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Parallel Matrix Multiplication on Memristor-Based
Computation-in-Memory Architecture

Adib Haron, Jintao Yu, Razvan Nane, Mottaqgiallah Taouil, Said Hamdioui, Koen Bertels
Computer Engineering Laboratory, Department of Quantum Engineering
Delft University of Technology
Delft, The Netherlands

Abstract—One of the most important constraints of today’s
architectures for data-intensive applications is the limited band-
width due to the memory-processor communication bottleneck.
This significantly impacts performance and energy. For instance,
the energy consumption share of communication and memory
access may exceed 80%. Recently, the concept of Computation-in-
Memory (CIM) was proposed, which is based on the integration
of storage and computation in the same physical location using a
crossbar topology and non-volatile resistive-switching memristor
technology. To illustrate the tremendous potential of CIM archi-
tecture in exploiting massively parallel computation while reduc-
ing the communication overhead, we present a communication-
efficient mapping of a large-scale matrix multiplication algorithm
on the CIM architecture. The experimental results show that,
depending on the matrix size, CIM architecture exhibits several
orders of magnitude higher performance in total execution time
and two orders of magnitude better in total energy consumption
than the multicore-based on the shared memory architecture.

I. INTRODUCTION

The communication cost (i.e., delay or energy) of data-
intensive applications on existing computer architectures ex-
ceeds the computation cost [1]. The problem becomes more
severe due to the growing gap between processor and memory
speed [2] and the fast-growing big data applications [3]. This
high communication cost is explained by two main reasons.
First, existing computer architectures have limited bandwidth
and high off-chip memory access latency that are attributed
to the classical CMOS-based Von Neumann architectures [4].
Second, the algorithms for data-intensive applications spend
most of the processing time to move data [5]. Consequently,
the communication cost limits the scalability of today’s archi-
tectures and reduce the opportunity to exploit higher degree
of parallelism in algorithm due to the high impact on the total
execution time and energy dissipation.

Minimizing the communication cost has been studied thor-
oughly in the past both at the architectural and the algorithmic
levels. From an architectural perspective, three main parallel
architectures have been developed to boost the computer
performance: shared memory [6], [7], distributed memory [8],
[9] and systolic array [10], [11]. For the shared memory
architecture, the communication cost is mostly a consequence
of the data movement throughout the memory hierarchy. Even
though the entire data structures can be easily accessed, the
performance is limited by the communication and memory
bottleneck. For the distributed memory architecture, the high
memory access latency is reduced as the memory is distributed

across the platform instead of having a single large memory.
However, this architecture incurs a high communication cost
between processors. Similarly, the systolic array architecture
reduces the memory access time. However, the pipeline pro-
cessing limits the amount of parallelism that can be exploited.

From an algorithmic view, optimizing the algorithm ac-
cording to a specific architecture can reduce the number of
communication steps. For the shared memory architecture, the
recursive array layout in [12] reduces false sharing and cache
conflicts that avoid unnecessary communication between the
main memory and the processors at the cost of extra addressing
overhead. For distributed memory architectures, replication
techniques were developed to reduce the communication steps
at the cost of using extra memory to store matrix copies [13].
For systolic array architectures, the number of communication
steps is reduced by loading the data onto a 2D mesh at
the expense of more registers [14]. Algorithmic optimizations
are limited by the existing architectural constraints while
architectural improvements are limited by technology con-
straints. Therefore, to obtain further performance improvement
beyond the above limitations, radical solutions are required
that combine new architectures based on emerging technology
with new algorithmic optimization.

To solve the communication issue, we use memristor-based
CIM architecture [15] and propose a communication-efficient
mapping scheme for parallel matrix multiplication algorithm.
We alleviate the communication bottleneck by maximizing
parallelism in communication while minimizing the commu-
nication distance. The main contributions of this paper are:

o A parallel programming model that bridge the gap be-
tween the parallel matrix multiplication algorithm and the
memristor-based CIM architecture.

o A parallel cost model that is used to evaluate the per-
formance of parallel matrix multiplication algorithm on
memristor-based CIM architecture.

o Data and task mapping scheme for parallel matrix multi-
plication algorithm on memristor-based CIM architecture
based on the Z-order traversal and H-tree topology.

