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Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wave-
front sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of
error budgeting and algorithm performance, the evaluation of an accurate estimate of the optimal performance
of a particular adaptive optics configuration is important. However, due to the large number of grid points,
high sampling rates, and the non-rationality of the turbulence power spectral density, the computational com-
plexity of the optimal predictor is huge. This paper shows how a structure in the frozen flow propagation can
be exploited to obtain a state-space innovation model with a particular sparsity structure. This sparsity struc-
ture enables one to efficiently compute a structured Kalman filter. By simulation it is shown that the perfor-
mance can be improved and the computational complexity can be reduced in comparison with auto-regressive
predictors of low order. © 2010 Optical Society of America
OCIS codes: 000.5490, 010.1080, 010.7060, 010.7350, 110.1080.

1. INTRODUCTION

The accurate and efficient reconstruction and prediction
of wavefront errors is an essential ingredient of adaptive
optics (AO) systems, especially for application in large
ground-based telescopes. In AO the objective is to maxi-
mize the Strehl ratio, which can be approximated by
minimizing the mean square residual wavefront error
(Marechal approximation). The wavefront of the light ob-
served by ground-based telescopes is distorted by time
varying inhomogeneities in the diffraction index of the air
caused by turbulence in the earth’s atmosphere. This dis-
tortion can be compensated by means of a deformable
mirror (DM). Controls for the DM are derived from mea-
surements of the wavefront by a wavefront sensor (WFS).
This WFS, however, does not measure the wavefront
phase directly, but only a derived quantity, as its slope av-
eraged over some region, such as in the Shack—Hartmann
WFS. Light detectors in WFSs suffer from photon shot
noise and read noise and need some exposure time to col-
lect a sufficient amount of photons, depending on the in-
tensity of the observed light.

The estimation of the wavefront phase based on the
WEF'S observations is usually called wavefront reconstruc-
tion. Because the turbulence is changing in time, the com-
pensation for the observed wavefront may not apply for
the wavefront error a moment later after applying the
DM controls. Hence, given the WFS observations a pre-
diction needs to be made of the wavefront phase, such
that any delays in the control loop are accounted for. In
AO systems, wavefront phase predictors are used as a
part of an (optimal) controller and can be used in both
feedforward and feedback control configurations. In feed-
back control configurations the predictor is used as part of
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an internal model controller (see, e.g., [1]), where the
feedback control problem is reformulated in a feedforward
control problem by subtraction of the influence of the con-
trol signal from the measurements. In the AO control lit-
erature this method is better known as pseudo open loop
control (c.f. [2]).

The problem of efficiently and accurately reconstruct-
ing or predicting the wavefront phase has been raised es-
pecially in the context of AO for extremely large tele-
scopes, where the number of actuators and sensors is
expected to be on the order of 10*~10° and the sampling
frequencies on the order of kilohertz to achieve sufficient
performance [3]. When no structure is exploited the com-
putational complexity of the reconstruction or prediction
of the wavefront phase will be extremely high; even an es-
timator consisting of just a single matrix-vector multipli-
cation already takes several Tflops (1 flop is one floating
point operation per second).

The algorithms proposed in the literature for wavefront
reconstruction and/or prediction can be classified in two
categories: (1) without memory and (2) with memory. The
algorithms without memory compute the wavefront only
on the basis of the last observation of the WFS. The meth-
ods with memory also take into account information from
previous observations.

The first category is dominated by fast algorithms that
exploit structures in the WFS matrix and turbulence cor-
relation, e.g., the sparse iterative solvers proposed in
[4,5], the FFT solution proposed in [6], and the fast solver
exploiting the self-similarity of the turbulence proposed
in [7]. We consider the warm start iterative solvers, which
use the estimate of the previous sampling instant to ini-
tialize the iteration of the current sampling instant (see
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[8]) to be in this category. All these methods provide a re-
construction of the wavefront that generated the last ob-
servation.

The second category is dominated by methods that
make an optimal estimation, i.e., they predict the wave-
front that needs to be compensated a moment later. The
prediction is made using past observations together with
some disturbance model quantifying its spatiotemporal
correlation. For AO in astronomy applications the first
predictive algorithm using past observations was pro-
posed in [9]. In [10] a detailed analysis of minimum vari-
ance (MV) auto-regressive (AR) predictors has been given,
showing that performance improves or alternatively that
spatial- and temporal-bandwidth requirements can be re-
laxed. In [11] the analysis is further generalized taking
into account the WFS sensing. In [12], in the context of
multi-conjugate AO, a diagonal AR-1 (AR of order 1)
model has been used to describe the turbulence, and pre-
dictions have been made using Kalman filtering. The tur-
bulence model has been further generalized into a state-
space innovation model as suggested in [13], and given in
detail in [14,15], to adequately model the complete spa-
tiotemporal correlation. In [14] the prediction is obtained
by the Kalman filter, and to reduce the computational
complexity the wavefront phase is transformed into a
lower dimensional space by principal component analysis
(PCA). In [16] a prediction has been made of the wave-
front reconstructed by taking the pseudo-inverse of the
WEF'S matrix, which was fully based on measured data.
Recursive and adaptive alternatives of [16] have been
proposed in [17].

Generally speaking, the methods in the first category
sacrifice performance at the benefit of computational effi-
ciency, whereas the methods of the second category sacri-
fice computational efficiency at the benefit of perfor-
mance. The ultimate question is which method performs
best given limited resources of WFSs, data-transfer, com-
putational power, and memory? Most likely, the ideal ap-
proach will be somewhere in between the two categories.
More recently, a structure from the frozen flow propaga-
tion has been exploited by some of the first category meth-
ods. In [2] it is shown that the optimal predictor can be
implemented by means of an optimal reconstructor in se-
ries with a spatial shift (assuming an infinite dimensional
spatial grid). In [18] the fast Fourier transform (FFT)
method of [6] has been extended to include decoupled
adaptive predictors. The solution of [18] purports to be op-
timal for Taylor frozen flow propagation of a phase screen
with Kolmogorov turbulence statistics, provided that cir-
cular apertures are periodically extended to a square grid.

