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Fast reconstruction and prediction of frozen flow
turbulence based on structured Kalman filtering
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Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wave-
front sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of
error budgeting and algorithm performance, the evaluation of an accurate estimate of the optimal performance
of a particular adaptive optics configuration is important. However, due to the large number of grid points,
high sampling rates, and the non-rationality of the turbulence power spectral density, the computational com-
plexity of the optimal predictor is huge. This paper shows how a structure in the frozen flow propagation can
be exploited to obtain a state-space innovation model with a particular sparsity structure. This sparsity struc-
ture enables one to efficiently compute a structured Kalman filter. By simulation it is shown that the perfor-
mance can be improved and the computational complexity can be reduced in comparison with auto-regressive
predictors of low order. © 2010 Optical Society of America
OCIS codes: 000.5490, 010.1080, 010.7060, 010.7350, 110.1080.
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. INTRODUCTION
he accurate and efficient reconstruction and prediction
f wavefront errors is an essential ingredient of adaptive
ptics (AO) systems, especially for application in large
round-based telescopes. In AO the objective is to maxi-
ize the Strehl ratio, which can be approximated by
inimizing the mean square residual wavefront error

Marechal approximation). The wavefront of the light ob-
erved by ground-based telescopes is distorted by time
arying inhomogeneities in the diffraction index of the air
aused by turbulence in the earth’s atmosphere. This dis-
ortion can be compensated by means of a deformable
irror (DM). Controls for the DM are derived from mea-

urements of the wavefront by a wavefront sensor (WFS).
his WFS, however, does not measure the wavefront
hase directly, but only a derived quantity, as its slope av-
raged over some region, such as in the Shack–Hartmann
FS. Light detectors in WFSs suffer from photon shot

oise and read noise and need some exposure time to col-
ect a sufficient amount of photons, depending on the in-
ensity of the observed light.

The estimation of the wavefront phase based on the
FS observations is usually called wavefront reconstruc-

ion. Because the turbulence is changing in time, the com-
ensation for the observed wavefront may not apply for
he wavefront error a moment later after applying the
M controls. Hence, given the WFS observations a pre-
iction needs to be made of the wavefront phase, such
hat any delays in the control loop are accounted for. In
O systems, wavefront phase predictors are used as a
art of an (optimal) controller and can be used in both
eedforward and feedback control configurations. In feed-
ack control configurations the predictor is used as part of
1084-7529/10/11A235-11/$15.00 © 2
n internal model controller (see, e.g., [1]), where the
eedback control problem is reformulated in a feedforward
ontrol problem by subtraction of the influence of the con-
rol signal from the measurements. In the AO control lit-
rature this method is better known as pseudo open loop
ontrol (c.f. [2]).

The problem of efficiently and accurately reconstruct-
ng or predicting the wavefront phase has been raised es-
ecially in the context of AO for extremely large tele-
copes, where the number of actuators and sensors is
xpected to be on the order of 104–105 and the sampling
requencies on the order of kilohertz to achieve sufficient
erformance [3]. When no structure is exploited the com-
utational complexity of the reconstruction or prediction
f the wavefront phase will be extremely high; even an es-
imator consisting of just a single matrix-vector multipli-
ation already takes several Tflops (1 flop is one floating
oint operation per second).
The algorithms proposed in the literature for wavefront

econstruction and/or prediction can be classified in two
ategories: (1) without memory and (2) with memory. The
lgorithms without memory compute the wavefront only
n the basis of the last observation of the WFS. The meth-
ds with memory also take into account information from
revious observations.
The first category is dominated by fast algorithms that

xploit structures in the WFS matrix and turbulence cor-
elation, e.g., the sparse iterative solvers proposed in
4,5], the FFT solution proposed in [6], and the fast solver
xploiting the self-similarity of the turbulence proposed
n [7]. We consider the warm start iterative solvers, which
se the estimate of the previous sampling instant to ini-
ialize the iteration of the current sampling instant (see
010 Optical Society of America
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8]) to be in this category. All these methods provide a re-
onstruction of the wavefront that generated the last ob-
ervation.

The second category is dominated by methods that
ake an optimal estimation, i.e., they predict the wave-

ront that needs to be compensated a moment later. The
rediction is made using past observations together with
ome disturbance model quantifying its spatiotemporal
orrelation. For AO in astronomy applications the first
redictive algorithm using past observations was pro-
osed in [9]. In [10] a detailed analysis of minimum vari-
nce (MV) auto-regressive (AR) predictors has been given,
howing that performance improves or alternatively that
patial- and temporal-bandwidth requirements can be re-
axed. In [11] the analysis is further generalized taking
nto account the WFS sensing. In [12], in the context of

ulti-conjugate AO, a diagonal AR-1 (AR of order 1)
odel has been used to describe the turbulence, and pre-

ictions have been made using Kalman filtering. The tur-
ulence model has been further generalized into a state-
pace innovation model as suggested in [13], and given in
etail in [14,15], to adequately model the complete spa-
iotemporal correlation. In [14] the prediction is obtained
y the Kalman filter, and to reduce the computational
omplexity the wavefront phase is transformed into a
ower dimensional space by principal component analysis
PCA). In [16] a prediction has been made of the wave-
ront reconstructed by taking the pseudo-inverse of the