The rest of this paper is organized as follows. Section II
describes the memristor-based CIM architecture. Section III
presents the parallel matrix multiplication algorithm. Section
IV provides the CIM model of parallel computation. Section V
shows our evaluation results. Section VI concludes the paper.



II. MEMRISTOR-BASED CIM ARCHITECTURE

A memristor-based CIM architecture is a radically new
computing architecture that integrates computation and mem-
ory in the same physical location, rather than Von Neumann
architecture where the computation and memory are separated.
Memristor-based CIM architecture [15] was shown to perform
two to three orders of magnitude better than conventional
architectures in computation, energy and area efficiency both
for DNA sequencing and parallel additions.

Fig. 1 shows a memristor-based CIM architecture that
consists of a computing-in-memory core, the secondary stor-
age and the interconnection between them. The computing-
in-memory core includes memory to hold the working set,
loosely defined as the collection of information referenced
by a program during its execution. This core memory is
initialized with data originating from the secondary storage.
The computing-in-memory core consists of two main parts:
a memristor-based crossbar array and a controller. The array
uses a grid structure to connect memristor devices using hori-
zontal and vertical nano-wires. The controller, which is based
on CMOS technology, provides appropriate control (voltage)
signals to enable rows and columns in the crossbar to perform
arithmetic logic operations. Furthermore, the controller is also
responsible for memory read and write operations, and it
enables communication within the crossbar array (through the
vertical and horizontal nano-wires) or through its CMOS layer.

The major advantages of memristor-based CIM architec-
tures are that a massive amount of parallel computation and
communication operations can be performed within the high-
density crossbar and that multiple memristor layers can be
stacked on top of the CMOS layer. Furthermore, CIM archi-
tecture reduces the communication latency as the memories,
and the computations are not separated. As a result, the com-
putations can be executed locally without the need to move the
data to off-chip processing units. Finally, the CIM architecture
has the potential to improve performance while consuming
little power and using a small area. These last benefits are
possible due to the zero energy leakage, high scalability and
high-density integration of the memristor device.

III. PARALLEL MATRIX MULTIPLICATION ALGORITHM

Matrix multiplication is a key function of many data-
intensive applications such as data recognition, data mining,
and data synthesis [16]. This function contains a huge amount
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Fig. 1. Memristor-based CIM architecture

of parallelism that can be exploited. Equation (1) shows the
mathematical definition of element Cj; (i.e., the output of
matrix C' on row ¢ and column j5) of the matrix multiplication
algorithm. In this equation, A and B represent the input
matrices and C' the output matrix.

Ci; = ZAik - By (D
=1

Parallelism exploitation of the matrix multiplication can
be classified by its degree of parallelism; 1D, 2D, and 3D
parallel algorithms have been proposed. These algorithms
impact the required number of parallel multiplications and
additions. The 1D parallel algorithm computes n output rows
of matrix elements in parallel by executing the multiply-
add operation for each element sequentially. The 2D parallel
algorithm operates on the entire output matrix n? in parallel
and computing the multiply-add operation sequentially. The
3D parallel algorithm exploits the highest degree of parallelism
n3, by computing all multiplications in parallel followed by
all additions using a binary tree. Table I shows the time
complexity of sequential and parallel matrix multiplication
algorithms and their computing resources requirement.

Table II summarizes the state-of-the-art of matrix multipli-
cation implementations. The 1D parallel algorithm is typically
implemented on multicores, FPGAs, and GPUs. These im-
plementations commonly achieve a sustained performance of
several GFLOPS and are mostly used for smaller matrix sizes
(e.g., 2000). Besides, it is difficult to exploit higher degree of
parallelism on these machines due to the communication cost.
The 2D parallel algorithm has been implemented for larger
matrix sizes (e.g., 10000) and are usually implemented on
large distributed memory systems. The 3D parallel algorithm
has been implemented for large matrix sizes (e.g., 30000) on
supercomputers and achieves performances in TFLOPS range.

