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Editorial

Editorial for special collection on
the estimation and control of MAV
navigation in GPS-denied cluttered
environments

Julien Marzat1, Guido de Croon2, Friedrich Fraundorfer3,
Pascal Morin4 and Antonios Tsourdos5

New types of missions are being addressed by micro air

vehicles (MAVs) in GPS-denied environments, which

can be either indoor buildings or plants or outdoor

facilities such as electrical substations or forests.

These places can be highly uncertain with no previous

mapping available and with little prior information, as

well as highly cluttered and possibly containing dynam-

ical objects.
Progress in technology and automation has made it

possible to embed cameras (monocular, stereo or more)

or laser scanners as main sensors on MAVs, which can

be associated in a sensor fusion scheme with an inertial

measurement unit and – depending on payload mass

allowed – small-scale sonar or depth sensors.
However, safe navigation for autonomous surveil-

lance or inspection missions in this type of challenging

environment still requires the development of new

sensor-based estimation and control algorithms that

can be embedded on multi-rotor or flapping-wing

MAVs with limited on-board computational

capabilities.
This special issue covers several aspects of the

research effort on this topic, ranging from localization

issue using a limited number of sensors to control or

learning-based approaches for achieving specific tasks.
Vina and Morin1 present a methodology to obtain

complete 3D local pose estimates in electric tower

inspection tasks (where GPS localization is disturbed)

with MAVs, using an on-board sensor setup consisting

of a 2D LiDAR, a barometer sensor and an inertial

measurement unit (IMU).
Chojnacki and Indelman2 present a vision-based

method using a light bundle adjustment procedure for

simultaneous robot motion estimation and dynamic

target tracking, while operating in GPS-denied

unknown or uncertain environments.
Yu et al.3 propose an end-to-end landmark detection

system based on a deep convolutional neural network

and an associated embedded implementation on a
graphics implementation processing unit to perform
vision-based autonomous landing.

In van Hecke et al.,4 a self-supervised learning strat-
egy is proposed for the safe navigation among obstacles
of a flying robot using very light embedded vision sen-
sors. The proposed learning mechanism relies on dis-
tance estimates provided by stereo vision and then
learns how to perform this estimation using only mon-
ocular information.

Tripicchio et al.5 address the problem of semi-
automatic navigation in confined environments using
laser-based localization, with application to the inspec-
tion of an industrial combustion chamber with poor
lighting conditions, in the presence of magnetic and
communication disturbances, iron dust and repetitive
patterns on the structure walls.

Sarras et al.6 treat the problem of simultaneous col-
laborative localization and control for a fleet of MAVs
tracking a common target using only range and veloc-
ity measurements. The proposed solution combines
local filters for each agent and cooperative filters to
estimate all positions, which are then used in a dynamic
consensus control law to track the target without any
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external reference which makes it applicable in GPS-
denied environments.

In summary, these papers report a number of con-
tributions on sensor integration, signal processing and
control algorithms associated to validations based on
simulations and experimental data, which should pave
the way to future developments and widespread use of
MAV technology in future applicative scenarios involv-
ing indoor and cluttered environments.
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Article

Micro air vehicle local pose estimation
with a two-dimensional laser scanner:
A case study for electric tower inspection

Carlos Viña and Pascal Morin

Abstract

Automation of inspection tasks is crucial for the development of the power industry, where micro air vehicles have

shown a great potential. Self-localization in this context remains a key issue and is the main subject of this work.

This article presents a methodology to obtain complete three-dimensional local pose estimates in electric tower

inspection tasks with micro air vehicles, using an on-board sensor set-up consisting of a two-dimensional light detection

and ranging, a barometer sensor and an inertial measurement unit. First, we present a method to track the tower’s

cross-sections in the laser scans and give insights on how this can be used to model electric towers. Then, we show how

the popular iterative closest point algorithm, that is typically limited to indoor navigation, can be adapted to this scenario

and propose two different implementations to retrieve pose information. This is complemented with attitude estimates

from the inertial measurement unit measurements, based on a gain-scheduled non-linear observer formulation.

An altitude observer to compensate for barometer drift is also presented. Finally, we address velocity estimation

with views to feedback position control. Validations based on simulations and experimental data are presented.

Keywords

Micro air vehicle, airborne laser scanning, two-dimensional light detection and ranging, barometer, inertial measurement

unit, iterative closest point, state estimation
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Introduction

Power utilities, such as transmission line towers,

are subject to deterioration due to the atmospheric

conditions to which they are exposed. Ensuring their

integrity and avoiding network downtime require

extensive monitoring programmes. For this purpose,

aerial surveys have been increasingly common as they

allow covering vast areas in relatively short periods of

time, by relying on remote sensing technologies such as

thermal imaging, aerial imaging and optical satellites,

among others.1,2 In particular, airborne laser scanning

(ALS) technologies have recently attracted a large

attention due to their capability of achieving high qual-

ity 3D models of infrastructure with high spatial reso-

lution.2,3 In ALS applications, powerful 3D light

detection and ranging (LiDAR) sensors are mounted

on manned aircraft, such as helicopters,1,2,4 then data

acquisition is typically carried out using a GPS sensor

and an inertial measurement unit (IMU) to keep track

of the aircraft’s position and orientation. The geo-

referenced range readings are processed afterwards

for a wide variety of classification or reconstruction
tasks such as detecting power lines,4,5 vegetation man-
agement3 and making 3D models of the electric
towers.6 Nonetheless, the high operational costs of
piloted aircraft have constrained the proliferation of
these applications. The automation of inspection
tasks has thus become a key subject of research in the
power industry, in which unmanned air vehicles
(UAVs) have surfaced as an attractive solution, as
they provide an affordable and flexible means of gath-
ering spatial data.7–9 This has been mainly fuelled by
developments in lithium polymer batteries that have led
to larger flight durations and increased payload capa-
bilities. However, these small platforms currently
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cannot carry the heavy LiDARs required in most ALS
applications, and research on inspection tasks with
UAVs has mainly focused on vision-based approaches
instead.1,8,10,11 Rapid advances in lightweight LiDARs
have made them an appealing alternative for UAVs,
and while performance and precision remain far from
their 3D counterparts, they can be used for basic and
affordable ALS applications, which has already been
demonstrated in previous works, for example, for
power line monitoring.12

In the context of power utility inspection, GPS sensors
remain the predominant choice for achieving autono-
mous flight capabilities with UAVs.7 Nonetheless, a
GPS signal is not always accurate, can be perturbed by
the strong electromagnetic fields in the proximity of the
power lines13 and provides no perception of the sur-
rounding environment. As a result, a safe collision-free
flight cannot be achieved relying on GPS measurements
uniquely, which is instead limited to waypoint navigation
at large distances from the inspected objects.1,7,9 On the
one hand, vision-based navigation systems have been pro-
posed as a substitute in numerous works, relying mostly
on tracking and following the power lines.10,11 On the
other hand, lightweight LiDARs can also be employed
for autonomous navigation purposes and have been suc-
cessfully used for indoor flights with micro air vehicles
(MAVs).14–18 These sensors excel when navigating in clut-
tered environments, as they directly measure the distance
to surrounding objects and naturally open the way for
sense-and-avoid functionalities required for safe flights.
As a consequence, they can allow achieving higher
levels of autonomy and close-up inspections in power
line corridors, which is hard to accomplish with other
sensors. In this work, we focus on the inspection
of transmission line towers, and we explore how 2D
LiDARs coupled with commonly available sensors can
be used for pose estimation purposes in these scenarios.

Problem statement

One of the first tasks that any autonomous platform
must achieve is self-localization. Thus, our primary
goal is to obtain real-time estimates of a MAV’s six
degree of freedom (DoF) pose with respect to an elec-
tric tower, using uniquely on-board sensors and proc-
essing capabilities. Our main interest is steel lattice
towers made up of rectangular cross-sections common-
ly used to support high-voltage transmission lines, such
as the one shown in Figure 1. For this first case study,
we focus on the tower’s body, which makes up the larg-
est portion of the structure. The tower heads have a more
complex structure that requires an extensive parameter-
ization6,19 and are not considered in this work.

After treating the self-localization problem, the last
part of this study focuses on obtaining velocity

estimates and sensor fusion techniques are used for

this purpose. Accurate velocity estimates are necessary

in the control loop to successfully stabilize a MAV’s

position. Feedback position control, however, is not

addressed in this study. The long-term aim of this

work is to achieve autonomous inspection capabilities

of electric towers with MAVs.

Related works

While laser range finders have been largely popular

among ground robots for autonomous navigation tasks,

aerial robots present additional complications that make

similar applications not so straightforward. First, flying

robots’ motion is 3D. Then, payload limitations prevent

the use of more powerful sensors such as 3D laser range

finders. Finally, flying robots have fast dynamics that

make them harder to stabilize and any state estimation

has to be made with low delays and an adequate level of

accuracy. This means that estimation and control algo-

rithms must be preferably implemented on board, and

must run at high speeds, which limits the complexity of

the algorithms that can be used, so as to avoid significant

processing delays. Nonetheless, fully autonomous capa-

bilities for MAVs equipped with 2D LiDARs have been

shown in numerous previous works,14–18,20–23 which have

mainly focused on indoors scenarios. Most of these stud-

ies adopt a similar strategy: the first goal is to obtain fast

and accurate 3D pose estimates from the embarked sen-

sors’ measurements, preferably using on-board processing

capabilities; then, a second goal is to derive estimates of

the linear velocities using the pose estimates and sensor

fusion techniques. We now present how several previous

works have addressed these two tasks.

Laser-based local pose estimation on-board MAVs

Regarding the first goal, this is partly achieved by

aligning pairs of laser scans to recover the MAV’s

Figure 1. A common high voltage transmission line.
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relative displacement, a technique known as scan
matching or scan registration. While these algorithms
can pose a heavy computational burden, satisfying
real-time results have been obtained from adaptations
of well-known techniques, such as the iterative closest
point (ICP) algorithm,15,17,18,24 and the correlative
scan-matching algorithm.14,16,25 Following the satisfy-
ing results previously obtained on-board MAVs, and
due to its simplicity and efficiency, the ICP algorithm
was chosen for the scan registrations.

Typical approach with the ICP algorithm on-board MAVs. A
classic implementation of the ICP algorithm in naviga-
tion tasks consists in aligning the current laser scan to
the preceding scan. This is known as incremental scan
matching and is known to lead to drift over time.15,17,18

An alternative is to use a keyframe approach,17 with a
reference scan instead fixed at some initial time. As
long as the robot remains in the proximity of this key-
frame, and as long as there is sufficient overlap, the
estimation error remains bounded and the results are
drift free. The ICP implementations proposed in this
article go along this line of work.

In general, on MAVs equipped with 2D LiDARs,
the ICP algorithm is limited to aligning pairs of 2D
laser scans to recover 2D pose estimates. The remaining
states are estimated from separate sensing (e.g. IMU
for attitude estimation14–18 and laser altimeter for alti-
tude estimation14,15). However, to align pairs of 2D
laser scans the measurements must be taken within
the same plane. This poses a major drawback for
aerial robots and requires coping with the 3D
motion. A simple solution is to project the laser
points to a common horizontal plane using attitude
estimations from IMUs.14,15,18,17 Then, the projected
scans are aligned with the ICP algorithm.
Nonetheless, this has the underlying assumption that
surrounding objects are planar and height invariant,
which holds for common indoor scenarios, with
mainly straight walls. In an inspection scene, this
assumption does not hold as the electric towers have
a geometry that varies greatly in 3D. Hence, in our
scenario aligning pairs of 2D scans in similar way is
not possible. In this work we explore alternative ways
in which pose information can be recovered from the
laser scans, by exploiting basic knowledge of the
tower’s geometry. We also explore two different ways
in which the ICP algorithm can be extended to electric
tower case.

Limitations of the ICP algorithm for self-localization. It is
important to note that scan-matching techniques,
such as ICP, only guarantee local convergence
and depend highly on a good initial guess.24,26 A bad
initialization may lead ICP to converge to a local

minimum far from the optimal solution.
Furthermore, these techniques typically cannot recover
from large estimation errors. Globally optimal solu-
tions for the ICP algorithm have been studied in the
past27 but are typically too slow for state estimation
purposes. In literature, to overcome these issues, it is
common for simultaneous localization and mapping
(SLAM) techniques to be used in parallel.14–17,23

These algorithms provide pose estimates with guaran-
teed global consistency that are less sensitive to initial-
ization errors and that can allow detecting and
correcting errors from scan matching. The faster local
pose estimates are still required as an odometric
input to SLAM, to initialize and speed up the mapping
process.14,17 However, SLAM remains very computa-
tionally expensive and is commonly performed off-
board,14,16 with only a handful of studies achieving
on-board capabilities,15,17 at very low rates (2–10 Hz).
Thus, the global pose estimates are seldom included
directly in the control loop and are mainly limited to
providing periodic corrections to the real-time pose
estimates from scan matching14 and to perform
higher level tasks such as path planning16,17 and obsta-
cle avoidance.16 For the purposes of this article, we
focus only on the local pose estimation problem, keep-
ing in mind that mapping methods can be used in
parallel.

Another complex issue is that scan-matching perfor-
mance has a strong dependence on the shape of the
surrounding environment, as the laser scans must cap-
ture sufficient geometric detail in order to extract any
useful pose information. The algorithm will thus fail
under highly unstructured scenarios, often faced out-
doors, or featureless scenarios, such as long hallways or
circular rooms. This, in reality, corresponds to inherent
limitations of laser range sensing.14 Previous works
have addressed this issue incorporating multiple sens-
ing modalities, such as GPS sensors, ultrasonic sensors
and cameras.21,22 This, however, goes beyond the scope
of this work.

Altitude estimation on-board MAVs

On the one hand, on MAVs equipped with 2D
LiDARs, altitude is commonly estimated by placing
mirrors to reflect multiple laser rays downwards and
directly measuring the distance to the ground assuming
that the ground elevation is piecewise constant for the
most part.14,16,17 However, to account for potential dis-
continuities and changing floor elevations several sol-
utions have been proposed, such as creating multilevel
grid maps of the ground16 or creating histograms of the
range measurements to detect edges and floor level
changes.17 While this has proven to be effective when
navigating indoors, performance remains highly
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dependent on the floor’s layout, which can be very
irregular in typical outdoor inspection scenarios.

On the other hand, barometric sensors are also popu-
lar among commercial MAVs. These sensors estimate the
absolute or relative height of an object by measuring the
atmospheric pressure. However, fluctuations in pressure
due to weather conditions cause these height measure-
ments to drift over time. Sensor fusion techniques are
thus used to estimate and compensate this drift by
using additional sources such as GPS28 and IMUs.29,30

More recently, differential barometry has been gaining
popularity.31,32 In this configuration, a second barometer
is set stationary on the ground and used as a reference
measurement to track changes in local pressure, effective-
ly reducing drift and increasing accuracy.

Attitude estimation on-board MAVs

Fast and accurate attitude estimates are an essential
part of any MAV platform. Absolute attitude informa-
tion can be recovered from magnetometers and accel-
erometers.33–35 On the one hand, magnetometers
provide measurements of the surrounding magnetic
field in the body-attached frame and allow deducing
the MAV’s heading.33,36 However, they are very sensi-
tive to local magnetic fields and measurements can be
noisy. On the other hand, accelerometers measure the
so-called specific acceleration. When the linear acceler-
ation is small, this sensor directly measures the gravity
vector, thus acting as an inclinometer and providing
direct observations of the roll and pitch angles. This
is a common assumption applied in attitude estima-
tion,33,35,37 which has shown to work well in practice.
On the downside, accelerometers are highly sensitive to
vibrations induced by the propellers and require signif-
icant filtering to be useful.34 This in exchange can intro-
duce important latencies in the estimations. Thus,
complementary attitude information is commonly
obtained from gyroscopes, which measure the angular
velocity along the three rotational axes in the body-
attached frame. These sensors are less sensitive to
vibrations and are very reliable. Absolute attitude can
be recovered for the three rotational axes by integrating
the measured angular rates; however, this causes the
estimation error to grow without bound.34

Hence, sensor fusion techniques are used to combine
the information from all three sensors to tackle drift and
noise issues and to obtain more accurate attitude esti-
mates. In literature, the use of linear stochastic filters,
such as Kalman filters34 or extended Kalman filters,38,39

as the means to fuse inertial measurements is very
common. While these filters have been successful in cer-
tain applications, they can have an unpredictable behav-
iour when applied to non-linear systems.40 An alternative
is to use non-linear observer design techniques, which

present strong robustness properties and guaranteed
exponential convergence.33,40 Numerous recent works
have shown successful results in obtaining accurate atti-
tude estimates from noisy and biased measurements
using low-cost IMUs.40,41 In this work we adopt a non-
linear observer formulation to obtain attitude estimates.

Velocity estimation on-board MAVs

Literature regarding MAV velocity estimation is very
vast and is linked to the type of sensing used on-board.
We focus on the approaches applied on MAVs
equipped with 2D LiDARs. On one side, directly dif-
ferentiating the position estimates is avoided as this
provides noisy and inaccurate results.17,18 Instead,
sensor fusion techniques are employed to achieve
high-quality results by combining laser estimates and

inertial measurements. Stochastic filters, such as EKFs,
are predominantly used for this purpose,14,15,20 while
simpler complementary filters have also provided satis-
fying results.18 Other works focus on using a cascade of
filters for further noise reduction. Dryanovski et al.17

first used an alpha–beta filter to obtain rough initial
velocity estimates from the laser position estimates,
which are then used as a correction in a Kalman filter
which includes inertial measurements. Shen et al.15 pro-
posed a cascade of two separate EKFs to achieve accu-
rate results and high rates.

Technical background

Sensor set-up

One of the first design challenges with MAVs is choos-
ing the right on-board sensor set-up, which is tailored
to the specific task at hand. In this section we present
our choice for the sensor set-up.

2D laser rangefinder. Since odometric sensors to measure
raw displacements are not available for MAVs, alter-
native approaches have to be used. In this work we are
interested in using laser range measurements from
LiDARs for this purpose. However, due to payload
limitations only 2D LiDARs can be used,14,16,17 and
complete 3D pose estimates cannot be obtained from
the laser range measurements alone. Thus, additional
sensing has to be used together with sensor fusion tech-
niques to provide reliable 3D pose estimates.

IMU. At the heart of MAV platforms one commonly

finds IMUs comprised of a three-axis accelerometer, a
three-axis rate gyroscope and a magnetometer.33 In this
work magnetometers are not used as they are highly
sensitive to magnetic interference and are very unreli-
able in the proximity of the power lines. We thus only
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rely on an accelerometer and a gyroscope for inertial
measurements.

Altitude sensor. With respect to laser altimeters, barom-
eters allow measuring height without any influence
of the ground’s layout and are thus more appropriate
for outdoor navigation. We mainly focus on barome-
ters as a source of altitude information. While recent
works have obtained impressive results with differential
barometry,31,32 the focus of this work is using on-board
sensing only, and differential barometry was not
considered.

Experimental set-up

Several experiments were carried out with a quadrotor

platform developed at our lab, shown in Figure 2.

This MAV was equipped with a Hokuyo URG-30LX

2D laser scanner mounted horizontally on top and pro-

viding measurements at 40 Hz. This sensor was con-

nected to an on-board Odroid-XU computer, where all

the laser data acquisition was performed. A Quantec

Quanton flight controller card based on an STM32

microcontroller was used to estimate the quadrotor’s

attitude from measurements obtained from an

MPU6000 three-axis accelerometer/gyrometer unit.

Lastly, at the time of the acquisitions, the MAV was

equipped with an SF10/A laser altimeter from

Lightware Optoelectronics, which provides readings at

20 Hz of the distance to the ground along the body-

fixed vertical axis. This platform was used towards the

beginning of this research to conduct several test flights

in front of real electric towers (see Figure 3). The

acquired data were then analysed and served as a basis

to the methodology developed in this work. While our

final results are mostly based on simulations, and focus

on using barometer sensors for altitude estimation, inter-

esting experimental results from these initial test flights

will be presented where altitude information was

obtained from the laser altimeter.

Figure 2. Quadrotor developed at ISIR, equipped with a
Hokuyo URG-30LX 2D LiDAR, an MPU6000 3 axis accelerom-
eter/gyrometer unit and an SF10/A laser altimeter from
Lightware Optoelectronics.

Figure 3. (a) Acquiring laser measurements on an electric tower from a 60 kV distribution line, with the quadrotor from Figure 2
and (b) the equivalent simulation set-up.
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Simulation set-up

The approaches proposed in this work were validated

in simulations using the Gazebo simulation environ-
ment42 and ROS as an interfacing middleware,43 on a

PC with an Intel 3.4 GHz Quad-Core processor and
8 GB of RAM. The Hector quadrotor stack from

ROS44 was used to simulate the quadrotor kinematics
and dynamics. Regarding the sensors, the simulated

IMU published gyrometer and accelerometer readings
at 100 Hz, and the barometer sensor provided measure-

ments at 20 Hz. The 2D laser scanner from Gazebo was
set to match the characteristics of a Hokuyo URG-

30LX sensor: 40 Hz scan frequency, 0:25
�
angular res-

olution and 270
�
field of view (thus 1080 measurements

per scan). This sensor was mounted horizontally on top
of the simulated quadrotor. A CAD model of

an electric tower body was used, whose dimensions
are 2:5m� 3:5m at the ground level and 1:5m� 2m

at a height of 10 m. These dimensions roughly corre-
spond to those of the tower from Figure 3(a). The com-

plete simulation set-up is shown in Figure 3(b). All
algorithm development was done using Cþþ and the

registration and sample consensus modules from the
open source Point Cloud Library.45

Notation

Let us denote by I an inertial North-East-Down frame

located at the centre of the tower at the ground level.
Let B denote a body-attached frame in the MAV’s

centre of mass. For simplicity, we consider that this
frame coincides with the sensor frames. Then, let n ¼
ðx; y; zÞ> denote the position vector of B with respect to
I (i.e. the position vector of the MAV’s centre of mass)

expressed in I . Next, R denotes the rotation matrix
from B to I . Using the Z–X–Y Euler angle convention

with roll /, pitch h and yaw w angles, this rotation
matrix is expressed as

Rðw;/; hÞ ¼ RzðwÞRxð/ÞRyðhÞ

¼

cwch� s/swsh �c/sw cwshþ chs/sw

chswþ cws/sh chcw swsh� cwchs/

�c/sh s/ c/ch

0BBBB@
1CCCCA
(1)

With this notation, TX denotes a rigid body trans-

formation parameterized by a vector X, such that

TXðpÞ ¼ Rðw;/; hÞpþ n; p 2 R
3 (2)

for X ¼ ðx; y; z;/; h;wÞ. This defines the six DoF rigid
body transformation from B to I that transforms the
coordinates of a point from B to I .

We now recall the basic translational dynamics of
multirotor aircraft with respect to the inertial frame33

_n ¼ v

_v ¼ ge3 þ F

m

8<: (3)

where v ¼ ðvx; vy; vzÞ> denotes the linear velocity of B
with respect to I expressed in I ; g is the gravity con-
stant; e3 ¼ ð0; 0; 1Þ>; m is the MAV’s mass and F
¼ ðFx;Fy;FzÞ> is the coordinate vector of the aerody-
namic forces acting on the MAV, expressed in I .
At zero air velocity, these forces are reduced to the
thrust force generated by the propellers. Developing
equation (3) one obtains

_x ¼ vx

_y ¼ vy

_z ¼ vz

_vx ¼ Fx

m

_vy ¼
Fy

m

_vz ¼ gþ Fz

m

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(4)

These equations will be used in our observer formu-
lation to fuse the information from the multiple
embarked sensors and to recover velocity estimates.

2D local pose estimation

In this section we focus on tracking the cross-sections
captured by the individual 2D laser scans, which is
analogous to determining the 2D pose of the MAV
with respect to the electric tower. Specifically, we
explore how basic geometric knowledge of the scene
can be exploited for this purpose, without the help of
additional sensing. As already mentioned, we focus on
the body of electric towers made up of rectangular
cross-sections. Measurements taken with a 2D
LiDAR on the electric tower from Figure 3(a) are
shown in Figure 4, where the portion of the tower
can be easily identified. The large open spaces on the
surface of the tower allow capturing measurements on
all of the tower’s faces (Figure 4(a)). However, due to
occlusions, the entire cross-section is not always visible
(Figure 4(b) to (d)) and very different scanned struc-
tures can be observed. In the worst-case scenario
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(Figure 4(d)), horizontal bars that are part of the

tower’s structure block the lateral and back sides

from view and only the front side of the tower is

captured in the scans.
Tracking the tower thus requires accounting for the

different cases that can be faced. The idea is to gradu-

ally extract notable features from the laser scans, using

basic geometric assumptions, to determine the position

and orientation of the tower. The largest concentration

of laser beams fall on the side closest to the MAV, and

the line segment formed by these points is the most

notable feature in the laser scans. This front line,

denoted as Lfront, allows recovering essential position

and orientation information. The coordinate vectors of

the left and right corners of this front line segment,

expressed in B, are denoted as pleft and pright, respective-
ly. Since Lfront remains visible even in the worst-case sce-

nario (Figure 4(d)), tracking this line is at the heart of

our proposed approach. Then, as the different sides

become visible (Figure 4(a) to (c)), more features are

available, such as the sidelines Lleft and Lright, which pro-

vide complementary orientation information and allow

determining the depth (and hence the centre) of the

cross-section. The back side of the tower is not explicitly

modelled, as it is seldom visible and provides unreliable

information. Then, the shape of the contour captured by

the laser beams allows establishing a connection between

the different features. We consider that this contour is

rectangular. However, for this assumption to hold, the

scan plane must remain horizontal. This will be discussed

in more detail at the end of the section.
We now present a parameterization of the laser

scans based on our observations of Figure 4. Since

the goal is to track the cross-sections directly in the

laser scans, let fxC; yC;wCg denote the 2D pose of the

cross-section’s centre with respect to the body frame B.
Then, C ¼ fOC; i

!
C; j
!

Cg denotes the centre-attached

frame, nC ¼ ðxC; yCÞ> denotes the position vector of C
with respect to B expressed in B and wC denotes the

orientation of C with respect to B. For a completely

horizontal scan plane, this frame is aligned with the

inertial frame I . A second frame F ¼ fOF ; i
!

F ; j
!

Fg
is attached to the front side’s centre, with correspond-

ing position vector nF with respect to B expressed in B
and similar orientation to C. Next, the dimensions of

the cross-section are the width and the depth, which are

denoted as dwidth and ddepth, respectively, which vary

considerably with height due to the tower’s structure.

Figure 4. Laser range measurements acquired on the tower from Figure 3(a). In the best case, all sides are visible (a). Occlusions
sometimes block the lateral and backsides from view (b)–(d). In the worst case, only the front side is visible (d). This happens when
horizontal bars on the tower block the lateral and back sides from view.
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These dimensions are unknown beforehand and will be

estimated from the laser scans. The complete parame-

terization is shown in Figure 5. Note that nC can be

determined from nF and ddepth. If the goal is to stabilize

the MAV in front of the tower, then tracking F is

sufficient and the task is greatly simplified. The

centre-attached frame is important, for example, for a

3D reconstruction of the tower, as will be discussed

later. The following subsections describe the different

steps implemented to track the cross-sections.

Scan segmentation

This step consists in detecting and classifying the laser

beams that fall on the surface of the tower. First, meas-

urements that fall outside of the tower, such as nearby

vegetation (Figure 4(b) and Figure 4(c)), can perturb

the tracking process and must be extracted from the

laser scans. We handle this by setting a fixed outlier

rejection radius from the tracked tower centre and

removing points outside this radius. For the first laser

scan, we provide an initial rough guess of the tower’s

position. Automatic initialization and adapting the

outlier rejection radius to the estimated tower dimen-

sions are subject of future work. Next, the remaining

laser scan is divided into three subsets of points

(expressed in B)

Sfront ¼ fpF;i ¼ ðxF;i;yF;iÞ>; i ¼ 1; . . . ;NFg
Sleft ¼ fpL;j ¼ ðxL;j;yL;jÞ>; j ¼ 1; . . . ;NLg
Sright ¼ fpR;k ¼ ðxR;k;yR;kÞ>; k ¼ 1; . . . ;NRg

(5)

which correspond to the front, left and right sides,

respectively. In the worst-case scenario only the front

side is visible (Figure 4(d)), so Sfront is extracted first.

Then, it can be determined if the lateral sides Sleft and
Sright are visible in the scan.

Extracting the front side. The random sample consensus

(RANSAC) algorithm46 was used for this purpose,

which is a well known technique for point cloud seg-

mentation due to its robustness to outliers and noise.

This algorithm allows finding instances of Lfront in the

laser scans, which was parameterized according to

the line equation in its general form

Lfront : cF þ nxxF þ nyyF ¼ 0; n2x þ n2y ¼ 1 (6)

where (nx, ny) are the coordinates of the normal vector,

expressed in B, and (xF, yF) are the coordinates of a

point on the front line, also expressed in B. To avoid

mistakenly extracting the sidelines, a maximal inclina-

tion wmax was imposed to the line model, which was

determined from the previously extracted front line.

For the first scan, it was assumed that there was a

rough knowledge of the MAV’s orientation with

respect to the tower. Then, the RANSAC algorithm

considers as inliers all points that fall within a distance

threshold dthresh from the model (as shown in Figure 6),

and the subset Sfront is obtained upon convergence.

As a result, an initial estimate of the coefficients of

Lfront is also obtained.

Extracting the lateral sides. Next, we determine if the lat-

eral sides are visible in the laser scan. First, the front

side’s corners are identified from the extracted points.

Since the lateral sides of the tower are perpendicular to

Figure 5. Parameterization of the electric tower’s cross-
section. Figure 6. Detecting the front side.
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the front line, projecting their points onto the estimated

Lfront results in a high concentration of points around

the location of the front corners. Thus, pright and pleft
are obtained as the two end points of the projected

points on the front line. Now, a search region can be

determined for the left and right sides by tracing a line

through each of the front corners, perpendicular to the

front line. The candidate points for Sleft and Sright
are extracted by selecting points within the distance

threshold dthresh as shown in Figure 7. The candidate

point sets are accepted only if they contain at least Nmin

points and if the maximum separation between the

points is at least dmin. This is done to determine if

the sides are sufficiently visible to provide reliable

information.

Geometric fitting

The goal is now to find the geometric model that best

fits the extracted points. From the previous step, three

different situations can arise. First, if no side was

detected, the estimation process stops since no useful

information is available. Second, if only the front side

Sfront was detected, the coefficients for Lfront are directly

provided by the RANSAC algorithm and the orienta-

tion can be estimated, but no depth information is

available. Lastly, if the front side and at least one of

the lateral sides was detected, then the rectangular

shape of the cross-section can be taken into account

to recalculate Lfront which better fits the data, and to

obtain Lleft and Lright. The following formulation

applies to the case when both Sleft and Sright are

detected, but the same procedure is valid when only

one of the lateral sides is found. Since the lateral

sides are perpendicular to Lfront, then, recalling the

definition from equation (6), their normal vector

is ð�ny; nxÞ and the cross-section is defined by

Lfront : cF þ nxxF þ nyyF ¼ 0;

Lleft : cL � nyxL þ nxyL ¼ 0;

Lright : cR � nyxR þ nxyR ¼ 0;

n2x þ n2y ¼ 1

8>>>>><>>>>>:
(7)

Then, evaluating the extracted point sets Sfront; Sleft
and Sright from equation (5) with their respective line in

equation (7), and expressing in matrix form, one obtains

1 0 0 xF;1 yF;1

..

. ..
. ..

. ..
. ..

.

1 0 0 xF;NF
yF;NF

0 1 0 yL;1 �xL;1

..

. ..
. ..

. ..
. ..

.

0 1 0 yL;NL
�xL;NL

0 0 1 yR;1 �xR;1

..

. ..
. ..

. ..
. ..

.

0 0 1 yR;NR
�xR;NR

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

cF

cL

cR

nx

ny

0BBBBBBBB@

1CCCCCCCCA
¼ r (8)

where r ¼ ðr1; � � � ; rNÞ>, with N ¼ NF þNL þNR, are

the residuals, and jrij corresponds to the distance from

a point to the line. The geometric fitting problem is for-

mulated as finding the coefficients of equation (7) for

which the sum of squared distances is minimal. That is

minjjrjj2 ¼ min
XN
i¼1

r2i ; subject to equation ð8Þ;

and n2x þ n2y ¼ 1

(9)

which is a constrained least squares problem, with non-

linear constraint n2x þ n2y ¼ 1 to guarantee solution

uniqueness. This is solved numerically following the pro-

cedure proposed inGander andHrebicek.47 The end result

is an estimate of the parameters of equation (7). At this

point, pleft and pright are recalculated from the line inter-

sections, as they will be required in the following step.

Calculating the position and orientation

We first determine the position and orientation of

the front frame F . Recovering the orientation ofFigure 7. Detecting the left and right sides.
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the tower results straightforward from the coefficients

of Lfront, as

wC ¼ arctan2ðny; nxÞ (10)

Then, nF is calculated as the midpoint between pright
and pleft as

nF ¼ pright þ pleft
2

(11)

Next, the dimensions of the cross-section are deter-

mined. The width dwidth corresponds to the distance

between the two front corners, and the depth ddepth
is chosen as the distance of the point in Sleft or Sright
furthest from Lfront. Finally, the coordinates of nC are

calculated as

nC ¼ nF þ ddepth
2

coswC

sinwC

 !
(12)

It is important to highlight that the visible cross-

section can change drastically from one scan to the

other, as is shown in Figure 4. This in return

can produce large jumps in the estimates, since they

are obtained from each individual laser scan.

To reduce this effect and to obtain smoother results,

nF ; wC and ddepth are filtered using first-order low-

pass filters.

Limitations

Throughout the formulation of the tracking approach

it was assumed that the cross-sections captured in

the scans were rectangular. For this assumption to

hold, the scan plane must remain horizontal. This is

reasonable for most inspection tasks, where careful

inspections require the MAV to operate at low

speeds and inclinations remain small. However, exter-

nal disturbances, such as strong winds, can produce

large inclinations and bring the MAV to a configura-

tion where the geometric model from equation (7)

is no longer valid. Under such circumstances, tracking

the tower with this approach will result inaccurate.
Another underlying constraint is that the MAV

must always fly on the same side of the tower. This

occurs because the entire approach is based on tracking

Lfront. Since this line corresponds to the side of the

tower closest to the MAV, if the MAV navigates

around the tower eventually a different line will be

tracked. This will cause shifts in the position and ori-

entation estimates, since they are defined with respect

to Lfront (equations (10) and (11)).

Simulation results

Simulations were carried out using the set-up from
Figure 3(b) to evaluate the performance of the proposed
tracking algorithm. The initial position of the tower’s
centre with respect to the MAV was given, and the out-
lier rejection radius (as discussed in the ‘Scan segmenta-
tion’ section) was set to 4 m. The parameters for the
RANSAC scan segmentation were chosen as dthresh ¼ 5
cm and wmax ¼ 10

�
. In the first test, the MAV was flown

in front of one side of the tower for different heights and
distances from the tower as shown in Figure 8.
This figure also illustrates an example of a tracked
cross-section with its corresponding front and centre
frames. The resulting position and orientation estimates
are compared to the simulation ground truth in Figure 9
(a), for a portion of the flight. As can be seen, through-
out this flight the proposed approach is capable of effec-
tively tracking the tower’s centre. This is further verified
from the absolute estimation errors, shown in Figure 9
(b), which remains below 5 cm for the translation
components, and below 1

�
for the yaw angle.

In a second test, the MAV was flown around the
tower, and the results are shown in Figure 10. In this
case, the algorithm clearly fails at t ¼ 13 s. This hap-
pens when the MAV transitions from one side of the
tower to the other and the algorithm then starts track-
ing a different front line. This causes the 90

�
error in

the orientation as seen in Figure 10. While the algo-
rithm can track the centre of the tower again (t ¼ 15 s
as the position errors drop), the orientation error is not
corrected. This illustrates one of the main limitations of
the proposed approach.

Figure 8. The simulated flight in front of the electric tower. The
blue line indicates the trajectory followed by the quadrotor. An
example of a tracked cross-section is visible on the right.
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Experimental results

The proposed tracking algorithm was also tested on data

previously acquired from several manual test flights,

where the MAV from Figure 2 was flown vertically in

front of an electric tower, as shown in Figure 3(a). An
initial rough guess of the tower’s centre with respect to
the MAV was given, and the outlier rejection radius was
set to 4 m. As already mentioned, besides the 2D
LiDAR, the MAV was additionally equipped with a

Figure 9. For the simulated flight from Figure 8: (a) The 2D pose of the tracked cross-section compared to the simulation ground
truth and (b) absolute estimation errors.
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laser altimeter and an IMU. Unfortunately, at the time

of the acquisitions no GPS sensor was used, and a

ground truth is not available to determine the estimation

errors. However, recalling that our tracking algorithm

estimates the previously unknown depth and width of

the tower’s cross-sections, an alternative way of validat-

ing the approach is to determine if these dimensions are

coherent with the 3D geometry of the real tower.

Thus, Figure 11 illustrates the estimated dimensions

combined with their corresponding estimated height

from the laser altimeter readings, for one of the test

flights. The efficiency of the 2D tracking algorithm is

evident, since electric towers with rectangular cross-

sections have a depth and width that vary linearly with

height, a behaviour that is clearly reflected in Figure 11.

Modelling the electric tower. A by-product of tracking the

cross-section’s centre is the possibility of deriving a 3D

representation of the electric tower from the observed

data, such as a 3D point cloud reconstruction from the

laser scans. A simple procedure consists in transform-

ing each 2D scan into the estimated centre frame C, and
projecting into 3D coordinates using the height meas-

urements and the attitude estimates from the IMU

measurements. This was tested on the same vertical

flight data used to obtain Figure 11, and the final

result is shown in Figure 12. Here, the efficiency of

the tracking method is also evident, as the point

cloud is capable of capturing a great amount of

detail, and presents minimal deformations despite

being made from data acquired on-flight.
A second possibility is to instead derive an abstract 3D

geometric representation of the tower’s body from the

estimated dimensions presented in Figure 11. A simple

approach is to approximate each face as a planar seg-

ment,6 and the edges of the tower as the intersection of

adjacent planes mj (j ¼ 1; . . .; 4), expressed as

mj : ajxþ bjyþ cjzþ dj ¼ 0; j ¼ 1; . . . ; 4 (13)

where each mj is associated with a face of the tower.

