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Abstract—Inside the Neonatal Intensive Care Unit (NICU), 
exposure to loud sounds such as acoustic medical alarms can 
have adverse effects on neonates, parents, and medical staff. 
With the aim of having an accurate overview of which and 
how often acoustic medical alarms occur, this paper presents 
a simple signal processing-based approach for detecting and 
recognizing automatically and permanently patient monitoring 
alarms inside the NICU. The proposed algorithm leverages from 
prior knowledge of the spectro-temporal structures of alarms 
to first detect each single occurrence of an alarm tone, and 
then group the detected tones into a known alarm pattern. 
A preliminary evaluation of the algorithm on a small set of 
4-channel recordings capturing a simulated NICU soundscape
shows that around 99% of the acoustic alarms are correctly
recognized, and that around 99% of the recognized alarms are
true alarms. The algorithm lends itself to efficient real-time
implementation and to generalization to other alarm patterns
as defined by the IEC 60601-1-8 standard.
Keywords—acoustic alarm, alarm detection, alarm recognition, 

neonatal intensive care unit

I. INTRODUCTION

According to the World Health Organization, sound pollu-
tion is the second most harmful and even deadliest environ-
mental factor in Europe [1]. Sound pollution can cause hearing
impairment, cardiovascular disturbances, impaired cognition,
disrupted communication, sleep interruptions, mental health
problems, and negative social behaviours. Excluding these life-
threatening adverse effects, it affects both healthy and vulnera-
ble people: sound-induced problems range from physiological
to cognitive, psychological, and emotional, influencing peo-
ple’s capacity to function well in daily life [2], [3]. Therefore,
it is imperative to focus on sound hygiene in all aspects of
life, and especially in socio-technological contexts such as
healthcare environments [4].

Over the years, Intensive Care Units (ICUs) have become
one of the most acoustically hostile healthcare environments
with blaring alarms, loud conversations, continuous hum and

buzz of patient support devices, and sharp and loud inci-
dental sounds from daily nursing activities. ICU nurses in
general suffer from a syndrome called alarm fatigue (i.e.,
desensitization to actionable medical alarms) which can lead
to reduced compliance and/or response time, and ultimately to
losses of lives [5], [6]. Furthermore, excessive sound has other
consequences for nurses such as increased stress and adverse
effects on physiology, motivation, and general health [7],
[8]. In the Neonatal Intensive Care Unit (NICU) context,
exposure to loud sounds can additionally cause permanent
damage to neonates’ hearing systems but even psychological
disorders and anxiety in later stages of life [9], [10], as well
as unnecessary stress in parents negatively influencing, e.g.,
lactation in mothers or parent-child bonding [11].

The number of medical alarms occurring in a NICU can
easily be well over 150 per patient per day [12]. As a matter
of fact, because of the instability of physiologic signals in
preterm infants, this number is higher than in most other ICUs.
However, a single medical alarm condition likely corresponds
to multiple occurrences of an acoustic alarm that repeats itself
as long as the condition persists, meaning that the number
of acoustic alarms that are reproduced within the unit may
be several times higher. In order to reduce alarm pressure
and design new alarm strategies to reduce unnecessary sound
pollution [13], it is important to have an accurate overview of
which and how often acoustic alarms occur, both for single
patients and per unit.

The literature on automatic detection of acoustic alarms is
unfortunately scarce. The only previous work that tackled the
problem of detecting acoustic medical alarms in a hospital
environment, which happens to also be the NICU, is a paper
by Raboshchuk et al. [14] where the authors propose a number
of statistical models exploiting the spectral and temporal
structures of seven classes of medical alarms. In general, most
previous approaches either have focused on generic classes
of real-world alarm sounds such as sirens [15], or have not
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Fig. 1. Spectrograms for single occurrences of each of the three alarm types. Only the frequency range where the fundamental frequencies lie is shown here.

incorporated prior knowledge of spectro-temporal structures of
alarms [16] which is necessary for recognizing specific alarms
and not simply detecting if a generic alarm is on or off.

This paper describes an algorithm for automatically recog-
nizing acoustic patient monitoring alarms inside an open-bay
NICU at Sophia Children’s Hospital, a specialized hospital
which is part of Erasmus Medical Center in Rotterdam, the
Netherlands. The algorithm analyzes a 4-channel recording
to recognize three types of patient monitoring alarms (blue,
yellow, and red alarms) and their occurrence in time. The
remainder of the paper is organized as follows. Section II out-
lines the context of our work, the alarms to be detected, and the
sound recording setup. Section III describes the algorithm for
automatic acoustic alarm recognition, and Section IV reports
the results of a preliminary assessment. Finally, Section V
draws the conclusions and discusses ongoing work.