FS matrix, which was fully based on measured data.
ecursive and adaptive alternatives of [16] have been
roposed in [17].
Generally speaking, the methods in the first category

acrifice performance at the benefit of computational effi-
iency, whereas the methods of the second category sacri-
ce computational efficiency at the benefit of perfor-
ance. The ultimate question is which method performs

est given limited resources of WFSs, data-transfer, com-
utational power, and memory? Most likely, the ideal ap-
roach will be somewhere in between the two categories.
ore recently, a structure from the frozen flow propaga-

ion has been exploited by some of the first category meth-
ds. In [2] it is shown that the optimal predictor can be
mplemented by means of an optimal reconstructor in se-
ies with a spatial shift (assuming an infinite dimensional
patial grid). In [18] the fast Fourier transform (FFT)
ethod of [6] has been extended to include decoupled

daptive predictors. The solution of [18] purports to be op-
imal for Taylor frozen flow propagation of a phase screen
ith Kolmogorov turbulence statistics, provided that cir-

ular apertures are periodically extended to a square grid.
In this paper, our goal is to develop a method that com-

ines the advantages of both categories, i.e., an optimal
rediction based method that is computationally efficient.
his goal is achieved by exploiting the structure from the

rozen flow propagation to efficiently determine a struc-
ured Kalman filter. In this way, it is shown that (almost)
ptimal predictions can be made even with less computa-
ional complexity than the matrix-vector multiplication
sed in the optimal AR-1 predictor. The price to be paid is
n increase in memory, which is about twice as much as
or the AR-1 predictor. However, delayed observations do
ot need to be stored in memory, as is the case for general
R-n predictors.
To be more precise, the frozen flow propagation of the

avefront can be described by a line by line propagation
n time along one direction in space (the line not neces-
arily needs to be straight). This time-space propagation
esults in a string of interconnected subsystems, which
ogether form a large structured state-space model. The
tructure in the state-space matrices can be considered as

special case of the more general sequentially semi-
eparable (SSS) matrices [19]. A SSS matrix is a matrix
ith a special structure that results from a string inter-

onnection of a series of subsystems. Efficient algorithms
or addition, (matrix-vector and matrix-matrix) multipli-
ation, and inversion have been derived that exploit the
act that the calculations can be performed on the level of
he local subsystems [19]. In [20] efficient methods, based
n sign iterations, have been proposed for solving Riccati
quations as well. The sign iterations preserve the SSS
tructure, such that the solution of the Riccati equation
as a SSS structure as well. Because the Kalman gain
atrix can be determined from the solution of a Riccati

quation, this approach enables one to efficiently calcu-
ate the Kalman filter for frozen flow turbulence. More-
ver, this Kalman filter will have a SSS structure as well,
uch that it can be efficiently implemented by a string of
nterconnected small subfilters.

The paper is organized as follows. Section 2 presents
he turbulence model, the wavefront prediction problem,
nd its MV solution. Section 3 reformulates the frozen
ow propagation in terms of a state-space system whose
atrices have SSS structures. The solution of the SSS

tructured Kalman filter is presented, and its computa-
ional complexity is analyzed. Section 4 presents simula-
ion results that compare the SSS structured Kalman fil-
er with the optimal Kalman filter as well as a number of
rst order AR predictors.

. TURBULENCE DESCRIPTION AND
INIMUM VARIANCE PREDICTION

. Turbulence Description
e assume that, for simplicity of presentation, the atmo-

pheric turbulence consists of a single layer and only dis-
orts the phase of the wavefront (amplitude variations are
eglected). We further assume that the statistics of the
urbulence are well described by the von Kármán turbu-
ence model with the Taylor assumption of frozen flow
ropagation.
Let the phase of the wavefront at time t and position

x ,y� in the pupil plane be denoted by ��t ,x ,y�, then the
on Kármán turbulence assumption specifies the spatial
orrelation as follows [21]

C���x,�y� ª E���t,x,y���t,x − �x,y − �y��

= c�2�r/L0�5/6K5/6�2�r/L0�, �1�

here
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c =
��11/6�

25/6�8/3�24

5
��6/5��5/6�L0

r0
�5/3

,

r = ���x�2 + ��y�2,

0 is the outer scale of the turbulence, r0 is the Fried pa-
ameter, �� � is the gamma function, and K5/6� � is the
odified Bessel function of the second kind of order 5/6.
he Taylor frozen flow assumption assumes that the
avefront phase propagates in time as a wave with con-

tant velocity �vx ,vy�, such that

��t + �,x,y� = ��t,x − vx�,y − vy��. �2�

he wavefront phase is sampled in time and space with a
ampling time of �T and resolutions of �X and �Y along
he x- and y-axes, respectively. Then, with some abuse of
otation we denote the discretized samples by

��k,i,j� = ��k�T,i�X,j�Y�, �3�

here k , i , j are integers. Note that the spectrum of
�t ,x ,y� is nonzero for all temporal and spatial frequen-
ies, such that sampling in time and space always yields
liasing errors that can be arbitrarily reduced by decreas-
ng �T, �X, and �Y.

The frozen flow propagation can have an arbitrary di-
ection on the spatial grid. This flow can be modeled by
imple local subsystems located on the spatial grid points
hat only interact with their neighbors and locally propa-
ate the wavefront. Efficient control and filtering methods
or this class of interconnected systems over a two-
imensional (2D) grid has been presented in [22]. Here,
or reasons of simplicity, we consider the situation where
he frozen flow propagation can be modeled as an inter-
onnection of a series of subsystems along a string, i.e.,
long one dimension. This requires us to choose the spa-
ial grid to be aligned with the propagation of the wave-
ront phase, such that vy=0 and vx�0. As a consequence,
here may be a (rotational) misalignment with the spatial
ampling by the grid of the WFS. But by means of an in-
erpolation the WFS measurements can be fitted to the
rid aligned with the wavefront propagation, e.g., by
eans of a linear, polynomial, or B-spline interpolation.
he interpolation can also be performed by means of a
V estimation of the wavefront phase (or slopes) on one

rid from the known equivalents on the other grid using
he spatial covariance and the cross-correlation of the
avefront phase on both grids. When the interpolation is
ased only on the nearest neighbors the additional com-
utational complexity scales linearly with the number of
patial grid points. The interpolation will cause an error,
hich however can be arbitrarily reduced by reducing �X
nd �Y, such that there will be grid points on the grid
ligned with the wavefront propagation that are arbi-
rarily close to the WFS grid points. This may result in a
reater number of grid points for the wavefront propaga-
ion than the number of grid points of the WFS. In this
ase, the resulting problem of estimating or predicting the
avefront phase on a dense spatial grid using WFS mea-

urements on a course spatial grid is in fact a super-
esolution problem. Simulations with WFS measure-
ents on a course grid have been included in Section 4.
With the grid aligned to the propagation direction, the
ime that is needed for the wavefront to propagate over
ne grid point along the x-axis direction is equal to �X /vx.
hen �X /vx is exactly a multiple of the sampling time

