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INTRODUCTION

The evaluation of wave forces on vertical surface piercing
cylinders has been a subject of interest for over 40 years,
since Havelock1 first published the analysis of first order
diffraction in infinite water depth. In the extension of the
analysis to second order forces. contributions due to a
second order velocity potential must be accounted for, in
addition to those from the first order potential. Hitherto
the solution for the second order potential has been fraught
with difficulties and controversies. To our knowledge, a
correct method for general solution in three dimensions,
satisfying all the boundary conditions, has not yet been
published. One can cite. for instance, a recent study of
axisymmetric bodies by Sabuncu and Goren,2 in which a
general solution was used that satisfies neither the free
surface boundary condition nor the radiation boundary
condition at large distance.

In many applications it is the second order forces on a
body that are of interest, rather than the second order
potential at a point in the fluid. Various authors have there-
fore suggested a methodology for obtaining forces without
explicitly evaluating the second order potential. Through
the use of Green's second identity, the forces are expressed
in terms of first order potentials alone. The resulting
expressions for infinite water depth were given by Light-
hill.3 and Molin4 has presented the results for finite water
depth. Unfortunately. however, these formulations involve
a free surface intcgraL for which a converged o!uticn h
aitherto been extremely difficult to obtain. In practice it is
necessary to make certain assumptions about the behaviour
of the second order potential at a large distance from the
body, but these have not been clearly assessed.

In the study reported here, we have set out to re-examine
the theory given by Lighthill and Mohn, and to derive
definitive results. In several respects. our formulation is
very similar to that given by Mohn and Marion,5 in a report
which came to our attention during the course of our
investigations. In order to justify the omission of certain
terms when Green's identity is invoked, we have attempted
to give special consideration to the far field behaviour of
the second order scattered potential; and although our
conclusions are the same, our arguments in this respect are
somewhat different from those of Molin and Marion. Our
solution also differs in that we have used our knowledge
of the far field behaviour of the first and second order
potential in order to obtain a converged solution to the
awkward free surface integral. This part of our solution
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makes use of asymptotic forms which have also been used
by Matsui.6

In the following, we present analytical expressions for
the second order force on a vertical surface piercing cylinder.
Except for the aforementioned contribution from the free
surface integral, these expressions confirm those given by
Mohn and Marion. Our numerical results agree, for the cases
where we have made comparisons, thereby providing inde-
pendent confirmation of the evaluation of the free surface
integral (which is found to make a very significant contri-
bution). Additionally, results for infinite water depth are
also derived and compared with those given by Lighthill3
and Hunt and Baddour.7

Based on the formulations presented in this paper, it is
envisaged that an accurate and economical solution of
forces for general three dimensional bodies in regular or
bichromatic waves will also become a possibility.

MATHEMATICAL PRELIMINARIES

We define a polar co-ordinate system °rOz (Fig. 1), such
that the z axis points vertically upwards, with °rO on the
mean free surface. With the assumption of irrotational flow,
the wave field may be defined by a velocity potential c1,
expressible in the form of the Stokes expansion:

= (1) + (2) (1)

This series implies a perturbation parameter proportional to
wave steepness. The first order velocity potential for a
regular wave of frequency w is:

= Re (1) ei)t] (2)

se

Figure 7. Definition of geometry
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which can be decomposed into incident and scattered com-
ponents:

(1) = (1) (1)

In the fluid region V

= 0

on the body surface S0 and sea bed Sß

=0
an

and on the mean free surface 5F

a21 act)t1)g=0
at2 a:

In addition, ctP must satisfy the Sommerfeld radiation
boundary condition:

on SF
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A travelling in the

(9)

defined by

+g
at2 a:

a i act» r a ìa2ct' act"
=__[(v4)2]+_...........I

( +g-
at g at La:\ at2 az

° F (17)

The second order radiation boundary condition is as yet
undefined, but will be discussed later. The second order
complex incident potential 2) may be obtained by substi-

tuting equation (9) into the right hand side of equation
(1 7), yielding

i3A2w cosh 2k(: + d) i2krcos@2) = (18)
8 sinh4kd

e

The second order wave elevation (2) is given by

I [act)(2) i
(vt))2

i a1 a2c1W]
g at 2 g at a:at

Substituting equation (9) into the last two terms of equation
(19), we obtain the value of 2) which causes Z(2) to oscil-
late about the mean free surface in an otherwise undisturbed
incident wave:

A 2gk(2) =
I 2 sinh 2kd

We comment here that on physical grounds &(2) must be
spatially independent, and therefore it does not contribute
to horizontal forces on the body up to second order.8

HYDRODYNAMIC FORCES

General formulation
The first-order horizontal force on a fixed body in direc-

tion ¡3 is

a'iF1 = -J
at

n,,dS

so

where n is the component of the unit normai into the
body in the direction of ¡3. By retaining terms of second
order in the integrated hydrodynamic pressure, the second
order force is found to be

F2 = - [
j.

g (»)2ndl + 1(Vt)(1))2n
2

z0 so

act2
+1 at

so

where 'zO dl denotes an integral at the water line, and the
body is assumed to intersect the free surface vertically.

The first two terms of equation (22) can be decomposed
into a mean (F,) and time oscillatory component (F2)
respectively, such that

r pgF=ReI -
L 4 J-

(1) . (l)* dl

- L
Vø(l)*n (23)

pgF2)=Re[{ - f 1'ni
P V(1)n}ei2wr] (24)

so

(19)

(20)

(21)

(22)

r \Ir(- + ikct1)) =0 (7)

where for water depth d the wave number k satisfies:

= k tanh kd (8)
g

For an incident wave of amplitude
direction O = 0.

gAcoshk(:+d) -ikrcos6e
w coshkd

The wave elevation i' is defined by

i act)t1- -
g at

Therefore

Z(1) = Re [1)e1n}

where

iw
(1)

g

The associated second order velocity potential is

(2) + (2)

= Re E2)el2t +
where

-2p(2) = Q in V (15)

=0 on S0US (16)
on



eves to eq. (9). The results are similar to eq. (4)

and eq. (5), with the addition of the free surface
integral over SF which we have included i eq. (9). In

this case w in eq. (4) takes the value
2

¡g.

3. NUMERICAL SCHEMES

By far the commonest method of solving integral equa-
tions such as eq. (1) or eq. (2) for the radiation and
diffraction problems is the constant panel method. In

this, the velocity is generally assumed constant over a
flat panel, and the integral equation is enforced at a
representative point on each panel, usually the cent-

roid. The approach has its origins in earlier work in

the field of aerodynamics (eg Hess and Smith 1964).

Early examples of its application to offshore struct-

ures were given by Hogben and Standing (1974) and
others. Since then, with developments in computing, it
has become possible to apply this approach to complex
structures idealised by large numbers of panels, as for
example the TLP discretised by Korsmeyer et al (1988)

using up to 12,608 panels (or 3152 per quadrant, with

double symmetry).

Çeatures of the constant panel method are that curved
:rfaces are represented by multi-faceted models, which
ay have discontininties (hence "leaks"); and the dist-
ribution of potential (or source strength) i discon-

tinuous. One would assume that with a well formulated
method such discontinuites become of decreasing impor-

tance, as increasing computing power facilitates the
use of increasingly fine discretisations. Doubts, how-

ever, have been expressed by Liu, Kim and Lu (1990)

concerning the convergence of the constant panel method
for bodies with sharp corners. They argue that the

limit of the constant C in eq. (1), when evaluated at

the centroid of panels of ever decreasing size, does

not tend to the value of C associated with the solid
angle of the corner itself. The relevance of this

assertion is currently unclear, both numerically and in
relation to the modelling of unseparated flow at sharp
corners.

One may also legitimately ask whether the constant
panel method is indeed the most cost effective method
of achieving adequately converged results. Experience
with the finite element method, and applications of the
boundary integral (or boundary element) method to other
fields, suggests that there may be advantages in repre-
ernting the body surface 5B (and the free surface
ere necessary) by fewer higher order elements. Indeed

there may be greater benefit in the use of higher order
boundary elements (where the resulting matrix equations
are dense) than itt the finite element method (where the
coefficient matrix is strongly banded)

The use of quadratic elements to discretise eq. (1) was

explored by Earock Taylor and Zietsman (1982), in the

context of a hybrid finite elementboundary integral
procedure. In this, the integral equation was in fact
written on a fictitious box shaped surface, enclosing a
finite element mesh around the body: for this reason

many of the contributions to the integral (ie the

normal derivatives) were either zero or rather simple

to evaluate. More recently quadratic isoparametric

elements have been used to discretise the body surface
itself: Chau and Eatock Taylor (1988) and Chau 1989 did
this in the context of eq. (4); while Liu (1988) and
Lui et al (1990) used this idealisation with eq. (1).