Obtaining the planes’ coefficients results straightfor-

ward from Figure 11, as the slope of the fitted lines is

directly related to the slopes of the planes. For exam-

ple, for this particular case this resulted in

m1 : �x� 0:062z� 1:643 ¼ 0

m2 : y� 0:046z� 1:265 ¼ 0

m3 : x� 0:062z� 1:643 ¼ 0

m4 : �y� 0:046z� 1:265 ¼ 0

8>>>>><>>>>>:
(14)

which correspond to the front, right, back and left

sides, respectively. With respect to an accurate point

cloud reconstruction, which would require exploring

Figure 10. An example of the tracking method failing for a flight around the electric tower. Failure occurs at t ¼ 13 s.
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extensive sections of the electric tower, this simplified
planar representation can be obtained with more ease,
as it only requires exploring a portion of the tower.
As will be seen in the following sections, the main
importance of these results is that both 3D representa-
tions of the tower can be exploited for pose estimation
purposes.

Discussion

Since the final goal is to achieve autonomous naviga-

tion capabilities, all of the MAV’s 6 DoF must be

determined. For this purpose, this proposed tracking

approach could be complemented with additional sens-

ing to recover complete 3D pose estimates, for exam-

ple, using inertial measurements to estimate the roll

and pitch angles, and an altitude sensor, such as a

laser altimeter or a barometer. However, the con-

straints imposed on the MAV’s motion by this tracking

approach are too restrictive for general inspection tasks

that may require navigating continuously on all sides of

the tower. An alternative strategy is thus to divide the

inspection task into two steps. A first step consists in

modelling the electric tower, which would allow to

compensate for the limited information captured by

the individual laser scans. The idea is to perform an

initial vertical flight in front of the tower, in which

our tracking algorithm is capable of providing a quan-

titative model of the tower (Figures 11 and 12).

A second step would then focus on 3D pose estimation

and navigation, using the estimated model to track the

tower in general flight conditions. With such a model-

based approach to recover pose estimates, the scan

Figure 11. The estimated depth and width as a function of the height for the electric tower from Figure 3(a), fitted with
straight lines.

Figure 12. Partial 3D point cloud reconstruction of the electric
tower from Figure 3(a), for a vertical flight in front of the tower.
The laser scans are aligned using the tracked cross-section’s
centre, the quadrotor’s altitude (from the laser altimeter) and
attitude (from the IMU measurements).
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plane no longer needs to remain horizontal and less
restrictions are imposed on the MAV’s movement.
For the following sections, we consider that the first
modelling step has already been performed based on
our tracking approach, and instead focus the discus-
sion on how to recover the complete 3D pose estimates.

3D local pose estimation

In this section, we present how to obtain complete 3D
pose estimates with our sensor set-up. As is typically
done with MAVs, the estimation process is broken
down into several components.15,17 Recalling that the
complete 6 DoF pose from B to the inertial frame I is
described by fx; y; z;/; h;wg, the 3D pose is recon-
structed as follows: fx; y;wg are estimated from the
laser range measurements; then, as will be discussed,
{z} is estimated from the laser range measurements
fused with the barometer measurements; finally, f/; h}
are obtained by fusing accelerometer and gyrometer
measurements from the IMU. The following subsections
explain each component of the estimation process.

We first explore how the classic ICP algorithm that
has been successful indoors can be extended to the case
of an electric tower inspection. This technique requires
the surrounding environment to have sufficient geomet-
ric detail and is not suitable for highly unstructured
scenarios often faced outdoors.17 However, in an out-
door inspection scene, the rigid and well-defined struc-
ture of the electric towers has sufficient geometric detail
to easily contrast from surrounding unstructured
objects. This was exploited in the previous section to
retrieve 2D pose estimates and will now be used to
adapt the ICP algorithm. While common implementa-
tions focus on aligning pairs of scans to retrieve pose
information in 2D, we instead treat the problem in 3D
by introducing previous knowledge of the tower’s
geometry in the registration process. We now present
two possible implementations of the ICP algorithm.

Adapting the ICP algorithm: First proposed approach

In this first approach we follow a line of work typically
adopted with the ICP algorithm in navigation tasks,
consisting in aligning point clouds. The idea is to main-
tain the approach as general as possible, as no specific
parameterization of the scene is required and pose
information is recovered directly from the point corre-
spondences. Let the current scan be represented by a set
of 2D points, denoted Sp ¼ fp1; p2; . . . ; pNp

g. For sim-
plicity, consider that Sp is expressed in the body-
attached frame B. Then, let Sq ¼ fq1; q2; . . . ; qNq

g
denote the 3D reference set, expressed in the inertial
frame I , which corresponds to a 3D point cloud recon-
struction of the inspection scene, assumed to be

acquired beforehand, e.g. from our tracking approach
as discussed in the previous section. The goal is to find
the rigid body transformation that best aligns Sp to Sq.
The baseline ICP24 was used, with several modifica-
tions, notably in the minimization step. Each iteration
k (starting from k¼ 0) is carried out as follows:

1. Initialization: The current estimate TXk
is used

to transform all 2D points pi 2 Sp into 3D
coordinates in the inertial frame I , obtaining Sp0 .
For the first iteration, the parameter vector is
X0 ¼ ðxlaser; ylaser; zlaser;/imu; himu;wlaserÞ, such that
{xlaser; ylaser; zlaser;wlaserg are obtained from the scan
registration for the previous laser scan and f
/imu; himug from the IMU attitude estimation (as
will be explained briefly).

2. Matching: Corresponding pairs ðp0i; qiÞ are estab-
lished by associating each point in Sp0 to the closest
point in Sq. This correspondence search is the most
time-consuming step of the algorithm.24 To speed up
the matching process we make use of K–D trees, as
is commonly done with ICP.24,26

3. Rejection: Point pairs separated by more than a fixed
distance threshold dmin are removed. This is mainly
helpful with accuracy and stability in the presence of
outliers,26 which in this case are typically due to
surrounding vegetation.

4. Minimization: The goal is to find the transformation
TXmin

that minimizes the sum of squared errors,
using the Euclidean distance as the distance
metric.24 For the N remaining point pairs ðp0i; qiÞ,
this leads to the following optimization problem

Xmin ¼ argminX
XN
i¼1

jjTxðp0iÞ � qijj2;

such that ð/; hÞ ¼ ð0; 0Þ
(15)

which is solved with the Levenberg–Marquardt algo-
rithm, since it allows to obtain accurate results and deal
with initialization errors without significant speed
losses.48 The components / and h of X are neglected
during the minimization, since /imu and himu used at the
initialization are precise and reliable. This reduces the
optimization problem from a 6D space to a 4D space,
which further limits the risk of divergence due to local
minima, and provides a more reliable solution. This is
the main modification of the algorithm.

5. Finally, the current estimate is updated as

TXkþ1
¼ TXmin

� TXk
(16)
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Due to the previous step, TXmin
only updates the

{x; y; z;wg components of TXk
in each iteration.

The end result of the scan registration process is an
estimation of the 3D translation vector ðxlaser; ylaser;
zlaserÞ and the yaw angle wlaser. The main novelty is
thus that altitude estimates can now be recovered,
which is a direct consequence of introducing a 3D
point cloud reconstruction of the tower in the registra-
tion process.

Limitations. Besides the drawbacks inherent to the ICP
algorithm discussed at the beginning of this article, other
limitations can be pointed out. Evidently, this approach
is restricted to sections of the tower captured in the 3D
point cloud reconstruction. Pose estimates cannot be
recovered in previously unexplored or occluded sections.
For this approach to be effective, the 3D point cloud
must accurately capture the complete electric tower,
which is a complex task. With our tracking algorithm
from the previous section this requires exploring exten-
sive portions of the tower. Other existing solutions rely
on offline processing of data from powerful and expen-
sive 3D LiDARs capable of capturing dense measure-
ments from long distances.6,19 This, however, goes
beyond the scope of this work.

Further complications arise regarding the altitude
estimates. For a 2D LiDAR, measurements from the
individual scans fall within the same plane and do not
directly capture the MAV’s altitude, which is instead
determined from the point correspondences with the
3D point cloud uniquely. The altitude estimates are
thus more unreliable and prone to errors, as will be
seen in the simulation results. Furthermore, altitude
estimation is highly dependent on the inclination of
the faces of the tower. In the worst-case scenario, no
altitude information can be recovered for completely
vertical faces, which is a situation rarely faced with
high voltage electric towers considered in this work.
These drawbacks justify the use of an additional
barometer sensor. However, as will be seen, this pro-
posed ICP implementation will overall perform well if
the electric tower remains within the sensor’s field of
view, and particularly stable results can be achieved for
near-hovering conditions. This quality holds for alti-
tude estimates and will be exploited to track the barom-
eter drift.

Adapting the ICP algorithm: Second
proposed approach

The difficulties in obtaining an accurate 3D point cloud
reconstruction of the inspection scene can render the
previous approach impractical. Nonetheless, the ICP
algorithm can be applied to a wide variety of represen-
tations of geometric data such as line sets, triangle sets,

parametric surfaces, among others.24 Therefore, an
alternative is to align the laser scans onto the simplified
planar representation of the tower body from equation
(13), which is simpler to obtain than a complete
point cloud reconstruction, as previously discussed.
To achieve this, we adopt a projection-based matching
strategy,49,50 where, after initialization, the correspond-
ing points qi are calculated as the orthogonal projec-
tion of every point p0i 2 Sp0 onto the closest planar
segment from mj. This substitutes the time-consuming
correspondence search previously used, and, as will be
seen, allows obtaining significant speed gains.26

Thus, in this approach, the matching step (step 2)
for each point p0i is now carried out as follows:

• For the tower face mj (starting with j¼ 1), calculate
the two edge lines LA and LB as the intersection with
the two adjacent planes.

• Project p0i orthogonally to the plane equation of mj

(equation (13)), obtaining q. We have to determine if
q falls within the planar segment delimited by LA

and LB. This is done as follows:

– Project pi
0 to the edge lines LA and LB, obtaining

qA and qB, respectively.
–Let �AB ¼ qB � qA.

– Calculate the normalized projection q ¼ ðq�qAÞ�ð �ABÞ
jj �ABjj2 .

– If 0 < q < 1, then q falls within the planar seg-
ment, and the projection is q.

– If q � 0, then q falls outside of the planar segment
and the projection is qA.

– If q � 1, then q falls outside of the planar segment
and the projection is qB.
These steps are repeated for the four faces of the

tower, and the projected point which yields the mini-
mum distance to pi

0 is chosen as the corresponding
point qi. Then, the remaining steps from the previous
implementation are left unchanged. As before, the
output is ðxlaser; ylaser; zlaser;wlaserÞ.

Limitations. One of the main drawbacks of this formu-
lation is that it applies specifically to the case of rect-
angular cross-sections. The projection strategy would
have to be changed for a different tower geometry.
In contrast, the point cloud approach is more general
in this matter and would not require any modifications.
As before, no altitude information can be recovered if
the faces of the tower are completely vertical.

Altitude estimation

The altitude estimates obtained previously from the
laser range measurements have a strong dependence
on the shape of the tower and can result unreliable.
In contrast, barometer measurements are independent
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from the shape of surrounding structures, but suffer
from drift over time due to varying atmospheric con-
ditions. Here, we seek to combine both sources of alti-
tude information in order to tackle their respective
drawbacks. We first recall the MAV’s vertical dynamics
with respect to an inertial frame I from equation (4)

_z ¼ vz

_vz ¼ gþ Fz

m

8<: (17)

Accurate vertical velocity estimates can be obtained
by fusing the barometer and IMU measurements,31,32

and are thus obtained separately, as will be addressed
in a later discussion. Therefore, in this section we
consider that vz is a known input, and instead use the
following system

_z ¼ vz

_bz ¼ 0

(
(18)

where bz is the unknown barometer drift, which is
modelled as a constant as it varies slowly in time,
and is defined by the relationship zbaro ¼ zþ bz,
with zbaro denoting the barometer measurement.
This leads to a simple second-order feedback observ-
er formulation

_bz ¼ vz � kzðbz � �z1Þ
_bbz ¼ �kbzðbz � �z2Þ

(
(19)

where ðkz; kbzÞ are the estimation gains, and �zn is an
auxiliary variable defined as

�zn ¼ knðzbaro � bbzÞ þ ð1� knÞzlaser with 0 � kn � 1;

n ¼ 1; 2

(20)

which is the weighted sum of the laser altitude esti-
mates zlaser and barometer readings zbaro compensated
for bias. The weights kn allow one to determine how
each sensor contributes to the estimation of each state.
In particular, as kn increases, higher priority is given to
the barometer readings. The reasoning behind this
parameterization is to use the laser estimates mainly
to keep track of slowly varying barometer bias bbz and
to maintain the more reliable barometer measurements
to estimate bz. Choosing the weights k1 ¼ 1 and k2 ¼ 0
achieves this purpose. The stability analysis for this
observer and details on how to tune the gains ðkz; kbzÞ
are given in Appendix 1.

Attitude estimation

We now present our proposed non-linear observer for-

mulation using the accelerometer and gyroscope meas-

urements. As yaw estimates are already obtained from

the laser scan registration, the main goal is to

recover estimates of the roll / and pitch h angles.

First, let c ¼ ðc1; c2; c3Þ> denote the vertical axis of I
expressed in B as

c ¼ R>e3 (21)

with e3 ¼ ð0; 0; 1Þ>. From the rotation matrix defini-

tion of equation (1), it follows that c contains implicitly

the MAV’s roll and pitch angles, since

/ ¼ arcsin c2ð Þ
h ¼ atan2 �c1; c3ð Þ

(22)

Recalling that a MAV’s rotational kinematics is

given by33

_R ¼ RSðxÞ (23)

with Sð:Þ the skew-symmetric matrix associated with

the cross-product (i.e. SðxÞy ¼ x� y; 8x; y 2 R
3), and

x the angular velocity vector from B to I , expressed in

B. Then, the kinematics of c can be deduced from equa-

tions (21) and (23), and results in

_c ¼ c� x (24)

This is the basis of our observer formulation.

As previously mentioned, the goal is to recover roll

and pitch estimates from the gyrometer and accelerom-

eter readings. Let am denote the accelerometer meas-

urements expressed in B, which measure the specific

acceleration acting on the MAV’s airframe33

am ¼ R>ð _v � ge3Þ ¼ R> _v � gc (25)

Then, under the assumption of negligible linear

acceleration, one has35

am�� gc (26)

which shows that accelerometers provide direct obser-

vations of the roll and pitch angles (and of c). Thus, the

following non-linear observer for c is proposed

bc: ¼ bc � ðxm � kcðam �bcÞÞ; kc > 0 (27)

with xm the angular velocities measured by the gyro-

meter in B.
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To analyse the stability of this estimator, consider

the candidate Lyapunov function L ¼ 1� cTbc. From
equations (26) and (27) one has

bc: �bc � xm � kcgðbc � cÞ� �
(28)

Then, assuming that this approximation of bc: is per-
fect, and that xm ¼ x, it can be proven that
_L ¼ �kcgjjbc � cjj2, which is decreasing along the solu-

tions of the system if, initially, bc and c are not opposite

to each other, and kc > 0. This implies in particular the

convergence of bc to c.

Gain scheduling. The approximation from equation (26) is

commonly used in attitude estimation when dealing with

accelerometers,35 but only holds when flying at constant

velocity or near stationary flight conditions. An added

benefit of non-linear observer formulations is that the

estimation gains can be tuned in real time during

flight.33 This can be exploited to adapt the observer to

changing dynamic conditions, in particular, to high

acceleration states where the assumption from equation

(26) is no longer valid and estimation performance is

deteriorated. In such situations, which typically last for

short periods of time, it is better to lower the estimation

gains and to rely on the gyrometer measurements since

they are scarcely affected by the linear accelerations,51

and can provide short-term rotations accurately.38

A basic strategy is thus to detect highly accelerated

states by comparing the magnitude of the accelerome-

ter readings to the gravity acceleration.36,37,51 Let a~m

denote the absolute accelerometer measurement error
with respect to gravity as

~am ¼ jjjamjj � gj; g ¼ 9:81
m

s2
(29)

This magnitude provides a simple criteria to determine
the dynamic state of the MAV, as ~am�0 for near-
hovering conditions, and large values of ~am correspond
to highly dynamic motion. The estimation gains can then
be adapted accordingly. Yoo et al.36 adopt a simple
switching strategy to choose the gain between a set of
nominal values corresponding to no-acceleration, low-
acceleration or high-acceleration states. Instead, Valenti
et al.51 set a nominal gain for hovering state, which is then
decreased linearly during transitions to high acceleration
states. We adopt a strategy similar to Valenti et al.51 Let
kL and kH denote the nominal gains during low- and
high-acceleration states, respectively; the idea is to tran-
sition smoothly between these gains. The following gain
scheduling approach is proposed

kcð~amÞ ¼ kLe
�a~am þ kHð1� e�a~amÞ; a > 0 (30)

where a is an arbitrary positive constant that deter-
mines the steepness of the transitions between kL and
kH. It is simple to verify that as ~am�0, then kc remains
near kL, and as ~am increases, then kc decreases towards
kH, which is the desired behaviour. This is further illus-
trated in Figure 13 for kL ¼ 0:1; kH ¼ 0:01 and differ-
ent values of a. It can be noted that a¼ 0 corresponds
to the constant gain case, and as a increases, the gains
decrease faster towards kH.

Figure 13. An example of the attitude observer gains according to equation (30), for different values of a.
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Complete rotation matrix reconstruction. The estimated roll

/imu and pitch himu angles are recovered from bc and

equation (22) as

/imu ¼ arcsin bc2ð Þ
himu ¼ atan2 �bc1;bc3ð Þ

(31)

Finally, the complete estimated rotation matrix bR is

recovered by combining the estimated angles as

bR ¼ RzðwlaserÞRxð/imuÞRyðhimuÞ (32)

This matrix is subsequently used at each initializa-

tion of the laser scan registration, and for the velocity

estimation described in the following section.

Velocity estimation

In the previous section, the complete six DoF pose of

the MAV was determined from the sensor measure-

ments. The goal is now to derive velocity estimates by

combining the pose estimates with the inertial measure-

ments from the IMU. For this purpose, we make use of

the translational dynamics of the MAV with respect to

the inertial frame I from equation (3) to formulate

velocity observers. In the following analysis, the exter-

nal aerodynamic forces F ¼ ðFx;Fy;FzÞ> from equa-

tion (4) are determined from the accelerometer

readings am and the estimated attitude bR as

F ¼ m bRam (33)

Since different sensors are used for the different

states, the horizontal and vertical velocity components

are analysed separately.

Horizontal velocity estimation

From equation (4) it follows that the dynamics for {x,

y} in I are two independent second-order systems.

Estimating the horizontal velocities results straightfor-

ward and is achieved with simple feedback state

observers defined as

( _bx ¼ bvx � kxðbx � xlaserÞ

_bvx ¼ Fx

m
� kvxðbx � xlaserÞ; kx; kvx > 0

_by ¼ bvy � kyðby � ylaserÞ

_bvy ¼ Fy

m
� kvyðby � ylaserÞ; ky; kvy > 0

8><>:
(34)

where ðkx; kvxÞ and ðky; kvyÞ are the scalar observer
gains, which guarantee exponential convergence if
they are positive, and ðxlaser; ylaserÞ are the estimates
obtained from the laser scan registration described in
the previous section.

Vertical velocity estimation

As previously mentioned, satisfying estimates of the
vertical velocity can be recovered from barometer and
accelerometer measurements.31,32 As will be seen, these
estimates remain accurate even in the presence of
barometer drift. Recalling the vertical dynamics from
equation (17), we now formulate the following feed-
back state observer

_bz ¼ bvz � kzðbz � zbaroÞ
_bvz ¼ gþ Fz

m
� kvzðbz � zbaroÞ; kz; kvz > 0

8<: (35)

where ðkz; kvzÞ are the observer gains, and zbaro are the
barometer altitude measurements. The altitude esti-
mates from the laser scan registration are not included
as they only degrade the performance. The vertical
velocity estimates bvz are subsequently used as an
input to the altitude observer from equation (19).

Simulation results: 3D local

pose estimation

The purpose of this section is to assess the performance
of the different components of the pose estimation pro-
cess. The results presented here were obtained
from simulated flights carried out using the previously
discussed simulation set-up, illustrated in Figure 3(b).
For the flights, a set of waypoints was given for
the quadrotor to follow, accounting for a complete
displacement around the tower. Meanwhile, the
MAV’s yaw angle was oriented towards the centre of
the tower, so that the latter remains in the LiDAR’s
field of view. Since the focus of this section is to assess
the quality of the pose estimates, the simulation ground
truth is directly used to stabilize the MAV’s
position and attitude. The complete flight is shown in
Figure 14.

Attitude estimation results

The attitude observer from equation (27) was used to
fuse the accelerometer and gyrometer measurements
and recover estimates of the roll and pitch angles
f/; hg. We now analyse the performance of this observ-
er throughout the flight. Figure 15(a) illustrates the
deviations of the accelerometer readings from the accel-
eration of gravity (~am from equation (29)) for a portion
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of the flight. As can be seen, the MAV spends larger
amounts of time in low acceleration states (~am�0).
Then, the peaks correspond to instants when the
MAV accelerates towards a different waypoint. The
idea is to adapt the observer to these peaks by lowering
the estimation gain kc. This was carried out with the
gain scheduling approach from equation (30). Based on
results observed in the simulations, the nominal gains
were set to kL ¼ 0:1 and kH ¼ 0:01. Moreover, the esti-
mation process was repeated for different values of the
parameter a, from a¼ 0, which corresponds to the con-
stant gain case since kc ¼ kL (from equation (30)), to
a¼ 100. As explained, this parameter determines the
steepness of the transitions between the two nominal
gains. The resulting scheduled gains for a portion of the
flight are shown in Figure 15(b). When comparing the
two figures, it can be noted the gain kc rapidly drops in
the presence of acceleration peaks (e.g. t ¼ 26 s and
t ¼ 30 s), which is the desired behaviour. However, as
a increases, the gains can result overly sensitive to small
changes in ~am (t ¼ 38 s for a¼ 100).

Figure 15. For a portion of the flight from Figure 14: (a) The deviations of the accelerometer readings from gravity
according to equation (29). (b) The resulting scheduled gains for different values of a. The gains become more reactive for
larger values of a.

Figure 14. The simulated flight around the tower. The blue line
indicates the trajectory. Throughout the flight the quadrotor was
oriented towards the centre of the tower.
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Next, the absolute estimation errors with respect
to the simulation ground truth are shown in
Figure 16(a) and (b) for the roll and pitch angles,
respectively. On the one hand, when comparing
Figure 16(a) and (b) to (c), it can be noted that
the observer can accurately trace the roll and pitch
angles in low acceleration states (when ~am�0) for all
cases, and the errors for the most part remain below
1
�
. On the other hand, the largest estimation errors

correspond to peaks in ~am (e.g. t ¼ 26 s and t ¼ 40 s),

reaching a maximum for the constant gain observer
of 2:45

�
for the roll angle, and 2:62

�
for the pitch

angle. In contrast, as the parameter a is increased,
error peaks related to ~am are now largely suppressed
and the overall performance is improved with the
simple gain scheduling strategy. Based on these
results, a gain scheduled attitude estimation with
a¼ 10 was used for the following sections, as it
offers a good trade-off between sensibility to changes
in ~am and estimation error reduction.

Figure 16. For the attitude observer from equation (27) and different values of a: (a) Absolute roll estimation error, (b) absolute
pitch estimation error and (c) the corresponding ~am. As a increases, the errors caused by peaks in ~am are reduced.
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Laser-based local pose estimation results

The two proposed implementations of the ICP algo-
rithm were tested in the simulations to recover esti-
mates of the remaining states fx; y; z;wg. In the first
case, the laser scans were aligned to the 3D point
cloud reconstruction shown in Figure 17(a), which
was obtained beforehand from the simulated tower
shown in Figure 3(b), following the same procedure
for Figure 12 based on our tracking approach. In the
second case, the laser scans were instead aligned to
the planar representation of the tower illustrated in
Figure 17(b), which was also obtained beforehand fol-
lowing the procedure used for Figure 11 and equation
(14), relying on our tracking approach. Here, the esti-
mated coefficients from equation (7) resulted in

m1 : �x� 0:076z� 1:749 ¼ 0

m2 : y� 0:046z� 1:219 ¼ 0

m3 : x� 0:076z� 1:749 ¼ 0

m4 : �y� 0:046z� 1:219 ¼ 0

8>>>>><>>>>>:
(36)

which correspond to the front, right, back and left
sides, respectively. In both ICP implementations, an
initial rough knowledge of the MAV’s position with
respect to the tower was given for the first scan regis-
tration. For each subsequent laser scan, the estimation

process was initialized with the results from the previ-

ous scan registration and attitude estimates from the

IMU measurements.
We now analyse the performance of the two

approaches. First, the computation time required for

the scan registration in both cases is shown in

Figure 18. As expected, using the planar model results
in significantly faster estimates with an average of

1:4ms, compared to the point cloud case average of

16ms. This shows the effectiveness of the projection-

based matching strategy used to establish point corre-

spondences, which avoids the computationally extensive

correspondence search required for the point cloud

registration.
Next, Figure 19 compares the MAV’s ground truth

position with the estimates from both approaches. As

can be seen, the results obtained with the planar model

approach effectively follow the ground truth for the

duration of the flight. However, the point cloud

approach ultimately fails before completing the flight.

This can be further observed from the absolute errors
shown in Figure 20. For the planar model case, the {x,

y} errors remain below 5 cm (Figure 20(a) and (b)).

Furthermore, the yaw estimates are also very precise,

with a maximum error of 0:8
�
(Figure 20(d)). In these

figures it can be noted that the point cloud approach

achieves similar performance before failing (near

t ¼ 40 s). Then, particular attention must be given to

Figure 17. The two models used as reference in the ICP algorithm to align the laser scans: (a) Point cloud reconstruction and (b)
planar model.
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the altitude estimation errors from Figure 20(c). As

previously pointed out, the horizontally placed 2D

laser scanner captures very limited altitude informa-

tion. As a result, it was observed throughout the sim-

ulations that the altitude estimates were easily

deteriorated in complicated situations, for example,

when the horizontal bars on the tower block most of

the sides from the sensor’s view (as in Figure 4(d)). For

the planar model case, this typically caused spurious

estimates, with the absolute error jumping above

20 cm (e.g. t ¼ 20 s and t ¼ 30 s in Figure 20(c)). For

the point cloud case, this eventually caused the

Figure 18. Comparing the computation time for the laser scan registrations. The planar model approach is approximately 10 times
faster. ICP: iterative closest point.

Figure 19. Comparing the ICP position estimates with the ground truth, for the simulated flight from Figure 14. The point cloud
approach fails before finishing the flight. ICP: iterative closest point.
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approach to completely fail (around t ¼ 30 s in Figure
20(c)). Despite these complications, in Figure 20(c) it
can be observed that the altitude errors remain at
acceptable levels below 10 cm throughout most of the

flight for the planar case, and similarly for the point
cloud approach before failure. Properly exploiting the
limited altitude information requires special attention
and is addressed in the following section.

Figure 20. Absolute estimation errors with respect to the simulation ground truth for the results from Figure 19, for both
implementations of the ICP algorithm. ICP: iterative closest point.
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Altitude estimation results

We now present the results for the altitude observer

from equation (19), which fuses the laser altitude

estimates from both implementations of the ICP
algorithm with the barometer measurements.

Barometer readings are sensitive to changes in atmo-
spheric conditions (strong winds, temperature

changes), which generally translates into a slowly

varying drift. In order to study the observer’s behav-
iour under large barometer drift, this was simulated

as a sinusoid with a maximum speed of 1 m/min. As

previously mentioned, the weights from equation (20)
were chosen as k1 ¼ 1, to rely mainly on the barom-

eter measurements to estimate the altitude, and

k2 ¼ 0, to rely on the laser estimates to estimate
the barometer drift. Then, the estimation gains were

set to ðkz; kbzÞ ¼ ð6:6;�1:36Þ, which achieved a good
performance in the simulations. An explanation on

how to determine these gains is given in Appendix

1. In these simulations, the observer’s output was
used at each scan registration initialization, instead

of the laser altitude estimates. The impact of this

can be observed in Figure 21, where the complete
position estimates of the ICP implementations are

once again compared to the simulation ground

truth. In contrast to the results from Figure 19, it
can be noted that the introduction of the altitude

observer allows correcting the large altitude errors

that previously caused the point cloud case to fail,
which now offers a similar performance to the planar
model case. Furthermore, Figure 22 presents a com-
parison of the absolute errors of the barometer meas-
urements, the altitude estimates of the ICP algorithm
(without the aid of the observer) and the altitude
observer’s output. In both cases it can be noted
that, while the barometer readings accumulate a
large error over time, the presence of this drift does
not significantly degrade the quality observer’s alti-
tude estimates, which instead provides notable
improvements. For the planar model case in
Figure 22(a), the spurious error peaks are largely fil-
tered, and the maximum error is lowered to 10 cm.
More importantly, for the point cloud case in
Figure 22(b), the observer manages to avoid failing
at t ¼ 30 s and provides continuous estimates through-
out the entire flight. The effectiveness of this formu-
lation is further verified in Figure 23, as the observer
manages to estimate the previously unknown barom-
eter drift, with less than 10 cm of error.

Simulation results: Velocity estimation

Horizontal velocity estimation results

The {x, y} estimates from the laser scan registration
were used as an input to the velocity observers
from equation (34), where they were fused with

Figure 21. The ICP position estimates after introducing the altitude observer. The large altitude errors are corrected and the point
cloud approach no longer fails. ICP: iterative closest point.
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the accelerometer readings to recover the horizontal
velocity estimates. The estimation gains were chosen
identical for both axis as ðkx; kvxÞ ¼ ð6:4; 16Þ and
ðky; kvyÞ ¼ ð6:4; 16Þ. The estimated horizontal velocities

for a portion of the flight and both implementations of
the ICP algorithm are shown in Figure 24. For both
axes, the high estimation gains allow the speed esti-
mates to converge fast towards the ground truth.

Figure 22. The absolute altitude errors for ICP without the aid of the altitude observer, the barometer measurements with drift and
the altitude observer for (a) ICP with planar model and (b) ICP with point cloud reconstruction. ICP: iterative closest point.

Figure 23. For the altitude observer and both ICP implementations: (Top) Comparing the barometer drift estimates with the ground
truth. (Bottom) Absolute estimation errors. The observer succeeds in both cases.
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Furthermore, the good quality of the position estimates

from the scan registration allows the velocity errors to

remain below 10 cm
s .

Vertical velocity estimation results

Finally, the observer from equation (35) was used to

recover vertical velocity estimates from the barometer

and accelerometer readings. As before, the observer

gains were chosen as ðkz; kvzÞ ¼ ð6:4; 16Þ. Figure 25(a)
shows the estimation results without barometer drift.
As can be seen, the vertical velocity estimates are suf-
ficiently accurate without the need of the laser esti-
mates, as they remain below 1:5 cm

s . Then, the velocity
estimates in the presence of barometer drift are shown
in Figure 25(b). With respect to the previous case, the
estimation error slightly increases but remains within
acceptable levels.

Figure 24. Horizontal velocity estimation results for the observer from equation (34). (a) x-component (Vx) and
(b) y-component (Vy).
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Conclusions and future work

In this article we have presented a methodology to

recover complete 3D pose estimates in electric tower

inspection tasks with MAVs, using a sensor set-up con-

sisting of a 2D LiDAR, a barometer sensor and an

IMU. First, we addressed 2D local pose estimation

using uniquely the laser range measurements. Basic geo-

metric knowledge of the tower was used to extract the

notable features captured in the individual laser scans,
which were then used to track the cross-sections and to
estimate their previously unknown dimensions.
Simulations yielded satisfying results under simple
flight conditions, but the assumptions used by this
approach proved too restrictive for general inspection
tasks. It was shown that this tracking method could
instead be used with additional sensing to model the
tower. This was tested on data acquired from real flights,
and results were presented for a partial point cloud

Figure 25. Vertical velocity estimates (Vz) obtained by fusing barometer and IMU measurements. (a) Without barometer drift and
(b) with barometer drift.
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reconstruction of the tower’s body and a simplified

planar representation derived from the dimensions esti-

mated on-flight. The inspection task was thus divided

into two steps, tower modelling and pose estimation.
Then, we focused on 3D local pose estimation using

the complete sensor set-up, which was divided into

three components. At the lowest level, a non-linear

observer formulation to estimate the roll and pitch

angles from the accelerometer and gyrometer measure-

ments was presented. A gain scheduling approach to

adapt the observer to changing flight dynamics was

also introduced. Then, the four remaining states were

determined from the laser scans with two proposed

implementations of the ICP algorithm. The first

approach consisted in aligning the 2D laser scans to a

3D point cloud reconstruction of the tower, and the

second approach relied instead on a simplified planar

representation and a projection-based matching strate-

gy. In both cases, the registration process was carried

out in 3D and aided by the attitude estimates from

IMU measurements, which allowed recovering altitude

information. Lastly, a third component fused the

barometer measurements and the altitude estimates

from the scan registration. This simple formulation

allowed estimating the unknown barometer drift in

the process. Each of these components was validated

in simulations. When combined, they showed satisfying

results in terms of accuracy and computation time.
Finally, velocity estimation was achieved with simple

feedback observers to exploit the MAV’s dynamics. On

the one hand, the pose estimates were fused with inertial

measurements to recover horizontal velocity estimates.

On the other hand, the barometer measurements were

fused with accelerometer measurements to recover the

vertical velocity component. Simulations were also used

to validate the efficiency of these estimations.
An immediate continuation of this work includes

introducing the pose and velocity estimates in the feed-

back control loop to stabilize the MAV’s position. We

are also interested in conducting further experimental

validations of the methods proposed in this work. Since

this study was limited to electric tower bodies with rect-

angular cross-sections, it would also result interesting

to extend the methodology to the complete structure,

including the head of the tower, and to more complex

tower geometries.
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Appendix 1: Stability analysis and gain tuning of

the altitude observer

To analyse the stability of our proposed altitude observer

formulation from equation (19), we first deduce error dynam-

ics of the system. Modelling the barometer measurements as

zbaro ¼ zþ bz and the laser estimates as zlaser ¼ z, and

substituting in equation (20), one obtains

�zn ¼ z� kn ~bz; 0 � kn � 1; n ¼ 1; 2 (37)

where ~bz ¼ bbz � bz is the bias estimation error. Substituting

this in equation (19), and subtracting the vertical dynamics

from equation (17), one obtains the error dynamics of the

system as

_~z ¼ �kzð~z þ k1 ~bzÞ
_~bz ¼ �kbzð~z þ k2 ~bzÞ

(
(38)

where ~z ¼ bz � z. In matrix form, this is expressed as

_~z

_~bz

" #
¼

�kz �k1kz

�kbz �k2kbz

" #
~z

~bz

" #
¼ ~A

~z

~bz

" #
(39)

Stability analysis follows, by analysing the roots of the

characteristic polynomial of equation (39), obtained from

solving detðsI� ~AÞ ¼ 0. This results in

s2 þ ðk2kbz þ kzÞsþ kbzkzðk2 � k1Þ ¼ 0; k1 6¼ k2
(40)

where the k1 6¼ k2 condition avoids a null constant term in the
polynomial. Then, exponential convergence is guaranteed if
the two roots of the characteristic polynomial have negative
real parts. This can be achieved with a simple pole placement
approach. Recalling the characteristic polynomial for a
second-order system

s2 þ 2fxnsþ x2
n ¼ 0 f;xn > 0 (41)

where the damping ratio f and the natural frequency xn

define the closed-loop poles, which have negative real part
if f;xn > 0. The observer gains are then determined by com-
paring the coefficients of both polynomials. This results in
two cases depending on the value of k2.

On the one hand, if k2 ¼ 0, then solving by substitution
one obtains

kz ¼ 2fxn

kbz ¼ � x2
n

k1kz
; k2 ¼ 0; 0 < k1 � 1

8><>: (42)

In this simple case, to determine ðkz; kbzÞ, one must first
choose the closed-loop poles for the desired system response,
which defines the value of f and xn, and then set k1 to the
desired value. This was the case considered in the simulations,
where f ¼ 1:1 (overdamped response), xn ¼ 3:0 and k1 ¼ 1
lead to ðkz; kbzÞ ¼ ð6:6;�1:36Þ.

On the other hand, if k2 > 0, this leads to a quadratic
expression for kz and kbz , obtaining

kz ¼
2fxn7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2fxnÞ2 � 4k2x2

n

k2 � k1

s
2

kbz ¼
2fxn	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2fxnÞ2 � 4k2x2

n

k2 � k1

s
2k2

; k2 > 0; k1 6¼ k2

8>>>>>>>>><>>>>>>>>>:
(43)

Then, to avoid complex gains, the discriminant D must be
nonnegative. That is

D ¼ ð2fxnÞ2 � 4k2x2
n

k2 � k1
� 0 (44)

leading to the following inequality

f2 � k2
k2 � k1

(45)

which conditions the values of f and kn. In this case, a simple
way of tuning the gains is to first choose the closed-loop
poles, obtaining f and xn, then set k2 to the desired value
and finally set k1 ensuring that equation (45) holds.
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Article

Vision-based dynamic target trajectory
and ego-motion estimation using
incremental light bundle adjustment

Michael Chojnacki1 and Vadim Indelman2

Abstract

This paper presents a vision-based, computationally efficient method for simultaneous robot motion estimation and

dynamic target tracking while operating in GPS-denied unknown or uncertain environments. While numerous vision-

based approaches are able to achieve simultaneous ego-motion estimation along with detection and tracking of moving

objects, many of them require performing a bundle adjustment optimization, which involves the estimation of the 3D

points observed in the process. One of the main concerns in robotics applications is the computational effort required

to sustain extended operation. Considering applications for which the primary interest is highly accurate online nav-

igation rather than mapping, the number of involved variables can be considerably reduced by avoiding the explicit 3D

structure reconstruction and consequently save processing time. We take advantage of the light bundle adjustment

method, which allows for ego-motion calculation without the need for 3D points online reconstruction, and thus, to

significantly reduce computational time compared to bundle adjustment. The proposed method integrates the target

tracking problem into the light bundle adjustment framework, yielding a simultaneous ego-motion estimation and

tracking process, in which the target is the only explicitly online reconstructed 3D point. Our approach is compared

to bundle adjustment with target tracking in terms of accuracy and computational complexity, using simulated aerial

scenarios and real-imagery experiments.
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Introduction

Ego-motion estimation and target tracking are core

capabilities required in a wide range of applications.