T, the propagation of the wavefront can be modeled by
ust shifting the upstream samples after a delay of an in-
eger number of sampling times. In general, however,
X / �vx�T� will not be integer, and approximation of this
ropagation delay by an integer number of sampling in-
tants will give rise to errors and suboptimal reconstruc-
ion and prediction. This error can be arbitrarily reduced
y adjusting �X and �T such that �X / �vx�T� will be in-
eger, but this may lead to high dimensional spatial/
emporal grids; moreover the sampling in time and space
ill become dependent of the propagation velocity, which

s not desirable. A better alternative is to model the frac-
ional part of �X / �vx�T� by means of an approximation of
fractional delay. In [23] several methods have been dis-

ussed for modeling of fractional delay. For the sake of
implicity, however, but without lack of generality, we as-
ume here that �X / �vx�T�=1, i.e., at every sampling in-
tant the wavefront is propagated over one grid point
long the x-axis direction, which implies that the frozen
ow propagation satisfies the relation

��k + 1,i,j� = ��k,i − 1,j�. �4�

hen, using both Eqs. (1) and (4) it can be verified that
he temporal and spatial correlation coefficients are given
y (c.f. [15])

E���k,i,j���k − �,i − m,j − n�� = C���m − ���X,n�Y�.

�5�

Suppose that we have Nx�Ny grid points, and for each
ime instant k we stack the phase at these grid points in
ne big vector:

	�k� ª ���k,1,1�, . . . ,��k,1,Ny�, . . . ,��k,Nx,Ny��T � RNxNy.

�6�

he correlation coefficients of the random vector process
�k� are denoted by

C	��� ª E�	�k�	�k − ��T�. �7�

nfortunately, 	�k� cannot be measured directly, and only
derived quantity,

y�k� ª G	�k� + 
�k� � RNy, �8�

s measured by a WFS, where G is the WFS sensing ma-
rix and 
�k� is the measurement noise, assumed to be
ero-mean white noise, independent of 	�k−�� for all � ,k
nd with covariance E�
�k�
�k−��T�=�


2INy
��k� [with �� �

eing the Kronecker delta function with ��0�=1 and ��k�
0 for k�0]. For example, G may contain the coefficients
f the finite difference approximation of the spatial de-
ivatives in the case of Shack–Hartmann sensors.

. Minimum Variance Prediction
ecause the delay in the control loop is usually about two
amples (about one sample delay in the WFS and one
ample delay in the discrete-time control system), we
ant to estimate 	�k+2�, i.e., to make a 2-step-ahead pre-



d
T
p
y

w

A
d
a
s

c
y
m
+
m
t
b
+

m

w

a

w

a

w

T
p

m
O

k
p
�
i
c
t
a
t
a
A
b
c
m
m

w
p
s
t
s
m
l
s
c
[
s
m
e

m
T
M
b
t

w

a
l

w

T
i

A238 J. Opt. Soc. Am. A/Vol. 27, No. 11 /November 2010 Fraanje et al.
iction, given the measurements y�k−�� for �=0,1, . . ..
he AR-1 2-step-ahead predictor, which provides the MV
rediction of 	�k+2� given only the last measurement
�k�, is given by

	̂�k + 2�k� = A1y�k�, �9�

here

A1 = C	�2�GT�GC	�0�GT + �v
2INy

�−1. �10�

ssuming an infinite dimensional spatial grid, this pre-
ictor is the same as the AR-1 0-step-ahead predictor with
shift over two grid points in the x-direction as was

hown in [2].
However, these AR-1 predictors do not take into ac-

ount the information about 	�k+2� that is present in
�k−�� for ��1. Because of the frozen flow propagation, it
ay actually be that the “downstream” elements in 	�k
2� are correlated much stronger with “upstream” ele-
ents in y�k−�� for some k�1 than with the elements in

he measurement y�k�. At least when there is correlation
etween 	�k+2� and y�k−�� for k�1 the estimate of 	�k
2� might be improved.
The MV (linear) prediction, taking into account all past
easured data up to k, is given by

	̂�k + 2�k� = Akyk�k�, �11�

here

yk�k� = �y�k�T,y�k − 1�T, . . . ,y�1�T�T, �12�

nd Ak is obtained from

A1 = C	�2�GTP1, �13�

here

P1 = �GC	�0�GT + �v
2INxNy

�−1, �14�

S1 = GC	�1�GT, �15�

nd for k�2

Ak = �Ak−1 0� + Ek−1�Kk−1
T − Rk−1

−1 � , �16�

ith

Kk−1 = Pk−1Sk−1Rk−1
−1 , �17�

Rk−1 = GC	�0�GT + �v
2INxNy

− Sk−1
T Pk−1Sk−1, �18�

Ek−1 = Ak−1Sk−1 − C	�k + 1�TGT, �19�

Pk = 	Pk−1 + Kk−1Rk−1Kk−1
T − Kk−1

− Kk−1
T Rk−1

−1 
 , �20�

Sk = 	GC�k�GT

Sk−1

 . �21�

his predictor is readily obtained using linear (recursive)
rediction theory (cf. [24]).
Unfortunately, the computational complexity and
emory of the predictor in Eq. (11) grow unboundedly.
nly when E given by Eq. (19) satisfies E =0 for all
k k
�p the predictor remains constant for k�p, and the
redictions are based on the finite data window
y�k� , . . . ,y�k−p��. It can be shown that for AR processes,
ndeed, Ek=0 for k�p, where p is the order of the AR pro-
ess. However, the correlation coefficients determined by
he von Kármán turbulence model cannot be obtained by
finite order AR process because of its non-rational spec-

