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We present an efficient phase retrieval approach for imaging systems with high numerical aperture based on the
vectorial model of the point spread function. The algorithm is in the class of alternating minimization methods and
can be adjusted for applications with either known or unknown amplitude of the field in the pupil. The algorithm
outperforms existing solutions for high-numerical-aperture phase retrieval: (1) the generalization of the method of
Hanser et al., based on extension of the scalar diffraction theory by representing the out-of-focus diversity applied
to the image by a spherical cap, and (2) the method of Braat et al., which assumes through the use of extended
Nijboer–Zernike expansion the phase to be smooth. The former is limited in terms of accuracy due to model devi-
ations, while the latter is of high computational complexity and excludes phase retrieval problems where the phase
is discontinuous or sparse. Extensive numerical results demonstrate the efficiency, robustness, and practicability of
the proposed algorithm in various practically relevant simulations. ©2019Optical Society of America

https://doi.org/10.1364/JOSAA.37.000016

1. INTRODUCTION

Phase retrieval is a prominent inverse problem in optics that
aims at recovering a complex signal at the pupil plane of an
optical system given one or several out-of-focus intensity images
measured along the optical axis. Various formulations and mod-
ifications of phase retrieval have originated from a wide range
of important applications in adaptive optics [1–4], microscopy
[5,6], astronomy imaging [7,8], x-ray crystallography [9,10],
etc. For optical systems with low numerical aperture (NA), the
intensity distribution in the focal plane and the complex signal
in the pupil plane are simply related via the Fourier transform
[11]. This fundamental relationship has given rise to a wide
range of phase retrieval algorithms [12–17] in low-NA settings
since the pioneering work of Sayre [18] revealing that the phase
of a scattered wave can be recovered from the recorded intensity
images at and between Bragg peaks of a diffracted wavefront.
Recent overviews on this topic can be found, for example, in the
surveys [19–22]. An essential condition for the validity of the
Fresnel approximation is that the effect of light polarization on
the diffracted images is negligible. For high-NA optical systems,
however, the vector nature of light cannot be neglected and
point spread functions (PSFs) are formed according to a more
involved formulation [23,24], which is called the “vectorial
PSF model” in this paper, to be distinguished from the scalar
one according to the Fresnel approximation. In contrast to a

vast number of existing phase retrieval algorithms in low-NA
settings, only a few solution approaches have been proposed for
phase retrieval in high-NA settings.

The first and natural solution approach to high-NA phase
retrieval is to adapt the scalar diffraction theory for high-
NA imaging systems [25]. The main modification is that the
additional defocus term used to calculate the corresponding out-
of-focus image in low-NA settings is replaced by an appropriate
spherical cap in high-NA settings [25–28] (see Sections 2.A and
2.B.) For higher-NA imaging systems (NA≥ 0.6), however, the
accuracy of this phase retrieval approach is limited due to model
deviations. This approach can be enhanced in manner by an ad
hoc Gaussian fitting scheme [27]. However, this ad hoc scheme
does not give consistent results in terms of phase restoration and
cannot be theoretically supported or analyzed.

Another existing approach to deal with high-NA phase
retrieval is based on the decomposition of the generalized pupil
function (GPF) as a weighted sum of extended Nijboer–Zernike
(ENZ) basis functions [29,30] in a vector diffraction theory
setting. The main challenge of this approach is to evaluate the
complex-valued coefficients of the polarized field components
decomposed in terms of Zernike polynomials [31]. The numeri-
cal complexity of this approach is high, since the integrals that
need to be evaluated have no closed-form solution. Moreover,
since the GPF is approximated by a finite number of ENZ basis

1084-7529/20/010016-11 Journal © 2020Optical Society of America

https://orcid.org/0000-0002-1455-9169
https://orcid.org/0000-0003-3761-9192
https://orcid.org/0000-0002-7967-6884
mailto:h.t.nguyen-3@tudelft.nl
https://doi.org/10.1364/JOSAA.37.000016
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAA.37.000016&amp;domain=pdf&amp;date_stamp=2019-12-02


Research Article Vol. 37, No. 1 / January 2020 / Journal of the Optical Society of America A 17

functions, it is not valid to phase retrieval applications where the
phase is sparse (discontinuous).

In this paper, we present a new phase retrieval approach
for high-NA imaging systems, which is directly based on the
vectorial PSF model. The algorithm is in the class of alternat-
ing minimization methods and can be adjusted for both cases
of application with either known or unknown amplitude of
the field in the pupil. The proposed algorithm overcomes the
highlighted drawbacks of the two existing solution approaches
indicated in the previous paragraphs. Numerical experiments
demonstrate that for wavefronts with small amplitude (to
exclude phase wrapping issues) the algorithm enables to pre-
cisely (up to a piston term) retrieve the wavefront from several
vectorial PSFs in the noise-free setting.

The effectiveness and robustness of the algorithm numer-
ically shown in Section 5 demonstrate its potential for
applications to practical high-NA imaging systems. More
importantly, our approach paves the way to extend the class
of projection algorithms for phase retrieval in the setting of
scalar diffraction theory to the framework of the vectorial one.
It is worth recalling that projection methods outperform the
phase retrieval algorithms in the other classes in terms of com-
putational complexity, convergence speed, effectiveness and
robustness [22]. Laying the groundwork for designing various
projection algorithms for phase retrieval in the high-NA set-
tings is another important outcome of this paper. That will be
reported in a forthcoming publication.

