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Abstract—Modern big data systems are highly heterogeneous.
The components found in their many layers of abstraction are
often implemented in a wide variety of programming languages and
frameworks. Due to language implementation differences, interfaces
between these components, including hardware accelerated components,
are often burdened by serialization overhead. Serialization bandwidth of
many high-level language frameworks is an order of magnitude lower
than contemporary FPGA accelerator interface bandwidth, especially
when objects are small but numerous. Therefore, serialization bounds
the effective end-to-end performance of FPGA-accelerated solutions
integrated with applications written in high-level languages. The Apache
Arrow project defines a language agnostic columnar in-memory format
optimized for big data applications, preventing the need to serialize
or even make copies during communication between components. To
enable FPGA accelerators to benefit from the approach of Arrow, we
first investigate the properties of its format in relation to hardware
interfaces and establish that the format is usable. Second, we present
the Fletcher framework, that automatically generates highly efficient
hardware interfaces to access data of potentially complex, nested Arrow
data types. Our approach allows 11 of the languages supported by
Apache Arrow libraries to efficiently communicate large data sets with
FPGA accelerators at system bandwidth. Furthermore, on the hardware
side, the generated interfaces deliver any data type that Arrow can
represent as groups of streams, providing a better starting point for
data-flow-oriented kernel development, compared to manually creating
custom interfaces to address issues related to pointer arithmetic, bus
word misalignment and latency. For example applications, as measured
on an AWS EC2 F1 and CAPI2-enabled POWER9 system, accelerated
end-to-end application performance improves by 1.3× - 49× compared
to a hardware accelerated solution that still requires serialization.

Keywords—FPGA acceleration, Apache Arrow, big data systems, seri-
alization, accelerator bandwidth

I. INTRODUCTION

In terms of both hardware and software, the increasing het-

erogeneity in (cluster) computing frameworks built for big data

analytics causes major challenges [1]. One challenge is that different

system components that consume the same data may use different

representation of that data in memory. This introduces a serialization

requirement whenever data is passed from one component to another,

if they are not implemented using the same technology.

Serialization is generally an unwanted necessity, as it merely

transforms the form rather than the contents of the data, and is

therefore a non-functional aspect. In applications built on top of these

analytics frameworks, serialization may take up a large portion of the

run-time of the full application [2]. Examples of where serialization

takes place between components of a heterogeneous framework such

as Apache Spark [3] can be seen in Figure 1(a).

The Apache Arrow project was launched to (among other contribu-

tions) overcome this bottleneck [4], and has already seen integration

in several well known tools and frameworks from the data analytics

community, such as Spark, Parquet and Pandas. The Arrow project

defines a common columnar in-memory format for data sets and

provides zero-copy inter-process communication libraries for various

languages, including (at the time of writing) C, C++, Java, Python,

R, Matlab, Go, C#, JavaScript, Ruby and Rust. For a schematic

overview, see Figure 1(b).

In this paper, we first establish that the Apache Arrow format is

also usable in the context of FPGA acceleration, where serialization

bottlenecks can also be present. This can tremendously improve end-

to-end accelerated application throughput, because host-side serial-

ization throughput from various high-level languages can generally

be several orders of magnitude lower than contemporary accelerator

interface throughput [5].

A second advantage to using Arrow’s standardized format exists.

Because the in-memory format is derived from meta-data about the

data sets, called schemas, we may also derive highly optimized

hardware interfaces automatically from these schemas. From the

perspective of an accelerator developer, these interfaces provide an

easier starting point to interface with Arrow data sets, and in turn, to

any of the languages supported by Arrow.

Access to objects/records and their fields can be expressed through

tabular data set indices rather than the usual byte addresses, prevent-

ing the need to manually design units that perform tedious pointer

arithmetic and perform the required requests on a memory interface.

After supplying an index range of objects or records to process, the

interface delivers streams of the exact data types expressed through

the schema, rather than bus words. This allows the FPGA accelerator

developer to fully focus on implementing the actual computational

path of the accelerator only, rather than having to bother with the

interface as well. This can normally be a cumbersome exercise,

especially for data sets that consist of not just primitives such as ints
or floats, but also contain more complex data types such as structure,

lists and dictionaries (and any nested combination thereof).

Additionaly, an advantage from building on top of the Apache

Arrow ecosystem is that through Fletcher, high-performance FPGA

acceleration is made available to all supported languages. Finally, a

resulting advantage from delivering object or record fields as streams

is that this integrates more naturally with HLS-tools, without having

to write HLS-code that is, again, interface specific.