While motion estimation is essential to numerous

robotics tasks such as autonomous navigation1,2,3,4

and augmented reality,5,6 target tracking has been

essential, amongst others, for video surveillance7 and

for military purposes.8 Although researched for deca-

des, target tracking methods have mostly assumed a

known or highly predictable sensor location. Recent

robotics applications such as autonomous aerial

urban surveillance9 or indoor navigation require the

ability to track dynamic objects from platforms while

moving in unknown or uncertain environments. The

ability to simultaneously solve the ego-motion and

target tracking problems becomes therefore an impor-

tant task. Furthermore, attention has grown for cases

in which external localization systems (e.g. GPS) are
unavailable and the estimation process must be per-
formed using on-board sensors only. In particular,
the capability to perform those tasks based on vision
sensors has become of great interest in the past two
decades, mostly thanks to the ever-growing advantages
these sensors present.10

Vision-based ego-motion estimation is typically per-
formed as part of a process known as bundle adjust-
ment (BA) in computer vision, or simultaneous
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localization and mapping (SLAM) in robotics, where
the differences between the actual and the predicted
image observations are minimized. Therefore, the com-
bined process of SLAM and tracking of a moving
object usually involves an optimization over the cam-
era’s motion states, the target’s navigation states, and
the observed structure (3D landmarks). This optimiza-
tion is performed incrementally as new information
and variables are added to the process, constantly
increasing the computational complexity of the prob-
lem. One of the main challenges in extended operation
is thus keeping computational efforts to a minimum
despite the growing number of variables. However,
many robotics applications do not require actual
online mapping of the environment. Avoiding this
expensive task would therefore be beneficial in terms
of processing time.

This work presents a computationally efficient
approach for simultaneous camera ego-motion estima-
tion and target tracking, while operating in unknown
or uncertain GPS-deprived environments. Our focus
lies on robotic applications for which online 3D struc-
ture reconstruction is of no interest, although recover-
ing the latter offline from optimized camera poses is
always possible.11 We propose to take advantage of
the recently developed incremental light bundle adjust-
ment (iLBA)11–13 framework, which uses multi-view
constraints to algebraically eliminate the (static) 3D
points from the optimization, therefore allowing the
dynamic target to become the only explicitly recon-
structed 3D point in the process. The reduced
number of variables involved in the optimization
allows therefore for substantial savings in computa-
tional efforts. Incremental smoothing and mapping
(iSAM)14 technique is applied to re-use calculations,
allowing to further reduce running time, in a similar
fashion to the static-scene-oriented iLBA approach.
We demonstrate, using simulations on synthetic data-
sets and real-imagery experiments, that while our meth-
ods provide similar levels of accuracy to full BA with
target tracking, they compare favorably in terms of
computational complexity.

The simultaneous ego-motion and dynamic object
tracking relate to numerous works on SLAM and
target tracking, both individually and combined.
Early approaches used the extended Kalman filter
(EKF) to solve the SLAM problem15,16 but were even-
tually overtaken by other techniques due to their qua-
dratic computational complexity, which limits them to
relatively small environments or to relatively small
state vectors. Numerous SLAM methods have been
proposed to overcome computational complexity, for
example, by exploiting the sparsity of the involved
matrices,17,18 or by approximating the full problem
with a reduced non-linear system.19 A more recent

technique, used in the frame of this work, performs
incremental smoothing14 to recover the solution while
recalculating only part of the variables at each optimi-
zation step and allows for a significant reduction of the
computational cost. Still, full BA methods involve the
reconstruction of the 3D observed structure, increasing
unnecessarily the number of estimated variables in
cases online mapping is of no interest. Several
“structure-less” BA approaches have been developed,
where the optimization satisfies constraints which do
not involve 3D structure reconstruction. Rodrı́guez
et al.20 use epipolar constraints between pairs of
views, while Steffen et al.21 utilize trifocal tensor con-
straints. The recently developed LBA method,12 used in
this work, applies two kinds of multi-view constraints:
the two-view and three-view constraints. Pose-SLAM
techniques22,23 avoid explicit mapping by maintaining
the camera trajectory as a sparse graph of relative pose
constraints, which are calculated using the landmarks
in a separate process. In contrast to standard Pose-
SLAM, LBA formulates multi-view geometry con-
straints for each feature match, thereby avoiding to
rely on the uncertainty of the abovementioned separate
process.

The target tracking problem, referred more general-
ly as detection and tracking of moving objects
(DTMO)24 in the robotics literature, has been exten-
sively studied for several decades.25,26 The combined
SLAM and DTMO problem, which is assessed in our
work, has attracted considerable attention in the recent
years, mostly in order to improve SLAM accuracy,
which can be greatly degraded by the presence of
dynamic objects in the environment, if the latter is con-
sidered as static.27 The first mathematical framework to
the combined process of simultaneous localization,
mapping, and moving object tracking (SLAMMOT)
was presented by Wang,28 where the problem is decom-
posed into two separate estimators, one for the SLAM
problem given the static landmarks and another for the
tracking problem. Occupancy grid-based approaches
were proposed later by Vu et al.29 and Vu,1 where
SLAM was solved by calculating the maximum likeli-
hood of occupancy grid maps. Ortega30 introduced a
geometric and probabilistic approach to the vision-
based SLAMMOT problem, providing a comparison
between the different kinds of optimization methods,
while Hahnel et al.31 used sampled-based joint proba-
bilistic data association filter to track people and occu-
pancy grids for static landmarks. An extensive
overview of the literature concerning SLAM and
DTMO is presented in Pancham et al.32

The rest of this paper is structured as follows: First,
we formulate the simultaneous ego-motion estimation
and moving object tracking problem. Next, we review
the LBA method, which is extended to address the
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mentioned problem. Then, we present experimental

results, comparing our method with full BA in terms

of computation time and accuracy. Finally, we con-

clude and share thoughts about further possible

developments.

Problem formulation and notations

We consider a scenario where a monocular camera

mounted on a mobile robot is tracking a dynamic

target while operating in a GPS-deprived unknown

environment.

The BA problem

The process of determining the camera poses and the

stationary 3D structure given measurements is called

BA or SLAM. Let xk represent the camera pose (i.e.

6DOF position and orientation) at time step tk, and

denote all such states up to that time by

Xk ¼: x0 . . . xkf g. We also use Lk¼: l1 . . . lnf g
and Zk¼: z0 . . . zkf g to represent, respectively,

all the n landmarks observed by time tk, and the

corresponding sensor observations. Here, for each

time index i 2 0; k½ �, zi corresponds to all image obser-

vations obtained at time ti. In particular, we use the

notation zji to denote an observation of the jth land-

mark at time ti.
Using probabilistic representation, the BA problem

can be expressed by the joint pdf

P Xk;LkjZkð Þ (1)

Using Bayes’ rule, the general recursive Bayesian

formula for BA can be derived as33

P Xk;LkjZkð Þ / priors �
Yk
i¼1

Y
j2Mi

p zjijxi; lj
� �

(2)

where Mi is the set of landmarks observed at time

index i and priors represent prior information on the

estimated variables.
Considering a standard pinhole camera, the corre-

sponding observation model can be defined as34

zji ¼ proj xi; lj
� �þ vij (3)

where proj �ð Þ is the projection operator34 and vij �N
0;Rvð Þ is a zero-mean white noise with measurement

covariance Rv. Under Gaussian distribution assump-

tion, the likelihood of the perception measurement

can be expressed as

p zjx; lð Þ ¼: 1ffiffiffiffiffiffiffiffiffiffiffiffiffij2pRvj
p exp � 1

2
jjz� proj x; lð Þjj2Rv

� �
(4)

where kak2R ¼: aTR�1a is the squared Mahalanobis dis-

tance with the measurement covariance matrix R. We

assume camera calibration is known; otherwise, the

uncertain calibration parameters could be incorporated

into the optimization framework as well.
Solving the BA problem would therefore consist in

calculating the maximum a posteriori estimate over the

joint pdf, defined as

X�
k;L

�
k ¼ argmax

Xk;Lk

P Xk;LkjZkð Þ (5)

Due to the monotonic characteristics of the logarith-

mic function, calculating the MAP estimate X�
k;L

�
k

becomes equivalent to minimizing the negative log-

likelihood of the BA pdf 1

X�
k;L

�
k ¼ argmin

Xk;Lk

�logP Xk;LkjZkð Þ (6)

This leads to a non-linear least-squares optimiza-

tion, where the cost function

JBA Xk;Lkð Þ ¼
X
i

X
j2Mi

jjzji � proj xi; lj
� �jj2R (7)

is to be minimized. Note that, to avoid clutter, the prior

terms are not explicitly shown in equation (7).

BA and target tracking

We investigate scenarios in which a dynamic target is

tracked by the camera. Based on the camera’s observa-

tions of the target, we seek to estimate its trajectory and

velocity over time. We assume the target moves ran-

domly; however, its motion is assumed to follow a

known stochastic kinematic model (e.g. constant veloc-

ity or constant acceleration).
Let yk represent the target state at time step tk,

defined generally as

yk ¼: yTk
dTk

½ �T ¼ xTk
; yTk

; zTk
; _xTk

; _yTk
; _zTk

; . . .
� �T

(8)

where yTk
denotes the target’s tri-dimensional position

and dTk
its higher order time derivatives required to

accommodate the assumed motion model. In the

frame of this work, we focus on the target’s position
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and velocity. yk is therefore a six element vector
defined as

yk ¼
� yTk

_yTk

	
2 R

6�1 (9)

We denote Yk ¼: y0 . . . ykf g the set of all target’s
states up to time step tk.

Assuming a known Markovian motion model for
the target, which likelihood is represented by
p yijyi�1ð Þ, we define a joint pdf for the random varia-
bles involved in the considered problem, given all infor-
mation thus far, as

P Xk;Yk;LkjZkð Þ / priors�Yk
i¼1

p yijyi�1ð Þp z
yi
i jxi; yið Þ

Y
j2Mi

p zjijxi; lj
� � !

(10)

where zyii denotes the observation of the target by the
ith camera and p zyii jxi; yið Þ refers to the observation
model described in equation (3). Mi is the set of land-
marks observed at time index i and we consider
priors ¼ p x0ð Þp y0ð Þ as given information.

In this work, as in many robotics applications, we
consider a constant velocity model,35 characterized by
the equation

€y tð Þ ¼ ~w tð Þ (11)

where ~w tð Þ is a continuous time zero-mean white noise
representing the slight velocity changes from its actual
value.

The target state linear continuous propagation
is generally noted as _y tð Þ ¼ Ay tð Þ þDw tð Þ, where

A ¼
0 1

0 0

" #
and D ¼

0

1

" #
, or under its discrete form

ykþ1 ¼ Ukyk þ Gkwk (12)

where Gk is the process noise Jacobian defined as

Gk ¼
0

1

" #
2 R

6�3 and Uk is the state transition

matrix and is defined as Uk ¼
1 �t

0 1

" #
2 R

6�6 with

�t¼: tkþ1 � tk. The discrete-time process noise wk �N
0;Rwð Þ relates to the continuous-time one as wk

¼ R Dt0 eA Dt�sð Þ D~w kDtþ sð Þds. Under Gaussian distri-
bution assumption, the motion model likelihood is
therefore expressed

p ykþ1jykð Þ¼: 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2pRmmj
p exp � 1

2
jjykþ1 � Ukykjj2Rmm

� �
(13)

where Rmm ¼: GRwG
T.

Finally, solving the combined BA and target state

estimation process consists in calculating the MAP esti-

mate over the joint pdf from equation (10)

X�
k;Y

�
k;L

�
k ¼ argmax

Xk;Yk;Lk

P Xk;Yk;LkjZkð Þ (14)

Factor graph representation

As mentioned earlier, the factorization of the joint pdf

described in equation (10) can be represented using a

factor graph,36 which will be used later to efficiently

solve the optimization problem using incremental infer-

ence. Using the same observation (equation (3)) and

motion (equation (12)) models, this pdf is expressed

in factor graph notation as

P Xk;Yk;LkjZkð Þ / priors

�
Yk
i¼1

​ fmm yi; yi�1ð Þfproj xi; yið Þ
Y
j2Mi

fproj xi; lj
� � !

(15)

An illustration expressing the above factorization

for a small example is shown in Figure 1. The corre-

sponding factors in equation (15) are straightforwardly

defined as follows: The factor fmm yi; yi�1ð Þ corresponds
to the target motion model and, referring to equations

(12) and (13), is defined as

fmm yi; yi�1ð Þ¼: exp � 1

2
jjyi � Ui�1yi�1jj2Rmm

� �
(16)

The projection factors fproj xi; lj
� �

and fproj xi; yið Þ cor-
respond to the landmarks and target observation

models; these factors are defined, respectively, as

fproj xi; lj
� �¼: exp � 1

2
jjzji � proj xi; lj

� �jj2Rv

� �
(17)

Figure 1. Factor graph representing a factorization of the joint
pdf for bundle adjustment with single target tracking.
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fproj xi; yið Þ¼: exp � 1

2
jjzyii � proj xi; yið Þjj2Rv

� �
(18)

Similarly to the previous section, the MAP estimate

is defined as

X�
k;Y

�
k;L

�
k ¼ argmax

Xk;Yk;Lk

P Xk;Yk;LkjZkð Þ (19)

and can be efficiently calculated by exploiting the

inherent sparse structure of the problem while re-using

calculations.
This corresponds to the state of the art where infer-

ence is performed over camera poses, landmarks, and

target states. Yet, when the primary focus is navigation

rather than mapping, explicit estimation of the

observed landmarks in an online process is not actually

required. Conceptually, estimating only the camera

poses and the dynamic target (but not the landmarks)

involves less variables to optimize and could be attrac-

tive from a computational point of view. In this work,

we develop an approach based on this idea.

LBA and dynamic target tracking

BA is a non-linear iterative optimization framework

typically applied for estimating camera poses and

observed landmarks. In this section, we integrate

target tracking to a structure-less BA technique called

light bundle adjustment (LBA).13 First, we formulate

the LBA equations while considering a static scene.

These equations are then extended to incorporate the

dynamic target tracking problem.
Using factor graph notations, the joint pdf

P Xk;LkjZkð Þ, which corresponds to the static problem,

can be factorized similarly to equation (15) as

P Xk;LkjZkð Þ / priors �
Yk
i¼1

Y
j2Mi

fproj xi; lj
� � !

(20)

where priors ¼ p x0ð Þp y0ð Þ represents the prior informa-

tion on the camera and target states.
As mentioned, this works considers robotics appli-

cations in which the online reconstruction of the 3D

structure is of no interest. One way to avoid explicit

estimation of the landmarks in the solution is by mar-

ginalizing out the latter from the joint pdf as in

P XkjZkð Þ ¼
Z

P Xk;LkjZkð ÞdLk (21)

However, this involves a series of calculations

which, in the case of online operation, could be

penalizing: First, performing the exact marginalization

would initially require to solve the full BA problem,

including landmarks, before applying a Gaussian

approximation to compute the marginal. Secondly,

marginalization in the information form involves the

expensive calculation of the Schur complement over

the variables we wish to keep.22 Moreover, marginali-

zation introduces fill-in, destroying the sparsity of the

information matrix.
In contrast, structure-less BA methods approximate

the BA cost function, allowing for estimation of the

camera poses without involving the reconstruction of

the 3D structure.20,21 In this work, we use the recently

developed LBA approach,11,12 which algebraically

eliminates the landmarks from the optimization,

using multi-view constraints and in particular, three-

view constraints.

LBA

LBA allows for reduction of the number of variables

involved in the optimization compared to standard BA.

By algebraically eliminating the landmarks from the

problem, the optimization can be performed over the

camera poses only. The key idea is to use geometrical

constraints relating three views from which the same

landmark is observed.
Considering a set of three overlapping poses k, l and

m from which a common landmark is observed, it is

possible to derive constraints that relate the three poses

while eliminating the landmark.37 These constraints

can be formulated as two two-view constraints g2v
between two pairs of poses (e.g. (k, l) and (l, m)) and

one three-view constraint g3v between the three

involved poses.37,38 Conceptually, the two-view con-

straint is equivalent to the epipolar constraint,34 while

the three-view constraint relates between the scales of

the two translations tk!l and tl!m. Writing down the

appropriate projection equations, we get

g2v xk; xl; zk; zlð Þ ¼ qk � ðtk!l � qlÞ (22)

g2v xl; xm; zl; zmð Þ ¼ ql � ðtl!m � qmÞ (23)

g3v xk; xl; xm; zk; zl; zmð Þ
¼ ðql � qkÞ � ðqm � tl!mÞ � ðqk � tk!lÞ � ðqm � qlÞ

(24)

qi ¼: RT
i K

�1
i z for the ith view and image observation z,

where Ki is the calibration matrix, Ri represents the

rotation matrix from some reference frame to the ith

view, and ti!j denotes the translation vector from view i

to view j, expressed in the global frame.
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The resulting probability distribution PLBA XjZð Þ
can thus be factorized as

PLBA XjZð Þ /
YNh

i¼1

f2v=3v Xið Þ (25)

where f2v=3v represents the involved two- and three-

view factors and Xi is the relevant subset of camera

poses. Referring to equations (22) to (24), under

Gaussian distribution assumption, f2v and f3v are

defined as

f2v xk; xlð Þ¼: exp � 1

2
jjg2v xk; xl; zk; zlð Þjj2R2v

� �
(26)

and

f3v xk; xl; xmð Þ

¼: exp � 1

2
jjg3v xk; xl; xm; zk; zl; zmð Þjj2R3v

� �
(27)

which correspond to the likelihoods of the two- and

three-views constraints involving xk and xl in equation

(26) and involving xk, xl and xm in equation (27). The

covariances R2v and R3v are defined as

R2v¼: rzk;zlg2v
� �

R rzk;zlg2v
� �T

;

R3v¼: rzk;zl;zmg3v
� �

R rzk;zl;zmg3v
� �T (28)

Figure 2 shows a comparison between the factor

graph representation of LBA and standard BA for a

small example.
Therefore, rather than optimizing the cost function

7, that involves the camera and landmark states, the

optimization is performed on the cost function11

JLBAðXÞ¼:
XNh

i¼1

jjhiðXi;ZiÞjj2Ri
(29)

where hi 2 g2v; g3vf g represents a single two- or three-

view constraint involving the set of poses Xi and the set

of image observations Zi, Nh being the number of

resulting constraints.
Practically, when a landmark is observed by a new

view xk and some earlier views xl and xm, a single two-

view (between xk and one of the two other views) and a

single three-view constraint are added (between the

three views). The reason for not adding the second

two-view constraint (between views xl and xm) is that

this constraint was already added when processing

these past views. In case a landmark is observed by

only two views, we add a single two-view constraint.

LBA and dynamic target tracking

In this section, we integrate dynamic target tracking

into the LBA framework. As will be shown, the result-

ing approach provides comparable accuracy for both

target tracking and camera pose estimation while sig-

nificantly reducing running time, compared to an

equivalent BA approach.
The idea behind the proposed method is to incorpo-

rate the target tracking problem into the LBA frame-

work in order to yield a proxy for the joint pdf

P Xk;YkjZkð Þ which involves significantly less variables

than the joint pdf P Xk;Yk;LkjZkð Þ, while somewhat

avoiding the expensive calculations involved in the

marginalization process.11 Indeed, if Xk 2 R
Mk�1, Yk 2

R
Nk�1 and Lk 2 R

Ok�1, then the amount of variables

involved in the optimization is decreased form Mk þ
Nk þOk to Mk þNk only, which would reduce compu-

tational complexity (we note that Ok � Mk and

Ok � Nk).
We integrate the factors f2v=3v corresponding to the

camera poses described in equations (26) and (27) with

the target tracking-related factors fmm and fproj defined

in equations (16) and (18) to yield the joint pdf P

Xk;YkjZkð Þ over the relevant states only. The target

becomes, therefore, the only 3D point to be estimated

in the process

P Xk;YkjZkð Þ / priors

�
Yk�1

i¼1

fmm yi; yi�1ð Þfproj xi; yið Þ
YN
j¼1

f2v=3v Xj

� � !
(30)

Figure 2. Factor graph representation for a small example
including three views xk, xl, xm. (a) The BA problem, where the
three views are related to the landmark l with projection factors.
(b) The LBA problem, where the landmark l has been eliminated,
and the three views are related by two- and three-view
constraints.
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where, similar to equation (15), priors ¼ p x0ð Þp y0ð Þ
represents the prior information and Xj is the relevant
subset of views for the ith frame.

Solving the localization and target tracking problem
then corresponds to estimating the MAP

X�
k;Y

�
k ¼ argmax

Xk;Yk

P Xk;YkjZkð Þ (31)

which is equivalent to minimizing the cost function

J Xk;Ykð Þ ¼ jjx0 � bx0jj2Rx
þ jjy0 � by0jj2Ry

þ
Xk
i¼1

ðjjyi � Uiyi�1jj
2

Rmm
þ jjzyii

� proj xi; yið Þjj2Rv

þ
XNh

j

jjhjðXj;ZjÞjj2Rj
Þ

(32)

An illustration expressing the above factorization
for the same example as in Figure 1 is shown in
Figure 3.

LBA and multi-target tracking

The considered problem can be straightforwardly
extended to multi-target tracking by integrating the
additional targets into the formulation from equation
(30). Considering n targets, the corresponding joint pdf
can be written

P Xk; �YkjZkð Þ / priors

�
Yk�1

i¼1

Yn
l¼1

fmm yli; y
l
i�1

� �Y
p2Ti

fproj xi; y
p
ið Þ
YN
j¼1

f2v=3v Xj

� � !
(33)

where �Yk ¼ Y1
k;Y

2
k; . . .;Y

n
k


 �
is the set of all targets’

states up to time-step tk and Yn
k refers to the states of

the nth target up to time-step tk. We denote Ti the set of
targets observed at time-step ti. Here, we assume the
identification of the targets that leave and re-enter the
camera’s field of view as given. Solving this data-
association problem is a challenging task by itself and
is outside the scope of this work.

Incremental smoothing

Solving the abovementioned non-linear least square
problems is achievable using several optimization
methods. Online operation requires this task to be per-
formed efficiently, and therefore, cost-efficient techni-
ques were implemented in this work.

Batch optimization performs factorization of the
Jacobian matrix A from scratch each time new varia-
bles are added to the problem. In contrast, incremental
smoothing updates the problem as new measurements
and variables arrive, by directly updating the square
root information matrix R and recalculating only the
matrix entries that actually change.39 Furthermore,
instead of performing batch re-ordering, eliminating
the corresponding factor graph into a Bayes tree14

allows for incremental variable ordering, which keeps
the R matrix sparsity at a relatively constant level.
Additionally, rather than fully re-linearizing the
whole set of variables at a determined point in time,
iSAM2 performs fluid re-linearization, which triggers
re-linearization of a variable only when the deviation
between its current estimate and the linearization point
is larger than a defined threshold, set heuristically or as
part of a “tuning” process.

Results

We demonstrate the benefits of the proposed method
with simulations performed on synthetic datasets and
with real-imagery experiments. Experiments were per-
formed considering a downward-facing camera
mounted on a flying vehicle, which tracks a single
target, for the sake of simplicity. For each scenario,
target tracking and ego-pose estimation using LBA
and full BA are compared in terms of accuracy and
processing time. All experiments were run on an Intel
i7-4720HQ quadcore processor with 2.6 GHz clock rate
and 8GB of RAM. The methods used for comparison
were implemented using the GTSAM library (https://
research.cc.gatech.edu/borg/download).

Experimental evaluation

with synthetic datasets

A series of simulations were performed on synthetic
datasets in order to compare our method with full
BA technique and to demonstrate its capability in

Figure 3. Factor graph representing a factorization of the joint
pdf for LBA and target tracking.
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terms of computational performance and estimation

accuracy for both camera and target states. We present

two types of studies: A statistical performance study on

an approximately 3-km long aerial scenario (Figure 4),

and a case study in a larger aerial scenario (Figure 6(a)).

In both cases, the downward-facing camera operates in

GPS-denied environments and occasionally re-visits pre-

viously explored locations, providing occasional loop-

closure measurements. The priors p x0ð Þ and p y0ð Þ are

Gaussians with means equal to their initial values, and

with r ¼ 2 m½ � standard deviation. The measurement

model assumes an image noise r ¼ 0:5 pix½ �. The

continuous-time system is discretized with time-step

�t ¼ 3 s½ �. Regarding target motion, we use the constant

velocity model and assume a zero-mean, white Gaussian

noise r ¼ 30; 30; 0:001½ �T m=s½ �. Here, we constrained

the noise on the z axis to prevent divergence, both

with LBA and BA, which use data only from a single

monocular camera. Addressing this issue would proba-

bly require additional information or constraints on the

target motion (multi-robot setup, additional sensors,

geometric constraints, etc.).

Statistical simulation results

A performance comparison between the proposed

method and BA with target tracking is presented in a

45-run Monte-Carlo study. The scenario used in this

simulation, shown in Figure 4, contains 52 frames,

gathered over �160 s. Loop-closures can be noticed

around views 20 and 38. The simulated target takes a

similar course on the ground and for the sake of sim-

plicity, stays in the camera’s field of view throughout

the process. The comparisons presented in Figure 5(a)

to (c) are given in terms of root-mean-square error
(RMSE), calculated over the norms of the error vec-
tors. All results refer to incremental estimations, i.e. at
each time tk performance is evaluated given Zk, which
is in particular important for online navigation.

Figure 5(a) and (b) describes the camera incremental
position and orientation errors and Figure 5(c) shows
the target position error. We observe similar levels of
accuracy with the two techniques. The camera pose and
target trajectory errors are bounded, with clear nega-
tive trend in both the camera and target position errors
around view 20, upon loop closure. We note that, in
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Figure 5. Monte-Carlo study results comparing between the
proposed method and full BA with target tracking (a) camera
position RMSE; (b) camera orientation RMSE (including close-
up); (c) target position RMSE; (d) running time average with
lower and upper boundaries.
LBA: light bundle adjustment; BA: bundle adjustment; RMSE:
root-mean-square error.

Figure 4. Scenario used for statistical study. Camera and target
trajectories are shown in red and blue, respectively. At this scale,
ground truth and estimated trajectories are indistinguishable (see
Figure 5).
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this case, the navigation is performed relatively to the

camera’s and target’s initial positions. Those were ini-

tialized from their ground truth values, causing initial

errors to be zero for all the estimated states.
Figure 5(d) shows statistics over running time

between the proposed method and full BA with target

tracking. For BA, a distinct increase in computational

time can be observed at view 38, where a loop closure

occurs. While one can already observe a significant dif-

ference in running time between the two methods in

favor of LBA, we confirm this observation further

in a larger scenario and with real imagery experiments

in the next sections.

Large scenario

The large scenario, shown in Figure 6(a), simulates an

approximately 14.5-km-long aerial path and involves a

series of loop closures, resulting in variables recalcula-

tion during optimization. The target takes a different

course on the ground (as shown in Figure 6(b)), which

causes losses of target sight for approximately a sev-

enth of the frames. In these cases, only the motion

model factor is taken into consideration.
The obtained average camera position incremental

errors for LBA and BA are 1.27 and 0.51 m, respec-

tively, with a maximum error of 5.11 and 2.33 m. While

the accuracy levels are similar, one can easily notice the

difference in running time. Loop closures have a high

impact on BA running time due to the landmark re-

elimination and re-linearization they trigger; this

process is avoided with LBA. It results in an average

processing time of 3.3 s for LBA with target tracking,

versus 22.2 s for BA method. The obtained overall

processing time for the same scenario is 809 s for the
proposed method, versus 5329 s with BA.

Since we are interested to assess the similarity in
terms of accuracies between the two techniques, we
show in Figure 7(a) to 7(c) the relative errors between
LBA and BA methods, meaning the difference between
the estimation errors using both methods. Then, a com-
parison of the processing time is shown in Figure 7(d).

Experimental evaluation with

real-imagery datasets

Further evaluations were performed through real-
world experiments conducted at the Autonomous
Navigation and Perception Lab (ANPL). Similarly to
the synthetic dataset evaluation, these experiments
involve a downward-facing camera which performed
an aerial pattern while tracking a dynamic target
moving on the ground. Ground truth data were gath-
ered for the camera and the dynamic target using an
independent real-time 6DOF optical tracking system.
A scheme of the lab setup is presented in Figure 8 and
two samples of typical captured images are presented
in Figure 9. The recorded datasets are available
online and can be accessed at http://vindelman.net.
technion.ac.il.

Two different datasets were studied. In the first
dataset, ANPL1, the camera and the target perform
circular patterns, while in the second, ANPL2, they
move in a more complex and unsynchronized
manner, with occasional loss of target sight. Both
cover an area of approximately 10 m½ � � 6 m½ �. In
ANPL1, the camera and target travel 26.9 and 34.6
m, respectively, while in ANPL2, the distance traveled
is 19 and 21.1 m, respectively. Image sensing was
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Figure 6. (a) Estimated camera (red) and target (blue) trajectories for the large synthetic scenario with 24,500 observed landmarks
(shown in black). (b) Top view of the target and camera estimated trajectories for the large-scale synthetic scenario. At this scale,
ground truth and estimated trajectories are indistinguishable (see Figure 7).
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performed using a high definition, wide angle camera
and image distortion was corrected using calibration
data. Table 1 provides further details regarding the
number of views and observations, camera settings,
and dataset durations.

Data association is performed using an implementa-
tion of the RANSAC algorithm40 on the SIFT features
that were extracted from the images and stored for
potential loop closures. Since the experiments were
conducted in a relatively constrained area with a wide
field-of-view camera, numerous loop closures occur,
as locations are often re-visited. For LBA, a single

three-view constraint is added for each landmark

observed more than twice in the past. This three-view

constraint involves the current observation, the earliest

observation and the one in the middle. A similar con-

cept is used for 3D points triangulation, meaning the

current observation and the earliest observation are

taken into account. The target is detected by identifi-

cation of the most highly recurrent SIFT feature,

meaning we assumed that the SIFT feature which

was detected in the highest number of frames belongs

to the target. Although more advanced techniques

exist, they are outside the scope of this work.
We compare the pose estimation errors of the

camera and the position errors of the dynamic target

with respect to ground truth for both LBA with target

tracking and full BA cases. Incremental smoothing was

applied for both methods in ANPL1 dataset and stan-

dard batch optimization in ANPL2. QR factorization

was used in all cases. We assume priors p x0ð Þ and p y0ð Þ
on the initial camera and target states with means equal

to their respective ground truth values and a r ¼ 0:3
m½ � standard deviation. For the rest of the estimation

process, new camera states are initialized by composi-

tion of last estimated pose with the relative motion

from ground truth, corrupted with a white Gaussian

noise r ¼ 0:1 m½ � for position (i.e. the typical distance

traveled between two frames) and r� ¼ 5 deg½ �
(0:09 rad½ �) on each axis for orientation. A different

option, tested with the LBA method, consisted in com-

posing the previous estimate and the relative motion

extracted from the essential matrix calculated during
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Figure 7. Incremental relative errors of LBA method with
respect to BA method for the (a) camera position, (b) camera
orientation, (c) target position, in the large-scale synthetic sce-
nario. (d) a comparison of the processing times per frame.
LBA: light bundle adjustment; BA: bundle adjustment.

Figure 8. Conceptual scheme of the lab setup for the real-
imagery experiments. The camera was manually held facing
downwards and moved around the lab, in pre-defined patterns.
Trackers, represented by yellow dots, were installed on the
camera and on the target, allowing for detection by the ground
truth system and measurement of their 6DOF poses. Images
were scattered on the floor to densify the observed environ-
ment. Best seen in colour.
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the data association process.34 Results using the latter
initialization method indicate similar performance with
respect to the former initialization method. Here again,
we use the constant velocity model for the dynamic
target. This motion model becomes the only available
information for trajectory estimation when the target
moves out of the camera’s field of view, as it is the case
for �15% of the frames in ANPL2. Similarly to the
synthetic simulations, we assume the target moves on
the ground, and thus constrain the first vertical velocity
to zero. The measurement model assumes an image
noise r ¼ 0:5 pix½ �.

Figure 10 shows the estimated trajectories and
ground truth for the camera and the dynamic target
in both datasets, using LBA method. We calculate an
average error in position estimation of 22 and 38 cm for
the camera and the target, respectively, in ANPL1
dataset, and of 49 and 47 cm in the ANPL2 dataset.
The same level of position accuracy is calculated for the
BA method. These errors are due (at least partially) to
a specific practical data synchronization issue (ground
truth data vs. image sequence) during the experiment.
Similarly to the large-scale simulation case, we show in
Figures 11(a) to (c), the relative errors between LBA

Figure 9. Typical images from the ANPL1 real-imagery dataset.

Table 1. Dataset details.

Camera resolution (pix) Frames Duration (s) Landmarks Observations

ANPL1 1280� 960 80 40 2439 31,333

ANPL2 1920� 1080 40 117 3366 25,631

ANPL: Autonomous Navigation and Perception Lab.

Figure 10. Estimated vs. ground truth 3D trajectories with real-imagery datasets for LBA approach in (a) ANPL1 dataset (b) ANPL2
dataset. BA approach produces similar results in terms of estimation errors, as shown in Table 2.
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and BA methods and a comparison of the processing
time in Figure 11(d).

Tables 2 and 3 summarize the absolute values of the
relative errors and the processing times for the two
datasets. In both cases, the two methods show similar
levels of accuracy: The average values for target and
camera positions are 7 and 6 cm, respectively, for
ANPL1 dataset, and 14 and 8 cm for ANPL2 dataset.
In contrast, LBA with dynamic target tracking shows
consequently better computational performances.

The mean processing time per step is reduced by 61%
for ANPL1 and by 39% for ANPL2.

Conclusions and future work

We presented an efficient method for simultaneous ego-
motion estimation and target tracking using the LBA
framework. By algebraically eliminating the observed
landmarks from the optimization, we allow the target
to become the only reconstructed 3D point in the pro-
cess. This reduces significantly the number of variables
compared to full BA methods, and thus, allows for
processing time improvements. We presented the math-
ematical process involved in the integration of the
target tracking problem into the LBA framework, lead-
ing to a cost function that is formulated in terms of
multi-view constraints, target motion model, and
observations of the target. Computational efforts are
further reduced by applying incremental inference over
factor graphs representing the optimization problem,
thus performing partial calculations at each optimiza-
tion step.

We investigate the performance of the proposed
approach and compare it to the corresponding BA for-
mulation using synthetic and real-imagery datasets.
While the two approaches exhibit similar accuracy
levels, a significantly reduced running time was
obtained for the proposed approach with both experi-
mental methods. In particular, the presented method
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Figure 11. Incremental relative errors for the (a) camera
position, (b) camera orientation, (c) target position, in ANPL1
dataset, (d) a comparison of the processing times per frame.
LBA: light bundle adjustment; BA: bundle adjustment.

Table 2. Relative estimation errors summary of LBA method
with respect to BA method for the camera and target positions
in ANPL1 and ANPL2 datasets.

Target position

error (m)

Camera position

error (m)

Dataset Mean Max Mean Max

ANPL1 0.07 0.19 0.06 0.18

ANPL2 0.14 0.42 0.08 0.34

Note: The table entries are absolute values.

ANPL: Autonomous Navigation and Perception Lab.

Table 3. Summary of the processing times with LBA and BA
methods for the ANPL1 dataset.

Processing time (s)

Dataset Method Mean Total

ANPL1 BA 5.6 447.8

LBA 2.2 177.1

ANPL2 BA 3.1 222.9

LBA 1.9 139.4

LBA: light bundle adjustment; BA: bundle adjustment; ANPL:

Autonomous Navigation and Perception Lab.

168 International Journal of Micro Air Vehicles 10(2)



was up to seven times faster than full BA in the simu-
lations and up to two and a half times faster in the real-
imagery experiments. This difference, however, is
expected to vary with the number of landmarks
observed per frame. The created real-imagery datasets
have been made available to the research community
through the ANPL website. These datasets include
recorded images with synchronized ground truth for
both the camera and the target, and is seen as a con-
tribution by itself.

As for future work, aerial experiments including scale
estimation for both BA and LBA methods (potentially
using fusion with additional sensors such as IMU) could
further improve the realism of the scenario. Also, an
experimental implementation of our method to the
multi-target tracking problem seems a natural continu-
ation. In this case, the method used for targets detection
and data-association represents a real challenge.
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Article

Deep learning for vision-based micro
aerial vehicle autonomous landing

Leijian Yu1, Cai Luo2, Xingrui Yu1, Xiangyuan Jiang1, Erfu Yang3,
Chunbo Luo4 and Peng Ren1

Abstract

Vision-based techniques are widely used in micro aerial vehicle autonomous landing systems. Existing vision-based

autonomous landing schemes tend to detect specific landing landmarks by identifying their straightforward visual

features such as shapes and colors. Though efficient to compute, these schemes only apply to landmarks with limited

variability and require strict environmental conditions such as consistent lighting. To overcome these limitations, we

propose an end-to-end landmark detection system based on a deep convolutional neural network, which not only easily

scales up to a larger number of various landmarks but also exhibit robustness to different lighting conditions.

Furthermore, we propose a separative implementation strategy which conducts convolutional neural network training

and detection on different hardware platforms separately, i.e. a graphics processing unit work station and a micro aerial

vehicle on-board system, subject to their specific implementation requirements. To evaluate the performance of our

framework, we test it on synthesized scenarios and real-world videos captured by a quadrotor on-board camera.