In this paper, our goal is to develop a method that com-
bines the advantages of both categories, i.e., an optimal
prediction based method that is computationally efficient.
This goal is achieved by exploiting the structure from the
frozen flow propagation to efficiently determine a struc-
tured Kalman filter. In this way, it is shown that (almost)
optimal predictions can be made even with less computa-
tional complexity than the matrix-vector multiplication
used in the optimal AR-1 predictor. The price to be paid is
an increase in memory, which is about twice as much as
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for the AR-1 predictor. However, delayed observations do
not need to be stored in memory, as is the case for general
AR-n predictors.

To be more precise, the frozen flow propagation of the
wavefront can be described by a line by line propagation
in time along one direction in space (the line not neces-
sarily needs to be straight). This time-space propagation
results in a string of interconnected subsystems, which
together form a large structured state-space model. The
structure in the state-space matrices can be considered as
a special case of the more general sequentially semi-
separable (SSS) matrices [19]. A SSS matrix is a matrix
with a special structure that results from a string inter-
connection of a series of subsystems. Efficient algorithms
for addition, (matrix-vector and matrix-matrix) multipli-
cation, and inversion have been derived that exploit the
fact that the calculations can be performed on the level of
the local subsystems [19]. In [20] efficient methods, based
on sign iterations, have been proposed for solving Riccati
equations as well. The sign iterations preserve the SSS
structure, such that the solution of the Riccati equation
has a SSS structure as well. Because the Kalman gain
matrix can be determined from the solution of a Riccati
equation, this approach enables one to efficiently calcu-
late the Kalman filter for frozen flow turbulence. More-
over, this Kalman filter will have a SSS structure as well,
such that it can be efficiently implemented by a string of
interconnected small subfilters.

The paper is organized as follows. Section 2 presents
the turbulence model, the wavefront prediction problem,
and its MV solution. Section 3 reformulates the frozen
flow propagation in terms of a state-space system whose
matrices have SSS structures. The solution of the SSS
structured Kalman filter is presented, and its computa-
tional complexity is analyzed. Section 4 presents simula-
tion results that compare the SSS structured Kalman fil-
ter with the optimal Kalman filter as well as a number of
first order AR predictors.

2. TURBULENCE DESCRIPTION AND
MINIMUM VARIANCE PREDICTION

A. Turbulence Description

We assume that, for simplicity of presentation, the atmo-
spheric turbulence consists of a single layer and only dis-
torts the phase of the wavefront (amplitude variations are
neglected). We further assume that the statistics of the
turbulence are well described by the von Karman turbu-
lence model with the Taylor assumption of frozen flow
propagation.

Let the phase of the wavefront at time ¢ and position
(x,y) in the pupil plane be denoted by ¢(¢,x,y), then the
von Kdrman turbulence assumption specifies the spatial
correlation as follows [21]

Cd)(5x7 6y) = E[¢(t,X,y)¢(t,x - 6x’y - 5y)]
= c(27/Lo) " K55(27r/Ly), (1)

where
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L is the outer scale of the turbulence, ry is the Fried pa-
rameter, I'( ) is the gamma function, and Kjs( ) is the
modified Bessel function of the second kind of order 5/6.
The Taylor frozen flow assumption assumes that the
wavefront phase propagates in time as a wave with con-
stant velocity (v,,v,), such that

¢(t + Tvx7y) = d)(tax —UxT,Y — UyT) . (2)

The wavefront phase is sampled in time and space with a
sampling time of AT and resolutions of AX and AY along
the x- and y-axes, respectively. Then, with some abuse of
notation we denote the discretized samples by

Pk, 1,)) = (AT, IAX jAY), 3)

where k,i,j are integers. Note that the spectrum of
¢(t,x,y) is nonzero for all temporal and spatial frequen-
cies, such that sampling in time and space always yields
aliasing errors that can be arbitrarily reduced by decreas-
ing AT, AX, and AY.