We contribute the first implementation of these ideas in the form

of a fully open-sourced (including experiments, see [6]), vendor

agnostic FPGA acceleration framework called Fletcher. We elaborate

the problem of framework heterogeneity and serialization overhead

in relation to FPGA acceleration in Section II. We investigate the

Arrow format in Section III. The Fletcher framework is discussed

in Section IV. We present the results for four example applications

using Fletcher in Section V. An overview of related work is discussed

in Section VI. Section VII concludes this paper.

II. BACKGROUND

When processing a data set with an external accelerator, the data

must be moved from host memory to accelerator over its interface.

The bandwidth of this data transfer is maximized when the data

resides in a large contiguous memory buffer (CMB) because it may

be transferred using large contiguous bursts. Thus, a developer who

wants to use an FPGA accelerator to speed up some application
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(a) (b)

Fig. 1. (a) Examples of where serialization can take place and (b) how Arrow
attempts to prevent serialization through the use of a common data layer.

must first make sure the data resides in a CMB, lest many short

transfers with the associated overhead must be initiated. However,

most commonly used containers and objects in various languages

do not store the data in a CMB. The in-memory formats for such

containers and objects are often designed for efficient use within the

language run-time itself, or to provide some sort of abstraction that

suits the language paradigm well. To prevent accelerators from having

to traverse objects graphs, possibly incurring memory latency several

times per object, serialization must be applied. However, serialization

negatively impacts the effective bandwidth to the accelerator.

Take the example of a C++ Standard Template Library (STL)

string. While it is possible to allocate the string in an STL vector such

that the string objects themselves reside in a CMB, the string object

constructor allocates memory for its character array using malloc()
separately for each string. Thus, the characters (data of interest) of

the string are not guaranteed to reside in a CMB. This is a general

problem in case objects hold variable length data that is allocated by

the object itself.

To continue with the example of a C++ STL string object, STL

constructors can (in contemporary versions of the C++ language) be

provided with custom allocators that could (albeit in an arguably

counter-productive manner) place them in a CMB. However, if the

strings are sufficiently short, the characters are actually placed in

the string root object space itself (by both the LLVM and GCC

implementation of the STL). This is defined in the behaviour of the

constructor, and is an optimization that prevents a second memory

allocation from taking place. This effectively breaks up any CMB

of characters. It is therefore not possible to guarantee that the data

is stored contiguously using an STL string, as we can only dictate

that, if it allocates, it should use our custom allocator. Without

rewriting the string implementation, we cannot change when it

allocates. Thus, a developer must create some custom representation

and implementation of a string, requiring extra effort.

A similar case can be made for even more abstract languages like

Python or Java, where this problem is generally worse and less trivial

to mitigate for the programmer, as no direct control exists over object

layouts in memory. Even if this effort is spent, a data set built up

like this will still suffer from more drawbacks.

Even when objects with equivalent fields are stored in a CMB,

their in-memory representations are not equivalent among different

language run-times, especially due to the presence of run-time

specific metadata (e.g. JVM: class references, C++: virtual function

tables, Python: reference counters). This (to an accelerator useless)

metadata may be of significant size, especially when objects are small

and numerous, as commonly seen in big data analytics. Therefore,

even if the data may be stored in a CMB, effective bandwidth is

decreased. Furthermore, it is required for an accelerator to implement

a filtering step before processing, to make it a true CMB, i.e. not a

CMB that also contains language-specific meta-data. This filter step

furthermore would depend on the host-side language run-time used,

while the function of the accelerator is essentially not different.

Even worse, object layouts are not guaranteed to be consistent

inside a language itself. E.g. both the Java Virtual Machine [7]

and C++ [8] do not specify or restrict how an object is laid out

in memory—it is left to the implementation of the JVM and the

compiler, respectively. Also, compilers may choose to optimize the

lay-out, e.g. to improve alignment w.r.t. cache lines in different ways.

Summarizing, to effectively integrate an accelerator hardware

design targeting a heterogeneous environment, the design must:

– be adjusted for every host-side run-time language,

– be adjusted for every compiler implementation,

– put a restriction on the application compiler/run-time, and filter

language-specific metadata,

– invent a custom in-memory format for every non-primitive data

type, in every language involved, or

– apply the costly act of serialization.

If one standardizes an as-contiguous-as-possible in-memory format

and provides interfaces to produce/consume this data in various

languages, all these options become unnecessary or irrelevant. Such a

standardized solution for software is provided by the Apache Arrow

project.

III. APACHE ARROW IN-MEMORY FORMAT

We investigate the general use case of Arrow data sets, where they

appear to a programmer in tabular form, called RecordBatches. A

RecordBatch is accompanied by a schema that specifies the types of

the fields of the objects/records stored in the table. Each record field

is stored in a separate table column.