II. CONTEXT AND SETUP

Sophia Children’s Hospital’s NICU has 35 beds in total,
divided among four different units (differing on the type of
care they provide to neonates) and four single rooms. Patients
are mainly neonates who were born at a gestational age of
less than 32 weeks, or who suffered from birth asphyxia. The
aim is to provide care with a patient to nurse ratio of 2 to 1,
which in practice can be 3 to 1 at times.

A. Monitors and Alarms

All units are equipped with Dräger Infinity®M540 patient
monitors, one per bed, that are responsible for the large
majority of the produced acoustic alarms. The adopted mon-
itors are part of the Infinity®Acute Care System (IACS) by
Dräger [17]. The IACS is a medical device intended for
multi-parameter, physiologic monitoring of adult, pediatric,
and neonatal patients, which processes physiologic data (such
as ECG/heart rate, respiratory rate, oxygen saturation, and
invasive pressure) thanks to its connection to the monitors as
well as optional medical devices and displays. The central
component of the IACS is the Cockpit, a medical-grade work-
station which provides centralized viewing and control of all
bedside monitors in the unit and assumes the annunciation of
all acoustic (i.e., sequences of tones) and optical (i.e., flashing
light) alarm signals. In Sophia’s NICU, acoustic alarms are

set to additionally sound at each single monitor; however,
sounds from the bedside patient monitor and the Cockpit are
not synchronized, causing an echo of the acoustic alarm with
variable delay.

The alarm signals of the IACS alert the operator to condi-
tions ranging from limit violations in physiological signals to
network issues. Re-alarming occurs until the alarm condition
continues to exist or the alarm is acknowledged by the oper-
ator. Alarm conditions are assigned to one of three priorities,
i.e.,

• high: triggered by life-threatening physiological condi-
tions that need to be addressed immediately, such as
a ventricular fibrillation. Because of the corresponding
optical alarm signal, acoustic alarms associated to high
priority are called red alarms;

• medium: reports serious physiological conditions that
require attention but may not be life-threatening, such as
a respiratory rate limit violation, or technical conditions
such as a hardware failure. Acoustic alarms associated to
medium priority are called yellow alarms;

• low: alerts of technical issues that may compromise
the monitor’s function, such as artifacts on the ECG
waveform. Acoustic alarms associated to low priority are
called blue alarms.

Acoustic alarms follow one of three available patterns,
called Infinity®, IEC fast, and IEC slow. The adopted pattern
in Sophia’s NICU is the IEC fast, which is so called because it
complies with the IEC 60601-1-8 standard [18]. In particular,
each alarm type (blue, yellow, red) is associated to the repro-
duction of a specific melody, i.e., a sequence of 200ms tones,
with a fixed pause in between two consecutive reproductions.
Table I details the three alarm types,1 and Figure 1 displays the
spectrogram of an audio recording for each of them. Notice
that the three alarms are composed of a variable number of
tones chosen among four. Although the single tones contain
more frequencies (notice e.g. the harmonic component of the
lowest-frequency tone, one octave up the fundamental), we

1The only difference between the IEC fast and IEC slow patterns is an
increase in pause durations (30s, 15s, and 8s for blue, yellow, and red alarms,
respectively) for IEC slow.
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TABLE I
“IEC FAST” ALARM TYPES FOR THE IACS SYSTEM

Alarm type Blue Yellow Red
Tone sequence E4 C4 C4 E4 G4 C4 E4 G4 G4 C5
No. repetitions 1 1 2
Pause duration 16s 7s 4.5s

M4

Fig. 2. Arrangement of the four microphones (M1–M4) inside Unit 1.

label them according to their fundamental frequency (fC4 =
261.63Hz, fE4 = 329.63Hz, fG4 = 392Hz, fC5 = 523.25Hz).

B. Recordings

Because of privacy concerns and the preliminary nature of
this study, sound recordings in fully operational units were not
allowed. Nevertheless, we set up a recording system inside a
temporarily empty Unit 1, with the aim of simulating a rich
and realistic auditory NICU environment. More in particular,
we were able to (1) operate each single monitor among the 8
available in the room and to reproduce the different alarms
on command; (2) involve nurses so as to simulate human
interaction by means of speech, footsteps, and occasional
collisions with objects; (3) capture some machinery noise (e.g.,
the air conditioning noise). Therefore, we collected a number
of simulated NICU soundscapes with different degrees of
complexity, ranging from isolated alarms only, to overlapping
alarms and human interactions.