The frozen flow propagation can have an arbitrary di-
rection on the spatial grid. This flow can be modeled by
simple local subsystems located on the spatial grid points
that only interact with their neighbors and locally propa-
gate the wavefront. Efficient control and filtering methods
for this class of interconnected systems over a two-
dimensional (2D) grid has been presented in [22]. Here,
for reasons of simplicity, we consider the situation where
the frozen flow propagation can be modeled as an inter-
connection of a series of subsystems along a string, i.e.,
along one dimension. This requires us to choose the spa-
tial grid to be aligned with the propagation of the wave-
front phase, such that v,=0 and v, =0. As a consequence,
there may be a (rotational) misalignment with the spatial
sampling by the grid of the WFS. But by means of an in-
terpolation the WFS measurements can be fitted to the
grid aligned with the wavefront propagation, e.g., by
means of a linear, polynomial, or B-spline interpolation.
The interpolation can also be performed by means of a
MYV estimation of the wavefront phase (or slopes) on one
grid from the known equivalents on the other grid using
the spatial covariance and the cross-correlation of the
wavefront phase on both grids. When the interpolation is
based only on the nearest neighbors the additional com-
putational complexity scales linearly with the number of
spatial grid points. The interpolation will cause an error,
which however can be arbitrarily reduced by reducing AX
and AY, such that there will be grid points on the grid
aligned with the wavefront propagation that are arbi-
trarily close to the WFS grid points. This may result in a
greater number of grid points for the wavefront propaga-
tion than the number of grid points of the WFS. In this
case, the resulting problem of estimating or predicting the
wavefront phase on a dense spatial grid using WFS mea-
surements on a course spatial grid is in fact a super-
resolution problem. Simulations with WFS measure-
ments on a course grid have been included in Section 4.
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With the grid aligned to the propagation direction, the
time that is needed for the wavefront to propagate over
one grid point along the x-axis direction is equal to AX/v,.
When AX/v, is exactly a multiple of the sampling time
AT, the propagation of the wavefront can be modeled by
just shifting the upstream samples after a delay of an in-
teger number of sampling times. In general, however,
AX/(v,AT) will not be integer, and approximation of this
propagation delay by an integer number of sampling in-
stants will give rise to errors and suboptimal reconstruc-
tion and prediction. This error can be arbitrarily reduced
by adjusting AX and AT such that AX/(v,AT) will be in-
teger, but this may lead to high dimensional spatial/
temporal grids; moreover the sampling in time and space
will become dependent of the propagation velocity, which
is not desirable. A better alternative is to model the frac-
tional part of AX/(v,AT) by means of an approximation of
a fractional delay. In [23] several methods have been dis-
cussed for modeling of fractional delay. For the sake of
simplicity, however, but without lack of generality, we as-
sume here that AX/(v,AT)=1, i.e., at every sampling in-
stant the wavefront is propagated over one grid point
along the x-axis direction, which implies that the frozen
flow propagation satisfies the relation

¢k +1,0,)) = ki - 1,)). 4)

Then, using both Egs. (1) and (4) it can be verified that
the temporal and spatial correlation coefficients are given
by (c.f. [15])

E[$(k,i,))p(k - €,i —m,j—n)]=Cy((m - {)AX,nAY).
(5)

Suppose that we have N, X N, grid points, and for each
time instant £ we stack the phase at these grid points in
one big vector:

<p(k) = [¢(k?1’1)? M ’¢(k71?Ny)’ A ’¢(k’Nx’Ny):|T € JlngNy‘

(6)

The correlation coefficients of the random vector process
¢(k) are denoted by

C0) = Ele(k)o(k - O)"]. (7)

Unfortunately, ¢(%) cannot be measured directly, and only
a derived quantity,

y(k) = Go(k) + v(k) € R, (8)

is measured by a WFS, where G is the WFS sensing ma-
trix and v(k) is the measurement noise, assumed to be
zero-mean white noise, independent of ¢(k—{) for all €,k
and with covariance E[v(k)v(k—€)T]=02VI v (k) [with ()
being the Kronecker delta function with é{O):l and &(k)
=0 for £ # 0]. For example, G may contain the coefficients
of the finite difference approximation of the spatial de-
rivatives in the case of Shack—Hartmann sensors.

B. Minimum Variance Prediction

Because the delay in the control loop is usually about two
samples (about one sample delay in the WFS and one
sample delay in the discrete-time control system), we
want to estimate ¢(k+2), i.e., to make a 2-step-ahead pre-
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diction, given the measurements y(k-¢) for €=0,1,....
The AR-1 2-step-ahead predictor, which provides the MV
prediction of ¢(k+2) given only the last measurement
y(k), is given by

ok +2|k)=Ay(k), 9)
where

A= C 2)GT(GCL(0)GT +aIy) ™ (10)

Assuming an infinite dimensional spatial grid, this pre-
dictor is the same as the AR-1 0-step-ahead predictor with
a shift over two grid points in the x-direction as was
shown in [2].

However, these AR-1 predictors do not take into ac-
count the information about ¢(k+2) that is present in
y(k—¢€) for ¢>1. Because of the frozen flow propagation, it
may actually be that the “downstream” elements in ¢(k
+2) are correlated much stronger with “upstream” ele-
ments in y(k-¢) for some k=1 than with the elements in
the measurement y(k). At least when there is correlation
between ¢(k+2) and y(k—{) for k=1 the estimate of (%
+2) might be improved.

The MV (linear) prediction, taking into account all past
measured data up to k, is given by

ok +2|k) = Apyy(k), (11)
where
yil) =y "y - D)7, ...y, (12)
and A, is obtained from
A, =C,(2)G™P,, (13)
where
Py =(GC,(0)G" + Iy n)7" (14)
S,=GC,(1)GT, (15)
and for k=2
A= [Ak—l 0] + Ek—l[Kl{—l -Rzil], (16)
with
Kj1=P_1S,1Rp L, (17)

Ry1=GCU0)G" + oIy N, =Sy 1PpaSpo1,  (18)

Ep1=A;1S,1-C b+ 1)TGT, (19)
| Prat Ky Ry Ky -Kyy (20)
b -K;, RL |
GC(k)GT
S, = . 21)
Si1

This predictor is readily obtained using linear (recursive)
prediction theory (cf. [24]).

Unfortunately, the computational complexity and
memory of the predictor in Eq. (11) grow unboundedly.
Only when E, given by Eq. (19) satisfies E,=0 for all
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k>p the predictor remains constant for 2>p, and the
predictions are based on the finite data window
{y(k),...,y(k-p)}. It can be shown that for AR processes,
indeed, E,=0 for k> p, where p is the order of the AR pro-
cess. However, the correlation coefficients determined by
the von Karméan turbulence model cannot be obtained by
a finite order AR process because of its non-rational spec-
trum. Of course, one may approximate the turbulence by
a finite order AR process, but the order may be very high.
A better choice would be to model the turbulence statistics
by a finite order state-space innovation model, which also
comprises the more general class of AR moving average
models [[25], Section 8.3]. The state-space innovation
model is given by

x(k +1)=Ax(k) + Ke(k), (22)

o(k) = Cx(k) +e(k), (23)

where e(k) e RNVy is a zero-mean white noise stochastic
process with variance E[e(k)e(k)T]=R,; x(k) e R" is the
state of the innovation model of dimension 7; and the ma-
trices A e R»*", C e RNNy*n and Ke RNy are the
state-transition matrix, the output matrix, and the Kal-
man gain, respectively. This approach for modeling turbu-
lent phase screens was proposed in [15], where the state-
space matrices were determined from the correlation
coefficients C (k) using stochastic realization theory (c.f.
[13,26]). In the simulations in Section 4 we have used the
stochastic realization method as outlined in [26] to deter-
mine the matrices A, K, C, and R, from the correlation co-
efficients C,(i) for i=0,1,2,...,N.