Experimental results validate that the proposed vision-based autonomous landing system is robust to landmark vari-

ability in different backgrounds and lighting situations.
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Micro aerial vehicle, vision-based autonomous landing, convolutional neural networks
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Introduction

In recent years, Unmanned Aerial Vehicles (UAVs)
have been widely utilized in both military and civilian
fields, such as military real-time monitoring, resource
exploration, civil surveillance, cargo transportation
and agricultural planning.1 One key issue for safely
applying UAVs to these tasks is to maneuver UAV
flights in an accurate manner. Traditional UAV flights
tend to be controlled through human manipulation
with certain navigational aids. State-of-the-art UAV
flights operate in an autonomous manner, which not
only unleashes human labor but also enables safer and
more accurate maneuvers. Specifically, three basic
phases for UAV autonomous flights include takeoff,
hovering and landing.2 Among them, autonomous
landing is the most crucial phase because 80% of the
UAV accidents occur during landing.3 Therefore, how
to build robust autonomous landing systems has
become one of the most important and challenging
topics for the UAV research.4

Existing autonomous landing systems of UAVs can
be roughly classified into two groups, i.e. electromag-
netically guided landing systems and vision-based land-
ing systems. The electromagnetically guided landing
systems include those based on inertial navigation
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systems (INS) and global positioning systems (GPS).

INS provides instant positioning information but
cannot guarantee long-term positioning accuracy.

GPS provides a global availability in open areas but

may incur positioning errors up to 10 m and may be

blocked by buildings.5 The electromagnetic landing
systems are suitable for large scale landing problems

(e.g. a large sized UAV landing on a large open area)

with considerable tolerance for position errors.
However, they cannot be straightforwardly applied to

micro aerial vehicle (MAV) landing problems, which

require accurate positioning within a small sized
space. The electro-optical navigation can be considered

as a transitioning landing technique between the elec-

tromagnetically guided landing and the vision-based
landing, and generally serve as an auxiliary to electro-

magnetically guided landing systems. Vision-based

landing systems use cameras to capture environmental

visual features for the purpose of guided landing.
One way to achieve this goal is to arrange cameras

surrounding a landing area for capturing UAV/MAV

status and environmental situations. One representa-
tive vision-based landing system in this regard is the

VICON motion capture system. It is expensive and

its application is limited to small indoor environments.
In contrast to arranging off-boardMAV cameras like

VICON, one more general configuration for a vision

based landing system is to attach a camera on a MAV.
By using optimal images of landing targets as source

information for navigation, on-board vision systems

can achieve positioning accuracy in terms of centi-
meters. This is especially valuable for MAVs that

require more effective precise landing than larger

sized UAVs. One on-board landing system identifies

visual features of specific landing landmarks observed
by the camera and accordingly guides MAV autono-

mous landing actions. In this scenario, specific land-

marks are required to be designed as prerequisites
for performing autonomous landing. In the literature,

different specific landmarks are developed for different

landing systems. Tsai et al.6 designed the T-shaped
landmark (Figure 1(a)) for their MAV autonomous

landing systems. Saripalli et al.7 designed the

H-shaped landmark (Figure 1(b)) for their helicopter
autonomous landing. Lin et al.8 designed a landmark

composed of eight equal-sized squares that are enclosed

by a big white border (Figure 1(c)). Verbandt et al.9

designed a landmark consisting of a series of concentric
circles with exponentially distributed radii (Figure 1

(d)). Jung et al.10 designed an H-shaped landmark

with concentric circles (Figure 1(e)). These landmarks
are designed to contain sharp or contrastive features

that are easy to identify and segment from the

background.

The key factor for vision-based landing systems is

accurate landmark detection. Each existing vision

based landing system is able to provide acceptable

detection accuracy on its own landmark, but can

hardly accurately detect landmarks for another

system. This is because existing vision-based landing

systems tend to detect specific landmarks through

matching low level visual features such as shapes and

colors between captured images and designed land-

marks.11 This case-by-case detection strategy is restrict-

ed to predefined landmarks and can hardly be

generalized to a broad variety of landmarks.

Furthermore, the visual quality of low level features

extracted from captured images may also be easily dev-

astated by inconsistent lighting conditions.
One intrinsic reason for these limitations is the

machine learning techniques employed in the existing

vision-based landing systems lack capability of learning

high level visual features. In order to overcome these

limitations, we exploit deep learning models for detect-

ing the various landmarks under inconsistent lighting

conditions. Deep learning is referred to a series of mul-

tilayer representational learning models that have

attracted extensive research interests and achieved

state-of-the-art performance on a number of artificial

intelligence tasks.12 In this paper, we describe how to

exploit a deep convolutional neural network (CNN)

model for detecting landmarks.
Traditional detection methods tend to first extract

low level handcrafted features from captured images

and then search the whole image for features that can

match the predefined targets.13,14 Recently, low level

features are characterized in terms of region proposals,

which are generated by feature learning techniques pos-

sibly being deep models. R-FCN15 and MASK

R-CNN16 use region proposal networks to generate

(a) (b)

(c) (d) (e)

Figure 1. Samples of five widely used landmarks: (a) the
T-shaped landmark; (b) the H-shaped landmark; (c) the landmark
consisting of eight equal-sized squares and a big white border; (d)
the landmark composed of a series of concentric circles; (e) the
landmark composed of an H-shaped and concentric circles.
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detection proposals. Detection is then conducted via
proposal classification. These methods consider feature
extraction and feature matching as two separate steps
and the speeds of these methods are slow because the
networks in two stages are trained separately. In con-
trast to the two-step detection schemes, the end-to-end
methodologies such as the Yolo methods use one net-
work to predict the objects.17,18

Meanwhile, convolutional neural networks have
been extensively studied in the deep learning literature.
A number of attempts have been made for developing
deeper and more complicated networks to achieve high
accuracy.19,20,21 However, these networks require
extensive computational resources. On the other
hand, resource limited platforms, such as the MAV
on-board processors, are not qualified to implement
these complicated networks.

Our framework is motivated by the recent proposed
detection model Yolo17 and the neural network archi-
tecture SqueezeNet22 to achieve real-time landmark
detection. The Yolo model frames object detection in
terms of deep learning based regression for the purpose
of determining spatially separated bounding boxes and
associated class probabilities. The SqueezeNet aims at
modeling a CNN with few parameters. In order to
develop an effective end-to-end landmark detection
system with implementation efficiency, we establish
our CNN framework sharing advantages of the Yolo
regression and the SqueezeNet efficient architecture.
Specifically, our CNN-based landmark detection
method regresses landmark positions directly from cap-
tured raw images through a multilayer architecture
such that the feature extraction and matching are indis-
tinguishably integrated into an overall framework.
Furthermore, the strong representational power of
the CNN not only increases the adaptability of an
autonomous landing system from one specific land-
mark to multiple landmarks but also improves the
detection robustness with respect to light variation.

Training our CNN based detection model is always
time consumptive with heavy computational over-
heads. On the other hand, conducting detection based
the trained CNN requires instant operations. To
address these contradicted problems, we propose to
train our CNN based detection model on a GPU work-
station and operate the trained CNN model for detect-
ing landmarks in the MAV on-board system. The
separative implementations take advantages of both
the GPU computational power and the on-board
instant feedback, resulting in a novel strategy which
leverages between comprehensively training and
instantly operating deep models for MAV applications.

We experimentally test our CNN based landmark
detection framework on synthesized scenarios and real-
world videos captured by the on-board camera of a

quadrotor. Experimental results validate that the pro-

posed vision-based autonomous landing system is robust

across various landmarks and different lighting situations.

Training a convolutional neural network

for landmark detection

Inspired by the Yolo model17 and SqueezeNet22 model-

ing methodologies, we develop a convolutional neural

network that performs end-to-end landmark detection.

In this section, we first introduce the architecture for

our convolutional neural network, and then describe

how to train the CNN model for landmark detection

on a GPU platform.

Convolutional neural network architecture for

landmark detection

The convolutional neural network architecture of our

proposed detection model is shown in Figure 2. Each

input into the model is an RGB three channel image

captured by an MAV on-board camera, and the corre-

sponding outputs of the model are the predicted loca-

tion of a detected landmark in the image and the

predicted category label of the landmark. Specifically,

one input image is first processed four convolutional

and pooling layers, i.e. C1, C2, C3, C4, followed by one

fully connected layer and one detection layer for regres-

sion. The blue cubes in Figure 2 indicate feature maps

in each layer. Specifically, the Cn�1 layer consists of K

feature maps, i.e. X
ð1Þ
n�1; � � � ;XðKÞ

n�1, and these feature

maps are the sources for computing the feature maps

in the layer Cn.
To generate the lth feature map X

ðlÞ
n in the nth layer

Cn, the feature maps in the (n – 1)th layer Cn�1 are

processed by convolutional-activation-pooling (CAP)

operations, which are basic operations in convolutional

neural networks. Each feature map X
ðkÞ
n�1 in the (n – 1)th

layer is convolved with learnable weightsW
ðk;lÞ
n . The sum

of the K convolved results are added with learnable biases

b
ðlÞ
n , and further processed by a leaky rectified linear acti-

vation function fð�Þ which is depicted as follows:

fðmÞ ¼
m ; m > 0

0:1m; m � 0

(
(1)

The convolution-activation (CA) operations on the

(n – 1)th layer is formulated as follows:

XðlÞ
n ¼ f

XK
k¼1

ðWðk;lÞ
n � Xðk;lÞ

n�1Þ þ bðlÞn

 !
(2)

where � denotes the convolution operation.
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XðlÞ
n is an intermediate feature map in Cn. It is further

processed in terms of a pooling (P) operation for gen-
erating the feature map X

ðlÞ
n in Cn. Specifically, the

pooling operation reduces the size of the XðlÞ
n by shrink-

ing its 2 � 2 or 4 � 4 patches into single elements. This
is done by replacing the patch by the largest valued
element among the patch. The computation of the (i,
j)th entry of the feature map X

ðk;lÞ
n is formulated as

follows:

X
ðk;lÞ
n;i;j ¼ maxfXðk;lÞ

n;i;j ;X
ðk;lÞ
n;iþ1;j;X

ðk;lÞ
n;i;jþ1;X

ðk;lÞ
n;iþ1;jþ1g (3)

We describe the detailed configuration of our CNN
landmark detection framework shown in Figure 2. In
the layer C1, the input three channel image is processed
by a CAP operation and generate 16 feature maps of
the size of 56 � 56. Similarly, C2 has 32 feature maps of
the size of 28 � 28, C3 has 64 feature maps of the size
of 14 � 14, and C4 has 128 feature maps of the size 7 �
7. The detailed configuration is described in Table 1.

The parameter values 3 � 3 for the Conv Filter in C1

refer to the size of each filter W
ðk;lÞ
1 and the following

parameter value 16 refers to the number K of filters
applied in the layer. The parameter value 2 for Stride
indicates the sliding step size for. The parameter values
2 � 2 for the Maxpooling indicate that pooling oper-
ations take place within a region of size 2 � 2. For C2,
C3 and C4, the parameter values have similar
implications.

There are differences between the layers C1 and C4

and the layers C2 and C3. We design the layers C1 and
C4 following Yolo.17 On the other hand, different from
Yolo, we design C2 and C3 by applying Conv Filters of
the ‘squeezed’ size 1. This methodology is motivated by
SqueezeNet22 which replaces one big Conv Filter by
parallel ’squeezed’ Conv Layers and yields a simplified
structure with reduced number of parameters. We

exploit this advantage of SqueezeNet for conducting

simplified CNN computation in an on-board system

with limited computational resources. However, for

on-board small CNNs, the SqueezeNet parallelism sac-

rifices certain accuracy for simplifying the CNN model.

To remedy this ineffectiveness, we modify the parallel-

ism into a serial implementation which is deeper and

more effective to learn more complex feature

representations.
The layer C4 is followed by one fully-connected layer

(FC1) and then fully connected to a vector with 4096

dimensions. The full connection is depicted by cross

arrows in Figure 2. Finally, the 4096 dimensional

vector is processed by the detection layer (D1) to gen-

erate a prediction tensor of the size 7� 7� 15.
One prediction outputted by the CNN is represented

as a 15 dimensional vector in the prediction tensor and

the CNN generates 49 such prediction vectors for one

input image. For each prediction vector, the first five

entries represent the first prediction ðx0; y0;w0; h0; c0Þ,
and the subsequent five entries represent the second

Figure 2. The full architecture of the proposed regression-based detection model. The architecture is composed of a CNN module
and a detection layer. The input image is fed into the CNN module, followed by a detection layer. The detection layer provides the
capability of regressing the coordinates and the class probabilities of the landmarks.
CNN: convolutional neural network.

Table 1. The CNN layer configuration.

Cn Layer configuration

C1 Conv Filter 3� 3�16, Stride 2

Maxpooling 2� 2, Stride 2

C2 Conv Filter 1� 1�8, Stride 1

Conv Filter 1� 1�32, Stride 1

Conv Filter 3� 3�32, Stride 1

Maxpooling 2� 2, Stride 2

C3 Conv Filter 1� 1�16, Stride 1

Conv Filter 1� 1�64, Stride 1

Conv Filter 3� 3�64, Stride 1

Maxpooling 2� 2, Stride 2

C4 Conv Filter 3� 3�128, Stride 1

Maxpooling 2� 2, Stride 2

CNN: convolutional neural network.
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prediction ðx1; y1;w1; h1; c1Þ. Here (xi, yi) represent one

predicted landmark centric coordinate and ci reflects

the confidence that a landmark is located within a

grid cell surrounding (xi, yi) for i 2 f1; 2g.
Specifically, the confidence score is zero when no

object falls into the grid cell. The confidence score is

computed in terms of the intersection over union (IoU)

between the predicted landmark and the ground truth

as follows:

ci � IoU ¼ AO

AU
(4)

where AO and AU denote the area of overlap and the

area of union of the predicted landmark and the true

landmark, respectively. We assume that there are total-

ly five different categories of landmarks (as illustrated

in Figure 1) used for landing, and the final five entries

represent the probabilities PrðLiÞ; i ¼ 1; � � � ; 5 of the

detected landmark belonging to one of the five candi-

date categories.
The class score s is computed by multiplying the

conditional class probabilities and the individual con-

fidence score for each landmark:

s ¼ PrðLiÞ � IoU (5)

where Li denotes one of the landmark categories illus-

trated in Figure 1.
The best prediction is selected from the 49 predic-

tions according to the highest class score s�. For each
prediction, the class score s is computed by equation

(5). The best prediction consists of two components –

the bounding box ðx�; y�;w�; h�Þ and the class score s�.
In the next subsection, we will comprehensively

describe how to optimize the learnable parameters

W
ðk;lÞ
n and bn based on the prediction tensor.

Training the convolutional neural network on a GPU

workstation

For training the CNN detection framework, we first

resize the input image into 224 � 224 and then divide

it into a 7 � 7 equally-sized grid cells. The cells are

responsible for detecting the landmark if the center of

the landmark falls into one of them. As described in the

previous subsection, the CNN framework generates a

7� 7� 15 prediction tensor for one input image, with

each 15 dimensional vector in the tensor corresponding

to one cell of the input image. The training procedure is

to optimize the learnable parameters by minimizing the

loss function measuring the differences between the

prediction tensors and target tensors for input images.

The loss function consists of three parts, i.e. the area
loss Larea, categorical loss Lcls, and the IoU loss LIoU,
which are separately formulated as follows:

Larea ¼ kc
XS2

i¼0

XB
j¼0

I
L
i;j½ðxi � bxiÞ2 þ ðyi � byiÞ2�

þ kc
XS2

i¼0

XB
j¼0

I
L
i;j½ð

ffiffiffiffiffi
wi

p � ffiffiffiffiffibwi

p Þ2 þ ð ffiffiffiffi
hi

p �
ffiffiffiffibhiq
Þ2�

þ
XS2

i¼0

XB
j¼0

I
L
i;jðCi � bC iÞ2

þ kno
XS2

i¼0

XB
j¼0

I
no
i;j ðCi � bC iÞ2�

(6)

where ILi denotes the confidence of landmark appearing
in cell i, ILi;j denotes the jth (first or second) predictor in
cell i is responsible for that prediction, and Ci indicates
the class label of landmark in cell i. kc and kno are two
balance parameters for making the training of the
detection model more stable. In our design, we empir-
ically set kc ¼ 5 and kno ¼ 0:5.

Lcls ¼
XS2

i¼0

I
L
i;jðpiðC0Þ � bpiðC0ÞÞ2 (7)

where piðC0Þ is the conditional probability for landmark
with label C0.

LIoU ¼
XS2

i¼0

I
L
i;jð1� ciÞ2 (8)

where ci is the confidence score, i.e. IoU, can be com-
puted by equation (4).

The overall loss function is:

L ¼ Larea þ Lcls þ LIoU (9)

Given a batch of training data (m image samples),
we train the detection model via the stochastic gradient
descent (SGD) algorithm. We first initialize the learn-
able weights W and biases b to a small random value
near to zero subject to a normal distribution – Norma
lð0; �2Þ with � ¼ 0:01. During training, the input images
are pushed forward (marked with the right-facing
arrow in Figure 2) through the whole network to gen-
erate predictions. Then the errors in terms of the cost
function equation (9) are measured. The error
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gradients for the weights and biases are computed by
equation (10) and backwardly propagated (marked
with the left-facing arrow in Figure 2) for updating
the parameter values.

rWðlÞL ¼ @L
@WðlÞ :

rbðlÞL ¼ @L
@bðlÞ

:

(10)

Algorithm 1: One iteration of stochastic gradient
descent.

Set DWðlÞ :¼ 0; DbðlÞ :¼ 0
for i = 1 to m do

1. Compute the gradients rWðlÞL and rbðlÞL as equa-
tion (10).

2. Set DWðlÞ ¼ DWðlÞ þ rWðlÞL.
3. Set DbðlÞ ¼ DbðlÞ þ rbðlÞL.

Update the parameters:

WðlÞ ¼ WðlÞ � a ð1
m
DWðlÞÞ þ kWðlÞ

� �
bðlÞ ¼ bðlÞ � a

1

m
DbðlÞ

� � (11)

where a is the learning rate, k denotes the weight
decay parameter for adjusting the influence of
model complexity, m is the number of images.

end

To train the CNN based detection model, we repeat-
edly take steps of the stochastic gradient descent as
described in Algorithm 1 to minimize the loss function
L in equation (9).

There are two things that need to be noted in our
training procedure. First, the data jittering approach is
employed to augment the landmark dataset. Specifically,
the augmentation strategies operated on the landmark
dataset include adjusting the image exposure, saturation
and hue. The data augmentation increases the intraclass
variability of training data and thus further improves the
robustness of the detection model. Second, the training
is carried out on a Graphics Processing Unit (GPU)
work station, which is widely used for training deep
learning models. However, it is not suitable for an
MAV on-board system to perform CNN training by
involving GPUs, which are normally physically big in
size and comparatively power consumptive. On the
other hand, it is not necessary to train a CNN in an
on-board system because the MAV instant manipula-
tion just requires implementing a trained CNN model
rather than training it. In the light of this observation,

we use an off-board GPU workstation for efficiently

training our CNN framework. After the training proce-

dure, we obtain about 4000 optimal parameters, i.e.

optimal weights W� and optimal bias b�. We then trans-

fer these trained parameter values to an on-board

system for manipulating MAV landing, which is

described in the next section.

Landmark detection based on the trained

convolutional neural network

Landmark detection via CNN inference

The training procedure first forwardly computes the pre-

diction tensor based the initial parameter values, and then

adjusts the parameter values backwardly via back propa-

gation optimization. In contrast to the forward-backward

training procedure, the inference procedure processes each

frame of a captured video through the CNN network only

forwardly, based on the optimal parameter values (weights

W� and biases b�). The forward computation generates

the predicted coordinate ðx�; y�Þ and class scores s� for

the detected landmark. Following the forward procedure

(marked with theright-facing arrow in Figure 2), the infer-

ence procedure of an input three channels image I is sum-

marized in Algorithm 2:

Algorithm 2: Landmark detection procedure with the

optimal parameters W� and b�.
Set L = 5, X0

0 ¼ I; Ks ¼ f3; 16; 32; 64; 128g

1. for l = 1 to L do
(a) Set K = Ks(l).
(b) for n = 1 to 3 do

Generate feature maps according to equation (2)

with the optimal parameters

XðlÞ
n ¼ f

XK
k¼1

ðW�ðk;lÞ
n � Xðk;lÞ

n�1

 !
þ b�ðlÞn Þ (12)

end
end

2. Process feature maps in the layer FC1 based onW�

and b�.
3. Process feature maps in the layer D1 based on W�

and b� to generate 49 predictions (15-dimension

vector).

Each prediction can be presented as:

½ðx0; y0;w0; h0; c0Þ; ðx1; y1;w1; h1; c1Þ;
ðPrðL1Þ;PrðL2Þ;PrðL3Þ;PrðL4Þ;PrðL5Þ�

(13)
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4. Compute the class score s for each prediction

according to equation (5).
5. Select the best coordinate prediction ðx�; y�Þ

according to the highest class score s�.

Implementing detection on an MAV on-board system

We implement the detection model on the MAV on-

board system Manifold, which consists of a quad-core

ARM Cortex-A15 processor and 2 GB memory. The

trained network is used for detecting landmarks from

unlabeled video frames captured by the on-board

camera. To run the inference procedure on Manifold,

we build detection model with the 4000 optimal param-

eters (W� and b�) loaded on-board. Once the Manifold

starts processing video captured by on-board camera,

the inference procedure summarized in Algorithm 2

begins. The predictions in the form of ðx�; y�;w�; h�; s�Þ
is generated for guiding the landing.

It should be noted that we train and implement the

CNN detection framework based on separate hardware

platforms, i.e. the GPU workstation and the Manifold

MAV on-board system. Though the CNN framework

is developed with simplified architecture, it still requires

considerable computational overheads especially in the

training phase. Specifically, inferencing with the trained

CNN is much less computational consumptive than

training it, because the inference implementation does

not involve the costly backward gradient computation.

Therefore, in contrast to exploiting the computational

power of the GPU workstation to handle the complex

computation in the training phase, we implement the

less complex detection procedure in the Manifold

MAV on-board system, which is not only smaller in

size, lighter in weight and less costive in power than

the GPU workstation but also qualified to conduct

an on-line real-time landmark detection.

Landing system

Figure 4 illustrates the operating procedures of the

autonomous landing system. The image acquisition

procedure is completed by capturing video frames

using an on-board camera with universal serial bus

(USB). The coordinates of the landmarks are predicted

by forwarding the trained CNN detection model. The

predictedcoordinates of the landmarks are then con-

verted into x-axis and y-axis angular offsets (in radians)

of the landmark center. These angular offsets are sent

to the autopilot via the Micro Air Vehicles

Communication Protocol (MAVLINK). This informa-

tion is used to generate control signals to supervise the

landing process via the autopilot. The detailed proce-

dures are described in the following subsections.

Software architecture

The predicted landmark coordinates from videos cap-

tured by an MAV on-board camera are transformed to

the MAV’s own coordinates. We assume that the roll,

pitch and yaw angles of the MAV can be neglected

while computing the x-axis and y-axis angular offsets

of the landmark coordinates in images. The x-axis and

y-axis angular offsets are obtained as follows:

Figure 3. Detection procedure of the CNN-based detection model.
CNN: convolutional neural network.
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Rx ¼ ðx� � hr=2Þ � hf

hr
(14)

Ry ¼ ðy� � vr=2Þ � vf

vr
(15)

Here ðx�; y�Þ denotes the coordinates detected by the
trained detection model. hr, hf, vr and vf are on-board
camera parameters. hr indicates the horizontal resolu-
tion, hf indicates the horizontal field of view (FoV), vr
denotes the vertical resolution, and vf indicates the ver-
tical FoV. Both hf and vf should be used in radians.

The Rx and Ry are sent to the autopilot as
MAVLINK message. This information is processed
with sonar data to compute landmark position relative
to the MAV.

px ¼ hs � tanðRxÞ (16)

py ¼ �hs � tanðRxÞ (17)

where hs is the height above the ground measured by
sonar, and px and py are the x and y axis positions of
the landmark relative to the MAV. The landmark

velocities vx and vy in the x and y axis relative to the
MAV can be calculated by doing differential opera-
tions with px and py.

A Kalman filter is then exploited for supervising the
landmark, with the state vector defined as
X ¼ ½px; py; vx; vy�T. The landmark equations are mod-
eled as a linear system as follows:

Xkþ1 ¼ AXk þ wk (18)

Zk ¼ HXk þ uk (19)

where Xk is the true state vector describing the target
position and velocity relative to the MAV at time k, A
is the state transition parameter, wk is the random pro-
cess noise, Zk is the measurement vector, H is the
observation model, and uk is the measurement noise.
Let p ¼ ½px; py�T and v ¼ ½vx; vy�T, and the motion can
be characterized as follows:

pkþ1 ¼ pk þ vkTs þ akT
2
s=2 (20)

vkþ1 ¼ vk þ akTs (21)

where ak is a random acceleration and Ts is the time
step size. Furthermore, the Kalman state transition is:

pkþ1

vkþ1

" #
¼

1 Ts

0 1

" #
pk

vk

" #
þ wk (22)

Assume that the modeling noise wk is white zero-
mean Gaussian noise with a covariance matrix Q,
and the measurement noise uk is white zero-mean
Gaussian noise with a covariance matrix R:

pðwÞ	Nð0;QÞ (23)

pðvÞ	Nð0;RÞ (24)

The state propagation and update equations for the
Kalman filter are summarized as follows.

• The predicted state estimation is:

bX kjk�1 ¼ AbX k�1 (25)

• The predicted estimation covariance is:

Pkjk�1 ¼ APk�1A
T þQ (26)

• The innovation covariance is:

Sk ¼ HPkjk�1H
T þ R (27)

Figure 4. The flow chart of the vision-based MAV landing
system.
MAV: micro aerial vehicle.
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• The optimal Kalman gain is:

Kk ¼ Pkjk�1H
TS�1

k (28)

• The updated state estimation is:

bX k ¼ bX kjk�1 þKkðZk �HbX kjk�1Þ (29)

• The posterior covariance is:

Pk ¼ ðI�KkHÞPkjk�1 (30)

In this group of equations, the superscript T indi-

cates matrix transposition, bX kjk�1 means the predicted

state estimate value, bX k�1 denotes the optimal state

estimate value in the last step, Pkjk�1 indicates the

covariance of the prediction error, Kk is the Kalman

gain matrix, Pk denotes the covariance of the posterior

estimate error, and bX k indicates the state estimate

value.
The position and velocity estimate bX k of the land-

mark relative to the MAV are fed into the position

controller of the autopilot, and the command is gener-

ated to manipulate the MAV to land on the landmark

safely.

Hardware architecture

The hardware architecture is shown in Figure 5. In this

system, we develop a customized do-it-yourself (DIY)

quad-rotor with an embedded development board

(Manifold). As the main processing unit, the

Manifold board carries out the following tasks: (1)

processing all images captured by the on-board

camera; (2) calculating the angular offset; (3) commu-

nicating with the autopilot. The communication

between the Manifold and the MAV main body is

enabled by the Dronekit.
In our system, the Manifold connects to the UAV’s

autopilot through USB TTL Serial cables. The baud

rate of the serial connection is 1,500,000, and the
MAVLINK is used for communication. The
Dronekit API is utilized as the development tool for
our system.

The experimental quadrotor is shown in Figure 6,
with a DJI NAZA F450 X-shaped frame and the
Pixhawk autopilot with ArduPilot Firmware.
Pixhawk integrates a 14 bit accelerometer, a 16 bit
gyroscope, a magnetometer and an MS5611 barometer.
A sonar is used to measure the height of the MAV
above the ground. A USB camera is used to detect
the landmark. The camera and sonar are configured
as shown in Figure 7. The key component of the
UAV’s computing system is the Manifold, which con-
sists of a quad-core ARM Cortex-A15 processor and 2
GB memory.

Figure 5. Hardware architecture of the vision-based autono-
mous landing system.
USB: universal serial bus.

Figure 6. The developed DIY quadrotor (from the top view of
the MAV).
DIY: do-it-yourself; MAV: micro aerial vehicle.

Figure 7. The configuration of camera and sonar (from the
bottom view of the MAV).
MAV: micro aerial vehicle; USB: universal serial bus.
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Experimental results

In the experiments, we use five categories of landmarks
(as shown in Figure 1) for testing the performance of
our framework. The landmarks size is 50 cm � 50 cm.
The MAV with a downward looking camera is used to
capture outdoor videos, and the flying height varies
from 1 m to 5 m. We also use a forward looking
camera for the MAV to capture indoor videos. The
captured videos are separated into image frames. In
order to train our model to be robust with respect to
inconsistent lighting, we intentionally change image
brightness and thus obtain various lighting training
data. The brightness value ranges from 0 representing
complete darkness to 100 representing complete white-
ness. In our training process, the brightness values of
50 images from each landmark category are set to be
10, and those of another 50 images from each landmark
category are set to be 90. We also use the data augmen-
tation strategy presented in the previous section to
enlarge the intraclass variability of the training data
for the purpose of training a comprehensive model.

The images for each landmark category are annotat-
ed by using an open source tool – labelImg1 https://
github.com/tzutalin/labelImg. An obtained annotation
file includes the category names and landmark coordi-
nates. We build a training dataset containing images
and their annotations. In our experiment, 200 images
for each of the five landmark types are used to train our
landmark detection model and the training data con-
tains totally 1000 annotated images. The training pro-
cess is realized on a workstation with a NVIDIA
GTX860M GPU.

The values of IoU of our CNN model are shown in
Figure 8. The IoU value reaches the peak after 35,000
iterations. We choose the CNN model with 35,000 iter-
ations during the training procedure as our landmark
detection model.

In order to empirically evaluate the proposed on-
board CNN-based landmark detection model, we use
the test data sets, which are different from the training
data sets, for testing our trained model. Specifically, we
perform experiments on the Manifold board, which
processes the outdoor and indoor real-time video
frames as test data sets. Four tests are carried out:

• In the first set of experiments, we evaluate the
robustness of the detection model for various land-
mark shapes.

• In the second set of experiments, we evaluate the
robustness of the detection model for different illu-
mination intensities.

• In the third set of experiments, we evaluate the
robustness of the detection model for different back-
ground environments.

• In the fourth set of experiments, we evaluate the
efficiency of the detection model.

Evaluation of the robustness of the detection model
for various landmark shapes

To evaluate the effectiveness of our model for detecting
various landmark shapes, we test our CNN model in
terms of detecting each type of landmarks in 1000
images captured by the MAV camera. Results for the
five landmarks are shown in Figure 9 and Table 2.
Our CNN model successfully recognizes the landmarks
in 4973 frames. The T-shaped landmark is mistaken for
the H-shaped landmark in several rotation frames. This
is because both the T-shaped landmark and the H-
shaped landmark are simply featured by less discrimi-
native black lines, and we only use 200 images of each
type of landmarks to train our model. The landmark
composed of an H-shaped and concentric circles is mis-
taken for the H-shaped landmark in several frames. We
observe that these errors occur when the distance
between the camera and the landmark is large. One
reason for the misidentification of the H-shaped and
circle landmarks is that they are symmetric shapes
and are less distinguishable from distant views. To val-
idate this observation, we use a fake target landmark,
which appears similar to the circle landmark but is
asymmetric, to replace the circle landmark for testing
our model (Figure 9(f)). The experimental result reveals
that our model does not misidentify the fake landmark
as the true landmark. Our detection model can distin-
guish the landmark composed of a series of concentric
circles and the fake targets from distant views correctly.

Qualitative evaluation results of the CNN model on
the video frames captured from various flying heights
and from different rotation angles are shown in
Figure 10. The performance of our model is fairly
stable when the MAV searching for the landmark at
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Figure 8. The values of IoU with different iterations.
IoU: intersection over union.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Landmark detection results: (a) the T-shaped landmark; (b) the H-shaped landmark; (c) the landmark consisting of eight
equal-sized squares and a big white border; (d) the landmark composed of a series of concentric circles; (e) the landmark composed of
an H-shaped and concentric circles; (f) the fake landmark.

Table 2. Results for evaluating the detection model for various landmark shapes.

T-shaped H-shaped Square landmark Circle landmark Combined landmark

Number of test frames 1000 1000 1000 1000 1000

Correctly recognized frames 989 992 998 999 994

Detection accuracy 98.9% 99.2% 99.8% 99.9% 99.4%

Average time cost 47.53 ms 48.26 ms 47.35 ms 47.73 ms 48.62 ms

(a) (b) (c)

(d) (e) (f)

Figure 10. Detection results of the detection model on video frames captured from various flight heights ((a), (b) and (c)) and from
different rotation angles ((d), (e) and (f)).
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different heights and rotations. The processing rate is
21 frames per second.

To make the evaluation of the model robustness one
step further, we use the MAV shown in Figure 6 to test
the landing system with respect to different landmarks.
The MAV takes off near the landmark to 4 m. When
the landmark is detected, the vision-based landing
system manipulates the MAV to autonomously land
to the landmark region. All the actions in our test are
performed by the MAV automatically. We test four
flights for each landmark, and measure the horizontal
distance between the MAV center to the landmark
center in x and y axis. The position errors (ex and ey)
are recorded in Table 3.

We can see from Table 3 that the position errors are
acceptable for practical landing, because they are rela-
tively small compared with the landmark size 50 cm �
50 cm. One reason for the position errors is that we
assume the roll and pitch angles of the MAV to be zero
during the MAV landing for the purpose of making
condition controlled evaluations. This assumptive

constraint causes some position measuring errors that

do not arise from the detection model. Although suf-

fering from these artificial errors, the MAV can still

automatically land within the landmark region safely.

Evaluation of the robustness of the landmark

detection model for different illumination intensities

In this set of experiments, 100 variously illuminated

images for each landmark category are used for vali-

dation. Specifically, we generate different lighting sit-

uations by changing the brightness value of test images.

The brightness values of the 100 images are set to be

from 10 to 90 to test our landmark detection model.

Visual results are shown in Figure 11. Experimental

observations reveal that the detection results are

stable for the MAV landmark navigation under various

light conditions.

Evaluation of the robustness of the landmark

detection model for different background

environments.

To make the empirical evaluation of our model one

step further, we test the detection performance of our

method for detecting landmarks in different back-

grounds. Specifically, we perform experiments on the

videos captured in four different background

Table 3. Position errors.

Mean Variance Max Min

ex 8.20 cm 14.88 14.35 cm 2.85 cm

ey 9.11 cm 9.13 12.36 cm 4.05 cm

(a) (b)

(c) (d)

Figure 11. The detection results for the images with different brightness values: (a) the brightness value is 10; (b) the brightness
value is 30; (c) the brightness value is 70; (d) the brightness value is 90.
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environments with the on-board camera. Two videos

are captured outdoors, and the other two are captured

indoors. We use 200 images captured in each environ-

ment to test our model. The results are shown in

Figure 12 and Table 4. The experimental results vali-

date that our landmark detection model is able to

detect landmarks under various environments.

Evaluation of the efficiency of the landmark

detection model

To make a quantitative comparison between our

method and alternative state-of-the-art methods, we

train the tiny models of Yolo17 and Yolo v218 based

on the same training dataset as that of our model. We

then test the three trained models in terms of average

IoU and processing rate (i.e. processed frames per

second). The experiments are performed based on the

same image frames as those in the first set of experi-

ments. The comparison results are shown in Table 5.

We observe that though the Yolo methods are slightly
better in terms of accuracy, our model is much more
efficient. The MAVs usually have limited computing
resources on board (e.g. Manifold), which make the
Yolo methods hardly achieve real-time implementa-
tion. On the other hand, our model achieves efficient
implementation, which enables practical MAV on-
board computation.

The usage of the CPU and memory the detection
procedure is reported in Table 6. The landmark detec-
tion image processing algorithms use 3/4 of computing
resources. Therefore, it allows more accurate control

(a) (b)

(c) (d)

Figure 12. The landmark in various environments: (a) and (b) are indoor environments; (c) and (d) are outdoor environments.

Table 4. Results for evaluating the detection model for different background environments.

T-shaped H-shaped Square landmark Circle landmark Combined landmark

Number of test frames 800 800 800 800 800

Correctly recognized frames 786 789 796 798 790

Detection accuracy 98.25% 98.625% 99.5% 99.75% 98.75%

Average time cost 47.62 ms 47.36 ms 47.25 ms 47.93 ms 48.32 ms

Table 5. Comparison in terms of accuracy and efficiency.

Yolo Yolo v2 Our model

IoU 84.24% 89.29% 83.70%

Frames per second 7.5 5.3 21

IoU: intersection over union.
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algorithms to execute during the landing procedure,

which provides a possible route for improving the land-

ing accuracy.
These experiments validate that our CNN model can

not only detect the various landmarks, but also pro-

duce correct detections under different conditions. We

put the detection results in video forms on the URL

https://youtu.be/fifCK6BeDH8 for public observation.

It is clear that our method is robust and efficient to

process landmark information for guiding the MAV

autonomous landing.

Conclusions

We have introduced a novel vision guided MAV auton-

omous landing system based on deep learning.

Specifically, we have made three novel contributions.