To avoid possible confusion in terms of terminology, we
mention that the term “vector phase retrieval” was also used in a
different manner in the literature [32] where the objective is to
restore two one-dimensional complex signals from the intensity
of their Fourier transforms and the intensity of two structured
interference patterns of the transformed signals.

2. POINT SPREAD FUNCTION MODELS

A. Scalar PSF Model for Low NA

For low-NA imaging systems, the PSF I (u) can be related to the
wavefront aberration8(x) as

I (u)=
∣∣F (

χ(x) · e j8(x))∣∣2,
where x = (x , y ), u= (u, v) ∈R2 are the coordinates in the
pupil and focal planes, respectively, I (u) is the intensity of the
optical field in the focal plane, χ and 8 are, respectively, the
amplitude and the phase of the collimated beam in the pupil
plane, andF is the (two-dimensional) Fourier transform.

In this model, the out-of-focus PSF (see Fig. 1) corresponding
to some distance zd from the focal plane is calculated by adding
a corresponding phase diversity term,φd , expressed via the defo-
cus Z0

2 (the Zernike polynomial of order two and azimuthal fre-
quency zero):

φd (x)=
π

2λ
NA2zd Z0

2(x). (1)

From now on, the coordinates x and u respectively corre-
sponding to the pupil and focal planes will be omitted for the
sake of brevity. The out-of-focus PSF at a distance zd from the
focal plane is given by the formula

I (φd )=
∣∣F(χ · e j (8+φd ))

∣∣2. (2)

B. Scalar PSF Model for High NA

The imaging model presented in this section is based on the
scalar diffraction theory for high-NA imaging systems. The
main difference from the model in Section 2.A is that due to the
presence of large ray angles, the additional phase term cannot be
approximated by a scaling of the defocus as in Eq. (1). Instead, it
should be modified to a spherical cap [25,26]:

φd =
2π

λ
zd kz, (3)

with

kz =

√
1− k2

x − k2
y ,

where λ is the wavelength, and (kx , ky ) are the x and y compo-
nents of the unit wave vector that satisfy

k2
x + k2

y ≤NA2.

In addition, an obliquity factor,

1/
√

cos θ = k−1/2
z , (4)

should be introduced into the amplitude to account for the
angle θ between the Poynting vector and the normal to the
imaging plane. The PSF with aberration8 and out-of-focus dis-
placement zd is calculated according to Eq. (2) with φd given by
Eq. (3) instead of Eq. (1) and the modified amplitudeχ/

√
cos θ

in place ofχ .

Fig. 1. Schematic diagram depicts the vectorial PSF model and the
setup of phase retrieval given several out-of-focus measurements. A
collimated beam with (possibly unknown) amplitudeχ at the entrance
pupil plane is focused by an aplanatic system at plane z= z0, not neces-
sarily on axis. Several out-of-focus PSFs are registered in z planes with
known displacements from the focal plane. For high values of NA, the
bending of rays introduced by the lens produces a significant z com-
ponent of the electrical field (here shown on example of x -polarization
component E x ), which should be taken into account when calculating
the intensity in the imaging planes.
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C. Vectorial PSF Model

For high-NA optical systems (e.g., NA≥ 0.6 according to [29]),
the bending of the rays created by a lens introduces a significant
z component of the electromagnetic field in the region behind
the lens, which introduces discrepancy with the scalar model of
Eq. (2). One can model the PSF according to the vector theory
of diffraction by considering the x , y , z components of the
field right after the lens separately for x and y components (for
a collimated beam, the z component is approximately zero) of
the electromagnetic field just before the lens [24,26,27,33].
Thus, vectors E x (1, 0, 0) and E y (0, 1, 0) of unit length in
x and y directions produce field with components denoted
(E x x , E y x , E zx ) and (E x y , E y y , E zy ), respectively (see Fig. 1),
and given by {see, e.g., Table 3.1 of [24] or Eq. (3) of [27]}

E x x = 1−
k2

x

1+ kz
, E y x =−

kx ky

1+ kz
, E zx =−kx ,

E x y =−
ky kx

1+ kz
, E y y = 1−

k2
y

1+ kz
, E zy =−ky . (5)

The six field components can be used to calculate the total
electrical field energy at any point after the lens; in particular,
they determine the intensity seen by an imaging plane in any
orientation. For instance, the z components do not have the
Poynting vector along the z direction and do not contribute
to the intensity registered by a detector perpendicular to the z
axis, and thus they may be discarded when calculating the PSF
at z planes. However, a more general approach adopted in this
paper is to keep all six field components and account for the
angle between the Poynting vector and the imaging plane via
the obliquity factor [24,27]. For imaging planes perpendicular
to the z axis as depicted in Fig. 1, the obliquity factor is given
by Eq. (4). By resetting χ := χ/

√
cos θ , one can integrate the

obliquity factor into the amplitude χ , and, as a consequence, it
will no longer be explicitly involved in the subsequent analysis.
Then each of the right-hand-side terms in Eq. (5) can be treated
as a corresponding amplitude modulation in the entrance
pupil for calculation of a PSF with the scalar Fourier method
of Eq. (2):

pc c = |F(E c c · χ · e j8)|2. (6)

In the above and elsewhere in this paper, the index c c stands for
one of the six pairs of coordinate indices: x x , y x , zx , x y , y y ,
and zy . One thus obtains six constituent PSFs according to
Eq. (6), which can be used to calculate the vectorial PSF cor-
responding to any linear polarization in the entrance pupil.
For an unspecified polarization state, all six PSFs are summed
incoherently:

I =
∑

c c

pc c .