It can be guaranteed that the matrix A is a stability
matrix, such that the pair (A,GC) is always detectable.
Then, given the state-space description (22) and (23) the
MYV predictor of ¢(k+1) using the measurements (8) can
be directly obtained from discrete-time Kalman filtering
theory [27]

%k + 1|k) =Ai(k|k - 1) + K (y(k) - GCx(k|k - 1)),

(24)
ok + 1|k) = C(k + 1|k), (25)

where
K,=(APC"G" + S)(GCPC"G" +R)!, (26)

and P is the stabilizing positive definite solution of the fol-
lowing discrete algebraic Riccati equation (DARE):

P=APAT - (APCTG" + S)(GCPCTG" + R)"Y(APCTG"

+9)7+Q, (27)
where

Q=KR, K", (28)

R=GR,G" + afINy, (29)

S=KR,G". (30)

The 2-step-ahead prediction is easily obtained by evaluat-
ing one more time-update of the state:
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2(k +2lk) = Az(k + 1|R), (31)

ok +2|k) = CE(k + 2|k). (32)

For the stochastic realization a singular value decom-
position (SVD) needs to be computed for a matrix whose
rows and columns scale with the number of grid points
N,N,. Because the computational complexity of the SVD
scales with the cube of its number of rows and columns,
the complexity to determine model (22) and (23) will scale
with (NxNy)S, and thus will be infeasible for large num-
bers of grid points. From simulations it follows that the
order n scales approximately with N,N,. Because the
computational complexity of the DARE (27) scales with
n3, solving Eq. (27) will also be infeasible for large num-
bers of grid points. Fortunately, the frozen flow propaga-
tion yields a particular structure, which can be exploited
to efficiently model and predict the wavefront phase, as
will be discussed in the next section.

3. EFFICIENT AND DISTRIBUTED
PREDICTION BY SEQUENTIALLY SEMI-
SEPARABLE SYSTEMS

A. Structure of Frozen Flow Propagation
Recall the frozen flow assumption in Eq. (4), which is
given again here:

ok +1,i,5) = p(k,i - 1,j). (33)
Suppose that v,>0, and ¢(%,i,j) is known for all 2 and j
and for i=1, then we can also derive ¢(%,i,j) for all £ and
j and i >1 using Eq. (33), i.e., by properly shifting in time
and space. These shifts can be modeled by a string of in-
terconnected subsystems as depicted in Fig. 1. As a con-
sequence, if a state-space innovation model is given for
¢(k,i,j) for j=1,...,N, and i=1 using Eq. (33) the state-
space innovation model describing ¢(k,i,j) for j
=1,...,N, and i=1,...,N, can be derived as well for IV,
>1. Moreover, thanks to the interconnection structure of
the frozen flow this new state-space description has a par-
ticular nicely distributed structure along the
x-coordinate.

A similar argument holds true for v, <0, for which a
distributed model can be easily derived by either reorder-
ing the spatial grid or adjusting the indexing and propa-
gation direction in the following derivation for v, >0. The
case v,=0 will not be considered here, because for con-
stant wavefronts the reconstruction problem reduces to a
static estimation problem that can be easily solved by av-
eraging the estimates obtained with (fast) static recon-
struction methods.
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To derive the distributed state-space model over the
whole grid, let us first stack all N, phases at the grid
points along the y-dimension in the following vector:

(k) = [o(k,i,1),¢(k,1,2), ..., ¢k, i,N)]".  (34)

Then, by the frozen flow propagation (33) we have o¢;(k
+1)=¢;_1(k).

Second, for ;=1 an nth order state-space innovation
model can be determined using the correlation in time
and space along the y-dimension, as outlined in Subsec-
tion 2.B. This state-space model will be denoted by

&1k +1)=A& (k) + Key(k), (35)

e1(k) = C& (k) +eq(R), (36)

where & (k) e R” is the state, and e;(k) € RNy is a zero-
mean white noise signal with covariance R,; e RNy*Ny,
Since ¢;(k) e RNy is just an N,-dimensional vector, the
computational complexity of the realization of model (35)
and (36) just scales with Ns rather than (NxNy)?’.

Third, the complete model is obtained by extending
Egs. (35) and (36) with the frozen flow propagation and
can be written in terms of the following 2D state-space
model:

(A 0 K

&k +1) &(k)
for i=1: 3| vii(k) |=|C O INy v(R) |,
@i(k) [ C 0 Iy | elk)
Gr+1)| | 0 Iv, O k)
for i=2,...,N;: 3| viak) |=|In, 0 O]l0v]"(R)|.
oi(k) | INy 0 ofLeiR)

(37)

Note that in fact v]*(k) and e;(k) for i >1 do not influence
¢;(k) for all £ and i and were just included for uniformity
in the 2D state-space descriptions, but could be removed
from the equations as well. Also note that v]"(k)=¢;_1(k)
and &(k)=v]"(k-1) for i>1.