rum. Of course, one may approximate the turbulence by
finite order AR process, but the order may be very high.
better choice would be to model the turbulence statistics

y a finite order state-space innovation model, which also
omprises the more general class of AR moving average
odels [[25], Section 8.3]. The state-space innovation
odel is given by

x�k + 1� = Ax�k� + Ke�k�, �22�

	�k� = Cx�k� + e�k�, �23�

here e�k��RNxNy is a zero-mean white noise stochastic
rocess with variance E�e�k�e�k�T�=Re; x�k��Rn is the
tate of the innovation model of dimension n; and the ma-
rices A�Rn�n, C�RNxNy�n, and K�Rn�NxNy are the
tate-transition matrix, the output matrix, and the Kal-
an gain, respectively. This approach for modeling turbu-

ent phase screens was proposed in [15], where the state-
pace matrices were determined from the correlation
oefficients C	�k� using stochastic realization theory (c.f.
13,26]). In the simulations in Section 4 we have used the
tochastic realization method as outlined in [26] to deter-
ine the matrices A, K, C, and Re from the correlation co-

fficients C	�i� for i=0,1,2, . . . ,N.
It can be guaranteed that the matrix A is a stability
atrix, such that the pair �A ,GC� is always detectable.
hen, given the state-space description (22) and (23) the
V predictor of 	�k+1� using the measurements (8) can

e directly obtained from discrete-time Kalman filtering
heory [27]

x̂�k + 1�k� = Ax̂�k�k − 1� + Ky�y�k� − GCx̂�k�k − 1��,

�24�

	̂�k + 1�k� = Cx̂�k + 1�k�, �25�

here

Ky = �APCTGT + S��GCPCTGT + R�−1, �26�

nd P is the stabilizing positive definite solution of the fol-
owing discrete algebraic Riccati equation (DARE):

P = APAT − �APCTGT + S��GCPCTGT + R�−1�APCTGT

+ S�T + Q, �27�

here

Q = KReK
T, �28�

R = GReG
T + �v

2INy
, �29�

S = KReG
T. �30�

he 2-step-ahead prediction is easily obtained by evaluat-
ng one more time-update of the state:
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x̂�k + 2�k� = Ax̂�k + 1�k�, �31�

	̂�k + 2�k� = Cx̂�k + 2�k�. �32�

For the stochastic realization a singular value decom-
osition (SVD) needs to be computed for a matrix whose
ows and columns scale with the number of grid points
xNy. Because the computational complexity of the SVD

cales with the cube of its number of rows and columns,
he complexity to determine model (22) and (23) will scale
ith �NxNy�3, and thus will be infeasible for large num-
ers of grid points. From simulations it follows that the
rder n scales approximately with NxNy. Because the
omputational complexity of the DARE (27) scales with
3, solving Eq. (27) will also be infeasible for large num-
ers of grid points. Fortunately, the frozen flow propaga-
ion yields a particular structure, which can be exploited
o efficiently model and predict the wavefront phase, as
ill be discussed in the next section.

. EFFICIENT AND DISTRIBUTED
REDICTION BY SEQUENTIALLY SEMI-
EPARABLE SYSTEMS
. Structure of Frozen Flow Propagation
ecall the frozen flow assumption in Eq. (4), which is
iven again here:

	�k + 1,i,j� = 	�k,i − 1,j�. �33�

uppose that vx�0, and 	�k , i , j� is known for all k and j
nd for i=1, then we can also derive 	�k , i , j� for all k and
and i�1 using Eq. (33), i.e., by properly shifting in time
nd space. These shifts can be modeled by a string of in-
erconnected subsystems as depicted in Fig. 1. As a con-
equence, if a state-space innovation model is given for
�k , i , j� for j=1, . . . ,Ny and i=1 using Eq. (33) the state-
pace innovation model describing 	�k , i , j� for j
1, . . . ,Ny and i=1, . . . ,Nx can be derived as well for Nx
1. Moreover, thanks to the interconnection structure of

he frozen flow this new state-space description has a par-
icular nicely distributed structure along the
-coordinate.

A similar argument holds true for vx0, for which a
istributed model can be easily derived by either reorder-
ng the spatial grid or adjusting the indexing and propa-
ation direction in the following derivation for vx�0. The
ase vx=0 will not be considered here, because for con-
tant wavefronts the reconstruction problem reduces to a
tatic estimation problem that can be easily solved by av-
raging the estimates obtained with (fast) static recon-
truction methods.

Fig. 1. Frozen flow propagation
To derive the distributed state-space model over the
hole grid, let us first stack all Ny phases at the grid
oints along the y-dimension in the following vector:

	i�k� ª �	�k,i,1�,	�k,i,2�, . . . ,	�k,i,Ny��T. �34�

hen, by the frozen flow propagation (33) we have 	i�k
1�=	i−1�k�.
Second, for i=1 an nth order state-space innovation
odel can be determined using the correlation in time

nd space along the y-dimension, as outlined in Subsec-
ion 2.B. This state-space model will be denoted by

�1�k + 1� = A�1�k� + Ke1�k�, �35�

	1�k� = C�1�k� + e1�k�, �36�

here �1�k��Rn is the state, and e1�k��RNy is a zero-
ean white noise signal with covariance Re1�RNy�Ny.
ince 	1�k��RNy is just an Ny-dimensional vector, the
omputational complexity of the realization of model (35)
nd (36) just scales with Ny

3 rather than �NxNy�3.
Third, the complete model is obtained by extending

qs. (35) and (36) with the frozen flow propagation and
an be written in terms of the following 2D state-space
odel:

for i = 1: �i:
�i�k + 1�

vi+1
m �k�

	i�k�
� = 

A 0 K

C 0 INy

C 0 INy

� �i�k�

vi
m�k�

ei�k�
� ,

for i = 2, . . . ,Nx: �i:
�i�k + 1�

vi+1
m �k�

	i�k�
� = 

0 INy 0

INy 0 0

INy 0 0
� �i�k�

vi
m�k�

ei�k�
� .