Therefore, the vectorial PSF model with an additional phase
termφd is given by

I (φd )=
∑

c c

|F(E c c · χ · e j (8+φd ))|2. (7)

The PSF with out-of-focus displacement zd is obtained by plug-
ging Eq. (3) into Eq. (7).

Remark 2.1. The imaging model in this section can be related
to the, introduced by McCutchen, [26,33] three-dimensional
Fourier transform of the angular spectrum given by the complex
amplitude on the exit sphere of the optical system, which, in turn, for
aplanatic systems, focusing a collimated beam is given by the field in
the entrance pupil plane. This allows one to use the model without
change for off-axis cases as well. For the systems violating the Abbe
sine condition, the field amplitude on the exit sphere should be used
instead of the pupil plane amplitude.

Remark 2.2. The phase diversity φd can be more general than a
term compensating for out-of-focus displacement given by Eq. (3)
e.g., it can be introduced by using phase modulator devices.

3. PROBLEM FORMULATION

A. Phase Retrieval Problem

For an unknown phase aberration 8 ∈Rn×n , let rd ∈Rn×n
+

(d = 1, . . . ,m) be the measurement of m PSF images gen-
erated by Eq. (7) corresponding to different phase diversities
φd . The phase retrieval problem is to restore 8 given rd and
φd (d = 1, . . . ,m) and the physical parameters of the optical
system. Mathematically, we consider the problem of finding
8 ∈Rn×n , such that

rd =
∑

c c

|F(E c c · χ · e j (8+φd ))|2 +wd (d = 1, . . . ,m),

(8)

where χ is the (possibly unknown) amplitude of the generalized
pupil function, andwd ∈Rn×n (d = 1, . . . ,m) represent noise.

B. Maximum-Likelihood Formulation

Let us define

Id [χ, 8] :=
∑

c c

∣∣F (
E c c · χ · e j (8+φd )

)∣∣2 (d = 1, . . . ,m)

(9)

and denote their concatenation by I [χ, 8]. Let r andw be the
concatenations of rd and wd (d = 1, . . . ,m), respectively. We
assume that the measurement noise along pixels is independent
and identically distributed with the conditional probability
density function denoted by P . Then the co-log-likelihood
function of the noise distribution for each of the pixels is
given by

L(w) :=− log P(I [χ, 8]|r ). (10)

Using Eq. (10), we can associate the problem (8) with a
maximum-likelihood formulation (minimum-co-log-
likelihood) given by [34]

min
χ∈Rn×n

+
, 8∈Rn×n

f (χ, 8) :=
∑
pixels

L(r − I [χ, 8]). (11)

When the noise in Eq. (8) is of Gaussian model, the objective
function f reduces to (a scaling of ) the energy kernel, and
Eq. (11) becomes a nonlinear least squares problem:
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min
χ∈Rn×n

+
, 8∈Rn×n

f (χ, 8) :=
m∑

d=1

‖rd − Id [χ, 8]‖
2
F . (12)

Remark 3.1. When the amplitude χ of the GPF is known, one
can always reset E c c := E c c · χ without loss of generality. In that
case, χ can be omitted in this section and elsewhere in the paper,
particularly in expressions (8)–(12).

Remark 3.2. In this paper, we investigate the problem where
the intensity images are registered with a sufficiently large number
of photon counts, and hence Poisson noise can be approximated
by a Gaussian distribution in view of the central limit theorem.
Therefore, the assumption on Gaussian model of noise in order
to derive Eq. (12) has no restriction for practical applications
involving Poisson noise, provided that a sufficiently large number of
photons are counted. For completeness, a specification of Eq. (11)
for the case of Poisson noise is also available but more involved in
terms of numerical complexity; see, e.g., [35,36].

4. ALGORITHMS

Based on the vectorial PSF model (7), we propose a new solution
approach for the nonlinear least squares problem (12) in cases of
both known and unknown amplitudeχ . In the sequel, the index
d stands for 1, 2, . . . ,m, where m ≥ 2 is the number of input
PSF images.

In step 4 of Algorithm 1, we use the following arithmetic con-
vention: 0

0 = 1/
√

6. This is simply for ensuring the uniqueness
of that step and has no substantial effect on the performance as
well as the analysis of the algorithms.

Remark 4. 1. The idea of step 8 of Algorithm 2 can be traced
back at least to the work of Gonsalves [37].

Remark 4. 2. In the setting of out-of-focus images, i.e., the phase
diversities φd are given by Eq. (3), the displacement values zd and

Algorithm 1. Vectorial PSF model-based alternating
minimization with amplitude constraint (VAM+)

Input:
rd ∈Rn×n

+
—m PSF images

φd ∈Rn×n—m phase diversities
χ—amplitude of the GPF
N—number of iterations, and τ—tolerance threshold
80—initial guess for8.