First, we have incorporated a modified SqueezeNet

architecture into the Yolo scheme to develop a simpli-

fied CNN for detecting landmarks. Second, we have

designed a separative implementation strategy which

leverages the complex CNN training and the instant

CNN detection. We have tested our novel framework

in both synthesized and real-world environments and

validated its effectiveness for MAV autonomous

landing.
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Article

Persistent self-supervised learning:
From stereo to monocular vision for
obstacle avoidance

Kevin van Hecke1, Guido de Croon1, Laurens van der Maaten2,
Daniel Hennes3 and Dario Izzo3

Abstract

Self-supervised learning is a reliable learning mechanism in which a robot uses an original, trusted sensor cue for training

to recognize an additional, complementary sensor cue. We study for the first time in self-supervised learning how a

robot’s learning behavior should be organized, so that the robot can keep performing its task in the case that the original

cue becomes unavailable. We study this persistent form of self-supervised learning in the context of a flying robot that

has to avoid obstacles based on distance estimates from the visual cue of stereo vision. Over time it will learn to also

estimate distances based on monocular appearance cues. A strategy is introduced that has the robot switch from flight

based on stereo to flight based on monocular vision, with stereo vision purely used as “training wheels” to avoid

imminent collisions. This strategy is shown to be an effective approach to the “feedback-induced data bias” problem as

also experienced in learning from demonstration. Both simulations and real-world experiments with a stereo vision

equipped ARDrone2 show the feasibility of this approach, with the robot successfully using monocular vision to avoid

obstacles in a 5� 5 m room. The experiments show the potential of persistent self-supervised learning as a robust

learning approach to enhance the capabilities of robots. Moreover, the abundant training data coming from the own

sensors allow to gather large data sets necessary for deep learning approaches.
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Introduction

It is generally acknowledged that robots operating in

the real world benefit greatly from learning mecha-

nisms. Learning allows robots to adapt to environ-

ments or circumstances not specifically foreseen at

design time. However, the outcome of learning and

its influence on the learning robot’s behavior can by

definition not be predicted completely. This is a

major reason for the delay in introducing successful

learning methods such as Reinforcement Learning

(RL) in the real world. For instance, with RL it is a

major challenge to ensure an exploratory behavior that

is safe for both the robot and its environment.1

Learning from demonstration (LfD) can in this

respect be regarded as more reliable. However, in the

case of a mobile robot, LfD faces a “feedback-induced

data bias” problem.2,3 If the robot executes its trained

policy on real sensory inputs, its actions will be slightly
different from the expert’s. As a result, the trajectory of
the robot will be different to when the human expert
was in control, leading to a test data distribution that is
different from the training distribution. This difference
worsens the performance of the learned policy, further
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increasing the discrepancy between the data distribu-
tions. The solution proposed in Ross et al.2,3 is to have
the human expert provide novel training data for the
sensory inputs experienced by the robot when being in
control itself. This leads to an iterative process that
requires quite a time investment of the human expert.

There is a relatively new learning mechanism for
robots that combines reliability with the advantage of
not needing any human supervision. Self-supervised
learning (SSL) does not learn a control policy as
LfD and RL, but rather focuses on improving the sen-
sory inputs used in control. Specifically, in SSL, the
robot uses the outputs of an original, trusted sensor
cue to learn recognizing an additional, complementary
sensor cue. The reliability comes from the fact that the
robot has access to the trusted cue during the entire
learning process, ensuring a baseline performance of
the system.

Until now, the purpose of SSL has mostly been the
exploitation of the complementarity between the sensor
cues. To illustrate, perhaps the most well-known exam-
ple is the use of SSL on Stanley, the car that won the
grand DARPA challenge.4 Stanley used a laser scanner
to detect the road ahead. The range of the laser scanner
was rather limited, which placed a considerable restric-
tion on the robot’s driving speed. SSL was used in
order to extend the road detection beyond the range
of the laser scanner. In particular, the laser scanner-
based road classifications were used to train a color
model of drivable terrain in the images from a
camera. This color model was then applied to image
regions not covered by the laser scanner. These image
regions higher up in the image allowed to detect the
road further away. The use of SSL permitted Stanley
to speed up considerably and was an important factor
in winning the competition.

A characterizing feature of many of the earlier SSL
studies,4–10 is that the complementary cue is always
used in combination with the original sensor cue.
More recent studies aim to replace the function of the
original cue with that of the complementary cue.11–14

For instance, in Baleia et al.,11 the sense of touch is
used to teach a vision process how to recognize travers-
able paths through vegetation with the goal of gradu-
ally reducing time-intensive haptic interaction. Hence,
the learning of recognizing the complementary cue will
have to persist in time. However, the consequences of
this persistent form of SSL on the robot’s behavior
when acting on the complementary cue have not been
addressed in the above-mentioned studies.

The main contribution of this article is that we per-
form an in-depth study of the behavioral aspects of
persistent SSL. We do so in the context of a scenario
in which the robot should keep performing its task even
when the supervisory cue becomes completely

unavailable. Importantly, when the robot relies only
on the complementary cue, it will encounter the
feedback-induced data bias problem known from
LfD. We suggest a novel behavior strategy during
learning to handle this problem in persistent SSL.
Specifically, we study a flying robot with a stereo
vision system that has to avoid obstacles in a global
positioning system (GPS)-denied environment. The
robot uses SSL to learn a mapping from monocular
appearance cues to stereo-based distance estimates.
We have chosen this context because it is relevant for
any stereo-based robot that needs to be robust to a
permanent failure of one of its cameras. In computer
vision, monocular distance estimation is also studied.
There, the main challenges are the gathering of suffi-
cient data (e.g., for deep neural networks) and the gen-
eralization of the learned distance estimation to an
unforeseen operation environment. Both of these chal-
lenges are addressed to some extent by SSL, as learning
data are abundant and the robot learns in the environ-
ment in which it operates. We regard SSL as an impor-
tant supplement to machine learning for robots.
Therefore, we end the study with a discussion on the
position of (persistent) SSL in the broader context of
robot and machine learning, comparing it among
others with RL, LfD, and supervised learning.

The remainder of the article is set up as follows.
First, we discuss related work. Then, we more formally
introduce persistent SSL and explain our implementa-
tion for the stereo-to-mono learning. We analyze the
similarity of the specific SSL case studied in this article
with LfD approaches. Subsequently, we perform offline
vision experiments in order to assess the performance
of various parameter settings. Thereafter, we compare
various learning strategies in simulation. The best
learning strategy is implemented for experiments with
a Parrot ARDrone2, and the results of these robotic
experiments are analyzed. Finally, the broader implica-
tions of the findings on persistent SSL are discussed,
and conclusions are drawn.

Related work

We study persistent SSL in the context of a stereo-
vision equipped robot that has to learn to navigate
with a single camera. In this section, we discuss the
state-of-the-art in the most relevant areas to the
study: monocular navigation and SSL.

Monocular navigation

The large majority of monocular navigation
approaches focuses on motion cues. The optical flow
of world points allows for the detection of obstacles15

or even the extraction of structure from motion, as in
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monocular simultaneous localization and mapping

(SLAM).16 The main issue of using monocular

motion cues for navigation is that optical flow only

conveys information on the ratio between distance

and the camera’s velocity. Additional information is

necessary for retrieving distance. This information is

typically provided by additional sensors,16 but can

also be retrieved by performing specific optical flow

maneuvers.17,18

In contrast, it is well known that the appearance of

objects in a single, still image does contain distance

information. Successfully estimating distances in a

single image allows robots to evaluate distances with-

out having to move. In addition, many appearance

extraction and evaluation methods are computationally

efficient. Both these factors can aid the robot in the

making of quick navigation decisions. Below, we give

an overview of work in the area of monocular

appearance-based distance estimation and navigation.

Appearance-based navigation without distance estimation.

There are some appearance-based navigation methods

that do not involve an explicit distance estimate. For

instance, in de Croon et al.,19 an appearance variation

cue is used to detect the proximity to obstacles, which is

shown to be successful at complementing optical flow-

based time-to-contact estimates. A threshold is set that

makes the flying robot turn if the variation drops too

much, which will lead to turns at different distances.
An alternative approach is to directly learn the map-

ping from visual inputs to control actions. In order to

fly a quad rotor through a forest, Ross et al.3 use a

variant of LfD20 to acquire training data on avoiding

trees in a forest. First a human pilot controls the drone,

creating a training data set of sensory inputs and

desired actions. Subsequently, a control policy is

trained to mimic the pilot’s commands as good as pos-

sible. This control policy is then implemented on the

drone.
A major problem of this approach is the feedback-

induced data bias: A robot has a feedback loop of

actions and sensory inputs, so its control policy deter-

mines the distribution of world states that it encounters

(with corresponding sensory inputs and optimal

actions). Small deviations between the trained control-

ler and the human may bring the robot in unknown

states for which it has received no training. Its control

policy may generalize badly to such situations. The

solution proposed in Ross et al.3 is a transitional

model called DAgger,2 in which actions from the

expert are mixed with actions from the trained control-

ler. In the real-world experiments in Ross et al.,3 sev-

eral iterations have been performed in which the robot

flies with the trained controller, and the captured

videos are labeled offline by a human. This approach
requires skilled pilots and significant human effort.

Many current studies focus on using deep RL21 to
learn a mapping from images to actions. One of the
most successful current attempts is the work in
Sadeghi and Levine,22 which learns a deep neural net-
work completely in simulation and then ports the net-
work to a real robot in a yet unseen environment. The
trained network performs quite admirably in the real
environment. Key to the success of learning is to ensure
a large variety of textures, lighting, and obstacle
arrangements in simulation. Of course, if the real envi-
ronment is still very different from the training envi-
ronments, performance can degrade considerably.

Offline monocular distance learning. Humans are able to
see distances in a single still image, and there is a grow-
ing body of work in computer vision utilizing machine
learning to do the same. Interest in single image depth
estimation was sparked by work from Hoiem et al.23

and Saxena et al.24,25 Hoiem’s automatic photo pop-up
tries to group parts of the image into segments that can
be popped up at different depths. Saxena’s Make-3D
uses a Markov random field (MRF) approach to clas-
sify a depth per image patch on different scales. These
studies focus on creating a dense depth map with a
machine learning computer vision approach. Both
methods use supervised learning on a large training
data set. Some work was done on adopting variants
of Saxena’s MRF work for driving rovers and even
for MAVs. Lenz et al.26 proposed a solution based
on a MRF to detect obstacles on board an MAV,
but it does not infer how far the objects are. Instead,
it is trained offline to recognize three different obstacle
class types. Any different objects could hence lead to
navigation problems.

Recently, again focusing on creating a dense depth
map from a single image, Eigen et al.27 propose a multi-
scale deep neural network approach trained on the
KITTI data set, making it more resilient for practical
robot data. Training deep neural networks require a
large data set, which is often obtained by deforming
training data or by artificially generating training
data. Michels et al.28 use artificial data to learn recog-
nizing obstacles on a rover, but in order to generalize
well it requires the use of a very realistic simulator. In
addition, the same work reports significant improve-
ment if the artificial data are augmented with labeled
real-world data.

Other groups acquire training data for supervised
learning by having another separate robot or system
acquire data. This data are then processed and learned
offline, after which the learned algorithm is deployed
on the target robot. Dey et al.29 use an RC car with a
stereo vision setup to acquire data from an
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environment, apply machine learning on this data off-
line, and navigate a similar but unseen environment
with an MAV based on the trained algorithm.
Creating and operating a secondary system designed
to acquire training data, however, is no free lunch.
Moreover, it introduces inconvenient biases in the
training data, because an RC car will not behave in a
similar way both in terms of dynamics, camera view-
point, and the path chosen through the environment.

None of the above methods have the robot gather
the data and learn while in operation.

Self-supervised learning

The idea of SSL has been around since the late 1990s,30

but the successful application of it to terrain classifica-
tion on the autonomously driving car Stanley31 dem-
onstrated its first major practical use. A similar
approach was taken by Hadsell et al.,9 but now using
a stereo vision system instead of a LIDAR system, and
complex convolutional filters instead of simple and
fixed color-based features. These approaches largely
forgo the need for manually labeled data as they are
designed to work in unseen environments.

In most studies on SSL for terrain classification, the
ground truth is always used during operation. In con-
trast, two very recent studies have as goal that the
robot takes some decisions based on the complementa-
ry sensor cue alone. Since the complementary cue then
has to persist in the absence of the original cue, this
form of SSL can be termed “persistent SSL.” Baleia
et al.11 study a rover with a haptic antenna sensor. In
their application of terrain mapping, they try to map
monocular cues to obstacles based on earlier events of
encountering similar situations that resulted in either a
hard obstacle, a traversable obstacle, or a clear path.
The monocular information is used in a path-planning
task, requiring a cost function for either exploring
unknown potential obstacles or driving through a ter-
rain on the current available information. Since check-
ing whether a potential obstacle is traversable is costly
(the rover needs to travel there in order for the antenna
to provide ground truth on that), the robot learns to
classify the terrain ahead with vision. On each sample
an analysis is performed to determine whether the
vision-based classifier is sufficiently confident: it either
decides the terrain is traversable, not traversable, or
unsure. In the unsure case, the sample is sensed using
the antenna. Gradually this will become necessary less
often, thus learning to navigate using its Kinect sensor
alone. In Ho et al.,12 a flying robot first uses optical
flow to select a landing site that is flat and free of
obstacles. In order for this to work, the robot has to
move sufficiently with respect to the objects on the
landing site. While flying, the robot uses SSL to learn

a regression function that maps an (appearance-based)
texton distribution to the values coming from the opti-
cal flow process. The learned function extends the
capabilities of the robot, as after learning it is also
able to select landing sites without moving (from
hover). The article shows that if the robot is uncertain
on its appearance-based estimates, it can switch back to
the original optical flow-based cue.

The main contribution of this article is that we focus
on the behavioral aspects of persistent SSL. We study
how to best set up the behavior during the learning
process, so that the robot will be able to keep perform-
ing its task when the original sensor cue becomes
completely unavailable. Furthermore, we use stereo
vision as the trusted, original cue, something which
has not been done before in SSL. Concerning a com-
parison with the largest body of work on SSL that
deals with terrain traversability classification, learning
depth estimates directly is likely more complex. To
illustrate, the robot would not only have to recognize
sand, but it also has to make the difference between
sand at 1-m distance and at 3-m distance. As men-
tioned above though, successful algorithms exist even
to estimate complete dense depth maps from single
images. In this article, since the emphasis is on behav-
ior, we will deal with simplified environments and the
estimation is restricted to the average depth in the field
of view of the camera.

Methodology overview

In this section, we describe the persistent SSL learning
mechanism and describe our implementation of this
mechanism for our specific proof of concept case, mon-
ocular depth estimation in flying robots. Note that since
our interest is in the behavioral aspects of persistent SSL,
it is most important that the robot flies and learns in real
time. Moreover, for the applicability to small flying
robots, it is important that the processing for such SSL
can be performed onboard, even considering the signifi-
cant restrictions in onboard processing. The focus here is
not yet on dealing with complex environments or on the
accomplishment of missions like exploration or naviga-
tion. In this study, we investigate a very simple environ-
ment and obstacle avoidance behavior. We end this
section with a description of the three learning behaviors
that we compare with each other.

Persistent SSL principle

The persistent SSL principle is schematically depicted
in Figure 1. In persistent SSL, an original, pre-wired
sensory cue provides supervised outputs to a learning
process that takes a different, complementary sensory
cue as input. The goal is to be able to replace the

van Hecke et al. 189



pre-wired cue if necessary. When considering the

system as a whole, learning with persistent SSL can

be considered as unsupervised; it requires no manual

labeling or pre-training before deployment in the field.

Internally it uses a supervised learning method that in

fact needs ground truth labels to learn. This ground

truth is, however, assumed to be provided online and

autonomously without human or outside interference.
In the schematic, the input variable x represents the

sensory inputs available on board. The variables xg and

xf are possibly overlapping subsets of these sensory

inputs. In particular, function gðxgÞ extracts a trusted

ground truth sensory cue from the sensory inputs xg. In

classical systems, gðxgÞ provides the required function-

ality on its own:

g : xg ! y; xg � x (1)

The function fðxfÞ is learned with a supervised learn-

ing algorithm in order to approximate gðxgÞ based

on xf:

f : xf ! by; f 2 F; xf � x (2)

bf ¼ argmin
f2F

E lðfðxfÞ; gðxgÞÞ
� � (3)

where lðfðxfÞ; gðxgÞÞ is a suitable loss function that is to

be minimized. The system can either choose or be

forced to switch h, so that k is either set to gðxgÞ orbfðxfÞ for use in control. Future work may also include

fusing the two, but in this article, we focus on using the

complementary cue in a stand-alone fashion. It must be

noted that while both xg � x and xf � x, in general it

may be that xf does not contain all necessary informa-

tion to predict y. In addition, even if xg¼ xf, it is pos-

sible that F does not contain a function f that perfectly

models g. The information in xf and the function space

F may not allow for a perfect estimate of gðxgÞ. On the

other hand, there may be an fðxfÞ that handles certain
situations better than gðxgÞ (think of landing site selec-

tion from hover, as in Ho et al.12). In any case, funda-

mental differences between gðxgÞ and bfðxfÞ are to be

expected, which may significantly influence the

behavior when switching h. Handling these differences

is of central interest in this article.

Stereo-to-mono proof of concept

Figure 2 presents a block diagram of the proposed

proof of concept system in order to visualize how the

persistent SSL method is employed in our application:

estimating monocular depth with a flying robot. Input

is provided by a stereo vision camera, with either the

left or right camera image routed to the monocular

estimator. We use a Visual Bag of Words (VBoW)

method for this estimator. The ground truth for persis-

tent SSL in this context is provided by the output of a

stereo vision algorithm. In this case, the average value

of the disparity map is used, both for training the mon-

ocular estimator and as an input to the switch h. Based
on the switch, the system either delivers the monocular

or the stereo vision average disparity to the behavior

controller.

Stereo vision processing

The stereo camera delivers a synchronized gray-scale

stereo-pair image per time sample. A stereo vision algo-

rithm first computes a disparity map, but often this is a

far from perfect process. Especially in the context of an

MAV’s size, weight and computational constraints,

errors caused by imperfect stereo calibration, resolu-

tion limits, etc. can cause large pixel errors in the

results. Moreover, learning to estimate a dense dispar-

ity map, even when this is based on a high quality and

consistent data set, is already very challenging. Since

we use the stereo result as ground truth for learning, we

minimize the error by averaging the disparity map to a

single scalar. A single scalar is much easier to learn

than a full depth map and has been demonstrated

to provide elementary obstacle avoidance

capability.28,32,33

The disparity k relates to the depth d of the input

image:

d / 1

k
(4)

Using averaged disparity instead of averaged depth

fits the obstacle avoidance application better, because

small but close by objects are emphasized due to the

nonlinear relation of equation (4). However, linear

learning methods may have difficulty mapping this

relation. In our final design, we thus choose to learn

the disparity with a nonparametric approach, which is

resilient to nonlinearities.

Input x Error Output l

Estimate ŷ

g (xg)

f̂  (xf)

q

Groundtruth y

Figure 1. The persistent self-supervised learning principle.
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Monocular disparity estimation

The monocular disparity estimator forms a function
from the image’s pixel values to the average disparity
in the image. Since the main goal of the article is to
study SSL on board a drone in real time, efficiency of
both the learning and execution of this function is
very important. Hence, we converged to a computa-
tionally extremely efficient VBoW approach for the
robotic experiments. We have also explored a deep
neural network approach, but the hardware and
time available for learning did not allow for having
the deep neural learning on board the drone at this
stage.

The VBoW method uses small image patches of
w� h pixels, as successfully introduced in Varma and
Zisserman34 for a complex texture classification prob-
lem. First, a dictionary is created by clustering the
image patches with Kohonen clustering (as in De
Croon et al.33). The n cluster centroids are called
“textons.” In this work, two types of textons are
used: normal intensity textons and gradient textons
obtained similarly but based upon the gradient of the
images. Gradient textures have been shown in Wu
et al.35 to be an important depth cue. An example dic-
tionary of each is depicted in Figure 3. Gradient

textons are shown with a color range (from blue¼ low,

to red¼high). The intensity textons in Figure 3 are

based on grayscale intensity pixel values.
When an image is received, m patches are extracted

from the W�H pixel image. Each patch is compared

to the dictionary by means of a distance function, in

order to form a texton occurrence histogram for the

image; the texton bin with the smallest Euclidean dis-

tance to a given patch is increased by 1. The histogram

is normalized to sum to 1. Then, each normalized his-

togram is supplemented with its Shannon entropy,

resulting in a feature vector of size nþ 1. The idea

behind adding the entropy is that the variation of tex-

tures in an image decreases when the camera gets closer

to obstacles.33 To illustrate the change in texton histo-

grams when approaching an obstacle, a time series of

texton histograms can be seen in Figure 4. Note how

the entropy of the distribution indeed decreases over

time, and that especially the fourth bin is much higher

when close to the poster on the wall. A machine learn-

ing algorithm will have to learn to notice such relation-

ships itself for the robot’s environment, by learning a

mapping from the feature vector to a disparity scalar.

We have investigated different function representations

and learning methods to this end.

Monocular
es�mator

Stereo 
processing

Switch

Behavior 
rou�nes

Robot 
controller

Average 
disparity

Average disparity 
es�mate

Safety 
overide

Control  signal

Filter

PSSL
Camera

Le�

Camera
Right

Other
sensors

Figure 2. System overview. See the text for details.

Figure 3. The texton library used in the experiments. The right set of textons is based on pixel intensities, the left set contains
(artificially colored) gradient textons (i.e., textons based on gradient images).
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Control behavior

The proposed system uses a straightforward behavior

heuristic to explore, navigate, and persistently learn a

room. The heuristic is depicted as a finite state machine

(FSM) in Figure 5. The FSM detects obstacles by

means of a threshold t applied to the average disparity

k. In state 0, the robot flies in the direction of the

camera’s principal axis. When an obstacle is detected

(k > t), the robot stops and goes to state 1 in which it

randomly chooses a new direction for the principal

axis. It immediately passes to state 2 in which the

robot rotates toward the new direction, reducing the

error e between the principal axis’ current and desired

direction. If in the new direction obstacles are far

enough away (k � t), the robot starts flying forward

again (state 0). Else, the robot continues to turn in the

same direction as before (clockwise or counter clock-

wise) until k � t. When this is the case, it starts flying

straight again (state 0). Choosing this rather straight-

forward behavior heuristic enables autonomous explo-

ration based on only one scalar obtained from a

distance sensor.

Performance

The average disparity k, coming either from stereo

vision or from the monocular distance estimation

Figure 4. Approaching a poster on the wall. Left: monocular input. Middle: overlaid textons annotated with the color used in the
histogram. Right: texton distribution histogram with the corresponding texton shown beneath it.
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function fðxfÞ, is thresholded for determining whether
to turn. This leads to a binary classification problem,
where all samples for which k > t are considered as
“positive” (c¼ 1) and all samples for which k � t are
considered as “negative” (c¼ 0). Hence, the quality ofbfðxfÞ can be characterized by a receiver operating char-
acteristic (ROC) curve. The ground truth for the ROC
curve is determined by the stereo vision. This means
that a true positive ratio (TPR) of 1 and false positive
ratio (FPR) of 0 lead to the same obstacle detection
performance as with the stereo vision system.
Generally, of course, this performance will not be
reached, and the robot has to determine what threshold
to set for a sufficiently high TPR and low FPR.

This leads to the question how to determine what a
“sufficient” TPR/FPR is. We evaluate this matter in
the context of the robot’s obstacle avoidance task. In
particular, we first look at the probability of a collision
with a given TPR and then at the probability of a
spurious turn with a given FPR.

In order to model the probability of a collision, con-
sider a constant velocity approach with input samples
(images) hx1; x2; . . . ; xni of n samples long, ending at an
obstacle. A minimum of u samples before actual
impact, an obstacle must be detected by at least one
TP or a FP in order to prevent a collision. Since the
range of samples hxðn�uþ1Þ; xðn�uþ2Þ; . . . ; xni does not
matter for the outcome, we redefine the approach
range to be hx1; x2; . . . ; xðn�uÞi. Consider that for each
sample xi holds:

1 ¼ pðTPjxiÞ þ pðFPjxiÞ þ pðTNjxiÞ þ pðFNjxiÞ;
(5)

since pðFNjxiÞ ¼ pðTPjxiÞ ¼ 0 if xi is a negative and
pðTNjxiÞ ¼ pðFPjxiÞ ¼ 0 if xi is a positive. Let us first

assume independent, identically distributed (i.i.d.) data.
Then, the probability of a collision pc can be written as:

pc ¼
Yn�u

i¼1

ðpðFNjxiÞ þ pðTNjxiÞÞ

¼
Yq
i¼1

pðTNjxiÞ
Yn�u

i¼qþ1

pðFNjxiÞ;
(6)

where q is a time step separating two phases in the
approach. In the first phase all xi are negative, so that
any false positive will lead to a turn, preventing the col-
lision. Only if all negative samples are correctly classified
as negatives (true negatives), will the robot enter the
second phase in which all xi are positive. Then only a
complete sequence of false negatives will lead to a colli-
sion, since any true positive will lead to a timely turn.

We can use equation (6) to choose an acceptable
TPR ¼ 1� FNR. Assuming a constant velocity and
frame rate, it gives us the probability of a collision.
For instance, let us assume that the robot flies forward
at 0.50 m/s with a frame rate of 30 Hz. To avoid colli-
sions, it has a minimal required detection distance of
1.0 m, while “positives” are defined to be closer than
1.5 m. This leads to 0.5 m of flight during which the
robot can detect an oncoming collision, corresponding
to s¼ 30 samples that all have to be classified as (false)
negatives for a collision to occur. In the case of i.i.d.
data, if we think a probability pc � 10�6 is acceptable,
then the desired TPR � 1� 2ðlog2ð10�6Þ=30Þ�0:369.

The analysis of the effect of false positives is
straightforward, as it can be expressed in the number
of spurious turns per second or, equivalently if assum-
ing a constant velocity, per meter traveled. With the
same scenario as above, an FPR¼ 0.05 will on average
lead to three spurious turns per traveled meter, which is
unacceptably high. An FPR¼ 0.0017 will approximate-
ly lead to 1 spurious turn per 10 m.

The above analysis seems to indicate that quite
many false negatives are acceptable, while there can
only be very few false positives. However, there are
two complicating factors. The first factor is that equa-
tion (6) only holds when X can be assumed i.i.d., which
is unlikely due to the nature of the consecutive samples
of an approach toward an obstacle. Some reasoning
about the nature of the dependence is, however, possi-
ble. Assuming a strong correlation between consecutive
samples results in a higher probability of xi being clas-
sified the same as xðiþ1Þ. In other words, if a sample in
the range hx1::xmi is an FN, the chance increases that
more samples are FNs. Hence, the expected dependen-
cies significantly impact performance of the system
making equation (6a) best case scenario for FNs and
a worst case scenario for FPs.

0:       Straight ahead

1:  Pick random direc�on

≤ t

2:              Rotate

≤ t & e ≤ te

e > te

> t & e ≤ te

> t

Figure 5. The behavior heuristic FSM. k is average disparity, e is
the attitude error (meaning the difference between the newly
picked direction and the current attitude), tn the respective
thresholds.
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The system can be more realistically modeled as a

Markov process as depicted in Figure 6. From this it

can be seen that the system can be split in a reducible

Markov process with an absorbing avoid state, and a

chain of states that leads to the absorbing collision
state. The values of the transition matrix X can be

determined from the data gathered during operation.

This would allow the robot to better predict the con-

sequences of a chosen TPR and FPR.
As an illustration of the effects of sample depen-

dence, let us suppose a model in which each classifica-
tion has a probability of being identical to the previous

classification, pðIðci�1; ciÞÞ. If not identical, the sample

is classified independently. This dependency model

allows us to calculate the transition X4;5 in Figure 6.

Given a previous negative classification, the transition

probability to another negative classification is: X4;5 ¼
pðIðci�1; ciÞÞ þ ð1� pðIðci�1; ciÞÞÞð1� TPRÞ. If pðIðci�1;
ciÞÞ ¼ 0:8 and TPR¼ 0.95, X4;5 ¼ 0:81. The probability
of a collision in such a model is pc ¼ Xðs�1Þ

4;5 ¼ 1:8 10�3,

no longer an inconceivably small number.
This leads us to the second complicating factor,

which is specific to our SSL setup. Since the robot
operates on the basis of the ground truth, it should

theoretically hardly ever encounter positive samples.

Namely, the robot should turn when it detects a posi-

tive sample. This implies that the uncertainty on the

estimated TPR is rather high, while the FPR can be

estimated better. A potential solution to this problem
is to purposefully have the mono-estimation robot turn

earlier than the stereo vision-based one.

Similarity with LfD

The core of SSL is a supervised algorithm that

learns the function bfðxfÞ on the basis of supervised

outputs gðxgÞ. Normally, supervised learning assumes
that the training data are drawn from the same data

probability distribution D as the test data. However, in
persistent SSL, this assumption generally does not
hold. The problem is that by using control based onbf, the robot follows a control policy pbf 6¼ pg and hence
will induce a different state distribution, D

pbf 6¼ Dpg . On

these different states, no supervised outputs have been
observed yet, which typically implies an increasing dif-
ference between bf and g.

A similar problem of inducing a different state dis-
tribution is well known in the area of LfD.2,3 Actually,
we will show that under some mild assumptions, the
persistent SSL problem studied in this paper is equiv-
alent to an LfD problem. Hence, we can draw on sol-

utions in LfD such as DAgger.2

The goal of LfD is to find a policy bp that minimizes
a loss function l under its induced distribution of states,

from Ross et al.2:

bp ¼ argmin
p2P

Es�Dp lðs; pÞ½ � (7)

where an optimal, teacher policy p	 is available to pro-

vide training data for specific states s.
At first sight, SSL is quite different, as it focuses

only on the state information that serves as input

to the policy. Instead of optimizing a policy, the
supervised learning in persistent SSL can be defined
as finding the function f0 that best matches the
trusted function g0 under the distribution of states
induced by the use of the thresholded version f

for control:

argmin
f2F

Ex�Dpf
lðfðxÞ; gðxÞÞ½ � (8)

Figure 6. A Markov model of the probability of a collision. Due to the nature of the consecutive samples, state transition prob-
abilities Xð5þnÞð6þnþuÞ are not equal to Xð3Þð4Þ but are likely to be relatively high. (Once one frame was wrongly classified as no obstacle,
it is likely the upcoming frames will also be wrongly classified as they are similar.)
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meaning that we perform regression of f on states that
are induced by the control policy pf, which uses the
thresholded version of f.

To see the similarity to equation (7), first realize that
the stereo-based policy is in this case the teacher policy:
pg ¼ p	. For this analysis, we simplify the strategy to
flying straight when far enough away from an obstacle,
and turning otherwise:

pgðsÞ : pðstraightjs ¼ 0Þ ¼ 1

pðturnjs ¼ 1Þ ¼ 1
(9)

where s is the state, with s¼ 1 when gðxÞ > tg and s¼ 0
otherwise. Note that pg is a deterministic policy, which
is assumed to be optimal.

When we learn a function bf, it generally will not give
exactly the same outputs as g. Using bs :¼ bf > tbf will
result in the following stochastic policy:

pf̂ðsÞ : pðstraightjs ¼ 0Þ ¼ TNR

pðturnjs ¼ 0Þ ¼ FPR

pðturnjs ¼ 1Þ ¼ TPR

pðstraightjs ¼ 1Þ ¼ FNR

(10)

a stochastic policy which by definition is optimal,
pf̂ ¼ pg, if FPR ¼ FNR ¼ 0. In addition, then
Dpf̂ ¼ Dpg . Thus, if we make the assumption that min-
imizing lðfðxÞ; gðxÞÞ also minimizes FPR and FNR, cap-
turing any preference for one or the other in the cost
function for the behavior lðs; pÞ, then minimizing f in
equation (8) is equivalent to minimizing the loss in
equation (7).

Learning schemes

The interest of the above-mentioned similarity lies in
the use of proven techniques from the field of LfD for
training the persistent SSL system. In this article, we
study a well-known method from this field, named
DAgger,2 and compare it with two additional methods.
All three learning schemes start with an initial learning
period in which the drone is controlled purely by means
of stereo vision. The three methods are different
though as follows.

1. In the first learning scheme, the drone will continue
to fly based on stereo vision for the remainder of the
learning time. After learning, the drone immediately
switches to monocular vision. For this reason, the
first scheme is referred to as “cold turkey.”

2. In the second learning scheme, the drone will
perform a stochastic policy, selecting the stereo

vision-based actions with a probability bi and
monocular-based actions with a probability
ð1� biÞ, as was proposed in the original DAgger
article.2 In the experiments, bi ¼ 0:25.

3. In the third learning scheme, the drone will perform
monocular-based actions, with stereo vision only
used to override these actions when the drone gets
too close to an obstacle. Therefore, we refer to this
scheme as “training wheels.”

Offline vision experiments

In this section, we perform offline vision experiments.
The goal of these experiments is to determine how good
the proposed VBoW method is at estimating monocu-
lar depth, and to determine the best parameter settings.

To measure the performance, we use two main met-
rics: the mean square error (MSE) and the area under
the curve (AUC) of an ROC curve. MSE is an easy
metric that can be directly used as a loss function,
but in practice many situations exist in which a low
MSE can be achieved while inadequate performance
is reached for the basis of reliable MAV behavioral
control. The AUC captures the trade-off between
TPR and FPR and hence is a good indication of how
good the performance is in terms of obstacle detection.

We use two data sets in the experiments. The first
data set is a video made on a drone during an auton-
omous flight using an onboard 128� 96 pixels stereo
camera. The second data set is a video made by man-
ually walking with a higher quality 640� 480 pixel
stereo camera through an office cubicle in a similar
fashion as the robot should move in the later online
experiments. The data sets #1 and #2 used in this sec-
tion are made available for download publicly.36 An
example image from each data set is shown in Figure 7.

Our implementation of the VBoW method has six
main parameters, ranging from the number of intensity
and gradient textons to the number of samples used to
smooth the estimated disparity over time. An exhaustive
search of parameters being out of reach, we have per-
formed various investigations of parameter changes
along a single dimension. Table 1 presents a list of the
final tuned parameter values. Note that these parameter
values have not only been optimized for performance.
Whenever performance differences were marginal, we
have chosen the parameter values that saved on compu-
tational effort. This choice was guided by our goal to
perform the learning on board of a computationally lim-
ited drone. Below we will show a few of the results when
varying a single parameter, deviating from the settings in
Table 1 in the corresponding dimension.

Figure 8 shows the results for different numbers of
textons, 2 f4; 8; 12; 16; 20g, always consisting half out
of pixel intensity and half of gradient textons. From the
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results, we can see that the performance saturates

around 20 textons. Hence we selected this combination

of 10 intensity and 10 gradient textons for the

experiments.
The VBoW method involves choosing a regression

algorithm. In order to determine the best learning algo-

rithm, we have tested four regression algorithms, limiting

the choice mainly based on feasibility for implementing

the regression algorithm on board a constrained embed-

ded system. We have tested two non-parametric (kNN

and Gaussian process regression) and two parametric

(linear and shallow neural network regression) algo-

rithms. Figure 9 presents the learning curves for a com-

parison of these regressors. Clearly, in most cases the

kNN regression comes out best. A naive implementation

of kNN suffers from having a larger training set in terms

of CPU usage during test time, but after implementation

on the drone, this did not become a bottleneck.
The final offline results on the two data sets are quite

satisfactory. They can be viewed online (note 1). After

a training set of roughly 6000 samples, the kNN

approximates the stereo vision-based disparities in the

test set rather well. Given a desired TPR of 0.82, the

learner has an FPR of 0.26. Considering the high inter-

dependability of concurrent frames, this should be suf-

ficient for usage of the estimated disparities in control.

Simulation experiments

We argued that a persistent form of SSL is similar to

LfD. The relevance of this similarity lies in the

behavioral schemes used for learning. In this section,
we compare the three learning schemes, as introduced
in the section Learning Schemes, in simulation.

Setup

We simulate a “flying” drone with stereo vision camera
in SmartUAV,37 an in-house developed simulator that
allows for 3D rendering and simulation of the sensors
and algorithms used on board the real drone. Figure 10
shows the simulated “office room.” The room has a size
of 10� 10 m, and the drone has an average forward
speed of 0.5 m/s. All the vision and learning algorithms
are exactly the same as the ones that run on board of
the drone in the real experiments.

We compare the three learning schemes, cold turkey,
DAgger, and training wheels, in simulation. As men-
tioned, these schemes all have the same initial training
period with stereo vision being in control, but they
differ in the remaining learning period. After all learn-
ing, the drone will use its monocular disparity estimates
for control. The stereo vision remains active only for
overriding the control if the drone gets too close to a
wall. During this testing period, we register the number
of turns and the number of overrides. The number of
overrides is a measure of the number of potential colli-
sions. The performed number of turns during testing is
compared to the number of turns performed when
solely using stereo vision, to evaluate the number of
spurious turns. The initial learning period is 1 min,
the remaining learning period is 4 min, and the test
time is 5 min. These times have been selected to allow
a full experiment on a single battery of the real drone.

Results

Table 2 contains the results of 30 experiments with the
three learning schemes and a purely stereo-vision-
controlled drone. The first observation is that “cold
turkey” gives the worst results. This result was to be
expected on the basis of the similarity between persis-
tent SSL and LfD: the learned monocular distance esti-
mates do not generalize well to the test distribution

Table 1. Parameter settings.

Parameter Value

Number of intensity textons 10

Number of gradient textons 10

Patch size 5� 5

Subsampling samples 500

kNN K¼ 5

Smooth size 4

Figure 7. Example from data set #1 (left, 128� 96 pixels) and data set #2 (right, 640� 480).
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when the monocular vision is in control. The originally

proposed DAgger scheme performs better, while the

third learning scheme termed “training wheels” seems

most effective. The third scheme has the lowest number

of overrides of all learning schemes, with a similar total
number of turns as a pure stereo vision run. The intu-

ition behind this method being best is that it allows the

drone to best learn from samples when the drone is

beyond the normal stereo vision turning threshold.

The original DAgger scheme has a larger probability

to turn earlier, exploring these samples to a lesser

extent. Double-sided statistical bootstrap tests38 indi-
cate that all differences between the learning methods

are significant with p< 0.05.
The differences between the learning schemes are

well illustrated by the positions the drone visits in the

room during the test phase. Figure 11 contains “heat

maps” that show the drone positions during turning
(top row) and during straight flight (bottom row).

The position distribution has been obtained by binning

the positions during the test phase of all 30 runs. The

results for each scheme are shown per column in

Figure 11. Right is the pure stereo vision scheme,

which shows a clear border around the straight flight

trajectories. It can be observed that this border is best

approximated by the “training wheels” scheme (second

from the right).

Robotic experiments

The simulation experiments showed that the “training

wheels” setup resulted in the fewest stereo vision over-

rides when switching to monocular disparity estimation

control. In this section, we test this online learning

setup with a flying robot.
The experiment is set up in the same manner as the

simulation. The robot, a Parrot ARDrone2, first

explores the room with the help of stereo vision.