The fact that there is a higher level description of the data structure

(the schema) already provides an advantage. While designing the

functional aspects of an FPGA accelerator can already be challenging,

a significant portion of design time involves structural aspects of the

interface. Interface design often deals with converting data on very

wide hardware buses (the platforms used in this work both use 512

bits) to something more usable at the input of the accelerator. This

includes pointer arithmetic to determine which bytes are the bytes

of interest, parallelizing or serializing words into larger or smaller

chunks, and shifting them into the right positions before turning them

into data streams to be absorbed by some kernel.

The relation between the raw bytes of a RecordBatch are known

from the schema and the format specification. It is therefore possible

to automatically generate circuits that perform the required pointer

arithmetic and pre-processing of raw bus words into streams that

are more meaningful and usable to an accelerator developer. More

specifically, based on the schema, an interface may be generated

that as a command takes a range of object/records indices of a

RecordBatch and streams out the requested fields as exactly the data

types expressed in the schema. Furthermore, parts of the control

and data flow on the host-side may also be automated (e.g. passing

buffers addresses and potentially moving data to accelerator on-board

memory).

With such a setup, is it possible to operate at system bandwidth? In

general, any serialized format suitable for FPGA processing causes

as few pointer traversals as possible, requires as little pre-processing

or reordering in the accelerator as possible and is streamable. With

this in mind, we investigate two forms of data that can be generalized

to all data structures; fixed-width data fields and variable-length data

fields.

A. Fixed-width fields

RecordBatch columns with fixed-width elements (e.g. floats,

booleans or ints) are in Arrow format stored in one contiguous
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values buffer, equivalent to a C-like buffer. Given some index of

data to obtain, an offset has to be calculated, the specific data word

(or words) have to be loaded. Upon receiving the raw bytes, the

bus words have to be shaped into the correct type, before they can

be presented on a streaming output. If kernels can absorb multiple

elements per cycle, or if multiple kernels want to read from the same

column in parallel, it is possible to match system bandwidth on such

an interface. Assuming a kernel requests the full range of objects

from the table, only one “pointer” is traversed to read this field for

all objects of interest with maximum size pipelined bursts on the

memory interface.

This is much more efficient than if the accelerator would have to

traverse a pointer for each fixed-width element. For a C programmer

it may seem far fetched for a collection of integers to be stored as a

list of pointers to integers. However, some high-level languages (such

as Python and R) box every integer into an object (hence the need for

e.g. Numpy). Any interface dealing with such an in-memory lay-out

will quickly be bounded by memory latency if such a collection of

integers is to be traversed through pointers to the integer objects.

B. Variable-length fields

More interesting are Arrow columns of variable length types (e.g.

a UTF-8 string). They are referred to as lists of some other type

(e.g. a List<Char> or List<List<Int>>). They contain at

least two buffers, an offsets buffer and the values buffer. An offset at

some index in the offsets buffer corresponds to the index of the first

element of the list in the values buffer. The values buffer contiguously

holds all primitive list elements. This format offers some advantages

that an interface generation framework may exploit over what HLS-

compilers can assume about this data structure.

More formally, consider the case where a variable length object

is represented through two Arrow buffers; the offsets buffer O =
{o1, o2, ..., oN} ∈ Z

≥ and values buffer V = {v1, v2, ..., vM}. O,

in the C-language, will be represented as an unsigned integer array. A

C-based HLS compiler may not make assumptions about the values

of oi, as they are defined during run-time. More specifically, it cannot

assume that in the case of an Arrow offsets buffer, oi+1 − oi ∈ Z
≥;

the outcome of this calculation might also yield a negative integer.

Therefore, not to lose generality it must request each run of value

buffer elements voi ...voi+1 separately, and any data path consuming

the data is subject to memory latency.

Hardware pre-fetching (such as explored in [9]) or using spatial

locality in caches may improve this behavior, but these constructs

are costly, especially when, in the case of the Arrow format, they

are not required. To elaborate, when requesting a range j...k of

variable length objects, in fact the whole range of values of interest

voj ...vok+1 can be requested from the contiguous buffer. This can

be bursted into a FIFO, ready to be delivered on the output stream

synchronized with a length stream resulting from subtracting two

consecutive offsets. Thus, memory latency for pointer traversal is

only paid three times independent of the amount of variable length

objects that are requested; once to obtain ok+1 from the offsets buffer,

once to obtain all offsets of interest oj ...ok+1, and once to obtain all

values of interest. No dynamic hardware pre-fetching or caches are

required to deliver throughput that is close to system bandwidth. This

approach also generalizes to nested lists.

Furthermore, with these assumptions, this interface can be

generated automatically, without the need to manually write an

HDL-based interface or the need to write special HLS functions

that mimic this optimal behavior. HLS templates for transformation

functions used in higher-order functions such as map, filter and

reduce, can immediately be provided with length stream and value

stream as arguments. Again, this approach generalizes to nested types.