Iteration procedure: given8k

1. x k
c c = E c c · χ · e j8k

2. X k
c c ,d =F(x k

c c · e
jφd )

3. I k
d =

∑
c c |X

k
c c ,d |

2

4. Y k
c c ,d =

X k
c c ,d√

I k
d

·
√

rd

5. y k
c c ,d = e− jφd ·F−1(Y k

c c ,d )

6. ȳ k
c c = (

∑m
d=1 y k

c c ,d )/m

7.8k+1
= arg(

∑
c c (E c c · ȳ k

c c )).

Stopping criteria: k > N or
∑m

d=1 ‖I
k
d − I k+1

d ‖F < τ .
Output: 8̂=8end —the estimated phase.

Algorithm 2. Vectorial PSF model-based alternating
minimization (VAM)

Input: the same input as Algorithm 1, except
χ 0—initial guess forχ .

Iteration procedure: givenχ k and8k

1. x k
c c = E c c · χ

k
· e j8k

2–7. Steps 2–7 of Algorithm 1

8.χ k+1
=
|
∑

c c E c c · ȳ k
c c |∑

c c |E c c |2
.

Stopping criteria: the same as Algorithm 1.
Output: 8̂=8end —the estimated phase.

χ̂ = χ end —the restored amplitude.

the number m of images typically used for scalar phase retrieval algo-
rithms are expected to be relevant for VAM and VAM+.

Remark 4. 3 (stopping criteria). Since running additional
iterations of VAM and VAM+ does not decrease the quality of
phase retrieval in the sense that the PSFs reconstructed from the
temporally estimated wavefront will not diverge any further from
the data PSFs, the maximum number of iterations should be set
sufficiently large whenever time consumption is not a major factor
of concern. It is predetermined according to the number of data
images, e.g., N can be tens of thousands for VAM with two input
images (respectively, VAM+ with one image), while it can be hun-
dreds for experiments given seven or more images. In the presence of
noise, error-reduction in terms of PSF restoration can be too small
after some number (smaller than N) of iterations. One may then opt
to terminate the algorithm using a predetermined threshold value
τ , which is ideally the machine precision. We note that for offline
applications without restriction on computing time, this stopping
criterion is not really needed and can be dropped .

The proposed algorithms belong to the class of Fourier
transform-based methods and can be viewed as descendants of
the classical Gerchberg–Saxton algorithm [12]. Algorithm 1
is (referred to as VAM+) designed for phase retrieval given
multiple intensity images and the amplitude constraint of the
GPF. Algorithm 2 (referred to as VAM) is the adjusted version
of Algorithm 1 tuned for phase retrieval applications where
the amplitude of the GPF is not available. It can be viewed

Algorithm 3. Scalar PSF model-based alternating
minimization (SAM)

Input:
rd ,φd , N, and τ—the same as Algorithm 1
x 0—initial guess forχ · e j8.

Iteration procedure: given x k

1. X k
d =F(x k

· e jφd )

2. Y k
d =

X k
d
|X k

d |
·
√

rd

3. y k
d = e− jφd ·F−1(Y k

d )

4. x k+1
= (
∑m

d=1 y k
d )/m.

Stopping criteria: k > N or ‖x k
− x k+1

‖F < τ .
Output: 8̂= arg(x end )—the estimated phase.
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as the vectorial PSF model-based extension of the scalar PSF
model-based alternating minimization proposed by Hanser
et al. [25] for phase retrieval in high-NA settings. In this paper,
the latter is referred to as the SAM algorithm and will serve as the
basic for demonstrating the advancement of VAM and VAM+
algorithms. For convenience of the reader, it is also recalled in
Algorithm 3.

The three algorithms above fall in the class of alternating
optimization methods; in particular, they can be proven to be
descent methods for minimizing an associated objective func-
tion. The descent property of VAM and VAM+ algorithms for
minimizing the objective function given by Eq. (12) is clearly
demonstrated in the numerical experiments in Section 5.C.
Note that the descent property of the SAM algorithm is with
respect to its own objective function. In optimization, an opti-
mal solution is more desirable than the optimal value of the
objective function. On the one hand, a direct measure of the
distance from the temporal estimate to an optimal solution,
which is not known in advance, is not obtainable in practice.
On the other hand, the temporal objective value can be useful
for establishing an error bound of the temporal approximate
solution provided that the objective function satisfies a corre-
sponding error bound property [38]. The latter is a property of
the objective function itself and does not relate to a particular
solution method. For the objective function given by Eq. (12)
associated with VAM and VAM+, the error bound property is
not trivial and further analysis in this direction is quite involved
and requires a priori mathematical assumptions; see, e.g.,
Ref. [39].

In terms of computational complexity, the evaluation of
the Fourier transform constitutes the major part of their com-
plexity. Since one iteration of a fast two-dimensional Fourier
transform algorithm costs a scaling of n2 log(n) flop counts, the
complexity of the above Fourier-transform-based algorithms is
O(n2 log(n)).