After 1 min of learning, the drone switches to using

the monocular disparity estimates with stereo vision

running in the background for performing potential

safety overrides. In this phase, the drone still continues

to learn. After learning 4 to 5 min, the drone stops

learning and enters the test phase. Again, also for the

real robot the main performance measure consists of

the number of safety overrides performed by the stereo

vision during the testing phase.
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The ARDrone2 is standard not equipped with a
stereo vision system. Therefore, an in-house-developed
4 g stereo vision system is used,39 which sends the raw
images over USB to the ARDrone2 (see figure 12). The
grayscale stereo camera has a resolution of 128� 96 px
and is limited to 10 fps. The ARDrone2 comes with a 1
GHz ARM cortex A8 processor and 128 MBRAM, and

Figure 10. SmartUAV simulation environment.
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Table 2. Test results for the three learning schemes.

Method Overrides Turns

Pure stereo N/A 45.6 (r ¼ 3:0)
1. Cold turkey 25.1 (r ¼ 8:2) 42.8 (r ¼ 3:7)
2. DAgger 10.7 (r ¼ 5:3) 41.4 (r ¼ 3:2)
3. Training wheels 4:3 (r ¼ 2:6) 40.4 (r ¼ 2:6)

The average and standard deviation are given for the number of overrides

and turns during the testing period. A lower number of overrides is

better. In the table, the best results are shown in boldface.

Figure 11. Simulation heatmaps, from left to right: cold turkey,
DAgger, training wheels, stereo only. Top images are turn loca-
tions, lower images are the approaches.
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normally runs the Parrot firmware as an autopilot. For
the experiments, we replace this firmware with the the
open source Paparazzi autopilot software.39,40 This
allowed us to implement all vision and learning algo-
rithms on board the drone. The length of each test is
dependent on the battery, which due to wear has con-
siderable variation, in the range of 8–15 min.

The tests are performed in an artificial room that has
been constructed within a motion-tracking arena. This
allows us to track the trajectory of the drone and facil-
itates post-experiment analysis. The room is approxi-
mately 5� 5 m, as delimited by plywood walls. In order
to ensure that the stereo vision algorithm gave reliable
results, we added texture in the form of duct-tape to the
walls. In five tests, we had a textured carpet hanging
over one of the walls (Figure 13 left, referred to as

“room 1”), in the other five tests it was on the floor

(Figure 13 right, referred to as “room 2”).

Results

Table 3 shows the summarized results obtained from the

monocular test flights. Two main observations can be

made from this table. First, the average number of

stereo overrides during the test phase is 3, which is

very close to the number of overrides in simulation.

The monocular behavior also has a similar heat map

to simulation. Figure 14 shows a heat map of the

drone’s position during the approaches and the avoid-

ance maneuvers (the turns). Again, the stereo-based

flight performs better in the sense that the drone

explores the room much more thoroughly and the

turns happen consistently just before an obstacle is

detected. On the other hand, especially in room 2, the

monocular performance is quite good in the sense that

the system is able to explore most of the room.
Second, the selected TPR and FPR are on average

0.47 and 0.11. The TPR is rather low compared to the

offline tests. However, this number is heavily influenced

by the monocular estimator-based behavior. Due to the

goal of the robot, avoiding obstacles slightly before the

stereo ground truth recognizes them as positives, positives

should hardly occur at al. Only in cases of FNs where the

estimator is slower or wrong, positives will be registered

Figure 12. The used multicopter.

Figure 13. Two test flight rooms.

Table 3. Test flight summary.

Room 1 Room 2

Description #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Avg.

Stereo flight time m:ss 6:48 7:53 2:13 3:30 4:45 4:39 4:56 5:12 4:58 5:01 4:59

Mono flight time m:ss 3:44 8:17 6:45 7:25 4:54 10:07 4:46 9:51 5:23 5:12 6:39

Mean square error 0.7 1.96 1.12 0.95 0.83 0.95 0.87 1.32 1.16 1.06 1.09

False positive rate 0.16 0.18 0.13 0.11 0.11 0.08 0.13 0.08 0.1 0.08 0.11

True positive rate 0.9 0.44 0.57 0.38 0.38 0.4 0.35 0.35 0.6 0.39 0.47

Stereo approaches 29 31 8 14 19 22 22 19 20 21 20.5

Mono approaches 10 21 20 25 14 33 15 28 18 15 19.9

Auto-overrides 0 6 2 2 1 5 2 7 3 2 3

Overrides ratio 0 0.72 0.3 0.27 0.2 0.49 0.42 0.71 0.56 0.38 0.41
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by the ground truth. Similarly, the FPR is also lower in
the context of the monocular-based behavior.

ROC curves of the 10 flights are shown in Figure 15.
A comparison based on the numbers between the first

five flights (room 1) and the last five flights (room 2) does
not show any significant differences, leading to the sug-
gestion that the system is able to learn both rooms equal-
ly well. However, when comparing the heat maps of the

Figure 14. Room 1 (plain texture) position heat map. Top row is the binned position during the avoidance turns, bottom row during
the obstacle approaches, right column during stereo ground truth based operation, left column during learned monocular operation.

Figure 15. Room 2 (carpet natural texture) position heat map. Top row is the binned position during the avoidance turns, bottom
row during the obstacle approaches, right column during stereo ground truth based operation, left column during learned monocular
operation.
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two situations in the monocular system in Figures 14 and
16, it seems that the system shows slightly different

behavior. The monocular system appears to explore
room 2 better, getting closer to copying the behavior of

the stereo-based system. This is also pointed out by the
peak in the heat map in the bottom row, left column of

Figure 14; the binned position occurrence of the monoc-
ular behavior during the straights. It shows the behavior

was affected by false positives, it sometimes turned too
soon and too far from the walls, resulting in a peak in the

middle of the room. Similarly, this is also visible when

comparing the monocular turn locations (Figure 14, top
row) to the stereo turn locations (Figure 14 top right).

The stereo algorithm turns consistently close to the walls,
while the monocular behavior shows a lot of spread and

turns often quite far away from the walls. Interestingly,
this problem partly disappears when more varied and

natural texture is applied to the same room as shown
by the results in Figure 16.

The experimental setup with the room in the motion
tracking arena allows for a more in-depth analysis of

the performance of both stereo and monocular vision.
Figure 17 shows the spatial view of the flight trajectory

of test #10 (note 2). The flight is segmented into
approaches and turns which are numbered accordingly

in these figures. The color scale in Figure 17(a) is cre-
ated by calculating the theoretically visible closest wall

based on the tracking the systems measured heading
and position of the drone, the known position of the

walls, and the FOV angle of the camera. It is clearly

visible that the stereo ground truth in Figure 17(b)
does not capture this theoretical disparity perfectly.
Especially in the middle of the room, the disparity
remains high compared to the theoretical ground
truth due to noise in the stereo disparity map. The
results of the monocular estimator in Figure 17(c)
show another decrease in quality compared to the
stereo ground truth.

Discussion

We start the discussion with an interpretation of the
results from the simulation and real-world experiments,
after which we proceed by discussing persistent SSL in
general and provide a comparison to other machine
learning techniques.

Interpretation of the results

Using persistent SSL, we were able to autonomously
navigate our multicopter on the basis of a stereo vision
camera, while training a monocular estimator on board
and online. Although the monocular estimator allows
the drone to continue flying and avoiding obstacles, the
performance during the approximately 10-min flights is
not perfect. During monocular flight, a fairly limited
amount of (autonomous) stereo overrides was needed
while at the same time the robot was not fully exploring
the room like when using stereo.

Several improvements can be suggested. First, we
can simply have the drone learn for a longer time,
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Figure 16. ROC curves of the 10 test flights. Dashed/solid lines refer to results on room #1/#2.
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accumulating training data over multiple flights. In

an extended offline test, our VBoW method shows

saturation at around 6000 samples. Using additional

features and more advanced learning methods may

result in improved performance if training set sizes

increase.
During our tests in different environments, it proved

unnecessary to tune the VBoW learning algorithm

parameters to a new environment as similar perfor-

mance was obtained. The learned results on the robot

itself may or may not generalize to different environ-

ments; however, this is of less concern as the robot can

detect a new environment and then decide to continue

the learning process if the original cue is still available.

In order to detect an inadequacy of the learned regres-

sion function, the robot can occasionally check the esti-

mation error against the stereo ground truth. In fact

our system already does so autonomously using its

safety override. Methods on checking the performance

without using the ground truth, e.g. by employing a

learner that gives an estimate of uncertainty, are left

for future work.

Deep learning

At the time of our robotic experiments, implementing

state-of-the-art deep learning methods on-board a

flying drone was deemed infeasible due to hardware

restrictions. One of the major advantages of persistent

SSL is the unprecedented amount of available training

data. This amount of data will be more useful to more

complex learning methods such as deep learning meth-

ods than to less complex, but computationally efficient

methods such as the VBoW method used in our experi-

ments. Today, with the availability of strongly

improved hardware such as the NVidia Jetson TX1,

close-to state-of-the-art models can be trained and

run on-board a drone, which may significantly improve

the learning results.

Persistent SSL in relation to other machine

learning techniques

In order to place persistent SSL in the general frame-

work of machine learning, we compare it with several

Figure 17. Flight path of test 10 in room 2. Monocular flight starts form approach 23. The meaning of the color of the flightpath
differs per image; (a): the approximated disparity based on the external tracking system. (b): the measured stereo average disparity,
(c): the monocular estimated disparity, (d): the error between the stereo disparity and monocular estimated disparity with dark blue
meaning zero error, (e): error during FP, (f): error during FN. (e and f) only show the monocular part of the flight.
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techniques. An overview of this comparison is pre-
sented in Figure 18.

Un-/semi-/supervised learning. Unsupervised learning does
not require labeled data, semi-supervised learning
requires only an initial set of labeled data,41 and super-
vised learning requires all the data to be labeled.
Internally, persistent SSL uses a standard supervised
learning scheme, which greatly facilitates and speeds
up learning. The typical downside of supervised learn-
ing—acquiring the labels—does not apply to SSL, since
the robot continuously provides these labels itself.

A major difference between the typical use of super-
vised learning and its use in persistent SSL, is that the
data for learning are generally assumed to be i.i.d.
However, persistent SSL controls a behavioral compo-
nent which, in turn, affects both the data set obtained
during training as well as during testing time. Operation
based on ground truth induces a certain behavior that
differs significantly from behavior induced from a trained
estimator, even more so for an undertrained estimator.

SSL. The persistent form of SSL is set apart in the figure
from “normal” SSL, because the persistence property
introduces a much more significant behavioral compo-
nent to the learning. While normal SSL expects the
trusted cue to remain available, persistent SSL assumes
that the robot may sometimes act in the absence of the
trusted cue. This introduces the feedback-induced data
bias problem, which, as we have seen, requires specific
behavior strategies for best learning the robot’s task.

Learning from demonstration. Imitation learning, or LfD,
is a close relative to persistent SSL. Consider for
instance teleoperation, an LfD scheme in which a
(human or robot) teacher remotely operates a robot

in order for it to learn demonstrated actions in its envi-
ronment.20 This can be compared to persistent SSL if
we consider the teacher to be the ground truth function
gðxgÞ in the persistent SSL scheme. In most cases
described in literature, the teacher shows actions from
a control policy taken on the basis of a state instead of
just the results from a sensory cue (i.e., the state).
However, LfD does contain exceptions in which the
learner only records the states during demonstration,
e.g. when drawing a map through a 2D representation
of the world in case of a path planning mission in an
outdoor robot.42 Like persistent SSL, test time deci-
sions taken in LfD schemes influence future observa-
tions which may or may not be contained in known
demonstrated territory. However, one key difference
between LfD and persistent SSL arguably sets them
apart. All LfD theory known to the authors implicitly
assumes the teacher is never the same entity as the
learner. It may be that all relevant sensors are on the
learner, and even that the learners body is used to exe-
cute teacher commands (like in teleoperation), but the
teachers intelligence is always an external entity.

Reinforcement learning. Lastly, we compare persistent
SSL with RL, which is a distinctively different tech-
nique.43 In RL, a policy is learned using a reward func-
tion. Due to the evaluative feedback provided in RL,
defining a good reward function is one of fundamental
difficulties of RL known as reward shaping.43,44 Since
persistent SSL uses supervised feedback, reward shap-
ing is less of an issue in persistent SSL, only requiring a
choice of a loss function between gðxgÞ and fðxfÞ.
Secondly, the initial exploration phase of RL often
infers a lot of trial-and-error, making it a dangerous
time in which a physical system may crash and be dam-
aged. Although this particular problem is often solved
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Figure 18. Lay of the machine learning land.
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by better initialization, e.g. by using for instance LfD

or using policy search instead of value function-based

approaches, persistent SSL does not require an

untrained initialization phase at all as a reliable

ground truth function guarantees a certain minimal

correct behavior.
Persistent SSL differs from other learning techni-

ques in the sense that no complete training data set is

needed to train the algorithm beforehand. Instead it

requires a ground truth gðxgÞ, which must be available

online in real time while training bfðxfÞ, but can be

switched off when bfðxfÞ is learned to satisfaction. This

implies that learning needs to be persistent and that the

switch h must be included in the model. Note that in

cases where the environment of the robot may change,

measures can be put in place to detect the output uncer-

tainty of bfðxfÞ. If the uncertainty goes up, the robot can

switch back to using the ground truth function and

learning can then be activated again. Developing such

measures is, however, left for future work.

Feedback-induced data bias

The robot induces how its environment is perceived,

meaning it influences the acquired training samples

based on its behavior. The problems arising from this

feedback-induced data bias are known from other

machine-learning disciplines, such as RL and LfD.43

In particular, Ross et al. have proposed DAgger2 to

solve a similar problem in the LfD domain, which iter-

atively aggregates the data set with induced training

samples and the experts reaction to it. However, in

the case of LfD, obtaining the induced training samples

requires a careful engineered and often additional

setup, while in persistent SSL, this functionality is

inherently available. Secondly, the performance of the

LfD expert (i.e., in many cases, a human) is not easy to

control, often reacting too late or too early. The con-

trol policy of the persistent SSL ground truth override

system can, on the other hand, be very deterministic. In

the case of a DAgger application with drones flying

through a forest,3 it proved infeasible to reliably

sample the expert in an online fashion. Acquired

videos had to be processed offline by the expert,

hence the need for (offline $ online) iterations.

Moreover an additional online human safety override

interface was still necessary to prevent damage to the

drone while learning. Thirdly, due to the cost of (and

need for) iterative demonstration sessions, the empha-

sis of DAgger is on converging fast with needing as

little expert sessions as possible. In persistent SSL,

there are no costs for using the teacher signals

coming from the original sensor cue. With persistent

SSL, we can directly focus on effectively using the

available amount of training samples instead of mini-
mizing the number of iterations like in DAgger.

Another reason why persistent SSL handles the
induced training sample issue better than other state
of the art robot learning methods, is that in persistent
SSL part of the learning problem itself can be easily
separated and tested from the behavior; i.e. in a tradi-
tional supervised learning setting. In our proof of con-
cept, this has allowed us to test the learning algorithms
and thoroughly investigate its limits before
deployment.

Conclusion

We have investigated the behavioral aspects of an SSL
scheme, in which the supervisory signal is switched off
after an initial learning period. In particular, we have
studied an instance of such “persistent SSL” for the
task of obstacle avoidance, in which the robot uses
trusted stereo vision distance estimates in order to
learn appearance-based monocular distance estima-
tion. We have shown that this particular setup is very
similar to LfD. This similarity has been corroborated
by experiments in simulation, which showed that the
worst learning strategy is to make a hard switch from
stereo vision flight to mono vision flight. It is best to
have the robot fly based on mono vision and using
stereo vision only as “training wheels,” to take over
when the robot would otherwise collide with an obsta-
cle. The real-world robot experiments show the feasi-
bility of the approach, giving acceptable results already
with just 4–5 min of learning.

The findings also indicate interesting future venues
of investigation. First, and perhaps most importantly,
in the 4–5 min of the real-world experiments, the robot
already experiences roughly 7000–9000 supervised
learning samples. It is clear that longer learning times
can lead to very large supervised data sets, which are
suitable for deep learning approaches. Such approaches
likely allow the learning to extend to much larger and
more varied environments, such as outdoor forests or
multiple rooms inside larger buildings. In addition,
they could allow the learning to improve the resolution
of disparity estimates from a single value to a full image
size disparity map. Second, in the current experiments,
the robot stayed in a single environment. We men-
tioned that a different environment can make the
learned mapping invalid, and that this can be detected
by means of the ground truth. Another venue, as stud-
ied in Ho et al.,12 is to use a machine learning method
with an associated uncertainty value. For instance, one
could obtain uncertainty estimates by using a learning
method such as a Gaussian Process or by using drop-
out with deep neural networks. This can help with a
further integration of the behavior with learning, for
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instance by tuning the forward velocity based on the

certainty. These venues together could allow for persis-

tent SSL to reach its full potential, significantly enhanc-

ing the robustness of robots operating in real-world

environments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

Notes

a. A video of VBoW visualizations on data set #1 and #2 can

be viewed online: https://www.youtube.com/playlist?

list¼PL_KSX9GOn2P9v0rtjSGonDC0V0T3DXYf6
b. Onboard, external a visualization video of flight #10 can

be viewed at: https://www.youtube.com/playlist?list¼PL_

KSX9GOn2P9v0rtjSGonDC0V0T3DXYf6
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Article

Confined spaces industrial inspection
with micro aerial vehicles and laser
range finder localization

Paolo Tripicchio , Massimo Satler , Matteo Unetti and
Carlo A Avizzano

Abstract

This work addresses the problem of semi-automatic inspection and navigation in confined environments. A system that

overcomes many challenges at the state of the art is presented. It comprises a multirotor able to inspect an industrial

combustion chamber thus working in a GPS-denied environment with poor lighting conditions, in the presence of

magnetic and communication disturbances, iron dust and repetitive patterns on the structure walls. The presented

system is able to pass through narrow entrances but still capable of acquiring high resolution images and to allow

operators to perform inspection of the structures. Starting from the captured data, the system is able to provide a 3D

reconstruction of the inspected environment for offline analysis.
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Introduction

Maintenance is an important aspect that requires peri-

odic control of equipment, systems, machineries and

infrastructures. It is defined by the European standard

(prEN 13306, 1998) as “Combination of all technical,

administrative and managerial actions during the life

cycle of an item intended to retain it in, or restore it

to, a state in which it can perform a required function”.

Depending on the objective of the maintenance activities,

such a process can be distinguished into five main cate-

gories: preventive maintenance; predictive maintenance;

corrective maintenance; zero-hours maintenance and

periodic maintenance. Common goal of all these proce-

dures is to avoid unexpected failure/inefficiency. Indeed,

an effective maintenance program is fundamental to

improve equipment life and possibly avoid unplanned

maintenance activities. Unfortunately, any maintenance

program is in general time consuming and costly. In the

industrial field for example, maintenance process could

require plant downtime and service interruptions.
Periodic visual inspection is in general the first step

performed in any industrial maintenance program to

detect typical defective in the materials status such as,
among others, corrosion in iron and steel components,
cracks in building walls and chimneys, etc. These
inspections are typically done by experienced surveyors
employing eyesight or special contactless measurement
devices like for instance thermal/multispectral camera
if required.

Although simple in principle, such operations are
complex and time consuming since surveyors need
some facilities (e.g. scaffolding) that allow him/her to
be at a close distance from the inspected structure.
Furthermore, such inspections are carried out numer-
ous times in hazardous environments or in confined
spaces, where the access is usually difficult and the
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working condition turns out to be extreme for a
human being.

Taking into account the former considerations, it is
evident that the introduction of any automation into
the inspection process can improve a lot the safety of
the operator and hopefully it can speed up the failure
reaction chain. According to the International
Federation of Robotics (IFR) “A service robot is a
robot which operates semi-or fully autonomously to
perform services useful to the well-being of humans
and equipment, excluding manufacturing operations”.
Service robots in general, assist human being
performing repetitive jobs in dirty, distant or danger-
ous environment.

Typical examples here are climbing robots used to
inspect walls1or metallic structure.2 However, in the
last decade, the interest of the European Community
on the Aerial service robots research field has grown a
lot.3–5 The aim here is to use Aerial Vehicles in real
applicative scenario to support or replace human oper-
ators in all those activities that are either repetitive or
dangerous for the human beings. More recently, the
research community moves towards applications
where the aerial vehicles are used as systems to interact
with the environment and collaborate with other units
to accomplish robotic tasks such as assembling or
manipulating an object.6,7

Satler et al.8 presented a system for remote visual
inspection of indoor environment employing a micro
aerial vehicle (MAV) endowed with embedded comput-
ing power. Initial tests were performed on an indoor
office environment. The device has been proposed as
operator replacement for a first and safe inspection
process in order to detect surface damages and/or
decide if additional intervention is required.

In a later work,9 we extended the indoor inspection
task with the ability to explore multiple floors buildings
introducing a floor recognition and level merging
algorithm.

In this work, we extend the previous systems
introducing solutions to allow a complete industrial
inspection task in a confined yet dangerous space. The
scenario taken as reference is a non-structured industrial
boiler, which is basically composed by a big combustion
chamber covered by pipes that has to be verified by the
maintenance process. The system here presented is able
to locate itself and navigate efficiently in the environ-
ment in order to complete an industrial maintenance
task in such kind of scenarios. A collision avoidance
procedure allows the system to correct desired trajectory
while avoiding collision with the external structures or
objects moving in the environment.

The rest of the paper is organized as follows.
The next section presents related works at the state of
the art in the fields of industrial inspection and robot

localization. Then the following section introduces a

reference scenario that has been used to define project

requirements and to demonstrate the capabilities of the

developed system. In the subsequent section, the hard-

ware and software components of the overall system

are presented. This is followed by a section which dis-

cusses about developed control system algorithms for

the localization and mapping of the robot in the envi-

ronment. Then, the user teleoperation interface and the

automatic MAV navigation module are discussed.

Then, we present some post processing technique to

obtain inspection information that can be analyzed off-

line. The preliminary evaluation flight test performed

inside an industrial combustion chamber is presented.

In the last section, the main conclusions are drawn.

Related work

MAVs have become increasingly popular for autono-

mous navigation in unstructured environment thanks

to their agility and fast dynamics compared with

ground robots. There are several works focused on

inspection tasks developed in the recent years; early

works appeared in the literature were based on visual

inspection without any contact with the environment,

while recently works founded by EU projects proposed

contact-based approaches.6,10

In Luque-Vega et al.,11 a quadrotor is used for high

voltage power line inspection. The system payload is

composed of a thermal infrared and a color camera for

the inspection purpose and a GPS, IMU and altimeter

for navigation capability. The vision algorithms, how-

ever, run on a remote ground control station in order

to detect real-time anomaly/defect alarms.
In Bonnin-Pascual et al.,12 an MAV is used to visu-

ally inspect vessels in order to detect cracks and corro-

sion in the metallic structures. The solution is based on

supervisory autonomy, i.e. the surveyor controls the

inspection process teleoperating the vehicle which in

turn is provided with on-board algorithms to ease the

navigation and control from unexperienced people.
In Gohl et al.,13 a first attempt driving an MAV in

underground mine field is presented. The system is

based on a hexacopter endowed with Skybotix visual-

inertial sensor and 2D laser scanner used to collect data

during a manual flight. A 3D environment reconstruc-

tion is then performed off-line evaluating the quality of

the acquired data as well as of the localization process.
In Nikolic et al.,14an MAV endowed with an inte-

grated visual-inertial SLAM sensor is employed for

industrial boiler inspection. This work uses a front

looking stereo camera and an IMU to estimate the

vehicle pose and navigate inside the industrial boiler

following a reference trajectory.
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In addition to the aforementioned applications, such
devices have proven their flexibility in many other fields
including but not limited to agriculture,.15 search and
rescue,16 exploration and mapping,9 dam inspection,
early fire detection and forest protection, traffic moni-
toring, aerial photography, surveillance and reconnais-
sance, chemical spraying and entertainment industry
and filming. A detailed analysis for civil application
has been provided in Sarris and Atlas.17

Each system mainly differs for the platform auton-
omy level, i.e. how much computation is empowered to
the ground control station supporting the vehicle, the
sensor payload and the assumptions about the environ-
ment knowledge, i.e. structured/unstructured or
known/unknown. Typical navigation sensor suites are
based on GPS, laser scanner, infrared or ultrasound
sensors and more recently on camera. This latter solu-
tion represents the richest data supplier combined with
low weight and low prices (compared to lasers) at the
cost of increased computational cost required to run
vision algorithms.

Simultaneous localization and mapping (SLAM)18

algorithm is a fundamental component constantly pre-
sent on each platform used in real application domain.
Graph-based methods19 or probabilistic methods20

have been proposed by the research community in the
last three decades. Recent works on SLAM on the
other hand, referred as visual-SLAM or vision-based
navigation in the literature, are based alternatively on
features tracking using either a mono or stereo frontal
camera,21,22 or a ground-looking camera23 and on
direct methods.24

Although promising and accurate, the outcome and
the robustness of all vision-based methods strongly
depend on two assumptions: (i) enough lighting condi-
tions and (ii) environment texture richness. While the
former assumption can be met using custom designed
lighting systems, the latter is likely to fail in real
scenarios that are generally characterized by repetitive
elements or that are poor in texture features.

Power plant boiler inspection

The proposed solution has been designed considering
as reference task the inspection of the interior part of a
thermal power plant boiler.

The boiler is classified as confined space and it basi-
cally consists in a big combustion chamber completely
covered by pipes transporting water for the steam pro-
duction. Later on, the “wet steam” passes through the
superheater, the reheater and the economizer to
improve the energy exchange efficiency.

Maintenance task is typically divided into daily,
weekly, monthly, semi-annual and annual tasks.
Portholes along the whole structure are used during

frequent and elementary inspections, e.g. daily,
weekly, to access corresponding points of interest.
Semi-annual and annual maintenance routine on the
other hand, is performed entering into the boiler
from the bottom part.

In the latter case, it is required to stop the steam
production process in advance, wait the required time
to decrease the temperature and then wash the combus-
tion chamber. When the environmental condition is
feasible for a human being, the bottom part of the
boiler (64 � 64 cm entrance) is used to access the inte-
rior and hence start setting up scaffolding structure to
get close to the structure to inspect. Obviously, this is a
long process and demanding for the worker first and
the surveyor later.

The employment of an MAV allows to localize loses
which in turn will speed up the intervention time. Such
devices provide easy and fast ways to detect surface
damages allowing to study the most convenient inter-
vention strategy, to prepare all the materials and to
schedule the maintenance intervention in advance.
Finally, yet importantly, the employment of such a tech-
nology will improve the surveyor working conditions.

The target of the inspection is the combustion
chamber, which is composed by a parallelepiped of
7.6 � 11�21 m, see Figure 1. The other parts of the
boiler have too many obstacle and few free-spaces for
an MAV safe flight.

Requirements

The system requirements have been drawn taking into
account both the operators experience and preliminary
real field tests.

Considering the goal of the proposed system, i.e.
provide a mean for tele-visual inspection, the preferred
vehicle flight characteristics are: the vertical take-off
and landing (VTOL) capability; the possibility to per-
form stationary flights and low-speed movements with-
out compromising the flight stability; allow indoor
flight as well as provide robustness to accidental con-
tact with the structure being considered within the
inspection process. These requirements rapidly discard
fixed-wing platforms since they do not allow VTOL
capability and require a minimum velocity to guarantee
vehicle lift. The indoor flight requirements discard
vehicles powered by combustion engines which, more-
over, are not suitable to flight in most of the confined
spaces characterized by fire and explosion risks. All
these aspects focus the search on electrically powered
MAVs in the form factor of quadrotor or hexarotor
that can be designed with ducted fan in order to guar-
antee robustness for unwanted environmental collision.
Moreover, the ducted fan vehicles reduce hovering
power consumption.25
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Regarding the sensor payload, it is worth noting that

most inspection tasks are usually performed in GPS-

denied environment which on the other hand cannot

be structured since this activity is in general practically

not feasible or it will vanish the benefit introduced by the

aerial service robots usage. For this reason, the aerial

platform has to estimate its own state relying only on

embedded sensors and on-board computation resources.
From the end-user point of view, the proposed

system has to be as user friendly as possible and in

theory it should allow unexperienced pilots to fly the

system in complex and cluttered environment. To this

end, the system has to provide the pilot with assistive

control features able to implement shared control capa-

bility, e.g. follow a line or move towards a point of

interest. However, one of the main requests from the

operators is to let the human in control of the inspec-

tion avoiding to completely automate the task.

The main rationale under this request is the possibility

to exploit the cognitive capability of the human being

and in particular, the experience gained over the years
by the surveyor that will guide the inspection process
focusing on critical points.

Challenges

Given the partial or total enclosure of confined spaces,
GPS technology cannot be reliably used, and this
requires solving the localization problem employing
other sensing technologies. GPS-denied environment
has been addressed in the past relying on vision-based
localization.26

Many times, industrial settings are surrounded by
metallic structure or elements and these could interfere
with electromagnetic signals and sensors. In particular,
within the boiler scenario, the presence of pipes, tubes
and similar elements greatly reduce the quality and the
bandwidth of wireless communication and the reliabil-
ity of compass in IMU sensor used to stabilize the
vehicle. The former constraint does not allow to close
the control loop externally exploiting high-power

Figure 1. Section of the boiler chamber and details of the pipe structures. (a) Entrance of the chamber (funnel-shaped portion).
(b) Pipes wall.
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computing unit. Hence, on-board computation
requires automatic behaviors to overcome rapidly col-
lisions and flight stability issues. Thus, the need of effi-
cient algorithms runs with good performances on
embedded hardware without consuming much battery
power.

In addition, the boiler scenario presents (i) variable air
pressures that limits the use of barometric sensors to esti-
mate for instance the altitude of the robot, (ii) the presence
of dust (iron dust in the case of combustion chambers)
could generates visual occlusions, visual feature outliers
and also interfere with the electronic equipment, (iii)
lack of light which reduces vision algorithms performance
requiring a custom designed illumination system.

Finally, yet importantly, typical industrial settings
present repetitive textures and elements that affect cor-
rect data association of visual features in algorithms at
the state of the art.

This work presents a system that overcomes all the
challenges and limitations discussed above employing
specific solutions to each problem. We have chosen a
foldable MAV as hardware platform but with good pay-
load capabilities, that make use of laser sensors for local-
ization and navigation that are not affected by visual
artifacts as could be the case for classical camera systems.
The MAV is equipped with an illumination source, high-
resolution cameras for inspection analysis and all the
control algorithms runs on an embedded ARM-based
control board. To obtain real-time performances on an
embedded computing platform, a custom performant
SLAM algorithm has been developed.27 To estimate alti-
tude inside confined chambers, two sets of sensors have
been used, ultrasonic for proximity sensing and camera
based for long range sensing. The communication
between the MAV and the ground station is reduced to
small footprint high-level control packets for inspection
guidance. Moreover, the system here presented was
designed to work in unstructured environments. This
means that the proposed system does not require a spe-
cific environment nor external sensing unit (like markers
for instance) to accomplish inspection tasks.

System description

The proposed system is composed of two elements.
The first element is constituted by a portable computer
used as operator control unit (OCU) in order to give
high level teleoperation commands to guide the inspec-
tion task (see ‘Teleoperation interface’ section).
The second element is an MAV equipped with an
embedded processing board and a suite of navigation
and inspection sensors. According to the previously
discussed requirements, the selected vehicle is a
ducted fan quadrotor designed by Cyber Technology
(CyberQuad MAXI). It is a quadrotor equipped with

four brushless motors suitable to be used in critical
environments (presence of flammable gases) since
they do not produce sparks. The device has highly
optimized ducted fans, allowing the platforms to be
less than half the size of a helicopter rotor, with the
same lifting efficiency. The protection allows easily
flight through doorways, down hallways and through
tight spaces without risking a rotor strike. The MAV
dimension is 69 � 56�20 cm.

The CyberQuad MAXI is provided with the Navy
control and Flight control from MikroKopter which
embeds a fast motor controller and an IMU composed
by three single axis gyro on all three axes
(ADXRS610), three-axis accelerometer (LIS344ALH),
barometric pressure sensor (MPX4115A) and a com-
pass (HMC5843). The installed custom payload is com-
posed by the following elements. A front mounted
Sony camera (HDV-CX350VE) allows visibility over
large elevation ranges and it is used by the remote oper-
ator for inspection purpose. In fact, the camera output is
streamed throughout the Wifi link by means of a USB
grabber (EasyCap DC60). The camera is mounted on a
pan-tilt base which automatically stabilizes the pan with
respect to the horizontal direction and allows the user to
adjust the tilt towards the desired direction. Moreover,
the optical camera zoom (12�) is remotely controlled by
the operator as well. Near the camera, a custom illumi-
nation system has been designed by means of several
LEDs which assure the adequate amount of light for
the inspection task. Two sonars (XLMaxSonarEZ4),
one on the top and one on the bottom of the device,
are used to detect upper and lower obstacles as well as to
measure distances from the ceiling and the ground
during the automatic ascending inspection flight and
the takeoff and landing procedure, respectively.

In the case of high elevation industrial environ-
ments, the sonars are replaced by long-range distance
measuring camera sensors (Leddar M16) without the
need of modifying the algorithmic structure of the
system. For the localization purpose, the environmen-
tal mapping and the fusion algorithms, able to improve
the attitude estimation, a Hokuyo laser (UTM-30LX)
has been mounted on the top of the device. All these
components have been powered and interfaced with a
Pandaboard by means of a custom electronic board
which provides the required voltage regulation as well
as the levels transition. The Pandaboard is the comput-
ing unit of the system and it is also responsible for the
external communication with the OCU ground station.
Table 1 summarizes major design information.

The PandaBoard is a low-power, low-cost single-
board development platform based on the Texas
Instruments OMAP4430 which features a dual-core 1
GHz ARM CortexA9 MPCore CPU, a 304 MHz
PowerVR SGX540 GPU, IVA3 multimedia hardware
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accelerator with a programmable DSP, and 1 GB of
DDR2 SDRAM. The connectivity is provided by wired
10/100 Ethernet as well as wireless Ethernet and
Bluetooth. It also has two USB host ports and one
USB OnThe-Go port, supporting USB 2.0. In our
system, the device runs Ubuntu Linux distribution.

Framework architecture

The system can be operated with high level commands
by an operator for inspection purposes or alternatively,
by an automatic navigation component that uses a har-
monic potential field (HPF). To maintain a stable flight
during the inspection task, the system acquires infor-
mation from the environment by means of a laser range
finder (LRF) and two distance measuring sensors. This
information is processed by an SLAM component that
feeds the current position and the asset of the MAV to
the navigation and the low-level control components.
In parallel, a collision avoidance element, independent
from the SLAM algorithm, is responsible for avoiding
collisions with external objects. The underlying compo-
nents of the software system are depicted in Figure 2.

The sensor acquisition and the algorithm computa-
tion are performed by the embedded computing system,
i.e. the PandaBoard. The next sections will introduce
and discuss each module component in detail.

Control algorithms

This section introduces the MAV dynamic model
employed to design the low-level control algorithms,
the global and relative reference frames for the equa-
tions of motion, the algorithm responsible for the local-
ization, mapping and feature extraction procedures and

finally the velocity estimation and collision avoidance

algorithms.

Dynamic model and low-level control

The dynamic model used for the analysis and develop-

ment of the control algorithms is a simplified model

based on the work by Martinez.28 Considering the

world and the robot reference frames as in Figure 3,

if we define with Ff, Fb, Fl, Fr the trust forces exerted by

the front, back, left and right rotors blades, we can

write the simplified dynamical model as

Ft ¼ Ff þ Fb þ Fl þ Fr

Fh ¼ Ff � Fb

F/ ¼ Fl þ Fr

Fw ¼ �Ff � Fb þ Fl þ Fr

€x ¼ Ftðsinwsin/þ coswsinhcos/Þ � k1 _x

m

€y ¼ Ftðsinwsinhcoswþ coswsin/Þ � k2 _y

m

€z ¼ Ftcoshcos/� k3 _z

m
� g

€h ¼ ðFh � k5 _hÞl
Iy

€/ ¼ ðF/ � k4 _/Þl
Ix

€w ¼ ðFw � k6 _wÞl
Iz

Table 1. Characteristics of the proposed MAV system.

Dimensions 690� 560� 200 mm

Payload 0.8 kg

Maximal speed 10 m.s�1

Operating life 15 min

Embedded sensors 2 Ultrasound sensors

or 2 Leddar Cameras

1 2D laser scanner

Maximum range: 30 m

Wide angle: 270�

Angular resolution: 0.25�

1 IMU:

3 axis accelerometer

3 axis gyro

barometric sensor

compass sensor

1920� 1080 camera with optical

zoom (12�)
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where Ix, Iy and Iz are the inertia moments with respect

to the x,y and z axes, h,/ and w are the pitch, roll and

yaw angles, ki¼1;2;3;...;6 are aerodynamic drag coeffi-

cients and g is the gravity vector.
Transfer functions for the roll, pitch and yaw

responses, taking into account also the embedded

flight control board response, have been modeled with

a Box–Jenkins model29 resulting in first-order systems.
The low-level control has been implemented decou-

pling the x and y axes motion. For the pitch and

roll angles, the control systems are composed by two

feedback loops. The outer loop is responsible for the

regulation of the maximum velocity of the vehicle as a

function of the distance from the reference input, while

the inner loop regulates the asset angle (pitch or roll)

taking as reference the velocity computed from the

outer loop. For the yaw rate, the control system is

composed by a single loop that regulates the angular

velocity of the vehicle to follow a reference angle. Each

control loop has been implemented with PID regula-

tors. In particular, the low-level control of the pitch

angle takes into account also the presence of a bias

that is present in the real system and changes at each

switching on/off of the vehicle. Without a manual com-

pensation of the bias, the low-level control provides a

compensation strategy in the first few seconds after

takeoff.