Arrow also supports other convenient data types such as structs,

sparse and dense unions and dictionaries, which are discussed in

its format specification. Furthermore, a special type of fixed-width

field that contains a validity bit to allow entries to be nullable is

supported.

C. Limitations

Some limitations to the Arrow approach exist. First, once data

sets have been built in memory, it is not trivial to mutate them

without breaking contiguousness. Therefore, Arrow is best at storing

immutable data sets in memory but less powerful when working

with algorithms that aim to mutate data sets in place. Second, at

the time of writing, no data format is specified for graph-based

data sets, or other more exotic non-tabular formats. Still, graphs

can generally be represented through tables, although there is, at the

time of writing, no Arrow standard specification. A final limitation

is that because a different in-memory format is used than some

language run-time is used to, code that accesses data (accessors) must

go through an additional layer (e.g. some Arrow language specific

library) rather than being able to use default ways of accessing

object or record fields. While investigating this drawback, we did not

find any significant performance degradation. We have investigated

C++ (a case where code is compiled to native instructions), where

the performance of accessing Arrow based containers is similar and

sometimes faster than accessing STL containers, as Arrow exposes

raw pointers to the data buffers. For Java (a case where code is

compiled to virtual machine bytecode), access to Arrow based data

is done through calls to the Unsafe library, as the data is stored outside

the VM managed heap. Fortunately, widely-used implementations of

the JVM inline these calls during JIT compilation, providing similar

performance to normal object field accessors. In Python (a case where

code is interpreted), it is common for high performance libraries to

use native code underneath (e.g. NumPy) written in Cython. This

involves extra developer effort but is a common trade-off made in

the Python ecosystem.

Establishing that aside from these limitations, the Arrow in-

memory format is indeed suitable since it is highly contiguous and

streamable, the next section will discuss the implementation of an

interface generation framework based on the Arrow format.

IV. FLETCHER

A. Overview

A high-level overview of our FPGA acceleration framework that

exploits the benefits of the Arrow format, called Fletcher, is seen

in Figure 2. In this figure, the general compile-time and run-time

flow is depicted. At compile-time, a developer starts with an Arrow

schema. From the schema, a default HDL or HLS template for the

accelerated function implementation and an interface that will provide

streams of requested data from the Arrow table are generated (see

Section IV-B). These sources are synthesized, placed and routed to

provide the FPGA bitstream. At run-time, the enumerated steps in

Figure 2 are taken:

1) Starting with a data source (e.g. a Parquet [10] file on disk),

the data is loaded into memory.

2) Rather than loading the data set into a language native container

(that would incur serialization overhead as soon as the data is needed

in the accelerator), the application will ingest the data into memory

formatted as an Arrow-based data set (e.g. a RecordBatch). Arrow

library functions will place the data in host memory according to
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Fig. 2. Architectural overview of Fletcher. Upper part of the figure shows the
compile-time (development) flow, lower part of the figure shows the run-time
flow for host system (left) and accelerator (right).

the schema and the format specification (if not already in the Arrow

format).

3) The application can request the Fletcher run-time libraries to

prepare the Arrow data set for processing on the accelerator. For

some platforms this simply means passing virtual addresses of the

buffers [11], and for other platforms this means a copy of the buffers

must be made to accelerator on-board memory. This process is fully

automated in the Fletcher run-time libraries. Basic use requires the

user to only claim the platform / accelerator card, create a context in

which the on-board memory is managed by the run-time, bind a host-

side abstract representation of the Hardware Accelerated Function to

a context, and provide the input RecordBatches as an argument to the

Hardware Accelerated Function. Advanced users may use lower-level

API calls to the Fletcher run-time system to e.g. place other data in

the accelerator memory and control other data paths not generated

through Fletcher.

4) The application can now issue commands to the functional

part of the accelerator, the Hardware Accelerated Function (HAF).

Commands include setting arguments, reset, start, stop and poll for

completion.

5) After the HAF receives the commands from the application, it

can request a row or ranges of rows from the generated interface

through a pipelined command stream.

6) The generated interface will request the desired data from the

host memory or the accelerator on-board memory.

7) After receiving the data from the memory, the interface provides

streams of data back to the HAF, containing the data from the

requested rows and fields, in the form specified in the schema.

The last two steps can be reversed in case the HAF wants to write

to an Arrow data set in memory.