Figure 2 reports a schematic representation of the recording
setup, which consisted of four GRAS 40PP microphones
connected to a NI-9234 4-channel dynamic signal acquisition
module (amplifier + ADC) operating at fs = 51.2kHz. The
microphones (M1–M4) were hanging approximately 0.5m
below the ceiling and arranged along a rectangle to cover all
patient monitors as well as the central area of the room, where
the nurse station with the Cockpit is. A recording script written
in LabVIEW and running on a common laptop was used to
take continuous and synchronous recordings from the four
microphones. We took in total 25 minutes of preliminary sound
recordings, including approximately 8 minutes of isolated
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Fig. 3. Tone detection example: the C4 tone is detected because the 260Hz
bin magnitude is higher than the threshold, and at least one of the closest
non-target bin magnitudes is below the threshold.

alarms, 12 minutes of overlapping alarms, 5 minutes of speech,
and environmental noise all throughout.

III. THE ALARM RECOGNITION ALGORITHM

In order to recognize any of the three alarm types inside
the multichannel recording, we designed a simple signal
processing algorithm working in two stages. The first stage
aims at detecting each of the single alarm tones occurring
anywhere inside the room, while the second one groups the
tones into a known alarm pattern.

A. Stage 1: Tone Detection

Since alarm tones appear at four possible fundamental
frequencies (fC4, fE4, fG4, fC5), this stage aims at detecting
the presence of sound power concentrating around those
frequencies. To do so, it first preprocesses each recording
through an IIR lowpass filter with 550-Hz passband frequency
and a transition-band steepness of 0.95, and then downsamples
it by a factor of 40 for better performance. Then, it applies
a 100-ms moving and overlapping Blackman window to each
recording separately and the second-order Goertzel algorithm
to each single frame to evaluate the individual terms of the
DFT corresponding to the frequency bins that are closest to
each fundamental frequency (target bins) as well as those that
are 30Hz lower or higher (non-target bins), for a total of 11
bins (target bins: 260, 330, 390, 520Hz; non-target bins: 230,
290, 300, 360, 420, 490, 550Hz).

Finally, a tone is detected in a given temporal frame if and
only if, in at least 2 out of the 4 recordings,

• the corresponding target bin magnitude is above a given
threshold T ;

• the bin magnitude of at least one of the associated non-
target bins is below T .

Figure 3 reports an example case, where a C4 tone is detected.
The output of this first stage of the algorithm is a tone

log, where for each temporal frame the corresponding tone
detections are recorded. Figure 4 shows the tone log corre-
sponding to a recording where the spectrogram of one of the
four channels is also shown. Here, tone-on and tone-off mean
a transition from a non-detection to a detection and vice versa,
respectively.
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Fig. 4. The intermediate and final outputs of the alarm recognition algorithm:
tone log and alarm log for an example recording.

B. Stage 2: Alarm Detection

Prior to processing the tone log, sequences of tone-offs of
less than 30ms in adjacent frames are converted to tone-ons.
This ensures that occasional failures in the tone detection
algorithm do not have an impact on the subsequent steps.
Then, the four tone log sequences are aligned according to
each specific alarm type in decreasing order of priority (i.e.,
starting from the red alarm, then moving to the yellow, and
finally to the blue) and to the temporal lag between the tones in
a single alarm, which is known a priori. Notice from Figure 1
that the temporal lag between two tones changes depending
on the alarm type: for instance, the lag between the first and
second tone in the red alarm (200ms) is lower than the lag

TABLE II
RECALL AND PRECISION OF THE ALARM RECOGNITION ALGORITHM

APPLIED TO THE PRELIMINARY AUDIO RECORDINGS

Alarm type Blue Yellow Red Total
Recall 100% 98.7% 100% 98.9%

Precision 80% 100% 100% 99.1%

between the same tones in the yellow alarm (260ms) and the
blue alarm (280ms).