SLAM

The proposed system localizes itself in the environment

by means of two independent SLAM algorithms which

will be discussed within the following sections. The first

SLAM algorithm is used to estimate the pose of the

MAV on a plane, while the second SLAM algorithm is

used to estimate the altitude of the MAV. Fusing both

the information, the complete 3D pose of the multi-

rotor can be obtained.

Rao–Backwellized particle filter. The Rao–Backwellized

particle filter (RBPF)30 is a Bayesian filter method,

which approximates the posterior probability by a set

of sample particles drawn from the posterior. In such a

framework, each particle represents a robot path and a

Figure 3. MAV reference frame (body frame) on the left and World reference frame (absolute frame) on the right. The reference
frames follow the right hand convention.
MAV: micro aerial vehicle.

Figure 2. Software components relationship diagram.
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map. The key idea of RBPF is to decompose the joint

posterior probability into a posterior probability of the

mapM and a posterior probability of the trajectory X. In

particular, the solution implements the Montemerlo’s

factorization31 resulting in

pðXt;MjZt;Ut;DtÞ ¼

pðXtjZt;Ut;DtÞ
YN
n¼1

pðmnjXt;Zt;Ut;DtÞ

where t represents the time instant,M is composed of N

features {m1, m2, . . ., mN}. Zt is the measurements set

at time t, Ut is the control sequence of the robot and Dt

is the data association. Thanks to this factorization, it

is possible to estimate the N features independently by

means of low-dimensional extended Kalman filters

(EKFs).
Hence, the posterior probability of the trajectory is

computed by a particle filter and then the map is

updated according to the current measurements and

the trajectory posterior contribution.

Map representation. As mentioned before, the map M is

defined as a collection of features or landmark points.

Considering that the majority of indoor environments

are typically enclosed and divided by walls or elements

that could be assimilated to walls, the SLAM algorithm

presented in the next section uses as map features a spe-

cial set of parameters that are used to define walls.

Nevertheless, in the case of confined spaces where

the environment is enclosed by curved surfaces, it is pos-

sible to substitute the feature representation and make

use of the optimized embedded SLAM algorithm as well.
Using the Hessian representation (Figure 4), the wall

coordinates are given by the triplet ðr; a; vÞ:

• r ¼ jjOP*jj is the distance from O to the closest point

P* in the wall.
• a represents the counter-clockwise angle between

the versor i of the x axis and the outward normal

n of the wall. a belongs to the interval ½0; 2p½ and is

computed using the function acos2 defined below

where the function det computes the determinant

of two vectors

a ¼ acos2ði; nÞ ¼
2p� acosði; nÞ; if detði; nÞ < 0

acosði; nÞ; if detði; nÞ � 0

(

• v ¼ �O P*n
jOP*j states if the frame O is front of the wall

(v ¼ 1) or behind it (v ¼ �1)

Embedded SLAM algorithm

The SLAM algorithm here presented is used to deter-

mine the robot pose on a plane ðx; y; wÞT, and

estimate features locations on such plane (Figure 5).

The algorithm makes the assumption that the MAV

flies maintaining an asset which could be approximated

parallel to the ground reference frame. This assumption

is easily fulfilled when the platform moves at low speed

and thus avoiding aggressive maneuvers. Thanks to this

assumption, it is possible to recover the robot pose in a

plane employing an LRF sensor. The device altitude on

the other hand, has to be obtained separately.
Fusing the particle filter robot pose estimation on a

2D map with an estimation filter of the altitude

(‘Altitude estimation’ section), the complete pose esti-

mation can be obtained.
The developed algorithm27 consists of eight main

steps listed in Algorithm 1, each k particle in the

Particle set is described by its pose xkt and its own

Figure 4. Hessian representation of wall coordinates with
respect to the frame O

Figure 5. Schematic view of MAV inspection operation with
laser and altitude sensors for SLAM purposes. Here the wall
made of tubes resembles the interior of an industrial combustion
chamber.
MAV: micro aerial vehicle; SLAM: simultaneous localization and
mapping.

214 International Journal of Micro Air Vehicles 10(2)



map with Nk features represented by the mean and

covariance pair: ðfkn;t ;Fk
n;t). Each jth feature of the

kth particle has a corresponding visibility counter:

ikj;tused to discard unreliable features. In essence, the

kth particle is described as follow

xkt�1; ð f k1;ðt�1Þ;F
k
1;t�1; i

k
1;t�1Þ; . . . ; ð f k

Nk
t�1

;t�1
;Fk

Nk
t�1

;t�1
; ik

Nk
t�1

Þ
n o

Each algorithm cycle starts from the state obtained

from the previous step and incorporates the input ut
and the measurement vector Z containing the features

extracted at time step t.
In the following sections, the algorithm key points

are discussed.

Pose prediction. To predict the MAV pose, data avail-

able from the embedded IMU are integrated in an

odometry model. Without considering thermal drift

terms, we can write the relationship between raw
IMU readings and true signals as

aMeasured ¼ aIMU þ RIMU
w

0

0

�g

266664
377775þ ba þNð0; raÞ

xMeasured ¼ xIMU þ bg þNð0; rgÞ

where xMeasured 2 R
3 and aMeasured 2 R

3 indicate the
measured angular rate and acceleration, xIMU 2 R

3

and aIMU 2 R
3 are the true signals; ba 2 R

3 and bg
2 R

3 are slowly varying bias terms for the accelerometer
and gyroscope, g is the gravity acceleration constant.
Zero means Gaussians model the measurement noises.
The rotation matrix RIMU

w 2 SOð3Þ is used to transform
from world coordinates to IMU frame coordinates.

It is possible to write the accelerations in the world

frame following the matrix transformation32

ax

ay

az

2664
3775 ¼ Rw

IMUaIMU þ
0

0

�g

2664
3775

Rw
IMU ¼

chcw s/shcw� c/sw c/shcwþ s/sw

chsw s/shswþ c/cw c/shsw� s/cw

�sh s/ch c/ch

2664
3775

In the previous equation, c and s state for the cosine

and the sine function, respectively, and /; h; w are the

roll, pitch and yaw angle obtained from the gyro

sensor.
We can thus write the prediction for the kth

particle as

blkt ¼
xkt

ykt

wk
t

2664
3775 ¼ bgðxkt�1; utÞ ¼

xkt�1 þ vx
k
t�1dtþ

axdt
2

2

ykt�1 þ vkyt�1dtþ aydt
2

2

_wdt

26666664

37777775

where _w is the yaw rate given by the gyro sensor

ðxIMUÞ; vx and vy are components of the velocity

vector estimated in ‘Velocity estimation’ section.
The covariance of the robot pose is set equal to the

covariance of the Gaussian white noise that models the

measurement error of the IMU sensor.

Feature extraction. Having at disposal an embedded

computing unit, and considering the need to process

a large amount of laser range data, an abstraction

layer has been developed. This layer represents a virtu-

al sensor that produces high level data starting from

raw laser range readings. This high-level data are usu-

ally called features or landmarks in mapping literature.

As discussed above, the Hessian representation of walls

has been selected as appropriate feature for confined

space inspection purpose. To be able to detect features,

our implementation starts from the Split and Merge

algorithm33 that is a fast and performant solution to

the problem. With respect to the original implementa-

tion, we introduce filtering kernels to obtain a more

reliable and precise measurement. In particular, five

filters have been designed and are applied at the

output of the Split and Merge algorithm:

Algorithm 1. Overview of the Embedded SLAM algorithm

FastSLAM_CGS (Particles)

1. for each particle in Particles do

2. Predict pose

3. Assign covariance pose

4. Find data association

5. Update pose

6. Sample the particle pose

7. Update particle features

8. Remove dubious features

9. end for

10. Resample(Particles)

11. Return Particles
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• Cut segment’s edges. This filter is introduced to

remove artifacts in the neighborhood of edges. It

removes a certain number of points from the begin-

ning and from the end of every set of points

obtained from the split and merge algorithm.
• Remove too scattered segments. If the return laser

signal is not correctly received, some measurements

are scattered. In the case that there are too many

holes in the obtained segment, the segment is filtered

out because not reliable.
• Point of view filter. This filter removes segments

observed from an adverse point of view, which is

when the points are on a surface far away from
the source or with a big incident angle.

• Merge non-consecutive segments. This is used to filter

redundant measures. If an obstacle interrupts a wall,

the algorithm obtains two features with the same

Hessian coordinates: one for the points preceding

the obstacle and one for the followers. With this
filter, the two features are fused together.

• Remove too short segments. Features composed by a

small number of points are considered unreliable

and filtered out.

The correspondences between the detected features

and the already known landmarks are found using

maximum likelihood (line 4 of SLAM algorithm over-

view). If the obtained likelihood is under a certain

threshold p0, the current detected feature is considered

as a new landmark.
Figure 6 shows the outcome of the proposed

algorithm compared with the standard Split and

Merge algorithm. The result of the standard

approach is depicted in blue, whereas the refined

outcome after passing the filtering stage is depicted

in red. The algorithm reconstructs four segments

whose details are shown in the right part of

the figure.
It is worth to point out that the detected features are

compute with respect to the MAV reference frame. If

global mapping is required, a transformation into the

global map reference frame is required.
Finally, note that the threshold p0 as well as the

ones used in the filtering process is chosen by experi-

ence in a trial and error phase.

Measurement model. Prediction target response for

planes34 is used to predict the LRF measurement. We

consider the feature fn modelled by the Hessian triplet

ðrn; an; vnÞ and the MAV pose x ¼ ðxt; yt; wtÞT.
The measurement prediction bz is computed as

follow

bz ¼
brba

" #
¼ hðfn; xtÞ ¼

vnðrn � xtcosðanÞ � ytsinðanÞÞ
an � wt

" #

the Jacobian of the measurement prediction with

respect to the landmarks is computed differentiating h

with respect to the map features as follow

HF ¼ rFhðfn; xtÞ ¼
vn vnðxtsinðanÞ � ytcosðanÞÞ
0 1

" #

Figure 6. Output of the split and merge algorithm with custom filtering.
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On the other hand, the Jacobian Hx of the measure-

ment prediction with respect to the pose is computed

differentiating h with respect to the state vector as follows

Hx ¼ rxhðfn; xtÞ ¼
�vncosðanÞ �vnsinðanÞ 0

0 0 �1

" #

Resampling phase. The importance resampling step is

performed with a classic low variance sampler.20

Before such a step, the unreliable particles features

are removed by means of a visibility counter and a

threshold. If a measurement is not associated with

any feature in the particle map, it is considered as a

new landmark and its visibility counter is initialized

such as ikj ¼ 2.
On the other hand, when a feature is associated to a

detected landmark, its counter is incremented keeping

it alive (ikj ¼ ik�1
j þ 2).

In order to remove unreliable features, at each cycle,

every visible particle has its counter decremented.

When the particle visibility counter goes under a cer-

tain threshold, the feature is considered unreliable and

removed.

Velocity estimation

To reduce the computational time of the implemented

SLAM algorithm, the vehicle velocity estimation is per-

formed by an EKF. In this way, the estimation is per-

formed once using the output of the SLAM algorithm

and not inside each particle, thus reducing the particles

dimensions and the computational time. The dynamic

equations involved in the prediction step are the

following

�gt ¼

xt ¼ xt�1 þ _x
ðbÞ
t�1 � cosðht�1Þ � _y

ðbÞ
t�1 � sinðht�1Þ

h i
� dtþNð0; rxÞ

yt ¼ yt�1 þ _x
ðbÞ
t�1 � sinðht�1Þ � _y

ðbÞ
t�1 � cosðht�1Þ

h i
� dtþNð0; ryÞ

ht ¼ ht�1 þNð0; rhÞ
_xt ¼ _xt�1 þNð0; r _xÞ
_yt ¼ _yt�1 þNð0; r _yÞ

8>>>>>>>>><>>>>>>>>>:
While the position is expressed with respect to the

global reference frame, the velocity is computed with

respect to the vehicle body frame fbg.
The correction step uses as sensor the output of the

SLAMCGS algorithm and adds a Gaussian noise

N 0;Qtð Þ to model the measurement error.

Collision avoidance

For safety purposes, the system has been equipped with

an algorithm estimating the distance of the MAV from

the obstacles. This module is independent from the

localization module and it computes both the objects

distance and approaching speed exploiting the laser

sensor. In particular, the sensor span (270 degrees)

has been divided in six regions (45� each) in which

the minimum distance measure qt is selected.
The approaching speed (vq) is estimated by means of

an EKF filter. From this information, the algorithm

computes the time to collision (TTC). The TTC is an

estimate on the time in seconds before a probable

impact considering a constant velocity profile of the

MAV. Based on the TTC, the system is able to alert

the operator or respond in order to prevent collisions.

The prediction step of the EKF is given by

~gt ¼
qt ¼ qt�1 þ vqt�1 � dtþNð0; rqÞ

vqt ¼ vqt�1 þNð0; rvqÞ

(

The sensor used in the correction step is the obstacle

sensor that provides the minimum distance from each

obstacle (q) in each sector. A Gaussian noise

Nð0;QtÞ is added to model the measurement errors.
Considering the state vector of the EKF filter, for

each sector i, the estimated TTC is given by

TTCi ¼ � qi
vqi

Based on this value, it is possible to decide if the

MAV is in safety or if there is a possible danger and

the system should intervene to prevent collisions with

the environment.
Considering Figure 7, if TTCi is greater than a cer-

tain threshold TTCMax, the MAV is considered safe in

that sector, if TTCi < TTCMax, a thrust factor is com-

puted in the range ai 2 ð0;ThrustODÞ. For each sector

the direction of the thrust vectors is computed as

shown in Figure 7. Once obtained all the thrust factors

ai, the total thrust vector is given as v
!

TOT ¼ v1
! � a1 þ

v2
! � a2 þ v3

! � a3 þ v4
! � a1 þ v5

! � a5 þ v6
! � a6:

Depending on the chosen setup, if the system is in con-

trol, a thrust force is applied in the direction of the

thrust vector in order to prevent collisions with the

environment, alternatively if the operator is in control,

the system fires an alarm on the operator GUI.

Altitude estimation

As pointed out in the challenges description, the baromet-

ric sensor readings are affected by the temperature
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gradient of the environment. This, in turn, results in a
low-precision accuracy estimation of the altitude.
Moreover, estimating the altitude by means of a
Kalman Filter and a downward looking sensor is not
robust since the drone can fly over obstacles or even a
non-flat ground.

For this reason, in the proposed system, the drone
height is computed from upwards and downwards look-
ing sensors data using an SLAM algorithm consisting of
Kalman filters. The altitude estimation method firstly
designed for an indoor multi-floor building exploration,9

adds upwards looking sensor data to the formulation by
Gronska et al.35 As anticipated in the hardware descrip-
tion (‘System description’ section), the system can be
equipped alternatively with sonars sensors or with long
range camera sensors. The camera sensors option allows
greater range of distance measurement and is composed
by an embedded module containing both a camera and
an LED emitter. The Leddar M16 sensor does not pro-
vide punctual information but measures distances of
objects within 16 sectors of 2.8� aperture from the
camera viewpoint. We can consider both sensors equiv-
alent from an algorithmic point of view.

The first step of the algorithm is to compute the
drone height and vertical velocity according to the
model prediction, as detailed below

bxt ¼ bzt
cvz;t

24 35 ¼ A
zt�1

vz;t�1

24 35þ Baz

withA ¼
1 dt

0 1

24 35; B ¼
0:5dt2

dt

24 35
bRt ¼ ARt�1A

T þ R withR ¼
r2z rzvz

rzvz rv2z

24 35

Then, the ground and ceiling elevation beneath and
above the drone are predicted according to the mea-
surement prediction

bht ¼ bhgroundbhceiling
24 35 ¼

bzt � zdownwardsbzt þ zupwards

" #
The next step is to find the matches with the already

known levels close to the robot current pose (the set of
corresponding levels C). Once obtained the matches,
those are merged into a single level elevation. Each
level is represented in the levels map L by its own
pose ðxl; yl; llÞT and uncertainty rl.

To merge N levels from C, one can prove that it can
be achieved using the next equation

ðl1:N; r21:NÞT ¼ mergeLevelsðCÞ

¼
XN

k¼1
lk
YN

j¼1;j 6¼k
r2jXN

k¼1

YN

j¼1;j 6¼k
r2j

;

YN

k¼1
r2kXN

k¼1

YM

j¼1;j6¼k
r2j

0@ 1AT

After merging the levels elevations, the drone alti-
tude and the current levels elevations beneath and
above the drone are updated as follows.

Qt ¼ rlaser þ rground

K ¼ cP
tD

TðDcP
tD

T þQÞ�1

withD ¼ ½1 0�

xt ¼
zt

vz;t

" #
¼ bxt þ Kðlground þ zdownwards �DbxtÞ

Rt ¼ ðI2 � KDÞbRt

Figure 7. Time to collision graph and thrust vectors.
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bht ¼ bhgroundbhceiling
24 35 ¼

zt � zdownwards

zt þ zupwards

" #

Updating the drone altitude and levels from the ceil-

ing measurement, implies to modify the above equation

such as

xt ¼ bxt þ Kðlceiling � zupwards �DbxtÞ
Once updating the drone altitude, the elevation

levels are updated using for each one a Kalman filter.

Then, the new levels are inserted into the levels map L.
Eventually, the final step of the algorithm aims to

merge closest levels. It only considers the levels close to

the current drone pose. Afterward, within this subset,

the algorithm compares the difference between the

levels elevation, if it is under a certain threshold d2,
merges them according to mergeLevelsðCÞ.

Navigation

Once the localization problem has been solved, the

environment navigation and thus the inspection proce-

dure can be addressed. Two navigation modalities have

been proposed: (i) teleoperation modality – the operator

drives the system with high-level commands using the

custom designed OCU; (ii) autonomous modality – the

MAV navigates autonomously the surroundings using

a HPF in order to have a full coverage of the environ-

ment to be inspected.
Both the approaches are introduced in the following

paragraphs.

Teleoperation interface

To provide high-level teleoperation functionalities for

personnel without expertise in drone flight, the system

is equipped with an OCU that allows the user to guide

the inspection task via a simple interface. In particular,

the operator can use a joystick to command the direc-

tion of motion of the MAV and a display shows both

the captured video stream, the reconstruction of the

local map and, if selected, internal algorithm parame-

ters (see Figure 8).
The OCU has been designed in order to allow the

operator to perform the inspection from a remote and

safe location. The OCU is composed by a Notebook

which runs the developed graphical user interface

(GUI) and a joystick which is used by the operator to

move the camera point of view as well as to set the

desired device pose and to control the remote function-

alities (like for instance starting/stopping video record-

ing, modify the camera zoom, or select inspection

points of interest). By means of the joystick, the oper-

ator can also move a virtual point which is then fol-

lowed by the vehicle control system satisfying

additional safety constraints (obstacles avoidance and

device autonomy). The GUI has been realized by a

Cþþ based Qt (Digia) application and it is composed

by two main windows that can be arranged on the

screen in a custom way. On the right side of the win-

dows, all the information related to the vehicle, like for

instance the estimated position and velocity, are shown.

The current map and the measured features with

respect to the device position are also presented in a

polar view. The two windows have been specifically

designed for the two operators that in general perform

the inspection. One is in charge for the visual

Figure 8. Operator control unit displaying frontal camera views with current laser scan and MAV asset parameters of the internal
SLAM control as well as estimated features and collision distances.
MAV: micro aerial vehicle; SLAM: simultaneous localization and mapping.
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inspection, whereas the other controls or supervises the
MAV navigation aspects.

Virtual potential function for autonomous exploration

To allow some degrees of autonomy during the
environment exploration and to leverage the operator
effort during the inspection task, the system imple-
ments a potential field based path planning algorithm,
firstly introduced in Khatib.36

Among the possible approaches in literature, in
frontier-based exploration37 methods, the frontiers rep-
resent the borders between the known free space and the
unknown environment. These are computed using algo-
rithms that are similar to edge detectors. Eventually, the
robot moves towards the nearest frontier following the
shortest path that avoids obstacles computed with a
best-first search algorithm.38 In Kim and Eustice39 the
robots perform a default policy exploration based on the
Boustrophedon motion40,41 and revisits the interesting
areas based on their visual saliency following a path
defined again by a best-first search algorithm. In Shen
et al.,42 virtual gas molecules are used to detect unknown
areas, these particles move toward free and unknown
space with a Brownian motion, colliding with already
known obstacles. Once detected, the robot moves
towards the navigation goals. Finally, in Silva et al.,43

a potential field is incrementally computed using har-
monic functions where unknown areas have an attrac-
tive potential, whereas obstacles have a repulsive
potential. Therefore, the robot is attracted towards the
nearest unexplored space.

The approach presented in Silva et al.43 has been
selected as exploration policy for its efficiency, easy
implementation and above all because it avoids
the use of best-first algorithm which can be
time-consuming if the goal is far from the robot.
The algorithm employs harmonic functions44 to solve
the local minima issue.45

Our approach (shown in Algorithm 2) differs from
the work by Silva et al. substituting the histogramic
in-motion mapping (HIMM) 46with an occupancy
grid environment map computed as in Pepe et al.9

The basic idea of the occupancy grid algorithm is to
compute the posterior probability of the map only
knowing the observation data and the previously esti-
mated robot path. The space is partitioned into small
grid cells where each cell ok has an occupancy proba-
bility pðokÞ which takes a value between 0 (free) and 1
(occupied). Due to performance constraints, the map
posterior is approximated by computing the posterior
for each discrete cell within the partitioned space O,
and has been proved in Thrun et al.20 that its occupan-
cy probability can be computed recursively using
Bayes rules..

Starting from the estimated environment map, the
potential field is updated within a sliding window, cen-
tered on the MAV. This means that cells which belong
to the circle of a certain radius R centered on the robot
pose have their potential updated. The ones with a high
occupancy probability (above a certain threshold) are
considered as obstacles and therefore their potential is
set equal to 1. The free cells are updated according to
the Gauss–Seidel method while taking into account
cells at the borders. This procedure is repeated until a
certain accuracy is obtained.

At the beginning of the exploration, all cells have
their potential set equal to 0, and therefore unknown
areas are cells which have never been updated inside

Algorithm 2. Harmonic Potential Field Based Exploration

HPF_Exploration(Xt ,O,U)

//Xt the robot pose, O the occupancy grid, U the potential

field grid

1. //1.Update the sliding window potential field until

reaching the desired accuracy

2. while ϵmax > ϵ0 do

3. for each cell i in Φ do

4. / xt; ytð Þ ¼ 1 //Set the current robot cell potential

value

5. if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt � xið Þ2 þ yt � yið Þ2

q
< R do //check if the cell

belongs to the sliding window

6. /old ¼ /ðxi;yiÞ
7. if p okz1:k; x1:kð Þ > pobstacles do
8. / xi; yið Þ ¼ 1 //Set the obstacles potential value

9. else

10. / xi; yið Þ ¼ Gauss Seidelðxi; yi;ΦÞ
11. end if

12. ϵ ¼ j /k x;yð Þ�/old
/old

j
13. if ϵ > ϵmax do

14. ϵmax ¼ ϵ
15. end if

16. end if

17. end for

18. end while

19. //2. Compute the numerical gradient on the current

robot cell ðxt; ytÞ
20. Gx ¼ ∂/

∂x ðxt; ytÞ≈ 1
2
ð/ xt þ 1; ytð Þ � / xt � 1; ytð ÞÞ

21. Gy ¼ ∂/
∂y ðxt; ytÞ≈ 1

2
ð/ xt; yt þ 1ð Þ � / xt; yt � 1ð ÞÞ

22. //3 .Compute the new reference position

XR ¼ ðxR; yR;URÞ
23. xR ¼ xt þ �Gx

√ ðG2
xþG2

yÞ

24. yR ¼ yt þ �Gy

√ ðG2
xþG2

yÞ

25. wR ¼ atan2ð �Gyffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

p ; �Gxffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

p Þ
26. return XR, U
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the sliding window, they represent navigation goals and
the robot is attracted to them. As suggested in Shade
and Newman,47 the potential value of the cell contain-
ing the robot is set equal to 1 (line 4).

Once reaching the desired accuracy, the negative
gradient is numerically computed. Eventually, in
order to follow an optimal path towards the goal posi-
tion (unknown space), a gradient descent method as
described in Gupta et al.48 has been adopted.

Post processing and structure

reconstruction

The elements and features to inspect can be various
depending on the environment itself. For this reason,
we did not focus on the inspection features that can be
assessed by qualified personnel through visual inspec-
tion. Having at disposal all the information of the map-
ping and localization algorithm is however possible to
generate offline a 3D model of the explored environ-
ment for detailed analysis. It is in fact possible to asso-
ciate frames captured by the frontal camera with the
reconstructed positions of the MAV, and thus generate
a 3D Mosaic of images, or better to employ an offline
optimization technique known in literature as structure
from motion (SfM)49 and create a complete 3D recon-
struction of the environment. An example of recon-
struction of a sector of pipe wall captured inside an
industrial boiler is shown in Figure 9.

Test flight in an industrial combustion

chamber

Several test flights have been carried out inside indus-
trial combustion chambers to verify the robustness of

the system. In this section, a preliminary test flight is
presented and discussed. The goal of the preliminary
demonstration flight was to prove the effectiveness of
the semi-autonomous aerial vehicle in the execution of
an inspection task concerning a combustion chamber’s
conditions. The main sensor used to conduct the
inspection was a camera in the visible light spectrum.

In details, the task consisted in a visual analysis of a
boiler’s internal wall and of the burners’ rows that are
located on the internal edges of the chamber.

The chamber was already prepared by means of an
internal scaffolding to provide a takeoff platform for
the vehicle. This platform should have been placed
immediately above the funnel-shaped portion of the
chamber; instead, the scaffolding was installed
around 5 m below the hopper.

Before the actual flight, proper communication
between the vehicle and the OCU has been verified.
A brief test flight has been conducted to verify overall
system correct functioning. Unfortunately, random
interruption in the WiFi communication channel,
likely due to the metallic structure of the combustion
chamber has been noticed.

For the demonstration, a task sequence following
the takeoff of the vehicle has been planned:

(1) An ascent phase to reach the hopper limit fol-
lowed by an approach phase to the left edge of the
chamber. (2) A following turn of the vehicle’s camera
(front of the vehicle) toward the burners and subse-
quent ascent of the vehicle up to 30 m (altitude
reported by the vehicle’s altimeter). (3) A second turn
of the vehicle in order to have the vehicle’s camera
orthogonal with respect to the chamber’s wall, to get
best viewing condition and a descent to the hopper
limit. (4) Horizontal movement on the right for some

Figure 9. Estimated trajectory during an inspection and SfM reconstruction example of a sector of the environment from 50 frames.
SfM: structure from motion.
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meters to scan another section of the chamber’s wall.

(5) These steps are repeated in order to cover all the

wall surface. (6) If possible (enough remaining battery

charge), scan of another burners row. (7) Coming back

of the vehicle to the takeoff position and landing.
The takeoff maneuver has been carried out very

carefully because of the unexpected dangerous presence

of a banister. Anyway, the takeoff proceeded smoothly,

thanks to the robustness of the localization algorithm.
After some seconds from the takeoff, necessary for

the vehicle self-stabilization and dynamic parameters

identification, the task advanced according to the

task plan, so the vehicle has been controlled by the

vehicle operator, using the OCU’s keyboard, and

brought near to the selected chamber’s burners row.

Once reached the planned position, the vehicle opera-

tor started to make the vehicle move as shown in

Figure 10 following the scheduled sequence. It should

be noticed that, during the flight, many random inter-

ruptions of the WiFi link have been encountered.

However, these temporary lacks of communication

did not compromise the overall good result of the

task, but they diminished the total amount of time

available for the actual inspection.

Conclusion

The manuscript introduces the problem of semi-

automatic inspection and navigation in confined envi-

ronments with a special focus on demanding environ-

ments like industrial combustion chambers. A system

that overcomes many challenges imposed by such a

problematic environment is presented. The presented

system is composed of a multirotor flying robot and a

control ground station and allows a human expert to

easily inspect an industrial facility. The main problems

for such inspection task have been introduced in detail

at the beginning of the manuscript. The proposed solu-

tion system is described both for what concerns the

hardware selection and the algorithmic and control

strategies. Some of the presented software components

have been previously introduced by the authors and

tested in indoor office environments. The same algo-

rithms displayed equivalent efficiency in the industrial

environment presented here. Thanks to the choice of a

laser sensor for the navigation and localization part

and of a small computational footprint SLAM algo-

rithm, the system resulted robust to communication

losses, air flow disturbances and presence of undesired

obstacles inside the combustion chambers. The pre-

sented system allows non-expert MAV pilots to navi-

gate an aerial vehicle inside an unstructured confined

space and visually inspect the structural condition of

the environment. While this is not the intended usage,

starting from the captured data, the system is also able

to provide a 3D reconstruction of the inspected envi-

ronment for offline analysis. To increase the flight time

and lower the overall inspection time, strategies should

be investigated in the future in order to reduce energy

consumption by means of reducing the MAV payload

or introducing techniques to recover energy from the

environment.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iD

Paolo Tripicchio http://orcid.org/0000-0003-3225-2782

Massimo Satler http://orcid.org/0000-0001-6731-3114

Carlo Alberto Avizzano http://orcid.org/0000-0001-5802-

541X

Figure 10. Test flight in an industrial combustion chamber. The
intended sequence phases are shown. After take-off, phase (1) is
an approach to the left edge of the chamber. (2) MAV turn and
ascension up to 30 m. (3) MAV turn and descent. (4) Lateral
movement. (5) The sequence of action repeats until the entire
wall is inspected.
MAV: micro aerial vehicle

222 International Journal of Micro Air Vehicles 10(2)

http://orcid.org/0000-0003-3225-2782
http://orcid.org/0000-0003-3225-2782
http://orcid.org/0000-0001-6731-3114
http://orcid.org/0000-0001-6731-3114
http://orcid.org/0000-0001-5802-541X
http://orcid.org/0000-0001-5802-541X
http://orcid.org/0000-0001-5802-541X


References

1. Longo D and Muscato G. The Alicia 3 climbing robot: a

three-module robot for automatic wall inspection. IEEE

Robot Automat Mag 2006; 13: 42–50.
2. Eich M and V€ogele T. Design and control of a light-

weight magnetic climbing robot for vessel inspection.

In: 19th Mediterranean conference on IEEE control auto-

mation (MED), 20-23 June 2011, Corf�u, Greece 2011.
3. Marconi L, Basile F, Caprari G, et al. Aerial service

robotics: the AIrobots perspective. In: 2nd international

conference on applied robotics for the power industry

(CARPI), 11-13 Sept. 2012, Zurich, Switzerland 2012.
4. ARCAS - Aerial Robotics Cooperative Assembly System,

FP7-ICT project 287617, web-site: http://www.arcas-

project.eu/, 2011.

5. De Cubber G, Doroftei D, Serrano D, et al. Ourevitch.

The EU-ICARUS project: developing assistive robotic

tools for search and rescue operations. In: IEEE interna-

tional symposium on safety, security, and rescue robotics

(SSRR), 21-26 Oct. 2013, Linkoping, Sweden, 2013.
6. Albers A, Trautmann S, Howard T, et al. Semi-

autonomous flying robot for physical interaction with

environment. In: IEEE conference on robotics automation

and mechatronics (RAM), 28-30 June 2010, Singapore,

2010.
7. Michael N, Fink J and Kumar V. Cooperative manipu-

lation and transportation with aerial robots. Autonomous

Robots 2011; 30: 73–86.
8. Satler M, Unetti M, Giordani N, et al. Towards an

autonomous flying robot for inspections in open and con-

strained spaces. In: 11th international multi-conference on

systems, signals & devices (SSD), 11-14 Feb. 2014,

Barcelona, Spain, 2014.
9. Pepe G, Satler M and Tripicchio P. Autonomous explo-

ration of indoor environments with a micro-aerial vehicle.

In: Workshop on research, education and development of

unmanned aerial systems (RED-UAS), 23-25 Nov. 2015,

Cancun, Mexico, 2015.
10. Bartelds T, Capra A, Hamaza S, et al. Compliant aerial

manipulators: toward a new generation of aerial

robotic workers. IEEE Robot Automat Lett 2016; 1:

477–483.
11. Luque-Vega LF, Castillo-Toledo B, Loukianov A, et al.

Power line inspection via an unmanned aerial system

based on the quadrotor helicopter. In: 17th IEEE confer-

ence on Mediterranean electrotechnical (MELECON),

13-16 April 2014, Beirut, Lebanon , 2014.
12. Bonnin-Pascual F, Ortiz A, Garcia-Fidalgo E, et al. A

micro-aerial platform for vessel visual inspection based

on supervised autonomy. In: IEEE/RSJ international

conference on intelligent robots and systems (IROS), 28

Sept.-2 Oct. 2015, Hamburg, Germany, 2015.
13. Gohl P, Burri M, Omari S, et al. Towards autonomous

mine inspection. In: 3rd international conference on applied

robotics for the power industry (CARPI), 14-16 Oct. 2014,

Foz do Iguassu, Brazil, 2014.
14. Nikolic J, Burri M ,Rehder J, et al. A UAV system for

inspection of industrial facilities. In: IEEE aerospace con-

ference, 2-9 March 2013, Big Sky, MT, USA, 2013.

15. Tripicchio P, Satler M, Dabisias G ,et al. Towards smart

farming and sustainable agriculture with drones. In:

International conference on intelligent environments (IE),

15-17 July 2015, Prague, Czech Republic, 2015.
16. Sun J, Li B, Jiang Y, et al. A camera-based target detec-

tion and positioning UAV system for search and rescue

(SAR) purposes. Sensors 2016; 16: 1778.
17. Sarris Z and Atlas S. Survey of UAV applications in civil

markets. In: Proceedings of the 9th Mediterranean confer-

ence on control and automation, June 27-29, Dubrovnik,

Croatia, 2001.
18. Durrant-Whyte H and Bailey T. Simultaneous localiza-

tion and mapping: part I. IEEE Robot Automat Mag

2006; 13: 99–110.
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Collaborative multiple micro air vehicles’
localization and target tracking in
GPS-denied environment from
range–velocity measurements

Ioannis Sarras, Julien Marzat, Sylvain Bertrand and
Hélène Piet-Lahanier

Abstract

We treat the problem of simultaneous collaborative multiple micro air vehicles’ localization and target tracking using

time-varying range and (relative and absolute) velocity measurements. The proposed solution combines robustly local

nonlinear observers that estimate the relative positions between agents and their neighbors, and cooperative filters that

fuse each agent’s local estimates to globally localize them with respect to the target (and therefore to each other). These

estimates are then introduced in a dynamic consensus-type control law that ensures the global collective target tracking

while simultaneously estimating the target’s velocity, without needing any external reference which makes it applicable in

GPS-denied environments. Finally, a simulation scenario is studied in order to show the efficiency of the proposed

solution.
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Introduction

Over the last decades we have witnessed the explosion

of applications incorporating networks of robotic

vehicles. Inspired by the behavior of animals in

nature and motivated by the fact that a variety of

objectives can be more efficiently, rapidly, and robustly

accomplished collaboratively rather than independent-

ly, multiagent systems have been in the core of atten-

tion from both theoreticians and practitioners. Of

particular interest have been applications involving

multiple (aerial, ground, marine) vehicles that need to

collaborate to achieve a common goal such as to ensure

the exploration of unknown environments, to follow

targets, to seek dangerous emitting sources, or to

ensure high-precision photography.1 Note that in

order to attain the corresponding desired objective

the location of the vehicles is an information of para-

mount importance. It is exploited in the guidance, con-

trol, and estimation algorithms that ensure the

successful undertaking of the mission scenario.
However, such global information, as obtained for
example by GPS receivers, is not available in indoor
environments2 and in general, due to hardware mal-
function or unavailability of the minimum number of
GPS satellites. Instead local, low-cost sensors (cameras,
infrared sensors, sonars) are usually incorporated to
provide a sufficient localization.

This work focuses on the design of a distributed
control law which in an ideal (perfect measurements,
relative positions available) scenario ensures that a
number of multiple micro air vehicles (MAVs) track
the unknown motion of a target. Our precise objective
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is to propose a robust law based on (local) relative
distance measurements and noisy velocity measure-
ments to combine localization, target velocity estima-
tion, and target tracking algorithms to obtain a
globally exponential solution for the simultaneous col-
lective agent localization and target tracking problem.
The target can either be static, in which case this boils
down to a consensus problem, or dynamic, yielding a
setting similar to the classical leader–follower problem.
In both cases, only a set of agents (at least one) usually
has access to a relative information about the motion
of the target while each agent has only access to local
information. However, depending on the measure-
ments available and the interagent communication
characteristics, ensuring exact target tracking can be
impossible and the mission objective is relaxed into fol-
lowing the target at a certain distance. Such a scenario
arises exactly when relative distance measurements are
available, instead of relative positions. These are pos-
sibly complemented by noisy relative or absolute veloc-
ity measurements of the agents. The reason why exact
tracking cannot be achieved lies on the fact that dis-
tributed controllers frequently require relative position
information. For that to be obtained the observability
analysis reveals that a persistent relative motion
between any pair of agents has to be present.3,4 The
distributed control law has to account for this addition-
al motion.

We propose a solution to the problem of collective
target tracking for a target with unknown constant
velocity (or unknown varying velocity but known
acceleration) based on the agents’ relative distance, rel-
ative velocity, and absolute velocity measurements. The
communication topology between agents is considered
as undirected and connected, while the communication
topology between the target and the connected fol-
lowers (at least one) is directed, which yields a strongly
connected digraph. Our contribution consists of: (a)
designing a localization algorithm that provides for
every agent an estimation of the relative positions
with respect to its neighbors and the target, (b) design-
ing an estimator for each agent that provides an esti-
mate of the target’s velocity, (c) designing an estimator
that filters the noisy relative velocity measurements and
explicitly take it into account in the global stability
analysis, and (d) designing a distributed control law
that allows for the followers to collaboratively track
the target and ensures a persistent relative motion.