5. NUMERICAL EXPERIMENTS

Throughout this section, the vectorial PSF model (7) is taken as
the forward imaging model for generating the PSF images. We
simulate an imaging system having circular aperture with NA
value of 0.95, except for the analysis of NA in Section 5.A. The
amplitude χ of the GPF is (a scaling of ) the two-dimensional
Gaussian distribution truncated at 0.5 on the boundary of
the aperture. The wavelength of the illuminating light is
λ= 300 nm, the image size is 128× 128 pixels, and the pixel
size is 60 nm. For each analysis, we perform 75 phase retrieval
experiments for 75 wavefront realizations taking values in
one wavelength, i.e., [−π, π ]. If not otherwise specified, data
of each experiment consist of a set of seven out-of-focus PSF
images uniformly separated by one depth of field/focus (DOF)
along the optical axis (with zd =DOF in notations in Fig. 1).
It is important to emphasize that the solution approach pro-
posed in Section 4 is applicable not only to phase retrieval given
out-of-focus images as depicted in Fig. 1, but any phase-diverse
phase retrieval with known phase diversities (cf. Remark 2.2).
White Gaussian noise is used for all experiments with noisy data.
Except for the robustness analysis on various levels of noise in
Section 5.B, the intensity images after being normalized to unity

energy are corrupted by white Gaussian noise at the signal-to-
noise ratio of 40 dB (decibel). Recall that the signal-to-noise
ratio expressed in decibels is defined by SNR= 10 ln(P/P0),
where P and P0 are the powers of the signal and noise, respec-
tively. The quality of phase retrieval is measured by the relative
root mean square (RMS) error: ‖8̂−8‖F /‖8‖F , where 8
and 8̂ are the data and the estimated wavefronts, respectively.
Since phase retrieval is ambiguous up to (at least) a piston term
(the first Zernike mode), in this paper, the Frobenius norm
of a phase object is always computed after the removal of its
piston term. The algorithms considered in this section are of
error-reduction type. Hence, running additional iterations
would not decrease the quality of phase retrieval in terms of the
reconstructed PSFs. For offline applications simulated below,
the stopping criterion based on a tolerance threshold τ described
in Section 4 is not so relevant and will be dropped. Each exper-
iment consists of 150 iterations, except those for analyzing
convergence properties of the algorithms in Sections 5.C and
5.D, where a few more hundreds of iterations are needed.

A. Analysis of Numerical Aperture

This section demonstrates the advanced features of the vectorial-
PSF-model-based approach compared to the scalar one
proposed by Hanser et al. [25]. Figure 2 summarizes the per-
formance of Algorithms 1–3 on 75 experiments for six different
NA values ranging from 0.7 to 0.95 in the presence of noise.
The RMS errors of the restored wavefronts relative to the cor-
rect solution are shown. Suffering model deviations, the SAM
algorithm (black) is much less accurate than VAM (red) and
VAM+ (blue). VAM and VAM+ also have smaller error variance
than SAM as indicated by the black boxes, which are much taller
than the corresponding red and blue ones. This demonstrates
the consistency of the phase retrieval approach based on the
vectorial PSF model proposed in this paper. With additional
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Fig. 2. Experiments with noise show the advantages of VAM and
VAM+ over SAM for various NA values. The relative RMS errors of
the restored wavefronts compared to the correct solution are presented
for 75 wavefront realizations and six different NA values ranging
from 0.7 to 0.95. The performance of VAM (red) and VAM+ (blue)
is consistent for all experiments. Suffering model deviations, SAM
(black) is significantly outperformed by the others in terms of both
accuracy and consistency. VAM+ slightly outperforms VAM thanks to
the additional information ofχ .
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Fig. 3. Errors of phase retrieval over 75 experiments are presented
for six different NA values. The relative errors of VAM (red curve)
and VAM+ (blue curve) are consistent at about 2%, while that of
SAM (black curve) increases from 5.5% for NA= 0.7 up to 8.5%
for NA= 0.95. The error of phase retrieval by SAM is approximately
proportional to the NA value as indicated by the upward black curve.

information of the amplitude χ , the overall performance of
VAM+ is slightly better than that of VAM.

As shown in Fig. 3, the error of phase retrieval by SAM (black
curve) is approximately proportional to the NA value since
the occurrence of light polarization becomes more substantial
for higher NA values. It increases from 5.5% (on average) for
NA= 0.7 and up to 8.5% for NA= 0.95 as indicated by the
upward black curve, while the relative errors of VAM (red curve)
and VAM+ (blue) are around 2%. The performance of VAM
and VAM+ depends very little on the NA value, since the latter
information has been consistently incorporated into the prob-
lem setting and the input data. One may notice slightly better
phase retrieval for NA= 0.95 compared to the smaller values,
but this comes mainly from the approximation of presenting the
results rather than from the quality of phase retrieval. More spe-
cifically, since the image resolution is fixed at 128× 128 pixels
for all experiments, a larger NA value corresponds to a finer grid
on the circular aperture, which in turn makes the conversion
from a phase screen to Zernike polynomials and vice versa more
accurate. Figure 3 also reflects the level of deviation between the
scalar and vectorial PSF models for different NA values in the
sense that more model deviation leads to higher error of phase
retrieval.