B. Interface generation

Since a RecordBatch in Arrow is an abstraction of a group

of columns, a Fletcher generated top-level interface is called a

ColumnReader (CR). The CR internals are generated in pure VHDL

by parsing a configuration string that conveys information about

the schema required to generate the hardware structure. Thus, to

generate the hardware interface from a schema involves transforming

the schema into a string which is done through a command-line tool

called Fletchgen. The core logic of the interfaces that are generated

are based on a vendor-agnostic pure HDL streaming primitives library

as a part of the Fletcher framework.

(a) ColumnReader for nullable, fixed-width elements. The outputs of two
BufferReaders are combined to deliver the field value with its validity bit
synchronously.

(b) List of fixed-width elements (non-nullable). Two BufferReaders are
combined, where the offsets BufferReader provides a command for the
values BufferReader. A list length stream and list element stream is provided
to the computational kernel.

Fig. 3. Generated internal architecture of ColumnReaders for two examples.

The configuration string causes CRs to internally configure for

different column types. A fixed-width type (as seen in Figure 3(a)

will result in a CR configuration to read a single values buffer through

a component called a BufferReader (BR). BRs include bus request

generation and response reshaping logic and deliver exactly the fixed-

width type of the schema.

Developers may add metadata to the Arrow schema and its fields

to generate interfaces that, e.g. deliver multiple elements per cycle,

contain more or less register slices in data paths, contain shallower

or deeper FIFOs or even ignore schema fields altogether if they are

not of interest. This allows the developer to make trade-offs between

area, power and performance.

Reading variable-length data chains multiple BRs as seen in

Figure 3(b), where one BR reads from an offsets buffer and through

a specialized component generates new commands for a second BR

that reads the values buffer. Although not shown in the figures, CRs

may recursively instantiate themselves to support, for example, lists

of lists; combining an offsets BR on its own top level and another

offsets BR and a values BR in the level below. Other options, such

as struct types are also supported, that instantiate a CR for each

struct field and synchronize their output streams on a top level CR.

While this paper focuses on the general motivation and overview

from the application-level, previous work has described in detail

the multitude of specific digital design challenges solved by to

the streaming primitives library and how they are combined into a

CR [12].

The Fletchgen tool creates a wrapper around the whole design

(where multiple CRs can be instantiated), and generates an HDL or

HLS template for the HAF, abstracting away all non-Arrow related

interfaces. The top-level of the hierarchical design that Fletchgen

generates currently provides the commonly used AXI4 (for data

paths) and AXI4-lite (for control paths) interfaces. A schematic

overview of all the components involved in this higher-level hierarchy

are shown in Figure 4. Since this generation step only involves

structural aspects of the design, it is implemented to perform the
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Fig. 4. Schematic overview of the upper layers of a Fletcher-based de-
sign, fully generated through Fletchgen. The ColumnReader/Writer, Record-
BatchReader/Writer, Read/Write Interconnect and Top-level Wrapper compo-
nents are all derived from the supplied Arrow schema.

following three stages:

1) Construction: The first stage converts Arrow more software-

oriented data type descriptions to Fletcher-specific data type descrip-

tions. These descriptions are augmented with hardware-specific traits,

e.g. to allow nested or variable length data types to be moved as

a bundle of streams operating in a specific clock domain. These

hardware-oriented type descriptions can then be used to instantiate

signals, ports and components in an abstract, graph-based intermedi-

ate representation of the structural design. Through this intermediate

representation, Fletchgen instantiates and hierarchically groups mul-

tiple ColumnReaders and ColumnWriters according to the supplied

set of Arrow schemas. Each schema results in a schema-specific

component called a RecordBatchReader/Writer (where each field of

a record in a RecordBatch can still be individually accessed). All

RecordBatchReaders/Writers are combined into a top-level wrapper

in which also an appropriate bus infrastructure is generated.

2) Transformation: In the second stage of generation, the inter-

mediate representation is supplied to a back-end, where the abstract

structural representation is transformed to a version suitable for

emission as source files for downstream tools. Currently, there is a

VHDL back-end, and a back-end for DOT graphs [13] that allow fast

visual inspection and debugging. For example, since VHDL does not

allow port-to-port connections of instantiated components, the VHDL

back-end will resolve this by inserting a signal in between. Other

transformations include the expansion of abstract types to physical

types. One example for the VHDL back-end is to expand a stream of

some other type to contain physical valid/ready handshake signals.

3) Emission: In the final stage, the transformed graph-based

representation is emitted as source code.

The combination of the ColumnReaders and Fletchgen elevates the

level of abstraction up to the point where a developer can simply

provide a set of Arrow schemas, obtain a template for the HAF

and work on the functional aspects of the accelerator right away.

Cooperative design efforts between software and hardware designers

can benefit from the schema representation of the data as well, as

a means of defining a (data-oriented) interface between hardware

and software, agnostic of the software language run-time framework

used. In other words, using Fletcher to create an FPGA accelerator

design enables the efficient use of this accelerator in any of the (at

time of writing) 11 languages that Apache Arrow supports.