Therefore, if we represent with Nx[n] the tone log sequence
for note N and octave x in frame n (i.e., each of the four rows
in the tone log), and with lCi,j the temporal lag between the
i-th and j-th tones in alarm type C ∈ {R, Y,B}, we can
evaluate the occurrence of an alarm as the superposition of
the corresponding tones. We do this first for red alarms,

R[n] = C4[n] ∧ E4[n+ lR
1,2] ∧G4[n+ lR

1,3]∧

∧G4[n+ lR
1,4] ∧ C5[n+ lR

1,5], (1)

then we do the same for yellow alarms,

Y [n] = C4[n] ∧ E4[n+ lY
1,2] ∧G4[n+ lY

1,3], (2)

and finally for blue alarms,

B[n] = E4[n] ∧ C4[n+ lB
1,2]. (3)

Furthermore, at the end of each of the above operations,

• sequences of detections lasting less than 100ms (i.e.,
less than half the normal duration of a single tone) are
discarded from the corresponding R[n], Y [n], or B[n]
sequence, as they likely do not correspond to alarms;

• the tone log sequences are updated by changing to
tone-off all those frames that contributed to the already
detected alarms, in order to avoid cases where tones used
to identify a higher-priority alarm (i.e., red) also match
lower-priority ones (i.e., yellow).

The resulting R[n], Y [n], and B[n] sequences constitute the
final alarm log, an example of which is reported in Figure 4.

IV. RESULTS

Following manual annotation of all the available preliminary
audio recordings, a total of 438 acoustic patient monitoring
alarm events were identified. More precisely, we recorded 40
red alarms, 382 yellow alarms, and 16 blue alarms. Note that
these proportions mimic a real ICU setting, where approxi-
mately 85% of alarm events correspond to yellow alarms [19].

Table II reports the results of applying the algorithm (with
T = −20dBFS) to the audio recordings in terms of recall,
i.e., the fraction of alarms that were recognized among the
annotated ones, and precision, i.e., the fraction of recognized
alarms corresponding to an annotated alarm among all recog-
nitions by the algorithm. Notably, all red alarm events were
correctly identified, and no false red alarm was recorded. The
latter also applies to yellow alarms, which had, however, a
slightly lower recall rate – all were detected but five. Upon
closer inspection of these false negative cases, we found that
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they correspond to occurrences where a yellow alarm partially
overlaps with a red alarm, and is therefore hard to isolate.
Interestingly, the degree of complexity of the soundscape in
terms of human interactions does not seem to have an impact
on the algorithm’s recall rate.

On the other hand, although all the real blue alarm events
were correctly detected, we identified four cases of false
blue alarms. Upon closer inspection, these false positive cases
correspond to detections of pitched speech stimuli whose
frequency content temporally concentrated around the same
frequencies. Reasonably, the fact that the blue alarm pattern
is composed of only two tones makes this alarm type less
peculiar and more prone to false detection than the yellow or
red alarm.

V. CONCLUSIONS AND ONGOING WORK

Despite its inherent simplicity, the alarm recognition al-
gorithm that we proposed in this paper has the potential to
robustly detect all three types of acoustic patient monitoring
alarms occurring inside Sophia Children’s Hospital’s NICU.
Apart from this, our approach bears limitations that need to
be accounted for. The results, especially for what concerns the
false positives, could be further improved by designing and
implementing a stronger approach for tone detection which
includes probabilistic modeling of audio features [20]. This
would allow for clearly distinguishing sinusoidal signals from
pitched speech signals. Furthermore, because of the limited
amount of channels, the current recording setup does not allow
for jointly recognizing and localizing acoustic alarm events
inside the unit.

On the other hand, thanks to the use of efficient signal
processing techniques, the algorithm lends itself to real-time
implementation. The current offline MATLAB implementation
of the alarm recognition algorithm takes on average around 8s
to fully process a 2-minute recording on a Lenovo ThinkPad
X1 Carbon Gen 9 laptop with an 11th Gen Intel®Core™i7-
1165G7 2.8GHz CPU. In addition, generalization to other
yellow and red alarm patterns as defined by the IEC 60601-
1-8 standard,2 possibly used by medical devices other than
monitors (e.g. pulse oximeters, cardio-pulmonary perfusion
pumps), is straightforward because it only requires adjusting
the fundamental frequencies of the single tones in a 3-tone
(yellow alarm) or a 5-tone (red alarm) melody.

Finally, it has to be acknowledged that although we set up
the recording system to capture a realistic NICU soundscape,
only a limited number of recordings taken in a simulated
environment were used in the preliminary evaluation reported
herein. Following the obtainment of authorizations and ethical
approvals, we plan to conduct a larger-scale evaluation of
the alarm recognition algorithm in a real environment with
patients, families, nurses and other medical stakeholders over
a prolonged period of time.

2See Table F.1 in [18].
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