B. Noise Analysis

The influence of noise on the performance of VAM and VAM+
is analyzed in this section. Different levels of Gaussian noise
ranging from 25 dB to 55 dB are respectively introduced to 75
simulation data sets. The relative RMS errors of phase retrieval
by VAM, VAM+, and SAM are presented in Fig. 4. Due to
the additional information of the amplitude χ , which is not
corrupted by noise in these experiments, VAM+ (blue) outper-
forms VAM (red). As expected, such a difference is not notable
for high SNR (from 50 dB), where they both retrieve almost
exact solutions. The influence of noise on the algorithms is also
reflected by the variance of the retrieval errors, which appears to
be inversely proportional to SNR. For SNR from 35 dB, the two
algorithms are consistent and reliable. The complication of the
vectorial PSF model compared to the scalar one explains why
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Fig. 4. Experiments demonstrate the robustness of VAM and
VAM+ against noise. The two algorithms are consistent and reliable
for SNR from 35 dB as demonstrated by small variation ranges of
errors. The performance of SAM (black) is almost unaffected by noise
with SNR from 30 dB; however, due to model deviations, it is clearly
outperformed by VAM (red) and VAM+ (blue).
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Fig. 5. Average of the relative RMS errors of phase retrieval over
75 experiments is presented for seven different levels of Gaussian
noise. VAM+ (blue curve) is clearly superior to VAM (red curve) and
SAM (black curve). The quality of phase retrieval by VAM and SAM
for SNR 25 dB is at the same level, but the difference becomes more
substantial for higher SNR. The relative RMS error of VAM+ and
VAM sharply decreases for higher SNR, while that of SAM remains
high (above 8.5%) for all SNR due to model deviations.

VAM and VAM+ are more sensitive to noise than SAM (black)
whose performance is almost unaffected by noise with SNR
from 30 dB. However, for SNR from 25 dB, the above drawback
of VAM and VAM+ compared to SAM is well compensated for
by the usage of the correct PSF model. As shown in Fig. 5, the
quality of phase retrieval by VAM (red curve) and SAM (black
curve) for SNR 25 dB is at the same level, but the difference
becomes more substantial for higher SNR. In particular, the
relative RMS error of VAM+ (resp., VAM) sharply drops to
5.3% (resp., 4.2%) at SNR 30 dB (resp., 35 dB), while that of
SAM is above 8.5% for all SNR.

C. Convergence Properties

In this section, several convergence properties of VAM and
VAM+ including the descent property with respect to the objec-
tive function of (12) are numerically demonstrated. Figure 6
presents the objective value versus the number of iterations
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Fig. 6. Experiments demonstrate descent property of VAM and
VAM+. In the noise-free setting (solid curves), the objective value
converges to zero, and with the additional information of χ , VAM+
(blue) reaches the optimal value faster than VAM (red). In the presence
of noise (dashed curves), the objective value reaches an objective gap in
about 50 iterations, and we note that VAM optimizing over bothχ and
8 yields a solution better fitting to the noisy data (smaller objective
gap) than VAM+ optimizing over only8.

for 75 phase retrieval experiments in the two settings with and
without noise. The descent property is observed for all the exper-
iments. For noiseless experiments (solid curves), the objective
value f (χ k, 8k) decreases to zero (up to the machine precision)
in a few hundreds of iterations. Recall that since the amplitude
χ is fixed (assumedly known) for VAM+, its objective function
depends only on the sequence 8k . For experiments with noise
(dashed curves), the sequence of objective values f (χ k, 8k)

reaches an “objective gap” in about 50 iterations. The latter term
is meant to indicate the gap in terms of the objective function,
which is different from the “feasibility gap,” i.e., the distance
from the current estimate to an optimal solution. The objective
gap empirically reflects the inexactness level of the input data in
the sense that lower SNR yields a larger objective gap. It is worth
noting that such an objective gap is not mathematically ensured
to be unique, since the objective function f is far away from
convexity, and hence it is not guaranteed to be the optimal value
of problem (12).

In this section and Section 5.D, to observe convergence
properties of the algorithms, we run a few more hundreds of
iterations compared to 150 as in the other sections. However,
the tailing parts of the curves are not plotted in Figs. 6–8, and
12 because otherwise different features of the algorithms at early
iterations are hardly visible.

Let us point out an interesting influence of noise on the
objective gaps shown in Fig. 6. For noiseless experiments (solid
curves), the objective value of VAM+ (blue) clearly decreases
to zero faster than that of VAM (red) due to the additional
knowledge of the amplitude χ , whereas in the presence of noise
(dashed curves), VAM appears to achieve a smaller objective gap
than VAM+. This is because the optimization over both χ and
8 of VAM in general yields a better fit to the noisy data than the
optimization over only8 of VAM+.
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Fig. 7. Experiments show the feasibility gap versus the number of
iterations of VAM and VAM+ compared to SAM. Regardless of the
presence of noise, the performance of VAM (red curves) and VAM+
(blue curves) is consistent, and the latter one is favorable due to the
additional information of χ . Model deviations make SAM (black
curves) much less accurate than VAM and VAM+.
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Fig. 8. Experiments demonstrate the convergence of VAM and
VAM+ in terms of the change in the estimated phase in iteration. In
both scenarios of noise, the iterative change of the estimate decreases to
zero in a stable and consistent manner. Due to the additional knowl-
edge ofχ , VAM+ (blue curves) converges slightly faster than VAM (red
curves).

In the simulation framework, it is possible to monitor the
feasibility gap in iteration, i.e., ‖8k

−8‖F , as plotted in Fig. 7.
For the experiments without noise (solid curves), the feasibility
gap of VAM and VAM+ decreases to zero. This demonstrates
the fundamental feature of the phase retrieval approach pro-
posed in this paper. Roughly speaking, the two algorithms are
capable of inverting the vectorial PSF model (7).