C. Simulation

Fletchgen allows conversion of existing Arrow RecordBatches to

a memory model for simulation that mimics a host interface and

memory. In this way, a designer may perform hardware/software co-

design of the HAF in simulation, agnostic of the final implementation

platform.

To validate the correctness of the CRs themselves, schemas were

generated randomly, where at each schema nesting level (within

structs and lists) the complexity decreases on average such that

eventually the nesting ends. Data sets based on this schema were

generated randomly and random ranges of data are requested. The

resulting stream outputs are checked with the expected outcome. Us-

ing this method, over ten thousand generated interfaces are validated

in simulation.

Although only reading from Arrow data sets has been discussed

so far, Fletcher allows the generation of interfaces that write to

Arrow data sets in host memory as well. Components such as

ColumnWriters, BufferWriters, etc. are implemented that reverse the

streams shown in Figure 3.

V. RESULTS

We implement four applications using Fletcher to investigate its

characteristics. We benchmark on an Amazon Web Services EC2

F1 system equipped with a proprietary card that contains a Xilinx

XCVU9P (AWS/F1) and a POWER9 Barreleye system equipped with

an AlphaData ADM-9V3 equipped with a Xilinx VU3P attached

through CAPI 2.0 using the SNAP framework (P9/SNAP) [14]. These

systems can simultaneously run 8 and 144 hardware threads on their

CPU(s), respectively. The P9/SNAP system allows Fletcher to read

and write directly from and to host memory using virtual addresses,

hence implementations using this system do not require copies to

accelerator on-board memory.

Each application is implemented in C++ (GCC), Python (3.6)

and Java (OpenJDK 8). The application software-only throughput is

measured. The bandwidth of serialization from a language specific

container to a format usable by FPGA (in our case the Arrow format)

is also measured. Finally, the FPGA throughput and copy bandwidth

are measured.

A. Regular expression matcher

In this example, a large collection of (tweet-sized) strings is

matched to a set of sixteen regular expressions. The number of

matches are counted for each regular expression. It is an application

that is fully streamable and generally performs extremely well on

FPGA — hence any serialization overhead can penalize its potential

performance tremendously. With this example application, we can

measure the performance of CRs that fetch variable-length objects

(UTF-8 strings). The software kernels use the fastest regex matching

libraries we could find. In C++ we use the RE2 library [15] and spread

the workload over all available hardware threads. We use the Python

wrappers for the RE2 library as well and the standard multiprocessing

module to spread the workload over all hardware threads. In Java the

built-in regex matcher is fastest, and has also been parallelized over

all hardware threads.

In the FPGA implementation, we place multiple streaming regex

matching units in parallel where each unit has a CR configured to

deliver four characters per cycle at 250 MHz. This setup matches

the peak theoretical throughput of 16 GB/s for the on-board DDR

interface. A data set with random length strings between 0-255 with

a total size of 1 GiB is used as an input.

From the run-time measurements, shown in Figure 5 and through-

put measurements, shown in Table I, we find that the FPGA kernel
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TABLE I
REGULAR EXPRESSION MATCHING RESULTS

Throughput (GB/s) Speedup
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AWS/F1
(16 regex
units)

C++ 0.08 0.55 7.13 14.27 6.18 59.73 9.67
Python 0.04 0.83 7.17 14.28 15.93 107.73 6.76

Java 0.03 0.27 7.13 14.27 8.24 152.91 18.56
P9/SNAP
(8 regex
units)

C++ 0.43 0.81 n/a 7.61 1.70 17.78 10.44
Python 0.11 0.81 n/a 7.61 6.77 70.72 10.45

Java 0.16 0.16 n/a 7.61 0.95 46.49 48.69
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C++ Vector + Ser. + FPGA
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Fig. 5. Run-time components of regular expression matching accelerator

vastly outperforms the CPU implementation, as expected. However,

to get the data set to the accelerator we must first serialize it. The

serialization throughput for each language is below 1 GB/s, while the

EC2 F1 platform has a copy bandwidth of over 7 GB/s. Once the

data is on the on-board memory, the parallel CRs are able to stream

the data to the regex units at over 14 GB/s (achieving almost 90%

of the peak bandwidth). Through the use of the Arrow in-memory

format and interfacing with the data through the use of Fletcher, the

end-to-end speedup improves by over 9×. A similar advantage may

be observed in the POWER9/SNAP case. In the particular case of

the Java implementation on this platform, serialization dominates so

much, that even though the accelerator exhibits an almost two orders

of magnitude higher throughput, it would not be worthwhile to use

the accelerator when serialization has to take place. This is mainly

due to a very low serialization throughput, and as a result, using

Fletcher yields a very high improvement factor.

