6 and 10 are the most variable and have 
the most influence on the total surgical time. Detection of 
these phases is of utmost importance for accurate end-time 
prediction. Phase 9 is short in time and is the least variable. 
In that sense, the low accuracy of detection is not of clinical 
relevance.

The current study features ten surgical phases, which 
is higher than the number of phases observed in previous 
literature and as such renders the classification task more 
challenging, which was exactly the goal of this study. Still, 
the accuracy of 77% is in the range of previous findings on 
phase recognition using RF models (69–84%) [10, 18, 19]. 
Further, previous literature predicting end-times reported an 
MAE of 10 min [20] and 20 min [21], which is in line with 
our findings. However, a direct comparison is not possible 
due to the large differences in used data and approaches, as 
these previous results use either pre-operative data [20] or 
sensor-based recordings [21].

A major limitation of this study is the use of manually 
annotated data of video recordings, which cannot be used 
for real-time phase recognition. To further implement this 
technology, real-time sensor data have to be acquired. For 

example, promising steps have been made with the acquisi-
tion of real-time data on instrument use with an RFID-based 
tracking system [22–24]. Sensor data are often subject to 
noise, which may affect the accuracy of the model output. 
However, RF models have shown to be robust against noise. 
Also, their high computational speed is an advantage when 
considering the use of SPM in real time [16].

We conclude that a phase recognition model, based on the 
Random Forest method, shows promising accuracy to sup-
port OR planning and workflow management. Moreover, we 
show that tracking instruments only is sufficient to generate 
viable results. This study has paved the way to in vivo appli-
cation of intraoperative monitoring of surgical progress.
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