Similar to the case of the objective gap analyzed above, the
feasibility gap of VAM+ decreases faster than that of VAM due
to the additional information of χ . For the experiments with



Research Article Vol. 37, No. 1 / January 2020 / Journal of the Optical Society of America A 23

noise (dashed curves), the performance of VAM and VAM+ is
also consistent. It takes about 60 iterations to reach an approxi-
mate solution, i.e., an estimate corresponding to the feasibility
gap that is almost no longer reduced by increasing the number of
iterations. In contrast to the analysis of the objective gap shown
earlier in Fig. 6 (dashed curves), VAM+ outperforms VAM in
terms of the feasibility gap, and hence it is favorable in these
experiments. The influence of noise on the performance of SAM
(black) is not observable due to model deviations that make the
algorithm much less accurate than VAM and VAM+.

The feasibility gap is a desirable quantity for any solution
process, but it is not achievable in practice since no exact solu-
tion is known in advance. Instead, one is often interested in how
a certain temporal estimate changes in iteration. For example,
the change in the reconstructed PSFs (resp., the GPF) can be
used as a stopping criterion for VAM and VAM+ (resp., SAM),
as presented in Section 4. When linear convergence appears to
be the case, such an iterative change can be useful for estimating
the rate of convergence, provided that the generated sequence
remains in the convergence area. Our experiments with VAM
and VAM+ show the vanishing of the change in terms of tem-
porally estimated wavefront, i.e., ‖8k

−8k+1
‖F , as presented

in Fig. 8 (for VAM, ‖χ k
− χ k+1

‖F is also vanishing in the same
manner). Note that this implies the vanishing of the change
in terms of reconstructed PSFs, since the imaging model (7) is
continuous in8 and χ . In both scenarios of noise, the iterative
change in VAM and VAM+ decreases to zero in a stable and
consistent manner. In the noiseless case, the vanishing of the
feasibility gap shown in Fig. 7 already confirmed the retrieval of
the exact solution of Eq. (12). In the presence of noise, the steady
decrease in the feasibility gap in Fig. 7 and the vanishing of the
iterative change in Fig. 8 show that the algorithms find a local
solution to that problem. For the same reason as in the analysis
of the objective gap, the uniqueness of such a local solution is
not guaranteed, and hence a global solution to Eq. (12) is not
theoretically guaranteed to be obtained, although numerical
experiments indicate so. Due to the additional information of
the amplitudeχ , VAM+ converges slightly faster than VAM.

In summary, VAM and VAM+ consistently exhibit desirable
convergence properties in terms of the objective gap, feasibility
gap, and iterative change for all the experiments conducted. In
the noiseless setting, they are able to precisely restore the phase
as indicated by the zero feasibility gap in Fig. 7 (solid curves). In
the presence of noise, the two algorithms also clearly outperform
SAM in terms of both convergence and phase retrieval quality.
A particular example is presented in Fig. 9, where phase retrieval
by VAM (bottom-left), VAM+ (bottom-right), and SAM (top-
right) are shown. The first two algorithms are about six times
more accurate than the last one with relative RMS errors 2.4%
and 2.2% compared to 15.2%, respectively. For completeness,
four noiseless vectorial PSF images corresponding to the phase
shown in Fig. 9 are presented in Fig. 10.

D. Number of Input Images

In this section, the effectiveness of the proposed algorithms
with respect to the number of PSF images (m) is analyzed.
Phase retrieval experiments with two, four, and six noisy PSF
images are respectively conducted for 75 wavefront realizations.
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Fig. 9. Realization of phase retrieval by VAM (bottom-left), VAM+
(bottom-right) and SAM (top-right).

Fig. 10. Four noiseless out-of-focus PSFs corresponding to the
phase presented in Fig. 9: the central part of each image with size
48× 48 pixels is shown.

Figure 11 plots the relative RMS errors in iteration of VAM and
VAM+. The overall comparison between the two algorithms
with the same number of input images is the same as in the
previous sections. Figure 11 shows that phase retrieval is more
accurate if more input images are used. For example, the rela-
tive RMS errors of VAM+ (blue) given two (bold curve), four
(dashed curve), and six (thin curve) images are, respectively,
8.3%, 1.6%, and 0.5% (on average). This is well explained by
the widely known fact that additional measurements can be
useful for suppressing noise. Note that the complexity of these
Fourier-transform-based algorithms is approximately linearly
proportional to the number of input images; hence, there is a
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Fig. 11. Experiments show that more input images lead to more
accuracy of phase retrieval by VAM and VAM+.

trade-off between the computing time versus noise suppression.
Moreover, accurately registering multiple PSF images is often
not a trivial task in many applications.

The number of input images also affects the convergence
speed of the algorithms, as shown in Fig. 12 where the change
in the restored phase in iteration is plotted. Obviously, more
input images lead to faster convergence of the algorithms. The
additional knowledge of χ makes VAM+ converge faster than
VAM, e.g., VAM+ with m = 4 (blue dashed curve) converges
faster than VAM with m = 6 (red thin curve). It is important
to keep in mind that faster convergence does not imply higher
quality of restoration, e.g., VAM+ with m = 4 is less accurate
than VAM with m = 6, as shown in Fig. 11.