�37�

ote that in fact vi
m�k� and ei�k� for i�1 do not influence

i�k� for all k and i and were just included for uniformity
n the 2D state-space descriptions, but could be removed
rom the equations as well. Also note that vi

m�k�=	i−1�k�
nd �i�k�=vi

m�k−1� for i�1.
Equation (37) describes a system with Nx spatially in-

erconnected subsystems. If the Nx subsystems are con-
ected and the interconnection variables are resolved, we
btain the interconnected system

bsystem string interconnection.
by su
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	�̄�k + 1�

	̄�k� 
 =	Ā K̄

C̄ D̄

	�̄�k�

ē�t�
 , �38�

here �̄�k�= ��1�k�T , . . . ,�N�k�T� is the lifted state vector,
nd ē�k� and 	̄�k� are defined similarly. The matrices Ā, K̄,

¯ , and D̄ are defined as

Ā = 
A

C 0

INy 0

� �

INy 0
�, K̄ = 

K

INy 0

0 0

� �

0 0
� ,

C̄ = 
C

INy

�

INy

�, D̄ = 
INy

0

�

0
� . �39�

he order of the state-space model (38) is n+ �Nx−1�Ny.
ote that Eq. (38) describes the same turbulence as Eqs.

22) and (23), but the models were obtained in a different
anner. Ideally, when all approximations are exact it
olds that 	�k�= 	̄�k� if e�k�= ē�k� for all k.
Note that this approach is not limited to square aper-

ures, but can be applied to circular apertures as well. To
llustrate this, consider Fig. 2 which shows a square grid
n a circular aperture, and the propagation direction is
long the x-axis as indicated by the arrows. Then, all the
hases at all grid points at the extreme left points along
he x-axis indicated by the squares will be stacked in one
ector similar to Eq. (34). A state-space innovation model
an be determined for this vector-signal as in Eqs. (35)
nd (36). Then, this vector can be propagated along the
-axis as in Eq. (37). Note that after a number of steps, for

Fig. 2. Frozen flow propagation a
he grid in Fig. 2 after five steps, the dimension of the vec-
or that is propagated can be reduced because of the cir-
ular aperture. The essential point is that the grid along
he propagation direction needs to be equidistant.

. Frozen Flow as a Sequentially Semi-Separable System
he matrices Ā, K̄, C̄, and D̄ are sparse and have struc-

ures that can be exploited by efficiently computing the
redictor. Actually, the structures in Ā, K̄, C̄, and D̄ are a
pecial case of SSS matrices. State-space models whose
atrices have SSS structures naturally result from sub-

ystem string interconnections as in Fig. 1. SSS matrices
ave the nice property that the multiplication of a SSS
atrix with an arbitrary vector can be calculated as a

state-space) recursion in terms of the low dimensional
ubsystems that generate the SSS matrix. The “state” in
his state-space recursion is the interconnection variables
etween the subsystems, whose dimension determines
he complexity of the SSS matrix-vector product.

As an example, consider a SSS matrix Ā which can be
lock-partitioned as [19]

Ā = �Ai,j�, where Aij � R�i�mj satisfies Aij

= �
Di, if i = j

UiWi+1 ¯ Wj−1Vj, if j � i

PiRi−1 ¯ Rj+1Qj, if j  i,
� �40�

or i , j=1, . . . ,N. Then, the matrix-vector multiplication
= Āū, with ȳ�R� ��=�i=1

N �i� and ū�Rm �m=�i=1
N mi�,

lock-partitioned corresponding with the partitioning of
¯ , can be performed by the following recursion:

square grid in a circular aperture.
long a
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�i:
vi+1

m

vi−1
p

yi
� = 

Ri 0 Qi

0 Wi Vi

Pi Ui Di
�

vi
m

vi
p

ui
� , �41�

or i=1, . . . ,N and v1
m=0, and nN

p =0 (cf. Fig. 3).
Now, let us compare the computational complexity of

irectly evaluating ȳ= X̄ū with the recursions of Eq. (41).
et �i=�� and mi=m� for all i=1, . . . ,N, then X̄
RN���Nm� such that the number of floating point opera-

ions (additions and multiplications) is 2N2��m�. Further,
et nm and np be the dimensions of vi

m and vi
p, respectively,

hich are typically much smaller than N. Then evaluat-
ng N iterations of Eq. (41) takes 2N�nm

2 +np
2+ �nm+np�

���+m��+��m�� floating point operations. Hence, the
omplexity of evaluating Eq. (41) scales with N rather
han N2. For the case that ��=m�=1 and nm=np=2, then
valuating X̄ū by one big matrix-vector multiplication
akes 2N2, whereas evaluating Eq. (41) takes 34N float-
ng point operations; so for N�4 evaluating Eq. (41) is

ore efficient than the matrix-vector multiplication.
It can also be shown that the class of SSS matrices is

losed under addition, multiplication, and inversion [19].
owever, when adding or multiplying two SSS matrices,

he dimension of the subsystem interconnections vi
m and

i
p will be the sum of the dimensions of the subsystem in-
erconnections of both terms. In [20] efficient order reduc-
ion techniques have been proposed to limit the dimen-
ions of the interconnections, which can be applied after
ach addition or multiplication.

Moreover, it has been shown in [20] that the solution of
iccati equations can be approached by means of the so-
alled sign iterations that also preserve the SSS struc-
ure. In this way Riccati equations can be solved effi-
iently, with a computational complexity that scales with
he number of subsystems N rather than N3. In addition
he solutions are in terms of SSS matrices as well, such
hat SSS structured predictors and controllers can be de-
igned.