Based on the potential of CIM architecture, we focus on the
3D parallel matrix multiplication algorithm (see Algorithm 1)
due to its maximum degree of parallelism. Many researchers
have investigated the 3D parallel algorithm in various archi-
tectures such as hypercubes [23], multiprocessors [24], [25],
massively parallel processing systems [13] and supercomputer
clusters [22]. The 3D parallel algorithm focuses on an element-
wise matrix distribution rather than the block-wise distribution
used in the 2D parallel algorithm. For a square matrix sizes, the
3D parallel algorithm replicates n-copies of the input matrices
A and B and distributes them to the particular memory
locations for massively parallel computation.

TABLE I
MATRIX MULTIPLICATION (MM) COMPUTATIONAL COMPLEXITY

Algorithm Time complexity | Multipliers | Adders
Sequential MM | O(n?) 1 1
1D Parallel MM | O(n?) n
2D Parallel MM | O(n) n? n®
3D Parallel MM | O(logzn) n? n® - n?




TABLE II
1D, 2D AND 3D MATRIX MULTIPLICATION IMPLEMENTATION

Machine/platform Algorithm Matrix Size | Computing | Data Type Optimization | Throughput
Classification units
Virtex-6475T [17] 1D 8 8 32 integer unroll/pipe 10.0 GOPS
Virtex-7 XC7VX690T [18] 1D 512 512 16bit FP energy 367 GFLOPS
Virtex-6 [19] 1D 500 500 Double-precision | Poly 2.3 GFLOPS
Virtex-6 LX240T [20] 1D 1024 1024 32 integer Tiling 6 GOPS
GTX480 GPU [21] 1D 128 448 Single-precision CUBLAS 541 GFLOPS
Intel Paragon system [9] 2D 10000 465 Double-precision | SUMMA 19.5 GFLOPS
Intel Paragon system [9] 2D 10000 465 Double-precision | PUMMA 11.6 GFLOPS
IBM POWERparallel[13] 3D 5000 216 Double-precision | PDGEEM 48.9 GFLOPS
IBM POWERparallel[13] 3D 5000 216 Double-precision | PZGEEM 77.9 GFLOPS
IBM Blue Gene [22] 3D 30000 8000 Double-precision | Type: A 4.0 TFLOPS
IBM Blue Gene [22] 3D 30000 8000 Double-precision | Type: B 4.8 TFLOPS
IBM Blue Gene [22] 3D 30000 8000 Double-precision | Type: C 5.6 TFLOPS

Algorithm 1 3D Parallel Matrix Multiplication Algorithm
Input: A, B, > A and B are m-by-p and p-by-n
Output: C = A-B where C' is m-by-n
1: procedure MATRIX MULTIPLY(INT m, INT n, INT p)
2: foralli, j, ke (ltom,n,p) do

3: Oijk = Aik X Bkj

4: for all 4, j € (1tom,n) do

5: for s =1to logs (p) do

6: for all k,qq = 1 to (p/2°~ %) do

7: Cijkoaa = Cijkoaa + Cij(hoaa+2s—1)
8: Cij = Cija

IV. CIM MODEL OF PARALLEL COMPUTATION

This section presents first the CIM parallel programming
model for the memristor-based CIM architecture and thereafter
the CIM parallel cost model used to evaluate the parallel
matrix multiplication algorithm. Finally, we describe the data
mapping and the task mapping schemes of the parallel matrix
multiplication algorithm on the computing-in-memory core.

A. CIM Parallel Programming Model

The CIM parallel programming model is a process model
that describes the basic operations and procedures to per-
form computations on a memristor-based CIM architecture.
The model bridges the gap between the algorithmic and the
architectural abstraction layers. Based on the working set on-
chip location in the CIM architecture, we define the parallel
programming model for CIM architecture as follows:

e Map data: Broadcast or scatter the input data from the
secondary storage to the computing-in-memory core.

o Compute and Communicate: Compute the tasks in par-
allel and communicate between tasks in parallel inter-
changeably within the computing-in-memory core.

e Readout data: Gather the output data from the
computing-in-memory core to the secondary storage.