E. Phase Retrieval with Discontinuous Phase

This section demonstrates that VAM and VAM+ are also effi-
cient for phase retrieval with discontinuous phase, e.g., phase
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Fig. 12. Experiments show that more input images lead to faster
convergence of VAM and VAM+.
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Fig. 13. Experiment with noise demonstrates the solvability of
VAM and VAM+ for phase retrieval with discontinuous phase. VAM+
(bottom-right) outperforms VAM (bottom-left) due to the knowledge
of χ , while SAM (top-right) is more erroneous than the others due to
model deviations with relative RMS error 9.4% compared to 5% and
4.3% of VAM and VAM+.

retrieval with sparse phase constraint for applications in charac-
terizing phase-only objects such as microlenses, phase-contrast
microscopy, optical path difference microscopy, and in Fourier
ptychography, where the phase object occupies less than 10% of
the whole field [40]. As mentioned in the introduction, it is not
feasible to accurately approximate a discontinuous wavefront
or its associated GPF with a weighted sum of Zernike modes
because the continuity property is invariant with respect to
linear combination. More precisely, such an approximation
would require a very high order of Zernike polynomials that
are fast oscillating and impede the numerical calculations. As a
consequence, solution methods based on modal formulations
of phase retrieval (see, e.g., [41] for a comparison to the zonal
formulation) are no longer relevant. In particular, the solution
approach based on the use of ENZ expansion in [29] is not
applicable to the class of problems analyzed in this section.

The discontinuous phase shown in Fig. 13 is obtained by
adding a binary phase to a defocus term, and thus it is not sparse,
i.e., its sampling is not sparse with respect to the pixel basis. The
sparse phase shown in Fig. 14 is (a scaling of ) a truncation of the
above discontinuous phase. For experiments with these phases,
VAM and VAM+ precisely restore the exact solution in the
noise-free setting, while SAM suffers model deviations. In the
presence of noise, Figs. 13 and 14 show the phase retrieval results
for the discontinuous and the sparse phases, respectively. The
overall comparison among the three algorithms is the same as for
the case of continuous phases analyzed in the previous sections.
VAM+ (bottom-right) outperforms VAM (bottom-left) due
to the additional knowledge of χ , while SAM (top-right) is
more erroneous than the others due to model deviations. This
demonstrates the solvability of VAM and VAM+ for this class of
phase retrieval problems. These results also prove the advantage
of our phase retrieval approach compared to the one in [29],
as we claimed in the introduction. For discontinuous phases,
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Fig. 14. Experiment with noise demonstrates the solvability of
VAM and VAM+ for phase retrieval with sparse phase constraint. The
main features observed here resemble those in Fig. 13.

correction schemes after restoration (e.g., smoothness using
Zernike polynomials) cannot be applied for noise suppression.
Due to this disadvantage, the errors of VAM and VAM+ in
Figs. 13 (5% and 4.3%) and 14 (7.1% and 5.9%) are higher
than the ones in Fig. 10 (2.4% and 2.2%).

F. Amplitude Restoration

The dominance of VAM+ over VAM as observed so far demon-
strates the positive influence of the additional information
of χ on phase retrieval. This observation shows merely the
effectiveness of χ whenever it is available; it does not imply
any conclusion of comparing the two algorithms. They are
two versions of the same phase retrieval approach reflexively
adjusted for two scenarios of application, i.e., with known and
unknown amplitude of the GPF. This section briefly analyzes
the effectiveness of VAM in restoring the amplitude.

In the noise-free setting, the algorithm precisely restores the
amplitude for all experiments regardless of the continuity of
the phase. In the presence of noise, VAM enables to restore the
amplitude with the same level of accuracy as for retrieving the
phase. For example, Figs. 15, 16, and 17 show the amplitude
restoration by VAM for the experiments presented in Figs. 10,
13, and 14, respectively. The restoration is highly accurate;
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Fig. 15. Amplitude restoration by VAM for the experiment with
continuous phase in Fig. 10: correct amplitude (left) and its residual
(right) relative to the restoration (error 3.3%).
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Fig. 16. Amplitude restoration by VAM for the experiment with
discontinuous phase in Fig. 13: restoration (left) and its residual (right)
relative to the data (error 1.1%).
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Fig. 17. Amplitude restoration by VAM for the experiment with
sparse phase shown in Fig. 14: restoration (left) and its residual (right)
relative to the data (error 1.1%).

the relative RMS errors are 3.3%, 1.1%, and 1.1%, respec-
tively. It appears that the discontinuity of the wavefront has no
substantial influence on the quality of amplitude restoration.

6. CONCLUDING REMARKS

We have presented and numerically analyzed a new phase
retrieval approach for high-NA imaging systems based on the
vectorial PSF model. The solution scheme can be adjusted
for both cases of application with either known or unknown
amplitude of the GPF. Making use of the correct imaging model,
the proposed algorithms enable to restore phase aberrations
at a high level of accuracy. They retrieve the correct solution
in the noise-free setting and perform consistently with error
around 5% for input data with SNR from 30 dB. Numerical
results clearly demonstrate the efficiency and practicability of
the proposed approach in various practically relevant simula-
tions. Our approach exhibits several fundamental advantages
over existing solution methods for phase retrieval in high-NA
settings including [25], which is limited in terms of accuracy
due to model deviations, and [31], which is expensive in terms of
computational complexity and not applicable to problems with
discontinuous wavefronts due to its modal-based approach.

Theoretical support for the phase retrieval approach pre-
sented in this paper is of great importance; however, we think
it does not fit the scope of this paper and will be reported in a
forthcoming mathematical-oriented publication.
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