Others have used higher order elements with simple

singularities (e.g. Rankine sources) distributed over

the body, free surface, seabed and a radiation bound-
arv. lu and Eatock Taylor (1989) adopted quadratic iso-
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parametric elements in their solution for the hydro-

dynamics of translating oscillating bodies: the trans-

lating pulsating source was used in the appropriate

integral equation expressed over the body surface S8

and the water line (ie the intersection of S8 with the

plane zO). In this case, and in the non-linear diff-

raction problem involving a free surface integral -

c.f. eq. (9) - there is added significance in directly
evaluating the water line integral at zO (rather than
extrapolating from the centroids of Constant panels)

An alternative to the direct application of the

integral equation at discrete nodal points is to impose

the body surface boundary condition in some average
sense, for example by variational, Galerkin or weighted
residual techniques. This has not received much

attention in the context of hydrodynamics, although

Breit et al. (1985) used it with the constant panel

method for the linear diffraction - radiation problem.

The idea may be simply summarised as follows. Suppose

we wish to approximate eq. (1), using as discrete

unknowns the values of the velocity potential at n

nodes (j - 1 to n). In terms of shape functions Nj we

can write

(x) - N(x) (10)

j1

In the constant panel method, N.(x) is simply a surface
of unit height over the panel wose centroid is at node
j, and zero height elsewhere. For higher order boundary

elements, N1(x) takes the value one at node j, is a

varying function over the panels surrounding node j

and is zero elsewhere. The direct application of the
boundary integral method reduces eq. (1) in discretised
form to the matrix equations

A - V (11)

whe r e

13G (x ; )

Aj - C(x)&
+ Nj()dSe

j

SB

- JV())c(xi;)dS

To obtain the Galerkin formulation, eq.

plied by N(x) for each node in term.
over the panels adjacent to node i.

matrix equations are

- V (13)

where now

Aj - ICi(Nj(X)dsx
SB

+ ji an
N(x)N(e)d5dS,

II 3C(x;)
(14a)

8B

(l2a)

(l2b)

(1) is multi-
and integrated
The resulting
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To demonstrate the accuracy of the linear diffr-

action solution acheivable by thî procedure, the dist-

ribution of the potential on the surface of a

vertical bottom mounted circular cylinder is presented

in table 1. In this case the radius a is equal to the

water depth d, and the dimensionless frequency is given

by kal.4 for a wave number k. The two discretisations

shown in fig. 2 were employed, to illustrate converg-

ence. By comparision with the analytical solutions one

sees that the numerical results from the finer mesh

have essentially converged, and accurate results were

obtained from the coarser mesh employing only two

elements per quadrant. These results and comparisons of

surface tangential velocities and free surface eleva-

tions, together with other numerical results for more

complex geometries, confirmed the viability of this

numerical approach for tackling the second order

problem.

Two aspects require special attention in the

numerical analysis of the second order problem. One is
the efficient calculation of the free surface integral
(eg. the third term in eq. (9)), which decays slowly to
infinity in a highly oscillatory manner. The other is

the need for accurate evaluation of second derivatives
of the first order potentials, which also appear in the
integral over SF.

In the present study, the free surface is divided into
two regions in which the integrals are treated diffe-

rently. The inner region, denoted by SFi, is bounded by

the waterline r, and a circular exterior boundary r.
Within this region, the free suface is discretized into
planar panels, and integration is performed numerically
by means of a quadrature formula. Outside this region.

a simplification is possible by exploiting vertical

axisvmrnetry, which allows one to develop the first

order potential and the Green function into Fourier
series in the polar angle 9. After integration in the
circumferential direction and use of orthogonality for
each Fourier mode, the two dimensional free surface
integral can be reduced to a series of one dimensional
radial line integrals which can be integrated numeri-
cally. In order to speed up convergence, numerical
quadrature is only employed up to a finite range but
complemented by an analytic integration to infinity.

Eventually, the integrand can be represented by sum-
mations of polynomials of various orders. Integration
of each term of the polynomials satisfies a simple

recurrence relationship from which its value can be

easily calculated.