Initially, the data set is located in the secondary stor-
age. When the computation should be performed, the data
is mapped on the computing-in-memory core for massively
parallel computation. All the input data is placed on the
computing-in-memory core in a particular location so that

parallel computation and parallel communication between
tasks can be executed efficiently. Lastly, the final output data is
readout from the computing-in-memory core and stored back
to the secondary storage.

We assume that there is a controller that can map and read-
out data between the secondary storage and the computing-
in-memory core. The data can be mapped to any location
within the computing-in-memory core due to the resistive-
switching property of the memristor device. Therefore, we
have full flexibility to map an enormous amount of data on the
computing-in-memory core in designated places. Furthermore,
we assume that we can perform any arithmetic operation on
the data.

B. CIM Parallel Cost Model

The CIM parallel cost model is a mathematical model that
is used to describe the cost of parallel matrix multiplication
algorithm on memristor-based CIM architecture corresponding
to the CIM parallel programming model. The CIM parallel
cost parameters are the combination of four attributes:

o Mapping cost: The cost to move each word («) from the
secondary storage to computing-in-memory core.

o Computational cost: The cost to perform a single arith-
metic function () within computing-in-memory core.

o Communication cost: The cost to move each word ()
within a computing-in-memory core.

e Readout cost: The cost to move each word () from
computing-in-memory core to secondary storage.

Mapping cost involves the number of words (M) moving
from the secondary storage to the computing-in-memory core.
This cost is the summation of the data transfer and memory
access costs. The data transfer cost (bandwidth) is the cost
to move data from the secondary storage to the computing-
in-memory core. The memory access cost (latency) is the
cost to read data from secondary storage and to write data
in computing-in-memory core.

Computational cost reflects the number of arithmetic opera-
tions (V) within the computing-in-memory core. The cost can
be different between several arithmetic logic units (¢) such as
adder and multiplier. The cost depends on the mathematical
model of memristor-based logic such as IMPLY logic [26].



Communication cost includes the number of words (O)
moving within the computing-in-memory core. That is, the
cost associated with the communication between tasks. This
cost can be calculated after the data and the tasks are mapped
on the computing-in-memory core. However, the basic cost
of data movement on the computing-in-memory core can be
divided into three categories: (and as illustrated in Fig. 2.)

o zero-step: The data stored in memristor A can be used for
the next computation directly without the need to move
the data.

o one-step: The data stored in memristor A need to move
horizontally to memristor B for the next computation. It
has the same cost if the data need to move vertically.

o two-steps: The data stored in memristor A need to move
horizontally to memristor B and vertically to memristor
C for the next computation.

Readout cost denotes the number of words (P) moving from
the computing-in-memory core to the secondary storage. The
cost is also associated with data transfer cost (bandwidth) and
memory access cost (latency) but in the reverse direction.

With the above CIM parallel cost parameters, we can model
the general total cost (") of parallel matrix multiplication on
memristor-based CIM architecture as shown in (2):

n
T=M-a+Y N -Bi+0-y+P:§ )

i=1
Two main strategies are adopted to reduce the total cost:
First, we avoid unnecessary data transfer between the sec-
ondary storage and computing-in-memory core. Second, we
reduce data movements within the computing-in-memory core
via efficient data and task mapping schemes. These schemes

are presented next.

C. Data Mapping Scheme

The main goal of the data mapping is to avoid unnecessary
data movements between communicating tasks by increasing
the data locality within the computing-in-memory core. An
optimal data mapping prevents any additional communication
cost. The data mapping specifies where the input data has to
be loaded before computing the tasks. Therefore, the input
data of the 3D matrix multiplication must be replicated and
mapped onto the 2D computing-in-memory core, i.e., the 3D
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Fig. 2. Data movement on memristor-based crossbar array

algorithmic index space must be converted to a 2D physi-
cal index space. Our data mapping scheme consists of two
algorithms. The first algorithm, (see Algorithm 2) divides the
disjoint tasks that produce output elements such as c11 and c12
into physical regions; each region is responsible for computing
a single element of the output matrix. The second algorithm,
(see Algorithm 3) is responsible for mapping the input data
into each region.