Additionally, we find the FPGA area utilization of each CR for

this example to be 1.45% CLBs and 0.21% BRAM tiles for the

XCVU9P). Further details on area utilization of a wide variety

of ColumnReader/Writer configurations can be found in [12]. In

summary, the CLB utilization ranges from 0.02% for primitive types

with the width of the data bus to 2.34% for ColumnReaders for lists

of primitives able to deliver 64 elements per cycle.

B. String writer

In this example, we consider writing to Arrow RecordBatches

from FPGA. Use cases include the FPGA being the data source or

being in the data-path from another source to host memory (e.g.

data coming from a network interface or storage). The data source

contains a set of string lengths and a set of string characters (similar

to e.g. how uncompressed Parquet files store strings). Our intent is

to measure how fast ColumnWriters can write variable-length objects

into a format that is usable by the software-language run-times that

Arrow supports.

TABLE II
STRING WRITER RESULTS

Throughput (GB/s)

System Language
To native
container

To Arrow
RecordBatch

FPGA
copy

Total (Arrow
RecordBatch)

AWS/F1

C++ 0.85 2.53 - 2.53
Python 0.96 2.60 - 2.60
Java 0.59 1.81 - 1.81
FPGA - 9.76 2.75 2.15

P9/SNAP

C++ 0.76 7.52 - 7.52
Python 1.60 7.68 - 7.68
Java 0.28 3.96 - 3.96
FPGA - 9.76 - 9.76

Because connecting the FPGA to an actual flash drive or network

interface is outside the scope of this work, we mimic such an input

in FPGA by generating a character stream with 64 characters per

cycle (at 250 MHz) and another stream with pseudo-random lengths

between 0-255, resulting in a total data size of approximately 1 GiB.

The length stream is generated uniformly random between 0-255.

This results in the 64-character input stream where every handshake

on average only has 75% valid input data, resulting in a peak input

rate of 12 GB/s. In software, the time to deserialize the same data

source to a language native container (C++: vector<string>,

Python: list of strings (using Cython), Java: Array<String>, all

pre-allocated where applicable) as well as to an Arrow RecordBatch is

measured (in the Python case by wrapping the C++ implementation).

From the measurement shown in Table II, it can be concluded that

the Arrow format itself already gives a performance benefit because

it does not require the need to allocate memory for each string

object separately. The ColumnWriters of the FPGA implementation

are able to generate the Arrow RecordBatch at an even higher

throughput of almost 10 GB/s, slightly over 80% of the average input

bandwidth of 12 GB/s. The device-to-host bandwidth of the AWS/F1

system only delivers 2.53 GB/s, causing a bottleneck for the FPGA

implementation. This is expected to be increased while the AWS/F1

system is further developed. For the P9/SNAP system, a more modest

speedup of 1.3× is observed.

C. K-means clustering

We perform K-means clustering (only on AWS/F1) of a data set

of integer feature vectors; a common kernel in data analytics that is

computationally intensive. The algorithm is of a more iterative nature;

it is not fully streamable and therefore the impact of serialization is

expected to be less dominant. At the same time, using Fletcher we

may generate an easy-to-use interface that delivers streams of vectors

of which the lengths is defined during run-time.

The C++ implementation uses a vector of feature vectors as input

data and performs the clustering using a parallelized implementation

on all hardware threads. The Python implementation wraps the C++

implementation through Cython. The Java implementation uses an

ArrayList of ArrayLists as an input dataset and is also multi-

threaded. The FPGA implementation processes one feature vector per

clock cycle, where up to 16 features can be processed in parallel from

the input stream received from the ColumnReader. For every iteration

of the K-means algorithm, the whole data set is requested through

the CRs. For our dataset of aprox. 1 GiB of feature vectors, the

number of iterations was 25, and thus we may calculate the average

bandwidth per iteration for all implementations.

The results of this measurement are shown in Table III. It can be

seen that the bandwidth of the ColumnReader grows close to the peak

bandwidth (delivering up to 70%, although computational aspects

of the implementation are also included in this measurement). The

results show that even for a computational intensive algorithm like
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TABLE III
K-MEANS CLUSTERING RESULTS

Avg. GB/s Total run-time (s)

Language CPU FPGA CPU
FPGA
(w/ ser)

FPGA
(w/o ser)

C++ 1.40 11.15 19.24 6.08 2.55
Python 1.29 11.15 20.77 8.07 3.03
Java 1.00 11.15 26.92 3.88 2.55

K-means, the benefit can be substantial (up to 2.7× in this particular

case).