Theoretically, the free surface integrand appears
relatively trouble free to obtain since it can be

expressed as functions of the known first order
solution. However, since the first order potential
itself is obtained numerically, high accuracy of its
second derivative is then very difficult to achieve.
Moreover, i would be intuitively expected that the

effect of the non-linearity in the free surface condi-
tion would be strongly concentrated in the immediate
vicinity of the body. Hence special attention must be
paid to efficient and accurate evaluation of this
second derivative in the flow region around the body
(e.g. in SFi). By use of integration by parts in two

dimensions (or Green's Theorem), it is possible to

express the integral containing the second derivative
as one containing only the first order derivative plus
two line integrals taken along the boundary of SFi.

To arrive at the one dimensional form of the free

surface integral in the outer region, the first order
velocity potential, and the Green's function, are

- if ()G(x;)Ni(x)dSxdSe
(14b)

S

A particular advantage of using eqs.(13) and (14) is

the smoothing of the singularities thereby introduced.

This has been illustrated in the context of the ship

motion problem by Wu and Eatock Taylor (1989). They

describe some of the further advantages in that prob-

lem, which involves a water line integral and second

derivatives of the steady potential due to forward

speed. As the body surface condition on the waterline

is averaged over the body surface, in the Galerkin

approach, one can avoid the difficulty of the source

and field point both lying on the free surface.

Furthermore, the second derivatives can be reduced to

first derivatives by transforming the Calerkin

integral. Similar advantages are apparent in the case

of the non-linear diffraction problem.

4. APPLICATION TO THE DIFFRACTION PROBLEM

In the following analysis of the linear and nonlinear
diffraction problems, we have used integral equations

(4), discretised by quadratic isoparametric elements

using equations analogous to eqs. (11) and (12). A

number of refinements have been introduced to suppress

singularities present in the numerical integrations.

The implementation of the integrals such as those in

eq. (12) over generally curved elements requires a

transformation to local coordinates. For isoparametric

elements this of course involves the same transform-

ation as implied by eq. (lO). The resulting integrals

over each element must then be evaluated by numerical

quadrature. When the field point x is not at node j,

the kernel, shape functions and Jacobian associated

with the isoparametric transformation all remain

bounded; Gauss Legendre quadrature may therefore con-

veniently be employed. A modification, however, is

desirable when x coincides with node j . This is

intended to enhance the accuracy of integrating the

modified dipole integral in eq. (4), and to eliminate
difficulties arising from singularities associated with

the source potentials.

The method adopted here arose from a study of the work

by Li et al (1985). They introduced a series of trans-

formations, the effect of which is to reduce the order
of singularity of the integrals by one degree, and to

allow standard numerical integration to be used over
the unit square. The first step is the usual mapping of
each boundary element onto a unit square by means of

the standard isoparametric transformation. Each square

is then subdivided into two or three triangles

depending on the location of the singular point.

Through the introduction of triangular coordinates,
each triangular sub-element is subsequently mapped back
onto a unit square (which of course is unrelated to the

original unit square before subdivision) . A valuable

feature of the above sequence of mappings is that they
automatically give a great concentration of integration
points towards the singular node, and hence Gaussian

quadrature of moderate order ray be used. This is

illustrated in fig. 1, which shows the distribution of

integration points produced by the transformation when
the singularity is at a mid side node.



expressed as Fourier series in the polar angle 8. Based
on eq. (1), where now C1, this leads to

41(r,6,z) X X BmnKmnnro)znnzO;l o (15)
m-- nO

where the coefficients of the series, 5mn' are given by

ir a

-- J(V()
(l)

Imn(Pcnr)Zn(nz)
2i 3n

SB

e im9dS (16)

Here 1m and Km are modified Bessel functions of the
first and second kind respectively; Zn forms an ortho-
normal Set of the vertical eigenfunctions for the
linear free surface potential problem; and are the
roots of the corresponding dispersion equation.
Equation (16) is evluated by numerical quadrature,
after expressing on S in terms of the known nodal
potentials and the shape functions.