Algorithm 2 Row Major-order Data Mapping Algorithm
Input: m, n, p > input matrices are m-by-n and n-by-p
Output: LISTS > two-dimensional array of coordinate lists

1: procedure MATRIXMAPPING(INT m, INT n, INT p)

2: LISTS = new vector<INT_PAIR> * m * p

3 INT ORDER = ceil(log4(n))

4 fori=0tom—1 do
5: for j =0top—1 do
6:
7

RECURSIVE(LISTS[¢][j], ORDER, 2%4, 2%7)
return LISTS

Algorithm 3 Z-order Data Mapping Algorithm
Input: X > X coordinate of current Z-traversal base
Input: Y > Y coordinate of current Z-traversal base
Input: ORDER > Recursive level
Output: INDEX > Coordinate list following Z-order

1: procedure ADDTOINDEX(VECTOR<INT_PAIR> INDEX,
INT X, INT Y)

INDEX.append(INT_PAIR(X, Y))

: procedure RECURSIVE(VECTOR<INT_PAIR> INDEX,
INT ORDER, INT X, INT Y)

4 if ORDER > 1 then

5: RECURSIVE(INDEX,ORDER-1, 2*X, 2*Y)

6: RECURSIVE(INDEX,ORDER-1,(2*(X+1), 2*Y)
7

8

9

won

RECURSIVE(INDEX,ORDER-1,(2*X, 2*(Y+1))
RECURSIVE(INDEX,ORDER-1,(2*(X+1), 2*(Y+1))

: return
10: ADDTOINDEX(INDEX,X+1,Y)
11: ADDTOINDEX(INDEX,X+2,Y)
12: ADDTOINDEX(INDEX,X+1,Y+1)
13: ADDTOINDEX(INDEX,X+2,Y+1)

Fig. 3 illustrates the results of both algorithms. It shows
the data layout of the input matrices for a 16-by-16 matrix
multiplication. The output elements are divided into regions by
using the row-major ordering (from left to right) as presented
in Algorithm 2 (see line 4 to 7); they are responsible for
producing all the entries of the output matrix C. The data
within a region is mapped using Z-order traversal; the arrows
present the order in which the inputs are mapped; note that
they follow a Z-order traversal as presented in Algorithm 3
(see line 5 to 13). Each calculated output element consists of
the dot product of a row vector of matrix A and a column
vector of matrix B. Therefore, two Z-order traversal are used
for each region to map the 16 input elements both from a row
of matrix A and a column of matrix B. Note that the Z-order
for matrix B is applied after transposing it.
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Fig. 3. Data mapping on the computing-in-memory core

The general relation between the Z-order depth and the
matrix size is expressed by ZOrder = logs(n); it represents
the number of hierarchical Z-shaped pattern levels that are
used to map the input matrix data on the computing-in-
memory core. Please note that if the matrix size is not a power
of four, we can use a virtual padding technique to append zeros
to the original matrices to force the order to a power of four.
Alternatively, we could split the rounded Z-order into smaller
Z-orders.

D. Task Mapping Scheme

The primary goal of the task mapping is to maximize par-
allelism in communication between tasks and minimize their
communication distance. An efficient task mapping can allevi-
ate the communication bottleneck (congestion) that reduce the
communication cost. For the 3D matrix multiplication, the task
mapping specifies where the additions and multiplications are
executed and how these tasks communicate with each other
within the computing-in-memory core.