. Augmenting the Model with Wavefront Sensing
efore the Kalman filter can be derived to predict the
avefront phase in Eq. (38), the model needs to be aug-
ented with the WFS output. The WFS will be spatially

istributed as well; it will provide measurements of spa-
ial derivatives or higher order derivatives averaged only
ver a local region in space. Hence, it is still possible to
erive an interconnected subsystem description as in Eq.
37), which is essential to obtain the SSS structure in the
ifted system. The main difference with Eq. (37) will be
hat the WFS will provide linear combinations of the
avefront phases at a number of grid points, such that

Fig. 3. SSS matrix-vector multiplica
ach subsystem needs to be augmented to include all grid
oints necessary for determining the (local) WFS output.
To illustrate this, consider a WFS that measures the

lopes in the x- and y-directions, which are approximated
y the following averaged finite differences:

yx�k,i,j� =
1

�
�
n=1

�

	�k,i�,�j − 1�� + n� − 	�k,�i − 1�� + 1,�j

− 1�� + n� + 
x�k,i,j�, �42�

yy�k,i,j� =
1

�
�
n=1

�

	�k,�i − 1�� + n,j�� − 	�k,�i − 1�� + n,�j

− 1�� + 1� + 
x�k,i,j�, �43�

here 
x and 
y are the measurement noise processes, �
N is the resolution of the WFS, and i and j range from 1

o Nx /� and Ny /�, respectively. Equations (42) and (43)
an also be easily adjusted according to the Fried geom-
try. Here Eqs. (42) and (43) have been used for the sake
f simplicity as well as to allow for different resolutions �
f the WFS.

Then, by stacking the vector 	��k� defined in Eq. (34)
ocally over �= �i−1��+1, . . . , i�,

	̄i�k� = �	�i−1��+1�k�T, . . . ,	i��k�T�T, �44�

nd stacking the observations yx�k , i , j� and yy�k , i , j� for
=1, . . . ,Ny /� into

yi
x�k� = �yx�k,i,1�T, . . . ,yx�k,i,Ny�T�T, �45�

yi
y�k� = �yy�k,i,1�T, . . . ,yy�k,i,Ny�T�T, �46�

e can rewrite the averaged finite differences as follows:

ȳi�k� = 	yi
x�k�

yi
y�k�
 = 	Gx

Gy
	̄i�k� + 
̄i�k�, �47�

here the matrices Gx and Gy are sparse matrices deter-
ining the averaged finite differences in the x- and

-directions, and 
̄i�k� contains the measurement noise
erms.

To generate the lifted vectors 	̄i�k� rather than 	i�k� the
ubsystems in Eq. (37) need to be lifted as well, resulting
n Nx /� subsystems whose sparsity structure is rather
imilar to Eq. (37). The process of lifting a series of sub-
ystems is very similar to the lifting over all Nx grid
oints along the x-axis in Eq. (38) whose state-space ma-
rices are defined in Eq. (39). The difference now is that
he lifting is performed a number of times over � sub-
ystems resulting in Nx /� larger subsystems.

Then the resulting string of subsystems with 	̄i�k� and
i�k� as outputs can be written as

a subsystem string interconnection.
tion as
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�i:
�̄i�k + 1�

v̄i+1
m �k�

	̄i�k�

ȳi�k�
� = 

Ai Bi
m Ki

e 0

Ci
m 0 Di

m 0

Ci
	 0 Di

	 0

Ci
y 0 Di

y I2Ny/�

�
�̄i�k�

v̄i
m�k�

ēi�k�


̄i�k�
� , �48�

or i=1, . . . ,Nx /�, where �̄i�k� and ēi�k� are the vectors
tacking the states ���k� and the innovations e��k� over �
�i−1��+1, . . . , i�, and v̄i

m is the Ny-dimensional commu-
ication channel between subsystems, with v̄1

m�t�=0. The
atrices �Ai ,Bi

m ,Ki
e ,Ci

m ,Di
m ,Ci

	 ,Di
	 ,Ci

y ,Di
y� are derived

rom Eqs. (37) and (47) and have some additional sparsity
tructures which will not be denoted explicitly but can be
xploited in the implementation of the predictor. Lifting
q. (48) further along all points i=1, . . . ,Nx /� will result

n system (38) augmented with the WFS outputs:

 �̄�k�

	̄�k�

ȳ�k�
� =  Ā K̄ 0

C̄ D̄ 0

C̄y D̄y I
� �̄�k�

ē�k�


̄�k�
� , �49�

here C̄y=GC̄ and D̄y=GD̄, where G is the WFS matrix.

. Kalman Filtering of Frozen Flow Turbulence
ctually system (49) is equivalent to the state-space
odel (22) and (23) together with the WFS output (8)

uch that the 2-step-ahead prediction is given by the fol-
owing expressions:

ê�k� = ȳ�k� − C̄y�̂�k�k − 1�, �50�

�̂�k + 1�k� = Ā�̂�k�k − 1� + K̄yê�k�, �51�

�̂�k + 2�k� = Ā�̂�k + 1�k�, �52�

	̂�k + 2�k� = C̄�̂�k + 2�k�, �53�

here K̄y is the Kalman gain given by

K̄y = �ĀP̄�C̄y�T + S̄��C̄yP̄�C̄y�T + R̄�−1, �54�

nd P̄ is the stabilizing positive definite solution of the
ARE:

P̄ = ĀP̄ĀT − �ĀP̄�C̄y�T + S̄��C̄yP̄�C̄y�T + R̄�−1�ĀP̄�C̄y�T + S̄�T

+ Q̄, �55�

here

Table 1. Computational Complexity o

xpression

�k�= ȳ�k�− C̄y�̂�k �k−1�

�k+1 �k�= Ā�̂�k �k−1�+K̄yē�k�

�k+2 �k�= Ā�̂�k+1 �k�
ˆ �k+2 �k�= C̄�̂�k+2 �k�
otal (approximately)
Q̄ = K̄R̄eK̄
T, �56�

R̄ = D̄yR̄e�D̄y�T + �v
2I, �57�

S̄ = K̄R̄e�D̄y�T. �58�

his predictor is the same as in Eqs. (24), (31), and (32),
xcept that the state-space matrices now have SSS struc-
ures. Because the SSS structure is preserved under ad-
ition, multiplication, and inversion, the matrices Q̄, R̄,
nd S̄ also have SSS structures, i.e., they can be decom-
osed in a series of subsystems as matrix (40) where the
ubsystems are given by Eq. (41). Hence, P̄ will have a
SS structure as well as K̄y. In practice, it will be neces-
ary to perform order reductions to limit the number of
nterconnection variables in Q̄, R̄, S̄ and after each addi-
ion and multiplication in the iterations to solve for P̄.
hese order reductions will result in small errors in the
olution of P̄ after convergence, and thus may result in an
pproximation of the Kalman gain K̄y. In the next section,
e show by several simulations that the approximation
rror is relatively small, especially for high signal-to-
oise ratios (SNRs).
The subsystem recursions for the SSS matrix-vector
ultiplication ū�k�=K̄yê�k� are given by


vi+1

m �k�

vi−1
p �k�

ui�k�
� = 

Ki
mm 0 Ki

me

0 Ki
pp Ki

pe

Ki
um Ki

up Ki
ue�

vi
m�k�

vi
p�k�

êi�k�
� , �59�

here the Ki
xy matrices are obtained from the solution of

he Riccati equation and the expression of the Kalman
ain in Eq. (54) together with the order reductions that
educe the dimensions nm and np of vi

m and vi
p, respec-

ively. In the simulations in the next section the maximal
alues of nm and np were set to Ny /2 in all simulations,
hich appeared to be a good trade-off between complexity
nd accuracy of the wavefront prediction. We also ob-
erved in our experiments that the number of iterations of
he sign algorithm to solve the Riccati equations should
ot be too large (typically three to five iterations) to pre-
ent large truncation errors in the order reduction. The
ccuracy was also improved by slightly increasing the
oise covariance, which makes the solution more robust
o errors in the order reduction.

The computational complexity of the 2-step-ahead pre-
ictor is outlined in Table 1. Because the matrices Ā and

SSS Kalman 2-Step-Ahead Predictor

Complexity

4nNy /�

2n2+ 2Nx
�

�nm
2 +np

2+ �nm+np��n+ 2Ny
�

�+ 2nNy
�

�
2n2

2Nyn
2Nx

�
�nm

2 +np
2+ �nm+np��n+ 2Ny

�
�+ 2nNy

�
�

f the
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¯ in Eq. (49) are very sparse, the multiplication K̄yê�k� is
he most complex part of the algorithm. However, without
xploiting the SSS structure, the computational complex-
ty is 4nNx

2Ny /�2 and scales with Nx
2 rather than Nx,

hich is usually much higher than that obtained with the
SS recursions. In the simulation experiments, the SSS
ecursions are even more efficient than the matrix-vector
ultiplication of the AR-1 predictor in Eq. (9), which has
computational complexity of 4Nx

2Ny
2 /�2.

. SIMULATIONS
he method is validated on a turbulence model on a grid
f �Nx�Ny�= �32�32� points with a spatial resolution of
X=�Y=3.1�10−2 �m�; the turbulence outer-diameter in

he von Kármán model is set to L0=10 �m�, and the Fried
arameter is r0=0.16 �m�. The wind velocity is vx
20 �m/s�, and the sampling time is �T=1.56�10−3 �s�

i.e., sampling rate is 640 [Hz]) such that for every sam-
ling time the phase is shifted exactly by one grid point in
he x-direction.

The disturbance model at i=1 has been determined us-
ng stochastic realization (c.f. [15]) on the basis of the cor-
elation coefficients over the Ny=32 grid points in the
-direction and 251 time lags. The order of the distur-
ance model was set to n=40.
Experiments have been performed with WFS signals as

efined by Eq. (42) with different WFS resolutions �=2,
, and 8, resulting in 2NxNy /�2=1024, 512, and 256 sen-
or values, respectively. The variance of the measurement
oise vx and vy has chosen to be relative to the variance of
he finite differences with SNRs of 0 dB up to 40 dB with
teps of 10 dB.

Various wavefront predictors have been evaluated: the
rst order AR reconstructor (i.e., no prediction is made) is
enoted by “0-step AR-1.” Further, the 0-step AR-1 recon-
tructor with a shift according to the frozen flow propaga-
ion over two time steps is denoted by “0-step AR-1 with
hift.” The first order AR 2-step-ahead predictor is de-
oted by “2-step AR-1.” The 2-step-ahead predictor based
n the Kalman filter with a SSS structure is denoted by
2-step SSS Kalman,” and finally the 2-step-ahead predic-
or based on the Kalman filter obtained by solving the
iccati equation without restricting to the SSS structure

s denoted by “2-step Kalman.”
For �=2 the order of the state-space innovation model

f the turbulence was 1280 �=nNx�. The time to compute
he AR predictors was 4 s with MATLAB running on a
.33GHz dual core personal computer (PC) with 4 Mbytes
ache and 3 Gbytes working memory. On the same PC the
omputation of the SSS Kalman filter was done in 8.8
in, and the solution of the Riccati equation using the
ATLAB routine DARE was done in 19.8 min. Here, we

ave to note that our MATLAB implementation of the SSS
iccati solver has not been optimized, and a significant

urther reduction in the computation time may be pos-
ible.