D. HLS-based filter

In this example, augmenting an existing commercial HLS tool

(Vivado HLS) with Fletcher is investigated. An Arrow RecordBatch

was created with two columns containing a string and a third column

containing an integer. On this RecordBatch, an SQL-like query is be

performed that exactly matches the contents of one string and the

integer, and returns the other string column.

Initially, the kernel is described as a C++ function that has pointer

arguments to the used Arrow buffers. The HLS tool initially cannot

compile this kernel as there is no static information about the size

of the buffers. After adding a pragma for each of the buffer pointers

we are able to compile an implementation that communicates with a

memory bus. Assuming an off-chip memory latency in the order of

a hundred nanoseconds (∼25 cycles at 250MHz), this kernel incurs

memory latency for the outer loop that iterates over all strings. This

results in an outer loop iteration latency of at least 49 cycles with

an inner loop iteration latency of two cycles. Only a fraction of

the cycles are spent on actual work; the kernel is memory latency

bound. Additional pragmas and rewriting the kernel in a specific way

would allow to optimize this behavior, even as so far to possibly

write additional functions that mimic Fletcher’s approach. However,

Fletcher helps automate this process and overcomes the need for

rewriting the kernel.

In a second implementation, using Fletchgen, an interface is

automatically generated based on an Arrow schema. The interface

provides the ability to write the kernel as a C++ function with

hls::stream<type> arguments. The input streams provide the

properties of the string; a length and character stream for each string,

and a stream with the integer. After the filter step has been performed,

the kernel may push characters and lengths into the output stream.

Again an outer loop over all strings and an inner loop over all

characters is created. The HLS tool is immediately able to compile

the kernel without the use of any pragmas. Because there are no bus

requests, the minimum latency of the outer loop is much smaller; only

5 cycles. In this example, the iteration latency is improved by almost

10×. This means that our approach enables users to skip the tedious

step of writing HLS-oriented C++ code to interface more efficiently

with the data, while providing better performance at the same time

(for reasons explained in Section III-B). Developers are allowed to

immediately focus on the computational aspect of the kernel.

VI. RELATED WORK

Previous works have acknowledged serialization bottlenecks within

the context of FPGA acceleration and big data processing frame-

works, see [16][17][18][5].

Integrating big data processing frameworks with GPGPU and

FPGA have been explored for Spark with Scala (JVM based) and

OpenCL [19], although the focus is on programmability rather

than attempting to alleviate serialization bottlenecks. Research to

optimize interfaces with specific languages such as Java have been

attempted [20], but still require a software serialization step. Other

work shows highly configurable hardware templates based on com-

mon SQL-like operations written in a C# variant [21]. Because storing

structured tabular data in Arrow is one of its main use cases, it would

be interesting to merge the lessons learned from this language specific

approach and bring them to the more language agnostic Fletcher.

Other works have shown that analytics applications, e.g. [22][23], and

database applications, e.g. [24], can benefit from FPGA acceleration

in general

VII. CONCLUSION

The increasing heterogeneity in big data analytics frameworks

is burdened by serialization overhead. The Apache Arrow project

provides methods to overcome serialization bottlenecks during inter-

process communication for various software languages by providing a

common columnar in-memory format for data sets. We show that the

format is highly suitable for FPGA accelerators because it is highly

contiguous in memory and requires a minimum amount of pointer

traversals to access a collection of data objects. Based on descriptions

of the type of data set in an Arrow schema, highly efficient and easy

to use FPGA accelerator interfaces may be generated automatically.

These interface can lift the level of abstraction without losing

performance. This idea is implemented in Fletcher; the first FPGA

accelerator framework to make use of the Arrow format. Fletcher

is open-source and vendor-agnostic. Three use-cases show that the

combination of Arrow and Fletcher can be beneficial to the end-to-end

throughput of an FPGA accelerated application, especially when the

accelerated operation is streamable. For these cases, the benefit was

shown to range from 1.3× - 49×, depending on the characteristics

of the applications and the implementation platform. For a fourth use

case that uses an HLS-based design flow, Fletcher allows the kernel

to be expressed using stream arguments rather than buffer pointer

arguments, increasing the ease of use and integrated performance of

a commercial HLS tool.

Future work will focus on two aspects. First of all, a more

extensive set of benchmarks should be performed to characterize

the approach for different applications in more detail. Secondly, in

the code generation step, profiling components could be inserted

to provide run-time information about the utilization of different

generated hardware resources. When fed back to the code generation

step itself, it would be interesting to investigate if these profiles could

be automatically used by the code generation step itself to optimize

its output.

In summary, Fletcher enables fast and efficient integration of FPGA

accelerators into any software language that Apache Arrow supports

or any analytics or database framework that uses Apache Arrow in

its back-end.
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