The communication between tasks in 3D matrix multiplica-
tion is characterized by the binary tree structure. To map the
tasks from the binary tree to the computing-in-memory core,
we need a suitable arrangement of adders, multipliers, and
their interconnection on the computing-in-memory core. Fig. 4
illustrates our proposed arrangement of the adders, multipliers,
and their interconnection through the H-tree topology for
a 16-by-16 matrix multiplication. The shaded rectangle is
responsible for the computation of the first element of the
output matrix. This block is repeated over the crossbar area to
maximize the parallelism, and each block produces an element
of the result matrix C;;, represented by the circle shape.
Applying the H-tree topology on the computing-in-memory
core has the potential to reduce the communication cost as
follows:

e Bandwidth cost: The H-tree topology provides a spe-
cific path for each communication between tasks (e.g.,
multiplications to additions). The communication can
be performed in parallel without having congestions.
Therefore, they apply zero bandwidth cost.

e Latency and energy cost: The H-tree topology allows the
output data of multiplications can be used directly for
the next computation (i.e., addition) without the need
to move the data. In other words, The output data of

T % T
+ + + +
+ ——+ -+ —— + -+ —— +—
+ + + +
i + i + +
f—X——x— | —x——x—
|—+—O cLy C1.2 O—+—| C1, 160—+—|
T, T
+ 4 E N + 4
+—L 4o -+ —L + —L 4+
ot + E + +
bkl x— —x—L x—|
jn + —+ + 1 +
——+ -+ —— H+—T—
Ty Py F 1 + g
|—+_o 16,1 c15,zo_+_| . C1_6,160—+—|
E + + + + + + +
-+ —L— + I -1 + -+ —L— 4+
4 F +

Fig. 4. Task mapping on the computing-in-memory core

multiplications can be stored directly as the input data for
additions. Therefore, they apply zero-step data movement
and thus, avoid the communication cost. However, long-
distance communication between two tasks requires one-
step data movement.

The recursiveness of H-tree topology provides efficient
scaling when the matrix size grows. Therefore, an arbitrary
number of matrix sizes can be mapped on the memristor
crossbar using the H-tree topology. The H-tree topology is
comprised of basic fractal units arranged in an H-pattern
that consists of four multipliers and two adders. Each higher
level fractal is constructed from an H-pattern of smaller level
fractals. The general relation between the order (i.e., the depth
or number of recursions) of the H-tree topology and matrix
sizes is expressed by HtreeOrder = loga(n) — 1.

The data mapping and task mapping are depicted in more
details in Fig. 5 in which the layout presents half of the shaded
area of Fig. 4 and belongs to the output C71. The scheduling of
the layout follows exactly as the Algorithm 1. Finally, because
both the task mapping (H-tree topology) and the data mapping
(Z-order traversal) are fixed, the compiler can compute the
exact locations of the final results for the readout operations.

Please note that the purpose of the H-tree topology is to
evaluate the performance of parallel matrix multiplication on
the memristor-based CIM architecture. Therefore, the hard-
ware implementation details are not discussed.
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TABLE III
DEVICE TECHNOLOGY AND ARCHITECTURAL PARAMETERS FOR MULTICORE AND CIM MODEL