Equation (37) describes a system with N, spatially in-
terconnected subsystems. If the N, subsystems are con-
nected and the interconnection variables are resolved, we
obtain the interconnected system

e1(k)
7 (k vt (k T(k Tk
2, v (k) 5, 5 (k) Ty vy (k) v (k) Sy
e1(k) l wa(k) l w3(k) i on(k)
Fig. 1. Frozen flow propagation by subsystem string interconnection.
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Ek+1 A K|| &k
§(_ )| 4 f( ) , (38)
o(k) C D||e®

where &k)=[& k)T, ..., &k)T] is the lifted state vector,
and e(k) and @(k) are defined similarly. The matrices A, K,
C, and D are defined as

A [k ]
Cc 0 INy 0
A=| Iy, O , K= 0 0 ;
Iy, 0 00
c Iy,
_ Iy, _ 0
C= . , D= ) . (39
Iy 0

y

The order of the state-space model (38) is n+(N,~1)N,.
Note that Eq. (38) describes the same turbulence as Eqs.
(22) and (23), but the models were obtained in a different
manner. Ideally, when all approximations are exact it
holds that ¢(k)=g¢(k) if e(k)=e(k) for all k.

Note that this approach is not limited to square aper-
tures, but can be applied to circular apertures as well. To
illustrate this, consider Fig. 2 which shows a square grid
on a circular aperture, and the propagation direction is
along the x-axis as indicated by the arrows. Then, all the
phases at all grid points at the extreme left points along
the x-axis indicated by the squares will be stacked in one
vector similar to Eq. (34). A state-space innovation model
can be determined for this vector-signal as in Egs. (35)
and (36). Then, this vector can be propagated along the
x-axis as in Eq. (37). Note that after a number of steps, for
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the grid in Fig. 2 after five steps, the dimension of the vec-
tor that is propagated can be reduced because of the cir-
cular aperture. The essential point is that the grid along
the propagation direction needs to be equidistant.

B. Frozen Flow as a Sequentially Semi-Separable System

The matrices A, K, C, and D are sparse and have struc-
tures that can be exploited by efficiently computing the

predictor. Actually, the structures in A, K, C, and D are a
special case of SSS matrices. State-space models whose
matrices have SSS structures naturally result from sub-
system string interconnections as in Fig. 1. SSS matrices
have the nice property that the multiplication of a SSS
matrix with an arbitrary vector can be calculated as a
(state-space) recursion in terms of the low dimensional
subsystems that generate the SSS matrix. The “state” in
this state-space recursion is the interconnection variables
between the subsystems, whose dimension determines
the complexity of the SSS matrix-vector product.

As an example, consider a SSS matrix A which can be
block-partitioned as [19]

A=(A;), where A;e R satisfies A;;
D;, if i=j
=\UWi Wi, V5, if j>i (40)
PR, - R;,Q;, ifj<i,
for i,j=1,...,N. Then, the matrix-vector multiplication

y=Az, with yeR¢ (¢=3N ¢,) and @eR™ (m=3N,m,),
block-partitioned corresponding with the partitioning of
A, can be performed by the following recursion:

6 T T
4 o [
Bl e it © B2 .
s
2] :
% 0_ 3—>. vvvvvvvvvvvv -
® .
) 8
B
S2 e B b 7 U B e 5
-4} - .
B
-6 1 1
-6 -4 -2

Fig. 2. Frozen flow propagation along a square grid in a circular aperture.



Fraanje et al.

Ui R, 0 @;f|lv;
Ei: Uf_l =|0 Wi Vl UJi] , (41)
Vi P; U; D;]| u;

for i=1,...,N and v7'=0, and n{;=0 (cf. Fig. 3).
Now, let us compare the computational complexity of

directly evaluating =Xz with the recursions of Eq. (41).

Let ¢;=¢' and m;=m’ for all i=1,...,N, then X
e RNU'XNm' gych that the number of floating point opera-
tions (additions and multiplications) is 2N2¢'m’. Further,
let n,,, and n,, be the dimensions of v;* and v?, respectively,
which are typically much smaller than N. Then evaluat-
ing N iterations of Eq. (41) takes 2N(n31+n12,+(nm+np)
X("+m')+{'m’) floating point operations. Hence, the
complexity of evaluating Eq. (41) scales with N rather
than N2. For the case that ¢’=m'=1 and n,=n,=2, then

evaluating Xz by one big matrix-vector multiplication
takes 2N2, whereas evaluating Eq. (41) takes 34N float-
ing point operations; so for N>4 evaluating Eq. (41) is
more efficient than the matrix-vector multiplication.

It can also be shown that the class of SSS matrices is
closed under addition, multiplication, and inversion [19].
However, when adding or multiplying two SSS matrices,
the dimension of the subsystem interconnections v;* and
v? will be the sum of the dimensions of the subsystem in-
terconnections of both terms. In [20] efficient order reduc-
tion techniques have been proposed to limit the dimen-
sions of the interconnections, which can be applied after
each addition or multiplication.

Moreover, it has been shown in [20] that the solution of
Riccati equations can be approached by means of the so-
called sign iterations that also preserve the SSS struc-
ture. In this way Riccati equations can be solved effi-
ciently, with a computational complexity that scales with
the number of subsystems N rather than N3. In addition
the solutions are in terms of SSS matrices as well, such
that SSS structured predictors and controllers can be de-
signed.

C. Augmenting the Model with Wavefront Sensing

Before the Kalman filter can be derived to predict the
wavefront phase in Eq. (38), the model needs to be aug-
mented with the WFS output. The WFS will be spatially
distributed as well; it will provide measurements of spa-
tial derivatives or higher order derivatives averaged only
over a local region in space. Hence, it is still possible to
derive an interconnected subsystem description as in Eq.
(37), which is essential to obtain the SSS structure in the
lifted system. The main difference with Eq. (37) will be
that the WFS will provide linear combinations of the
wavefront phases at a number of grid points, such that
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each subsystem needs to be augmented to include all grid
points necessary for determining the (local) WFS output.