The effective pressure term f in the free surface
integral (cf. eq. (9)) involves products of first
order potentials. In the outer region the contribution
from the evanescent modes n » i can be ignored, and
the integral itself therefore involves triple products
of the nO terms (which in fact are more conveniently
expressed as Hankel functions with real arguments) . By
substituting the leading terms for the related Hankel
functions, the integrands may be approximated in a
straightforward manner. The infinite integrals follow
in the form of simple Fresnel integrals and can be
evaluated explicitly. However, in this approach, the
chosen value of R3, which is the radius of the circular
boundary r3, has to be very large (especially for large
ni), so that the leading order approximation can yield
sufficient accuracy for r greater than R3. For smaller
R3, the leading order terms are not sufficiently
accurate by themselves, but they can be amended by
residual corrections, which have the form of asymptotic
power series. In this manner, more refined approxima-
tions for the inregrands can be obtained. One observes
that the leading asymtotic does not depend on the order
ni; this order, however, appears in the coefficients of
the full asymptotic expansions. In other wcrdr, the
asymptotic series are not uniform with respect to ni. An
adaptive approach which not only overcomes this limita-
tion but also ensures the accuracy of using Hankel's
asymptotic expansions has been developed. Details of
this have been given by Chau (1989), together wtih a
criterion for selecting R3 and an extensive demonstr-
ation of convergence.

Within the inner free surface region SFI a numerical

scheme has been employed based again on quadratic
triangular or quadrilateral planar elements. The first

order potential and its derivatives are obtained at the
integration points by means of the shape frtions. The
integral involving second derivatives of 4 on SF
expressed in ternis of first derivatives and line

integrals on the boundary of the inner free surface

region, as discussed above. The surface integrals are
evaluated in a similar manner to those arising in the

first order problem. The body waterline and the outer

boundary of SFi are discretised by quadratic line

elements, and the resulting line integrals are obtained
by 3-point Gaussian adaptive quadrature.
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5. NUMERICAL RESULTS

5.1 Vertical circular cylinders

In order to confirm the validity and accuracy of the
numerical model, the case of second order diffraction
by a vertical circular cylinder has been extensively
investigated. The numerical results have been compared
with those from analytical solutions. A solution for
the distribution of second order potential on the
cylindrical surface has been given by Eatock Taylor,
Hung and Chau (1(89) together with a discussion of the
behaviour of A more general semi-analytical
solution has also been obtained by Chau (1989), which
provides the second order potential and flow kinematics
associated with diffraction by the vertical cylinder,
at any point in the fluid region. The two solutions are
"exact", and therefore equivalent on the body surface.
Results are here given for the same case as discussed
in the previous section (i.e. a/d 1, ka 1.4). Due to
the quadrupling effect on wave number by doubling the
frequency, the levels of discretisation on the body
surface used for the first order solution will no
longer be sufficient for second order computation. In
view of this, a finer discretisation (20 elements per
quadrant) has been used to describe the body surface.
The cylindrical mesh on the free surface is chosen to
have an outer radius of 2d, and is discretised into 16
quadratic elements per quadrant. Typical comparisons
down the vertical sides of the cylinder are shown in
fig. 3 for two azimuthal angles 8. They are in good
agreement, as can be seen from the results presented,
except that just noticeable differences appear in the
vicinity of the free surface.

As a separate exercise in validation, we have compared
our results with the results of Kim and 'l'ue (1989),
which are based on a numerical analysis for ax
symmetric bodies. Figure 4 shows a comparison betw
Kim and Yue's results and our analytical solution, fc
the second order run-up around a vertical circular
cylinder in waves of amplitude A. The radius a of the
cylinder equals the wa9r depth, and the dimensionless
frequency parameter w a/g - 2. The first and second
order quantities plotted are non-dimensionalised by A
and A2/a respectively. The solid line designates the
total second order oscillatory component. Kim and Yue's
results for this component are based on a discret-
isation of a generator of the cylinder by 20 segments,
i.e. the use of 20 ring sources, each decomposed into
14 Fourier harmonics. The accuracy of these numerical
results in relation to the analytical solution, appears
comparable to those shown in fig. 3. Indeed this might
be expected, since both numerical solutions use roughly
similar numbers of unknowns in the discretisation. The
results are also consistent with those obtained by the
method of Scolan and Mohn (1989).

5.2 Grou; of 4 cylinders

To demonstrate the use of the present method for a more
realistic configuration in practice, a geometry
comprising a group of cylinders is now investigated.
This structure consists of four truncated vertical
cylinders arranged on a square planform, typical of the
columns of a TLP. The idealised case considered here is
based on cylinders of radius 125m, and draft 37m, in

water of depth 100m. The cylinders are placed st the
corners of a square, of side 75m, and the unit
amplitude incident wave propagates in a direction
parallel to two sides of the square. This arrangement
is the same as the' four columns of the Snorre TLP



design. Local polar coordinates are defined such that

the cylinder surfaces at Bl8O° and at 8-27O are

closest to the neighbouring cylinders, which are
respectively in lines parallel and perpendicular to the
direction of the incident wave.