Multicore model [ CIM model
Device Technology
Technology FinFET Memristor
Feature size 22 nm 5 nm [27]
Frequency 3.3 GHz 5.0 Ghz [28]
Delay 14 ps [29], [30] 200 ps (1/Frequency) [28]
Dynamic energy 0.00245 fJ (175 nW/gate [29]*Delay) 1 1] [27]
Static energy 0.01297 {J (42.83 nW/gate [27]*1/Frequency) Zero leakage
Area 2.48x1071 um? [27] 1x10™% um? [27]
Architecture
Half adder 1-bit half adder (NAND gates) 1-bit IMPLY Half Adder [31], [26]
Delay 42 ps [3 cyclesx 14 ps] 1400 ps [7 cyclesx200 ps]
Energy 0.077 fJ (Dynamic energy + Static energy) 1.75 11 [0.25x7 switching x 1{]]
Area 12.40x 1071 um? [5 gatesx2.48x 10! um?] 4%10™* um? [4 memristorsx1x10~% um?]
Full adder 1-bit full adder (NAND gates) 1-bit IMPLY Full Adder (N=1) [26]
Delay 84 ps [6 cyclesx 14 ps] 5800 ps [29N cycles x200 ps]
Energy 0.139 fJ (Dynamic energy + Static energy) 7.25 1] [0.25x29N switching x 1{J]
Area 223210~ um? [9 gates X 2.48 x 1071 um?] 6x 10~ *um? [(3N+3) memristorsx 1x 10~ *um?]
Adder Rippled eight 4-bit Carry look ahead adder [32] 32-bit IMPLY Adder (N=32) [26]
Delay 252 ps [18 cyclesx 14 ps] 185600 ps [29N cyclesx200 ps]
Energy 3.209 fJ (Dynamic energy + Static energy) 232 fJ [0.25%29N switching x 1J]
Area 515.84x 107! um? [208 gatesx2.48x 1071 um?] 99% 10~ *um? [(3N+3) memristorsx 1x 10~ *um?]
Multiplier 32-bit Wallace Tree Multiplier (N=32) [33] 32-bit Wallace Tree Multiplier (N=32) [33]
Delay 672 ps [48 cyclesx 14 ps] 46400 ps [232 cyclesx200 ps]
Energy 127.71 fJ [Dynamic energy + Static energy] 6616 fJ [6616 switchingx 11J]
Area 20529.44% 10" um? [8278 gatesx2.48x 107" um?] | 5534x 10~ *um? [5534 memristorsx1x10™% um?]
Cache 8kB L1 cache/cluster No Cache
Hit rate 0.98
Load delay on hit | 1 cycle
Missed penalty 165 cycles [34]
Dynamic energy 0.09737 nJ/cache [35] Not Applicable
Static energy 0.00262 nJ/cache [35]
Area 0.1098 mm? [35]

V. EVALUATION RESULTS

This section compares the scalability performance of CIM
architecture against the multicore. As the target is to measure
the scalability for a large-scale matrix multiplication, models
of parallel computation of the multicore and CIM architecture
will be used. First, we describe for both architectures; their
device technology and architectural parameters. Next, we
validate the multicore model by comparing its performance
with the IBM PowerLinux 7R2 multicore system for limited
matrix sizes. Finally, we compare the CIM model against the
validated multicore model for the extreme matrix sizes.

A. Multicore and CIM Model

Both the multicore and CIM models consist of two parame-
ter sets: device technology and architecture. The multicore and
CIM model are based on FinFET 22nm and memristor Snm
technology, respectively. The device technology parameters
can be found in the upper part of Table III and are used to
estimate the computational and communication cost such as
adders, multipliers, and caches. The architectural parameters
are tabulated in the lower part of Table IIl and are used

to evaluate the scalability performance of parallel matrix
multiplication algorithm.

The multicore model based on the load-and-store principle
and is assumed to be a scalable multicore architecture, consist-
ing of a number of clusters; each cluster has four adders, four
multipliers, and 8kB of shared cache. For the communication
cost, we assume a high cache hit rate (98%), independent of
the matrix size. Moreover, we use a cache-simulation tools
such as CACTI-P [35] to obtain the value of dynamic energy,
static energy and area of the cache. The CIM model is assumed
to be scalable as well, consisting of adders, multipliers and
without any caches due to the concept of Computation-in-
Memory. The computation cost of the adder and multiplier are
based on the memristor-based material implication (IMPLY)
logic [26].

We do not take into account the mapping and readout cost
for both multicore and CIM architecture as we evaluate a
single parallel algorithm only. Besides, both costs are more
related to data transfer. Therefore, we only consider the
computational and communication cost for parallel matrix
multiplication algorithm. Both the multicore and CIM models
are verified in Matlab.
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B. Multicore Model Validation