To illustrate this, consider a WF'S that measures the
slopes in the x- and y-directions, which are approximated
by the following averaged finite differences:

y (ki) = %é o(k,id,( - 1)A +n) - ok, - DA +1,(j
- DA +n)+v(k,i,)), (42)
1A

¥ (k,ij) = ZZ‘l ¢k, ~DA+n,jA) - @k, - DA +n,(j
- DA+1) + 17(k,i)), (43)

where v, and v, are the measurement noise processes, A
€ N is the resolution of the WFS, and i and j range from 1
to N,/A and N,/A, respectively. Equations (42) and (43)
can also be easily adjusted according to the Fried geom-
etry. Here Eqs. (42) and (43) have been used for the sake
of simplicity as well as to allow for different resolutions A
of the WFS.

Then, by stacking the vector ¢,(%) defined in Eq. (34)
locally over ¢=(i—-1)A+1,...,iA,

&) =[ei_1an®), ... R, (44)

and stacking the observations y*(k,i,j) and yY(k,i,j) for
Jj=1,...,N,/A into

yitk) =y (k, 1,7, ...y (k,i,N) ", (45)
(k) =y (k,i,1)7, ... .y (k,i,N,)T]", (46)

we can rewrite the averaged finite differences as follows:
s =" L+ (47)
Yi\R) = ¥ (k) o PilR) + Vi(R),

where the matrices G* and G” are sparse matrices deter-
mining the averaged finite differences in the x- and
y-directions, and 7;(k) contains the measurement noise
terms.

To generate the lifted vectors ¢;(k) rather than ¢;(%k) the
subsystems in Eq. (37) need to be lifted as well, resulting
in N,/A subsystems whose sparsity structure is rather
similar to Eq. (37). The process of lifting a series of sub-
systems is very similar to the lifting over all N, grid
points along the x-axis in Eq. (38) whose state-space ma-
trices are defined in Eq. (39). The difference now is that
the lifting is performed a number of times over A sub-
systems resulting in N,/A larger subsystems.

Then the resulting string of subsystems with ¢;(k) and
y;(k) as outputs can be written as

Ui U2 un
m __ m m m m
v*=0 v Y3 N UN+1
3 Yo [ T YN
P P P _
o Uy UN-1 Un=
n Y2 YN

Fig. 3. SSS matrix-vector multiplication as a subsystem string interconnection.
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Ek+1)| A B K 0 || &k

s | PRa® ' 0 D" 0 |5rk) us)
Ioak) | |CF 0 DEO0 |Gk |

vy | L€ 0 DY Ll %

for i=1,...,N,/A, where &(k) and &;(k) are the vectors
stacking the states &/(k) and the innovations e,(k) over ¢
=(@-1A+1,...,iA, and 7]" is the N,-dimensional commu-
nication channel between subsystems, with v7'(¢)=0. The
matrices (4;,B",K;,C",D!",C?,D?,C¥,D?) are derived
from Eqs. (37) and (47) and have some additional sparsity
structures which will not be denoted explicitly but can be
exploited in the implementation of the predictor. Lifting
Eq. (48) further along all points i=1,...,N,/A will result
in system (38) augmented with the WFS outputs:

| |A K O&n
ek)|=| C D O|lek) |, (49)
sk | e pr 1 |[ek)

where C?=GC and DY=GD, where G is the WFS matrix.

D. Kalman Filtering of Frozen Flow Turbulence
Actually system (49) is equivalent to the state-space
model (22) and (23) together with the WFS output (8)
such that the 2-step-ahead prediction is given by the fol-
lowing expressions:

é(k) =y (k) - C¥&(k|k - 1), (50)
&k +1|k) = A&(k|k - 1) + K 6(k), (51)
&k +2k)=A&k +1]k), (52)

&(k +2|k) = C&k + 2|k), (53)

where K” is the Kalman gain given by
K = (APC)T+8)(C’P(C") T+ R) Y, (54)

and P is the stabilizing positive definite solution of the
DARE:

P=APAT - (AP(C*)" + S)(C*P(C*)T + R) Y AP(C")T + S)T

+Q, (55)
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Q=KR.K", (56)
R=D'R,(D")" + o’I, (57)
S=KR,(D")T. (58)

This predictor is the same as in Eqgs. (24), (31), and (32),
except that the state-space matrices now have SSS struc-
tures. Because the SSS structure is preserved under ad-

dition, multiplication, and inversion, the matrices @, R,

and S also have SSS structures, i.e., they can be decom-
posed in a series of subsystems as matrix (40) where the

subsystems are given by Eq. (41). Hence, P will have a

SSS structure as well as I_{y. In practice, it will be neces-
sary to perform order reductions to limit the number of

interconnection variables in @, R, S and after each addi-

tion and multiplication in the iterations to solve for P.
These order reductions will result in small errors in the

solution of P after convergence, and thus may result in an

approximation of the Kalman gain I_{y. In the next section,
we show by several simulations that the approximation
error is relatively small, especially for high signal-to-
noise ratios (SNRs).