As a check of the numerical model, two discretisations
are employed to test the convergence of results (See
fig. 5). A non-dimensional wave frequency of ka-0.5 is
considered, corresponding to a wavelength of 157m

(periodlOs). Components of the horizontal and vertical
diffraction forces for both the first and second order
analyses are listed in table 2, showing comparisons
between the numerical results obtained from mesh I (241
nodal points per column) and mesh II (1036 nodal points
per column). It is evident that the results have
converged. Local resution of the flow such as the
distribution of presents a more difficult
problem than evaluation of global forces. In view of
this, typical comparisons down the vertical sides of
both the upwave and downwave cylinders are shown in

fig. 6 for two azimuthal angles. They are in good
agreement, as can be seen from the results presented,
except that some differences are noticeable near the
free surface. The closeness of the two sets of results
suggests that for the conditions investigated, adequate
accuracy can be obtained by using the relatively coarse
mesh. 0f course, finer discretisations are required for
shorter waves.

In fig. 7, the magnitudes of the second order
diffracted potential are plotted against the azimuthal
angle on the waterlines of both the upwave and downwave
cylinders. Numerical results for an isolated cylinder
are also superimposed on the same diagram. One observes
that the variation of k52ï along the waterline of
the downwave cylinder has a trend very similar to the
isolated member, except that local magnification
(relative to the isolated cylinder) often occurs. This
is particularly evident on the sutace around a-270°
Comparatively large values of Is ' are also observed
at the weather side, suggesting that at second order
there is little shielding from the upwave cylinders. In
general, pronounced interaction effects can be seen
along the circumference of the upwave cylinder. This is
particularly interesting around 8l8O where the

corresoondinz first order potential is much less

sensitive to the existence of the neighbouring bodies.

Next rezultr are presented in figure 8 showing iso-
metric plots of second order free surface elevations.
For the same lOs wave to which the results in fig. 7

relate, fig. Ba shows the instantaneous second order
free surface elevation at the instant the incident wave
of unit amplitude has a crest half way between upwave
and downwave cylinders. Figure 8b shows the corres-
ponding elevation one second later. There is strong
evidence of the pronounced interactions arising from
multiple scattering at second order between the
columns.

5.3 Tension leg Diatforms

Results have also been obtained for a four column
tension leg platform, based on the four cylinders
described above. These were connected at the bottom by
square pontoons of side 115m, such that the total
platform draft remained 375m. The mesh of quadratic
isoparanletric elements used to discretise the TLP is
shown in fig. 9. The instantaneous free surface eleva-
tion cortresponding to a lOs wave of unit amplitude is
shown in fig. 10. This may be compared directly with
fig. 8a, from which it appears that the effect of the
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pontoons on the second order upwelling phenomenon is in
fact rather small. This behaviour can be inferred from
simpler analyses of bottom mounted and truncated single
cylinders. By comparing such analyses, one finds that
the behaviour of the second order diffacted potential
on the free surface is in general not sensitive to the
presence or absence of structural members located at
large depth of submergence. Moreover, this effect
becomes more pronounced at higher frequencies.

6 CONCLUDING REMARKS

Some of the conclusions from the investigation

summarised above are the following.

Reliable solution of the second order diffraction
problem requires accurate numerical analysis of the

linear problem. An effective way of achieving this has
been found to be the use of quadratic isoparametric
boundary elements. These have been used to discretise a
modified integral equation, which reduces the effect of
the singularity in the dipole distribution. Further
benefit in treating the singularities has been gained
from use of a special triangular coordinate transform-
ation. Extremely accurate first order results have been
obtained using very few elements,

It is necessary to exercise considerable care in
evaluating the free surface integral which appears in

the formulation of the second order problem. A highly
effective approach has been found to be the use of
Hankel's asymptotic series for various terms in the

in te grand

Substantial efforts have been made to validate the
methods and programs used here, and rapid convergence
to the few available analytical solutions has been
observed. There is, however, a need for some widely
agreed benchmarks. Even simple geometries, such as
floating truncated cylinders, can provide challenging
problems in terms of convergence (e.g for results
associated with the pitch mode). Suitable cases
suggested at the FPS 2000 discussions (Nielsen et al.
1990) , included truncated cylinders of radius to draft
ratios 0.125, 1.0, 4.0 in a water depth of 10 radii.
Analysis of these cases is currently in hand.