The multicore model is validated by comparing it against
the IBM PowerLinux 7R2 multicore (Power7) [36]. Fig. 6
shows their performances with respect to execution time,
energy consumption, and the area utilization; both multi-
cores are based on the similar 1D matrix multiplication. The
multicore outperforms Power7 in delay and energy for all
matrix sizes (i.e., 2! to 2!%) which is expected due to the
simplified multicore model. For the area, the multicore model
utilizes less area than Power7 for the relevant matrix sizes.
Note that the multicore model scales with the matrix size
without restrictions, while the Power7 has a fixed maximum
area. The Power7 is an actual multicore platform that hardly
scales due to the memory and communication bottlenecks. In
particular, the cache is too small for a large data set and
the bandwidth between processors and memory is limited.
The microarchitecture of the chip is complex due to the
control units, cache hierarchy, and on-chip interconnection.
Meanwhile, the multicore model is based on an ideal shared
memory architecture specifically tweaked to perform matrix
multiplications. It consists of adders, multipliers, and caches

Matrix size (n)

Multicore vs CIM 1D vs CIM 3D (derived parameters)

10°
10* 108 10° 102 104 108
Matrix size (n)

only without any control units such as branch prediction unit.
The communication cost of multicore is considered optimistic.
Consequently, we conclude that our multicore model is an
optimistic model of Power7 and, therefore, it is fair to compare
against the CIM model.

C. CIM Performance Evaluation

The multicore model is compared against two CIM models:
CIM 1D and CIM 3D. CIM 1D is based on the same 1D
parallel matrix multiplication used in the multicore model,
while CIM 3D is based on the 3D parallel matrix mul-
tiplication. The comparison allows us to conclude whether
the performance gains come from a technology change or
architectural improvements or a combination of them. Table IV
summarizes the three models; it shows their time complexity,
the number of multiplications and additions (operations) and
the number of multipliers and adders (resources). The time
complexity strongly determines the execution time, the number
of operations is used to estimate the energy consumption, and
the number of resources is used to estimate the area utilization.

Fig. 7 shows the execution time, energy consumption and
area utilization of the three models for various matrix sizes



TABLE IV
MODELS AND THEIR COMPUTATIONAL COMPLEXITY

Model Time # Multiplications | # Multipliers
complexity | & # Additions & # Adders

Multicore | O(n?) n® & n? n&n

CIM ID | O(n?) n® & n® n&n

CIM 3D | O(logan) | n® & n®-n? n® & n3-n?

(ie., 2! to 22°). Multicore performs two orders of magnitude
better with respect to delay than the CIM 1D due to the
faster FinFET technology. However, the multicore performs
two orders of magnitude worse with respect to energy than the
CIM 1D due to the static and dynamic energy consumption
of the cache. In addition, the multicore has five orders of
magnitude larger area than the CIM 1D mostly due to the
size of the cache. Generally, if the same class of algorithm is
applied to both models, CIM model shows benefits in terms
of energy and area only. Meanwhile, CIM 3D outperforms the
multicore regarding delay by one to nine orders of magnitude
improvement depending on the matrix size. CIM 3D gains its
performance through the exploitation of massive parallelism
even though memristor technology is slower than FinFET.
Moreover, CIM 3D shows two orders of magnitude better
energy consumption than the multicore for each matrix size.
As a trade-off, CIM 3D requires one to seven orders of
magnitude more resources depending on the matrix size than
the multicore due to the resources needed by the 3D parallel
matrix multiplication algorithm.

Fig. 8 depicts the efficiency of computation, energy, and area
of the models derived from the intrinsic parameters from Fig.
7. With respect to computation efficiency (i.e., the number of
operations per the energy-delay product), CIM 3D outperforms
both multicore and CIM 1D immensely due to its remarkable
delay performance. On average, CIM 3D shows six orders and
five orders of magnitude higher than multicore and CIM 1D
respectively. With respect to energy efficiency (i.e., the number
of operations per energy), CIM 3D and CIM 1D have better
energy efficiency than multicore due to their lower energy
consumption. With respect to the area efficiency (the number
of operations per area), CIM 3D has a constant efficiency
due to the same change of the number of operations and the
number of resources.

VI. CONCLUSION

We show the capability of memristor-based CIM architec-
ture in exploiting the maximum amount of parallel matrix mul-
tiplication algorithm while minimizing their communication
cost via our communication-efficient mapping scheme. The
results clearly show that CIM architecture has the potential to
outperform traditional shared-memory multicore architecture.
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