The subsystem recursions for the SSS matrix-vector

multiplication ﬁ(k):I_{yé(k) are given by

via(k) | K0 K| v (k)

viak) = O K K| vik) |, (59)
u;(k) K™ K K || é(k)

where the K7’ matrices are obtained from the solution of
the Riccati equation and the expression of the Kalman
gain in Eq. (54) together with the order reductions that
reduce the dimensions n,, and n, of v" and v¥, respec-
tively. In the simulations in the next section the maximal
values of n,, and n, were set to N,/2 in all simulations,
which appeared to be a good trade-off between complexity
and accuracy of the wavefront prediction. We also ob-
served in our experiments that the number of iterations of
the sign algorithm to solve the Riccati equations should
not be too large (typically three to five iterations) to pre-
vent large truncation errors in the order reduction. The
accuracy was also improved by slightly increasing the
noise covariance, which makes the solution more robust
to errors in the order reduction.

The computational complexity of the 2-step-ahead pre-

dictor is outlined in Table 1. Because the matrices A and

Table 1. Computational Complexity of the SSS Kalman 2-Step-Ahead Predictor

Expression Complexity
&(k)=y(k)-C'&k|k-1) 4nN,/A
Hk+1|k)=A&k|k- 1)+K,e(k) 2n2+ %(nfﬁnfﬁ (nm+np)(n+ %vl) +@1)
Hk+2|k)=A&k+1]k) 2n2
G(k+2|k)=CE&E+2|k) 2N,n

Total (approximately)

2ZAV;‘(n,2n+n§+(nm+np)(n+2‘,7\7—A1)+—A2)
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C in Eq. (49) are very sparse, the multiplication I_{yé(k) is
the most complex part of the algorithm. However, without
exploiting the SSS structure, the computational complex-
ity is 4nNzNy/ A? and scales with N2 rather than N,,
which is usually much higher than that obtained with the
SSS recursions. In the simulation experiments, the SSS
recursions are even more efficient than the matrix-vector
multiplication of the AR-1 predictor in Eq. (9), which has
a computational complexity of 4NfN§/ AZ,

4. SIMULATIONS

The method is validated on a turbulence model on a grid
of (N, X N,)=(32X32) points with a spatial resolution of
AX=AY=3.1x10"2 [m]; the turbulence outer-diameter in
the von Karm&an model is set to Ly=10 [m], and the Fried
parameter is r;=0.16 [m]. The wind velocity is v,
=20 [m/s], and the sampling time is AT=1.56x 1072 [s]
(i.e., sampling rate is 640 [Hz]) such that for every sam-
pling time the phase is shifted exactly by one grid point in
the x-direction.

The disturbance model at ;=1 has been determined us-
ing stochastic realization (c.f. [15]) on the basis of the cor-
relation coefficients over the N,=32 grid points in the
y-direction and 251 time lags. The order of the distur-
bance model was set to n=40.

Experiments have been performed with WFS signals as
defined by Eq. (42) with different WFS resolutions A=2,
4, and 8, resulting in 2NxNy/A2= 1024, 512, and 256 sen-
sor values, respectively. The variance of the measurement
noise v, and v, has chosen to be relative to the variance of
the finite differences with SNRs of 0 dB up to 40 dB with
steps of 10 dB.

Various wavefront predictors have been evaluated: the
first order AR reconstructor (i.e., no prediction is made) is
denoted by “0O-step AR-1.” Further, the 0-step AR-1 recon-
structor with a shift according to the frozen flow propaga-
tion over two time steps is denoted by “O-step AR-1 with
shift.” The first order AR 2-step-ahead predictor is de-
noted by “2-step AR-1.” The 2-step-ahead predictor based
on the Kalman filter with a SSS structure is denoted by
“2-step SSS Kalman,” and finally the 2-step-ahead predic-
tor based on the Kalman filter obtained by solving the
Riccati equation without restricting to the SSS structure
is denoted by “2-step Kalman.”

For A=2 the order of the state-space innovation model
of the turbulence was 1280 (=nN,). The time to compute
the AR predictors was 4 s with MATLAB running on a
2.33GHz dual core personal computer (PC) with 4 Mbytes
cache and 3 Gbytes working memory. On the same PC the
computation of the SSS Kalman filter was done in 8.8
min, and the solution of the Riccati equation using the
MATLAB routine DARE was done in 19.8 min. Here, we
have to note that our MATLAB implementation of the SSS
Riccati solver has not been optimized, and a significant
further reduction in the computation time may be pos-
sible.

The performance is evaluated in terms of the variance
of the piston term corrected prediction error averaged
over all 32X 32 grid points. Because in all experiments
the full state-space model of the turbulent disturbance is
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Average spectral density [rad2/Hz]
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Fig. 4. Spectral density for A=2, SNR=40 dB.

known, the variance of the piston term corrected predic-
tion errors can be computed analytically. Also the distri-
bution of the prediction error over the frequency, i.e., the
power spectral density, can be computed. Figure 4 shows
the power spectral density in [rad?/Hz] of the disturbance
and the piston term corrected prediction errors obtained
by each predictor averaged over all grid points for a WFS
with a resolution of A=2 and a 40 dB SNR. Figures 5-7
show the Strehl ratios determined by the Marechal ap-
proximation

Sr = exp(— 0-3)’ (60)

where a'f is the variance of the piston corrected prediction
error averaged over all grid points, versus the SNRs for
A=2, 4, and 8, respectively.

Table 2 shows the computational complexity of the
various predictors. The AR-1 predictors all have the same
complexity, which is just listed once and is determined by
the complexity of a matrix-vector multiplication. There
exist fast implementations whose complexity scales lin-
early with N,N,, such as the robust multigrid implemen-
tations as presented in [28]. For the complexity of the SSS
Kalman filter we only evaluated the complexity of the
SSS recursions for the Kalman gain since the other state-
space matrices are very sparse. The row with “unstruc-

1
:§ B
0.8 i
206 |
o
=
[}
» 0.4 %
-6-2-step Kalman
-A-2-step SSS Kalman
0.2 —B-2-step AR-1 ]
’ —¥—0-step AR-1 with shift
—%—0-step AR-1
=5/ Disturbance
3 % % 2%
SNR [dB]

Fig. 5. Strehl ratio versus SNR for WF'S resolution A=2.
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—¥— 0-step AR-1 with shift
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- Disturbance -
% % ¥ 2%
SNR [dB]

Fig. 6. Strehl ratio versus SNR for WFS resolution A=4.

tured Kalman” denotes the complexity of the full matrix-
vector multiplication for an unstructured Kalman gain.
At the last row we also included the complexity of the Kal-
man filter provided the state-space matrices are not
sparse as would be the case by determining the complete
model by means of stochastic realization.