The performance is evaluated in terms of the variance
f the piston term corrected prediction error averaged
ver all 32�32 grid points. Because in all experiments
he full state-space model of the turbulent disturbance is
nown, the variance of the piston term corrected predic-
ion errors can be computed analytically. Also the distri-
ution of the prediction error over the frequency, i.e., the
ower spectral density, can be computed. Figure 4 shows
he power spectral density in �rad2/Hz� of the disturbance
nd the piston term corrected prediction errors obtained
y each predictor averaged over all grid points for a WFS
ith a resolution of �=2 and a 40 dB SNR. Figures 5–7

how the Strehl ratios determined by the Marechal ap-
roximation

Sr = exp�− �e
2�, �60�

here �e
2 is the variance of the piston corrected prediction

rror averaged over all grid points, versus the SNRs for
=2, 4, and 8, respectively.
Table 2 shows the computational complexity of the

arious predictors. The AR-1 predictors all have the same
omplexity, which is just listed once and is determined by
he complexity of a matrix-vector multiplication. There
xist fast implementations whose complexity scales lin-
arly with NxNy, such as the robust multigrid implemen-
ations as presented in [28]. For the complexity of the SSS
alman filter we only evaluated the complexity of the
SS recursions for the Kalman gain since the other state-
pace matrices are very sparse. The row with “unstruc-
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ured Kalman” denotes the complexity of the full matrix-
ector multiplication for an unstructured Kalman gain.
t the last row we also included the complexity of the Kal-
an filter provided the state-space matrices are not

parse as would be the case by determining the complete
odel by means of stochastic realization.
From Figs. 4 and 5 we observe that for the case �=2,

NR=40 dB, the Strehl ratio obtained by the “SSS Kal-
an” is approximately the same as the Strehl ratio of

.98 obtained by the true Kalman filter, i.e., without im-
osing the SSS structure. For lower SNRs the SSS Kal-
an filter looses a bit of performance, but stays signifi-

antly above the performance obtained by the 2-step AR-1
nd the 0-step AR-1 with shift. This holds for all cases,
=2,4,8. The 2-step AR-1 and the 0-step AR-1 with shift
redictors have about the same performance, with the
-step AR-1 with shift slightly worse, which is most likely
ue to errors due to the improper shift at the boundary.
he difference between the 0-step AR-1 and the 0-step
R-1 with shift is about a reduction of 0.2–0.4 in the
trehl ratio, indicating that the performance is signifi-
antly improved by taking into account the frozen flow
ropagation. Of course the difference can be reduced by
ncreasing the sampling frequency and thus limiting the
patial shift between subsequent time samples. However,
ncreasing the sampling frequency directly reduces the
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Fig. 6. Strehl ratio versus SNR for WFS resolution �=4.
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Fig. 7. Strehl ratio versus SNR for WFS resolution �=8.
ime to evaluate the computations and thus increases the
omputational complexity; moreover increasing the sam-
ling frequency will also limit the exposure time of the
FS and thus increase the SNR. It is interesting to ob-

erve that the Strehl ratio of 0.85 obtained by the SSS
alman predictor for the case of �=8 is about the same as

he Strehl ratio of 0.86 obtained by the 2-step AR-1 pre-
ictor for �=2, whereas the computational complexity of
he SSS Kalman predictor for this case is more than a fac-
or of 50 smaller than the complexity of the 2-step AR-1
lter.
We should stress here that in the derivation of the

tructured state-space model some specific assumptions
ad been made, such as a perfect frozen flow whose
ropagation matches with the WFS grid and with a
nown velocity. Further investigation is necessary of how
ensitive the performance of the SSS Kalman predictor is
ith respect to these assumptions. At least, the method
ay be a useful tool in error budgetting to efficiently com-

ute the (approximate) Kalman filter prediction for com-
arison with (suboptimal) algorithms.

. CONCLUSIONS
his paper has addressed the problem of efficiently com-
uting and implementing a Kalman filter to predict fro-
en flow turbulence with von Kármán spatial correlation.
he motivation was to investigate how efficiently a pre-
ictor that exploits all information available from the
easurement history can be computed and implemented
ithout sacrificing any performance.
Stochastic realization has been used to obtain a state-

pace innovation model of the turbulence at the upstream
dge of the aperture. Then, the frozen flow is efficiently
mplemented by time delays and spatial shifts along the
ropagation direction, resulting in a state-space innova-
ion model with relatively sparse matrices. Augmenting
his model with a WFS provides the complete description
f the turbulence generation and observation. This model
as a value in itself, because it enables the analysis of the
bservability of the turbulence from various wavefront
ensors (WFSs). In the simulations where the WFS mea-
ures the slopes of the wavefront averaged over a number
f grid points, it appears that all states of this model are
till observable. A structured Kalman filter predictor has
een computed using an efficient Riccati equation solver

Table 2. Computational Complexity in Floating
Point Operations per Sampling Time for the SSS

Structured Kalman Predictor, the Various Types of
AR-1 Predictors, the Kalman Filter with
Unstructured Kalman Gain but Sparse

State-Space Matrices, and the Kalman Filter with
Unstructured State-Space Matrices

ethod �=2 �=4 �=8

SS Kalman 1.3�105 4.7�104 1.9�104

R-1 1.0�106 2.6�105 6.6�104

nstructured Kalman 1.3�106 3.3�105 8.2�104

nstructured state Kalman 7.1�106 6.2�106 6.0�106
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hat exploits subsystem string interconnection structures
nd has been recently proposed by two of the authors in
20].

The first simulation results are encouraging, showing
oth a performance increase and a computational com-
lexity reduction relative to AR-1 predictors. But, there
emains a need for further research in this line. The sto-
hastic realization modeling the turbulence at the grid
oints located on the upstream edge may still be compu-
ationally intensive for large numbers of grid points and
igh sampling ratios. Orthogonal basis transformations
ver the spatial dimension (such as the PCA in [14]) may
e used to divide the stochastic realization in a number of
ecoupled problems. The structure from the orthogonal
asis transformations might also be exploited in the Kal-
an filter design. Further simulations are necessary for

rozen flow propagations that are not aligned with the ob-
ervation grid; also uncertainties in the turbulence model
e.g., the outer range, the grid size, the jitter in the sam-
ling frequency, and the accuracy of the velocity) need to
e studied. It would also be interesting to see whether the
tructured turbulence model can be identified from the
easured data in the line of the data-driven approach fol-

owed in [16].
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