The importance of second order diffraction effects
has been reaffirmed in this investigation, for a range
of relevant parameters. A crucial difference in the
behaviour of f.irst and secocid oLder forces is the very
slow decay of the latter with increase in water depth.
This feature may have a significant effect on the
design of deep draft floaters. The vertical force on a
truncated cylinder due to the second order potential
has been found to be much greater than the second order
vertical force resulting from first order potentials.
This is of extreme importance to the prediction of
vertical resonant motions in deep water TLP's.
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numerical solution
z Id 8° analytical

solution
mesh I mesh II

0.0 O (-O.1788E+1, O.2572E+l) (-O.1788E+1, 0.2571E+1) (-0.1788E.1, 0. 2572 E+1)

0.0 45 (-O.77l5E+O, O. 1144E.i-1) (-0. 7651E+0, 0.1143E+1) (-0.77O9E+0, O.1144E+1)

0.0 90 (-0.71O4E+O, -O . 917 2E +0) (-O.6988E0, -0. 9135E+0) (-0.7096E+O, -0.9l68E+O)

0.0 135 (-0.1878E+1, -O. 19O6E+0) (-0. 1871E+1, -0. 1853E+0) (-0.1878E+1, -O. 1898E+O)

0.0 180 (-0.2090E-4, O. 7424E+0) (-0.2087E+1, O. 7482E+0) (-0.2O9OE+1, O. 7433E+O)

-1.0 0 (-O.83l2E+0, O. 1196E+1) (-O.8348E+0, O.1196E+1) (-0.83l5E+O, O. 1196E+1)

-1.0 45 (-O.3587E.s-O, O.53l7E+0) (-0.3588E+0, 0.53 19E+0) (-0. 3587E+0, O. 5317E+O)

-1.0 90 (-0.33O3E+O, -0.4264E+0) (-0. 3266E+0, -0. 4249E+0) (-0.3300E+0, -O. 4263E+0)

-1.0 135 (-O.8732E+O, -0.8859E-1) (-0.87 22E+0, -0.8785E-1) (-0.8731E+O, -0.8850E-1)

-1.0 180 (-0.9716E*O, 0. 345 2E+0) (-0.9737E+0, 0. 3458E+0) (-0.97 17E+O, 0. 3452E+0)

Table 1 Distribution of on the surface of a vertical circular cylinder (real and imaginary



Fig 1. Distribution of integration points
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Fig 3. Distribution of (2) along the sides of a vertical

cylinder: o Re L+(2)]; ion
(2'i;

direct method; numerical method

(a) mesh I (b) mesh II
2 elements per quadrant 8 elements per quadrant
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/

I

Fig 2. Different levels of discretisation on the body
surface of a vertical circular cylinder

I 3.46E+06 7.SOE+05 7.29E+05 3.46E+05

II 3.46E+06 7.46E+05 7.33E+05 3.45E+05

Table 2 Magnitude of the first and second order diffraction forces on four truncated vertical
cylinders (in Newtons)

ist order diffraction force 2nd order diffraction force
iesh horizontal vertical horizontal vertical

-10 09 -08 -07 -06 -05 -04 -03 -02 -01 00
Vertical distance from free surface. z/a

(b) 6-9O



Fig 4. Linear and second order components of run up
around a vertical cylinder
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Fig 5. Discretisations of body surface and
free surface for group of four truncated
vertical cylinders (with two planes of symmetry)

body surface

o

(a) mesh I

e = 1800

(a) upwave cylinder (b) dowriwave cylinder
Fig 6. Comparison of the vertical distribution of $S2I for

two different meshes: ---- mesh I; - mesh II

body surface free surface

(b) mesh II
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Fig 9. Discretisation of the submerged surface of a
TLP by quadratic isoparametric elements

Fig.7 Distributions of ,(2)i along the

waterlines of four truncated
vertical cylinders:

isolated cylinders;
o-- upwave cylinder;
-- dovnwave cylinder.
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Fig 8. Isometrics of the second order free surface profile

due to for a lOs wave diffracted by four truncated vertical

cylinder:

Fig 10. Isometric of the second order free surface

profile due to (2)
for a lOs wave

diffracted by a TLP
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