From Figs. 4 and 5 we observe that for the case A=2,
SNR=40 dB, the Strehl ratio obtained by the “SSS Kal-
man” is approximately the same as the Strehl ratio of
0.98 obtained by the true Kalman filter, i.e., without im-
posing the SSS structure. For lower SNRs the SSS Kal-
man filter looses a bit of performance, but stays signifi-
cantly above the performance obtained by the 2-step AR-1
and the 0-step AR-1 with shift. This holds for all cases,
A=2,4,8. The 2-step AR-1 and the 0-step AR-1 with shift
predictors have about the same performance, with the
0-step AR-1 with shift slightly worse, which is most likely
due to errors due to the improper shift at the boundary.
The difference between the 0-step AR-1 and the 0-step
AR-1 with shift is about a reduction of 0.2-0.4 in the
Strehl ratio, indicating that the performance is signifi-
cantly improved by taking into account the frozen flow
propagation. Of course the difference can be reduced by
increasing the sampling frequency and thus limiting the
spatial shift between subsequent time samples. However,
increasing the sampling frequency directly reduces the

0.8

Strehl ratio
o
o

o
Y

2-step Kalman

—A-2-step SSS Kalman
—B-2-step AR-1 ]
—¥— 0-step AR-1 with shift
—%—0-step AR-1
W—V— Disturba}_rrl'ce

0.2

% %
SNR [dB]

Fig. 7. Strehl ratio versus SNR for WF'S resolution A=8.
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Table 2. Computational Complexity in Floating
Point Operations per Sampling Time for the SSS
Structured Kalman Predictor, the Various Types of
AR-1 Predictors, the Kalman Filter with
Unstructured Kalman Gain but Sparse
State-Space Matrices, and the Kalman Filter with
Unstructured State-Space Matrices

Method A=2 A=4 A=8

SSS Kalman 1.3x10° 4.7x10* 1.9x10*
AR-1 1.0x10° 2.6x10° 6.6x10*
Unstructured Kalman 1.3x10% 3.3x10° 82x10*
Unstructured state Kalman  7.1x106 6.2x10® 6.0x 108

time to evaluate the computations and thus increases the
computational complexity; moreover increasing the sam-
pling frequency will also limit the exposure time of the
WEFS and thus increase the SNR. It is interesting to ob-
serve that the Strehl ratio of 0.85 obtained by the SSS
Kalman predictor for the case of A=8 is about the same as
the Strehl ratio of 0.86 obtained by the 2-step AR-1 pre-
dictor for A=2, whereas the computational complexity of
the SSS Kalman predictor for this case is more than a fac-
tor of 50 smaller than the complexity of the 2-step AR-1
filter.

We should stress here that in the derivation of the
structured state-space model some specific assumptions
had been made, such as a perfect frozen flow whose
propagation matches with the WFS grid and with a
known velocity. Further investigation is necessary of how
sensitive the performance of the SSS Kalman predictor is
with respect to these assumptions. At least, the method
may be a useful tool in error budgetting to efficiently com-
pute the (approximate) Kalman filter prediction for com-
parison with (suboptimal) algorithms.

5. CONCLUSIONS

This paper has addressed the problem of efficiently com-
puting and implementing a Kalman filter to predict fro-
zen flow turbulence with von Karmén spatial correlation.
The motivation was to investigate how efficiently a pre-
dictor that exploits all information available from the
measurement history can be computed and implemented
without sacrificing any performance.

Stochastic realization has been used to obtain a state-
space innovation model of the turbulence at the upstream
edge of the aperture. Then, the frozen flow is efficiently
implemented by time delays and spatial shifts along the
propagation direction, resulting in a state-space innova-
tion model with relatively sparse matrices. Augmenting
this model with a WF'S provides the complete description
of the turbulence generation and observation. This model
has a value in itself, because it enables the analysis of the
observability of the turbulence from various wavefront
sensors (WFSs). In the simulations where the WFS mea-
sures the slopes of the wavefront averaged over a number
of grid points, it appears that all states of this model are
still observable. A structured Kalman filter predictor has
been computed using an efficient Riccati equation solver
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that exploits subsystem string interconnection structures
and has been recently proposed by two of the authors in
[20].

The first simulation results are encouraging, showing
both a performance increase and a computational com-
plexity reduction relative to AR-1 predictors. But, there
remains a need for further research in this line. The sto-
chastic realization modeling the turbulence at the grid
points located on the upstream edge may still be compu-
tationally intensive for large numbers of grid points and
high sampling ratios. Orthogonal basis transformations
over the spatial dimension (such as the PCA in [14]) may
be used to divide the stochastic realization in a number of
decoupled problems. The structure from the orthogonal
basis transformations might also be exploited in the Kal-
man filter design. Further simulations are necessary for
frozen flow propagations that are not aligned with the ob-
servation grid; also uncertainties in the turbulence model
(e.g., the outer range, the grid size, the jitter in the sam-
pling frequency, and the accuracy of the velocity) need to
be studied. It would also be interesting to see whether the
structured turbulence model can be identified from the
measured data in the line of the data-driven approach fol-
lowed in [16].
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