Concerning the localization, in the literature we dis-
tinguish two large types of scenarios5,6: (a) Mutual
localization, referring to the scenario where each
agent needs to find its own (static) position in a refer-
ence frame common to the entire network and (b) col-
laborative localization referring to the localization of a
(dynamic) target using an already mutually localized

network. Our problem is of the second type.
Depending on the community (control, robotics, sen-
sors) and the mission objective, we can have 2D or 3D
models, centralized or distributed algorithms, a variety
of available measurements, for example absolute posi-
tion (GPS), relative positions, distances, bearings or
IMU measurements, and additional known points
(anchors, markers). Additionally, the localization sol-
utions can be signal/information based or model based
which are essentially divided into optimization based
and observer based. Observer-based, distributed esti-
mation algorithms have recently been shown to present
some rather interesting robust characteristics. In par-
ticular, it was established that observers which are dis-
tributed can enhance the quality of estimation by
eliminating noise, see Tabarea et al.7 and Li and
Sanfelice,8 which is of great interest in all applications.

Hence motivated by these recent developments and
unlike the probabilistic and Kalman filter-based
approaches,9–11 which cannot in general guarantee ana-
lytical global convergence, following Sarras et al.12 we
adopt an observer-based approach to treat the problem
of multivehicle collaborative localization using time-
varying range and relative velocity measurements with-
out requiring any global positioning information. The
range measurements can be obtained using a variety of
sensors such as stereo-vision systems that typically
equip robotic vehicles13 or by combining monocular
cameras from different vehicles.14 This measurement
scenario renders our obtained algorithm applicable to
GPS-denied environments. We show that if each agent
can obtain a good estimate of the target’s velocity then
it successfully localizes itself with respect to the target
by the combination of local estimates of its neighbors’
relative positions and the fusion with the neighbors’
own estimates.

As opposed to other works, for example Bahr et
al.,15 Dandach et al.,16 Deghat et al.17 our algorithm
does not require global information (absolute position)
but rather local measurements. Compared to the rele-
vant work in Chai et al.6 that treats the collaborative
localization problem with respect to a static target,
instead of single integrators we consider double inte-
grator dynamics to model the agents’ translational
dynamics and require no knowledge on the rate of
change of the distances. Furthermore, we extend
these results to the scenario of a dynamic target and
show that by adopting an approach inspired by the
recent developments on dynamically scaled Lyapunov
functions18,19 we are able to show relative localization
with a uniform global exponential convergence using a
strict Lyapunov function.

Concerning the distributed control design, we follow
the control paradigm laid in Hong et al.20,21 and fol-
lowed by many others, for example Ren and Beard,1
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Cai and Huang,22 Liu and Huang,23 and references
therein. We show that in the case of known relative
positions the interconnection of a consensus-type
tracking law and a consensus-type target velocity esti-
mator provides a globally exponential tracking solu-
tion. Compared to the landmark work,21 that more
generally treats directed and switching graph topolo-
gies, we provide an alternative Lyapunov function
that does not require knowledge of the global graph
topology properties and thus, contributes in rendering
it a truly distributed solution. While Ren and Beard,1

Cai and Huang,22 Liu and Huang23 consider also cases
of nonlinear models for the agents’ dynamics and more
general graph topologies, they also assume that the rel-
ative positions are readily available and that all meas-
urements are not corrupted by measurements. Works
using mainly range measurements are focused on for-
mation control, see for example Tron et al.,5 Montijano
et al.,13 Oh and Ahn,24 and Oh et al.25

Although our results focus on target tracking, by
straighforwardly modifying the control terms to
incorporate desired distances between neighbor
agents we can obtain a solution to target tracking
with a prescribed formation of the followers and
interagent collision avoidance, for the latter see the
recent work of Franchi et al.26 and references therein.
These features are illustrated in the simulation
scenario.

Model and problem formulation

Network topology

We consider that the interconnection graph describing
the communication between the Nþ 1 agents forming
the multiagent system, target included, is formed by an
undirected graph describing the network of the N fol-
lowers and a directed graph connecting the target to
some followers. The complete (directed, strongly con-
nected) network topology can be modeled using the
Laplacian matrix L :¼ ½lij� 2 R

ðNþ1Þ�ðNþ1Þ;
i; j 2 f0; . . . ;Ng, whose elements are defined as

lij ¼

X
j2N i

wij i ¼ j

�wij i 6¼ j

8><>: (1)

where wij¼ 0 if i¼ j, wij> 0 if j 2 N i and wij¼ 0 other-
wise. In this case, N i stands for the set of agents trans-
mitting information to the ith agent. Note that, by
construction, L has zero row sum, i.e. L1Nþ1 ¼ 0,
where 1Nþ1 is a column vector of size Nþ 1 filled
with ones or, equivalently, lii �

P
j2N i

lij ¼ 0.
Following this definition, we note that the undirected

graph topology between the N followers with the N�N

(symmetric) is described by the Laplacian matrix

Lu :¼ ½lij�, for i; j 2 f1; . . . ;Ng. Further, define as B
an N�N diagonal matrix whose ith element is either

bi > 0 or 0 based on whether the ith agent receives

information from the target, i.e. belongs to the set

N 0. For more details on network topologies and their

properties refer, for example to Ren and Beard.1

Dynamic model

We consider that the dynamics of each of the Nþ 1

identical agents composing the multivehicle system of

interest can be described by the double integrator

model

_xi ¼ vi (2)

_vi ¼ ui; i ¼ f0; . . . ;Ng (3)

with xi; vi 2 R
3 denoting the position and velocity vec-

tors of the ith vehicle in the inertial frame, while ui 2 R
3

is the applied acceleration.
By the index i¼ 0 we denote the (static or dynamic)

target with respect to which the localization will be

referred. As is evident, the static scenario corresponds

to a target’s dynamics

_x0 ¼ 0 (4)

_v0 ¼ 0 (5)

In the dynamic case, we assume that the target’s

acceleration u0 is known or zero, with the latter corre-

sponding to a scenario of a noncooperative target

moving in straight line at maximal velocity.
Now, we naturally define the relative position, veloc-

ity, and acceleration between two agents as

xij ¼ xi � xj (6)

vij ¼ vi � vj (7)

uij ¼ ui � uj (8)

that yield the required relative dynamics

_xij ¼ vij (9)

_vij ¼ uij (10)
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For our localization problem, we consider that the

available measurements consist of the relative velocities

and distancesa

yi ¼ colðvTij ; dTij Þ (11)

with the distance dij between agent i and its neighbor j

defined as

dij :¼ jxi � xjj ¼ jxijj (12)

A simple derivation provides

_dij ¼
xTij vij

dij
¼ vTij xij

dij
(13)

In conclusion, the complete model on which our

design will be based is summarized as

_xij ¼ vij (14)

_vij ¼ uij (15)

_dij ¼
vTij xij

dij
(16)

Cooperative localization

Before presenting our main results, we define some

additional notation and then remind the definition of

a persistently exciting (PE) function. The notation for a

matrix A being positive (semi-)definite is expressed by

A � 0ð�0Þ, while for the case of a positive scalar a we

write instead a> 0. We note kmðAÞ the minimal eigen-

value of a square matrix A. The notation j � j will refer,
depending on its argument, either to the absolute value

of a scalar function, to the Euclidean norm of a vector,

or to the induced two-norm of a matrix.

Definition 1. Let the function vij : R�0 ! R
3 be continu-

ous. It is PE if there exist some T> 0 and l > 0 such

that Z tþT

t

vijðsÞvTij ðsÞds�lI � 0; 8t (17)

For the distance-based localization scenario we have

at hand, we require that certain relative velocities are

PE which means that in order for an agent to be able to

reconstruct a relative position with respect to a neigh-

boring agent, it is necessary to move out of the line of

sight (straight line connecting two agents) for some

time which in fact is required for the relative position

to be observable.3,4 In practice, this condition imposes

a requirement on the applied accelerations (control

inputs) which can always be ensured for each agent

by including an excitation term but however, might

complicate the stability analysis.

Single vehicle localization from direct local

measurements: Static target

In this subsection we will consider the problem of local-

ization of each agent with respect to its neighbors by

incorporating local, noiseless measurements, and con-

sidering a static target. This will be achieved by means

of a designed nonlinear observer based on the

invariant-manifold observer methodology, see Astolfi

et al.27 and Karagiannis and Astolfi18 for the general

setting and Martin and Sarras,28 Martin and Sarras,29

and Sarras et al.12 for recent applications on MAVs.

Proposition 1. Consider the dynamical system defined in

equations (14) to (16) and assume that vij is PE. Then,

the dynamical system

_ni :¼ �Kijd
2
ij

2
uij � Kijvijv

T
ij bxij þ vij (18)

bxij :¼ ni þ
d2ij
2
Kijvij (19)

is a globally exponential observer with gain Kij> 0.

Proof. First, let us define the relative position estima-

tion error

zij :¼ ni þ biðyi; byiÞ � xij ¼: bxij � xij (20)

for a certain mapping bi, that generally can also depend

on a filtered yi denoted byi, that will be properly select-

ed. At this point we examine the case where bi is a

function only of yi. Then, the general form of the zi
dynamics gives

_zij :¼ _ni þ @yibi _yi � _xij ¼ _ni þ @dijbi _dij þ @vijbi _vij � _xij

¼ _ni þ @dijbi
vTij xij

dij
þ @vijbiuij � vij

With the choice

_ni :¼ �@dijbi
vTij bxij

dij
� @vijbiuij þ vij
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and the bi mapping as

biðyiÞ :¼
d2ij
2
Kijvij (21)

the zi dynamics obtains the more explicit form

_zij ¼ �Kijvijv
T
ij zij (22)

From Lemma 5 of Lorı́a and Panteley30 we know
that the nominal system (22) has a uniformly global
exponentially stable (UGES) equilibrium at the origin
for a PE and uniformly bounded vij.

Remark 1. From the converse Lyapunov lemma
(Lemma 1 of Lorı́a and Panteley30) we know that
there exists a quadratic Lyapunov function

Vzi :¼
1

2
zTijPðtÞzij (23)

with P(t) such that 0 � c1I 	 PðtÞ ¼ PTðtÞ 	 c2I, the
unique solution of the equation

_P � PKijvijv
T
ij � vijv

T
ijKijP ¼ �Q (24)

with QðtÞ ¼ QTðtÞ such that 0 � c3I 	 QðtÞ 	 c4I.
This lemma will be exploited in the construction of a

strict, dynamically scaled Lyapunov function of the more
general solution that follows in the next subsection.

Remark 2. Notice that in our algorithm, we further
require that the relative acceleration between neighbor-
ing agents be either available or can be reconstructed. As
is common in the literature for example, the agents might
transmit their respective control actions (accelerations or
resulting predicted positions) to their neighbors.31 If
these signals are imperfectly known, due for example to
transmission perturbations, we can explicitly provide a
robustness analysis by treating the imperfections as addi-
tive disturbances and using our Lyapunov function in an
input-to-state stable (ISS) analysis. Alternatively, and
under the assumption that relative motion varies slowly,
we can consider that the relative acceleration is recon-
structed by numerical differentiation of the available rel-
ative velocities.

Remark 3. Let us mention that in the case where relative
orientations (rotation matrices) are available, by means
of bearing measurements, and assuming that each agent
is equipped with a gyro, we can adapt the obtained algo-
rithms to such scenario. In such case the agents do not
need to be already mutually localized and the transmitted
signals are communicated in the proper local frame of
each agent.

Single vehicle localization from filtered local
measurements: Dynamic target

In continuation of the previous scenario, we proceed to
extend the localization algorithm to the case of a dynam-
ic target in the presence of noisy velocity measurements,
without assuming any particular noise characteristics.

Proposition 2. Consider the dynamical system defined in
equations (14) to (16) and assume that vij is PE. Then,
the dynamical system

_ni:¼� Kijd
2
ij

2
ðuij � Kviðbxij; bvij; vij; rÞðbvij � vijÞÞ

� KijbvijbvTij bxij þ bvij (25)

bxij :¼ ni þ
d2ij
2
Kijbvij (26)

_r :¼ �c7ðr� 1Þ þ c22K
2
ij

c1c5
jvijj2jbvij � vijj2 (27)

_bvij :¼ uij � Kviðbxij; bvij; vij; rÞðbvij � vijÞ (28)

is a globally exponential observer, for some ci > 0, with
rð0Þ � 1 and gains

Kij :¼ c8 þ c5 þ c6 þ c7c2
c3

Kviðbxij; bvij; vij; rÞ :¼ c9Iþ ðr� 1Þ c22
c1c5

K2
ijjvijj2I

þ c22
c6r

ðK2
ijjbvijj2jbxijj2 þ 1ÞI

Proof. First, let us define the relative position estima-
tion error as in equation (20). Then, the general form of
the zi dynamics gives

_zij :¼ _ni þ @byi
bi
_byi þ @yibi _yi � _xij

¼ _ni þ @bdijbi _bdij þ @bvijbi _bvij þ @dijbi _dij þ @vijbi _vij � _xij

¼ _ni þ @bdijbi _bdij þ @bvijbi _bvij þ @dijbi
vTij xij

dij
þ @vijbiuij � vij

which with the choice

_ni :¼ �@bdij

bi
_bdij � @bvijbi _bvij � @dijbi

bvTij bxij

dij
� @vijbiuij þ bvij
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reduces, after defining evij :¼ bvij � vij, to

_zij ¼ �@dijbi
bvTij bxij

dij
� vTij xij

dij

 !
þ bvij � vij

¼ �@dijbi
vTij
dij

zij � @dijb
bxT
ij

dij
evij þ evij

Selecting further the bi mapping as

biðyi; byiÞ :¼ d2ij
2
Kijbvij ¼ d2ij

2
Kijðvij þ evijÞ

@dijbi ¼ dijKijðvij þ evijÞ

the zi dynamics obtains the more explicit form

_zij ¼ �Kijvijv
T
ij zij � Kijevij v

T
ij zij � Kijðvij þ evijÞbxT

ij evij þ evij

¼ �Kijvijv
T
ij zij � Kijevij v

T
ij zij � ðKijbvijbxT

ij � IÞevij

Taking the function Vzi defined in equation (23) and
computing its time derivative along trajectories of the zi
dynamics yields

_Vzi :¼
1

2
zTij

_PðtÞ � PðtÞKijvijv
T
ij � vijv

T
ijKijPðtÞ

� �
zij

� zTijPðtÞKijevij v
T
ij zij � zTijPðtÞðKijbvijbxT

ij � IÞevij

 � c3

2
jzijj2 þ c2jzijj2Kijjevij jjvijj

þ c2jzijjðKijjbvijjjbxijj þ 1Þjevij j


 � c3
2
� c5 þ c6

2

� �
jzijj2 þ c22

2c5
K2

ijjvijj2jevij j2jzijj2

þ c22
c6

ðK2
ijjbvijj2jbxijj2 þ 1Þjevij j2

where we applied Young’s inequality to the two cross-
terms of the first inequality. In order to handle the last
two cross-terms in the above right-hand side we employ
a dynamic scaling of the form

Wzi :¼
Vzi

r
(29)

with r dynamics given, with rð0Þ � 1, as

_r :¼ �c7ðr� 1Þ þ c22
c1c5

K2
ijjvijj2jevij j2

Then, the time derivative of Wzi can be shown to be

_Wzi ¼
_Vzi

r
�Wzi

_r

r



_Vzi

r
þ c2jzijj2c7 ðr� 1Þ

r

�c1
jzijj2
r

c22
c1c5

K2
ijjvijj2jevij j2


 � c3
2
� c5 þ c6 þ c7c2

2

� � jzijj2
r

þ c22
c6

ðK2
ijjv̂ijj2jx̂ijj2 þ 1Þ jevij j

2

r

with the last right-hand side term depending on the
error between the filtered bvij and the true measurements
vij.

Choosing

_bvij :¼ uij � Kviðbxij; bvij; vij; rÞevij (30)

with Kvi a (free) positive gain function of bxij; bvij; vij; r,
yields the dynamics of the filtering error evij :¼ bvij � vij

_evij :¼ �Kviðbxij; bvij; vij; rÞevij (31)

By simple derivations one can show that the follow-
ing function

Vev :¼
1

2
jevij j2 (32)

is a Lyapunov function for the evij dynamics since it
satisfies

_Vev ¼ �eTvijKviðbxij; bvij; vij; rÞevij
and hence, ensuring global exponential convergence of
the estimate bvij to vij. Similarly, for the r dynamics we
take the function

Vr :¼ 1

2
ðr� 1Þ2 (33)

that gives

_Vr ¼ �c7ðr� 1Þ2 þ ðr� 1Þ c22
c1c5

K2
ijjvijj2jevij j2

Selecting then the functions

Kij :¼ c8I; c8 > c3 � c5 þ c6 þ c7c2
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and

Kviðbxij; bvij; vij; rÞ :¼ c9Iþ ðr� 1Þ c22
c1c5

K2
ijjvijj2I

þ c22
c6r

ðK2
ijjbvijj2jbxijj2 þ 1ÞI

with c9 > 0, we can finally establish that the composite

function Wzi þ Vev þ Vr serves as a Lyapunov function

for the complete dynamics with

Wzi þ Vev þ Vr

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{:


 �c8
jzijj2
r

� c7ðr� 1Þ2 � c9jevij j2

which establishes UGES of the origin.

Remark 4. Notice that in the case where the mapping bi
is simply defined as

biðyiÞ :¼
d2ij
2
Kijvij

then the resulting error dynamics is described as

_zij ¼ �Kijvijv
T
ij zij � evij

Then, using the PE condition, UGES of the nominal zi
system with respect to the origin, and UGES of the origin

for the evij system we can immediately conclude, for

example from cascaded systems32 or ISS arguments,6

UGES of the interconnected system.

Collaborative localization from fusion of local

estimates and measurements

In this subsection, we take advantage of the collabora-

tive setting between the agents, which share informa-

tion with their local neighbors, in order to enhance the

localization capabilities of the agents, in particular,

that do not have direct relative measurements with

respect to the target. Of course for a static target the

measurement vi of each agent suffices.
To this end, define the fused estimate of the relative

coordinates between agent j and the target as

bxj
i0 :¼ qj � bxij (34)

q0 :¼ 0 (35)

Then, the proposed consensus-based estimation

mechanism for agent i, that exploits the fusion of its

own estimate with the ones of its neighbors to produce
a more accurate fused estimate, is given by

_qi :¼ vi � bvi0 þ k0
X
j2N i

ðbxj
i0 � qiÞ; k0 > 0 (36)

with bvi0 an estimation of the target’s velocity v0 by the
ith agent to be defined in the following section.

We now state the following result.

Proposition 3. Consider the dynamical system defined in
equations (14) to (16) and assume that vij is PE. Then,
the dynamical system

_ni:¼� Kijd
2
ij

2
ðuij � Kviðbxij; bvij; vij; rÞðbvij � vijÞÞ

� KijbvijbvTij bxij þ bvij (37)

bxij :¼ ni þ
d2ij
2
Kijbvij (38)

_r :¼ �c7ðr� 1Þ þ c22
c1c5

K2
ijjvijj2jbvij � vijj2 (39)

_bvij :¼ uij � Kviðbxij; bvij; vij; rÞðbvij � vijÞ (40)

_qi :¼ vi � bvi0 þ k0
X
j2N i

ðbxj
i0 � qiÞ (41)

with rð0Þ � 1, ensures that when bvi0 is such that v0
�bvi0 ! 0 every agent is globally exponentially local-
ized with respect to the target, for some ci > 0 and
with gains

Kij :¼ c8 þ c5 þ c6 þ c7c2
c3

Kviðbxij; bvij; vij; rÞ :¼ c9Iþ ðr� 1Þ c22
c1c5

K2
ijjvijj2I

þ c22
c6r

ðK2
ijjbvijj2jbxijj2 þ 1ÞI

Furthermore, when v0 � bvi0 is bounded the localization
error is bounded.

Proof. For i ¼ 1; . . .N, we define

ri :¼ qi � xi0 (42)

r0 :¼ 0; _r0 ¼ 0 (43)
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Then we obtain the consensus system

_ri ¼ �k0
X
j2N i

ðri � rjÞ þ k0
X
j2N i

ðbxij � xijÞ þ v0 � bvi0
¼ �k0

X
j2N i

ðri � rjÞ þ k0
X
j2N i

zij þ v0 � bvi0
with ri seen as the individual states of the N agents

and r0 the state of a leader, while the last two terms

are seen as external signals. Defining the stacked

variables

r :¼ colðr0; . . . ; rNÞ
si :¼

X
j2N i

zij

s :¼ colðs0; . . . ; sNÞ
w :¼ colðv0; . . . ; vNÞ � colðbv00; . . . ; bvN0 Þ; bv00 :¼ 0

we obtain the dynamics

_r :¼ �k0ðL � I3Þrþ k0sþ w (44)

As is well known, from the properties of the

assumed underlying graph topology, we have that

the nominal system _r ¼ �k0ðL � I3Þr has a UGES

equilibrium at the origin. Furthermore, we know

there exists a quadratic Lyapunov function, defined

here as

Vr :¼ rTðN� I3Þr; N ¼ NT � 0 (45)

that establishes the claim of the nominal system. The

first part of the proof is concluded by standard argu-

ments on cascaded systems (see e.g. Lemma 2.1 or

Proposition 2.3 of Lorı́a and Panteley32) since the com-

plete error system consists of two nominal UGES sub-

systems interconnected through the terms s, w that

satisfy a linear growth condition. The second part of

the proof follows immediately from the observation

that the r system is ISS with v0 � bvi0 as an input.

Remark 5. Although not presented here, notice that our

results are also applicable for switched communication

graphs (due e.g. to loss of communication link or meas-

urements) under the additional assumption of uniform

connectivity as is done, for example for the single-

landmark multiagent localization in the recent work of

Chai et al.6 We stress again that in our setting, however,

the derivative of the relative distances is not required and

furthermore, measurement noise is explicitly treated by

means of additional filters.

Remark 6. Notice that in an all-to-all communication

scenario it is not mandatory to have different scaling

dynamics _r for every pair of neighboring agents. A

single one is sufficient by modifying the right-hand

side of equation (39) to include the sum of all terms
c2
2

c1c5
K2

ijjvijj2jbvij � vijj2 for all neighbors i and j.

Collaborative tracking control with

unknown target velocity

We now examine a distributed control law that ensures

the tracking of a target with unknown velocity.

Furthermore, the target’s velocity needs to be estimated

by means of a (globally) converging observer. Finally,

we will modify the proposed control law by adding an

additional term in order to impose a motion to each

agent such that the persistence-of-excitation condition

(17), required by the localization algorithm, is readily

satisfied.
For ease of reference we remind the main working

assumptions:

1. The acceleration u0 of the target is known or zero.
2. The interagent communication is defined by a static

undirected, connected graph topology modeled by

its Laplacian Lu :¼ ½lij� as in (1) but for

i; j 2 f1; . . . ;Ng.
3. The topology between target and agents (at least

one) is described by a directed path (at least one)

and as such the complete topology is strongly

connected.

Case: Known relative positions

In this subsection we consider first the ideal scenario

where the relative positions xij are measured. This is

summarized in the following assumption.

Assumption 1. The relative positions xij between agents

are available and at least one agent has access to its

relative position with respect to the target.

This assumption will naturally be removed when we

consider the interconnection between the localization

algorithm and the control law.
Let us first define by bvi0 the estimate of the target’s

velocity v0 by agent i. Now, similarly to Hong et al.,21

we define the control law as

ui ¼ u0 � kvðvi � bvi0Þ � kx
X
j2N i

lijxij þ
X
k2N 0

bkxk0

0@ 1A
(46)
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with positive constants kx, kv, while the observer that
provides the target’s velocity v0 for agent i is selected as

_bvi0 :¼ u0 � kv
kx

X
j2N i

lijxij þ
X
k2N 0

bkxk0

0@ 1A (47)

Furthermore, define the error variablesb

X :¼ colðx1; . . . ; xNÞ � 1N � x0 (48)

V :¼ colðv1; . . . ; vNÞ � 1N � v0 (49)

S :¼ �colðbv10; . . . ; bvN0 Þ þ 1N � v0 (50)

The error dynamics can then be shown to take the
following form

_S ¼ kx
kv

ððLu þ BÞ � I3ÞX (51)

_X ¼ V (52)

_V ¼ �kxððLu þ BÞ � I3ÞX � kvV � kvS (53)

Proposition 4. Consider the error dynamics given in
equations (51) to (53). Then, the origin is uniformly
globally exponentially stable for kx; kv > 0.

Proof. In order to establish the convergence properties
we consider the following Lyapunov function, that is
composed of four parts

V1 :¼ 1

2
ðSTP1S þ XTP2X þ VTP3VÞ (54)

V2 :¼ �2XTV (55)

V3 :¼ �3STV (56)

V4 :¼ �4XTS (57)

V :¼ V1 þ V2 þ V3 þ V4 (58)

Its time derivative along trajectories of the error
dynamics gives

_V:¼� kv�3jSj2 � kx
kv

ð�2kv � �4ÞXTððLu þ BÞ � I3ÞX

� VTðP3 � �2IÞV

þ ST kx
1

kv
P1 � �3I

� �
ððLu þ BÞ � I3Þ � �2kvI

� �
X

� VTðP3 þ �3kvI� �4IÞS

þ VTðP2 � �2kvI� kx P3 � �3
kv

I

� �
ððLu þ BÞ � I3ÞÞX

Then with the selection

P1 :¼ kv�3Iþ kv�2
kx

ððLu þ BÞ�1 � I3Þ (59)

P2 :¼ kv�2Iþ kx �1 � �3
kv

� �
ð�0 � I3Þ (60)

P3 :¼ �1I (61)

�0 :¼ �ðLu þ BÞ � I3 (62)

all cross-terms disappear apart from the one in S; V.
In order to establish our claim we need to ensure

that the Lyapunov function V in equation (58) is

positive definite with respect to the state (S;X ;V)
and that the negative terms in _V dominate the

remaining cross-term. The former is ensured if the

matrix

P1 �4I �3I

�4I P2 �2I

�3I �2I P3

2664
3775 � 0 (63)

while the latter if the matrix

�1 � �2
1

2
ðkvð�1 þ �3Þ � �4Þ

1

2
ðkvð�1 þ �3Þ � �4Þ �3kv

2664
3775��5I

(64)

for some (gain adjustable) �5 > 0. By applying Schur’s

complement to the above matrices we obtain the suffi-

cient conditions

�1 > �2 (65)

�2 � 1; �3 � 1 �4 � 1 (66)

kv >
minð�3; �4Þ

�1
(67)
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We finally obtain

_V 
 ��5ðjSj2j þ Vj2Þ � kx
kv

ð�2kv � �4Þ

� kmðLu þ BÞjXj2 < 0; 8ðS;X ;VÞ 6¼ ð0; 0; 0Þ

which concludes the proof of global exponential stabil-

ity of the origin. h

Remark 7. Let us stress the fact that the proposed strict

Lyapunov function is derived with gain conditions inde-

pendent of the network topology characteristics, apart of

course from the fact that the multiagent system is con-

nected. Notice instead that in Chai et al.6 a strict

Lyapunov was obtained under conditions on the gains

kx, kv (denoted k, l in that reference) that depend on

the minimum and maximum eigenvalues of the matrix

Lu þ B, which signifies that knowledge of the entire net-

work topology is a priori required.

Case: Estimated relative positions

We now couple the proposed control law with the

observer for relative positions. The control law (46)

and the target velocity estimator become

ui ¼ u0 � kvðvi � bvi0Þ � kx
X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A
(68)

_bvi0 :¼ u0 � kv
kx

X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A (69)

To this end, and in order to simplify notation, we

define the column stack of the relative position esti-

mates as

Z :¼ col½zij� (70)

Then, we can write compactly the complete closed-

loop system as

_r :¼ �k0ðL � I3Þrþ k0sþ S
_S ¼ kx

kv
ððLu þ BÞ � I3ÞX þ kx

kv
Brþ kx

kv
AZ

_X ¼ V
_V ¼ �kxððLu þ BÞ � I3ÞX � kvV � kvS � kxBr

� kxAZ
with A, B constant matrices of appropriate dimensions

while the Z terms are seen as exponentially decaying

perturbations. The global exponential stability of the

composite system is concluded either by a spectral anal-

ysis or by a straightforward direct Lyapunov analysis

based on the sum of the Lyapunov functions for each

subsystem (local estimator for bxij, fusion for bxi0, target

velocity v0 estimator and controlled system).

Imposing the PE condition through the control

Now we consider an additive term to our control law

that should be defined in a way to enforce the PE con-

dition, i.e. produce a sufficiently rich motion for every

pair of neighboring agents, but conserve the network’s

stability properties.
The modified control law for each agent now takes

the form

ui ¼ uiPE þ u0 � kvðvi � bvi0Þ
� kx

X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A (71)

_bvi0 :¼ u0 � kv
kx

X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A (72)

For the stability analysis we define the stack of all

uPE :¼ colð½uijPE�Þ :¼ colð½uiPE � ujPE�Þ; 8j 2 N i

Then we write the complete closed-loop system as

_r :¼ �k0ðL � I3Þrþ k0sþ S
_S ¼ kx

kv
ððLu þ BÞ � I3ÞX þ kx

kv
Brþ kx

kv
AZ

_X ¼ V
_V ¼ �kxððLu þ BÞ � I3ÞX � kvV � kvS � kxBr

� kxAZ þ uPE

Based on the analysis of the previous subsection and

by treating the input uPE as a disturbance, we can show

that our closed-loop system is ISS with respect to uPE
from which we can conclude practically global expo-

nential stability since convergence is ensured to a neigh-

borhood of the desired equilibrium trajectory that can

be made (by assignment of the free function uPE) very

small but not identically zero.

Remark 8.We remind that the main results in Chai et al.6

and Hong et al.21 on which we are based hold also for

switched graphs, under of course a condition of uniform

connectivity, and as such our algorithm is also applicable

to the case of switching communication graphs.
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Simulation results

In this section we study the efficiency of the obtained
algorithms by means of numerical simulations that
serve as proof of concept. We will consider a two-
dimensional scenario with three agents pursuing a
target with constant linear motion. This motion is
selected so that the target does not contribute to the
satisfaction of the PE condition but rather is a task to
be ensured by the agents. Additionally, we consider that
the target is (and stays) in the field of view of only the
first agent which is thus the only agent having available
information about the target. We consider that all (rel-
ative, absolute) velocity measurements and accelera-
tions are corrupted by Gaussian white noise.

The initial positions (in m) and velocities (in m/s) of
the agents are, respectively, given as x0ð0Þ ¼ ½20; 0�T;
x1ð0Þ ¼ ½2; 0�T; x2ð0Þ ¼ ½10;�5�T; x3ð0Þ ¼ ½3sinðp=8Þ; 5
cosðp=8Þ�T; v0ð0Þ ¼ ½3�T; v1ð0Þ ¼ ½0; 2�T; v2ð0Þ ¼ ½1; 1�T;
v3ð0Þ ¼ ½2cosðp=8Þ;�2sinðp=8Þ�T. The parameters
related to the observer are chosen as c1 ¼ c3 ¼ 0:9; c2
¼ c4 ¼ c9 ¼ 1; c5 ¼ c6 ¼ c8 ¼ 0:01; c7 ¼ 0:005 and the
observer gains as K10 ¼ c8 þ ðc5 þ c6 þ c7c2Þ=c3;
K12 ¼ K13 ¼ K21 ¼ K23 ¼ K31 ¼ K32 ¼ 0:03. The gains
were given small values to reduce the effect of noise and
avoid unwanted phenomena such as overshooting but
high enough to ensure an acceptably fast convergence.
This was ensured by properly selecting the eigenvalues
of the linearized error system to have negative real part.

We assume that we do not have any prior knowledge
on the relative positions and thus, choose the estimates
as bxijð0Þ ¼ 0 which translates to initial observer states

given by nið0Þ ¼ � d2ijð0Þ
2 Kijvijð0Þ. In addition, the initial

conditions for the fused estimates are again taken as q1
ð0Þ ¼ ½0; 0�T; q2ð0Þ ¼ ½0; 0�T while the initial condition
for the dynamic scaling r(t) is selected as rð0Þ ¼ 1. We
also select the fusion gain k0 ¼ 2 and the initial estima-
tions of the target’s velocity as bvi0ð0Þ ¼ 0.

Furthermore, we consider the standard scenario
where velocity measurements are corrupted by band-
limited Gaussian white noise nij (although any type of
noise can be considered) with noise power intensity
rm ¼ 10�4=5 ðm=sÞ2=Hz and a sampling period of
Ts ¼ 10�3 ðsÞ.

On the other hand, the control gains for the distrib-
uted law are chosen, respectively, as kx¼ 1 and kv ¼ 0:5.
Finally, the persistent terms in the controllers are
chosen as u1PE ¼ ½�2cosðtÞ;�2sinðtÞ�T; u2PE ¼
� 1

5 sin
t
5

� �þ sinðtÞsin	
t
5

� �� 1
5 cosðtÞcos t

5

� �
; 15 cos

t
5

� �� sin
ðtÞcos t

5

� �� 1
5
cosðtÞsin t

5

� ��T, u3PE ¼ 4sin tþ p
2

� �
;

	
�4sinð2tÞ�T. These were selected with different frequen-
cies and amplitudes in order to illustrate the effect in
both estimation and tracking as will be shown in the
figures below. Of course the richer (larger, faster) the
motion of each agent the faster the convergence of

the local estimates and consequently, of the localization
error and the tracking error.

The resulting positions of the target and the agents
are depicted in Figure 1. In the ideal scenario where the
relative positions would be available, and hence not
requiring a persistent motion of the agents, and with
no measurement noise, the positions of all agents
would exactly converge to the target’s position.
However, since a persisting motion is required to suc-
cessfully estimate the relative positions, the positions of
all agents converge in neighborhoods around the tar-
get’s position with their size depending on the ampli-
tude of the corresponding persistent input. Of course,
the smaller the amplitude of the persistent input the
slower the convergence of the estimated relative
positions.

From Figure 2 we see that the velocities are PE (and
linearly independent) and thus, we can obtain converg-
ing local estimates of the relative positions (see Figures
3 to 5). Figure 6 depicts the noisy, estimated and true
values of the relative velocity v10 in order to illustrate

Figure 1. Positions of the target and the agents.

Figure 2. Agents’ true velocities.
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the persistent excitation and the effect of the applied

filtering. In particular, by zooming on a specific time

interval we observe the effect of the noise as well as the

result of the filtering. Of course, the former can be

further adjusted by proper selection of the filter gains.
Similar effects are observed for the other relative and
absolute velocities. In addition, notice in both compo-
nents the effect of the persistent motion required in
order to be able to estimate the relative position. As
such, this persistent motion (and its magnitude) is
imposed by the persistent part of the ith agent’s
(agent 1 for this figure) control law (u1PE) that leads
to the persistent relative velocity of the figure.
Finally, we can visualize the fused estimates for the
three agents in Figure 7. We observe that all agents
are successfully localized with respect to the target
and furthermore, that the effect of the noisy measure-
ments has been significantly removed (although some
slight oscillations do appear). Hence, the transient
behavior is quite smooth and the convergence is expo-
nential as was proposed by the theoretical analysis.

Figure 3. Estimation error for x10.

Figure 4. Estimation error for x23.

Figure 5. Estimation error for x13.

Figure 6. Relative (noisy, estimated, true) velocity v10 (upper:
first component, lower: second component).

Figure 7. Error between fused estimates qi and true relative
positions xi0 (left column: first component, right column: second
component).
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Now, in order to show the robustness of the pro-
posed approach and how it can be adapted to other
scenarios of interest, we consider the same scenario,
with same initial conditions, noises, and gains, but
now taking into account a desired formation geometry
and the interagent collision avoidance. For the former
requirement we need only to modify the control law
and the target velocity estimator in order to include
the desired distances (relative positions), which we
simply select as xd ¼ ½3; 4�T; xd12 ¼ xd; xd21 ¼
�xd12; x

d
13 ¼ xd; xd31 ¼ �xd13; x

d
23 ¼ xd; xd32 ¼ �xd23. For

the latter requirement to be satisfied, we add in the
control law an additional term inspired by the avoid-
ance strategy in Kahn et al.,33 call it uic for the ith agent,
which for our scenario gives

u1c ¼
kc
q
ðexpð�bxT

10bx10=qÞbx10

þ expð�bxT
12bx12=qÞbx12 þ expð�bxT

13bx13=qÞbx13Þ

u2c ¼
kc
q
ðexpð�bxT

21bx21=qÞbx21

þ expð�bxT
23bx23=qÞbx23Þ

u3c ¼
kc
q
ðexpð�bxT

31bx31=qÞbx31

þ expð�bxT
32bx32=qÞbx32Þ

with gain kc¼ 10 and the parameter q¼ 5 that defines
the repulsion distance. Finally we slightly decrease the
amplitude of the persistent terms uPE as, u1PE ¼
½�cosðtÞ;�sinðtÞ�T, u2PE ¼ ½� 1

5 sinðt5Þ þ sinðtÞsinðt5Þ�
1
5
cosðtÞcosðt

5
Þ; 1

5
cosðt

5
Þ � sinðtÞcosðt

5
Þ � 1

5
cosðtÞsinðt

5
Þ�T,

u3PE ¼ ½23 sinð2tþ p
2Þ; � 2

3 sinð2tÞ�T, to show its impact on
the convergence of the estimated relative positions, that
will be larger.

The evolution of the agents’ positions, the geometric
formation of the followers in different time instances,
and the relative distances are depicted in Figures 8 to
10, respectively. We observe that the additional
requirements (formation and interagent collision
avoidance) are readily satisfied and that the relative
distances among followers converge around the desired
nominal value. The discrepancies observed are due to
the contribution of the persistent terms, that are
required to ensure the observability, and the desired
formation geometry.

For completeness, we illustrate also the time evolu-
tion of the true velocities of all agents in Figure 11 as
well as the fused estimates for the relative positions in
Figure 12. As expected, the estimates have a slower
convergence with respect to the previous scenario and
present some slight oscillations due to noise around the
true values.

Figure 8. Formation scenario: positions of the target and the
agents.

Figure 9. Formation scenario: evolution of the formation of
follower agents ((x�y) in (m)).

Figure 10. Formation scenario: relative distances.
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Conclusions

We have proposed a robust algorithm for simultaneous
collaborative localization and target tracking problem.
The localization mechanism exploits (local) relative dis-
tances and noisy velocity measurements so that each
agent first obtains an estimation of the relative posi-
tions with respect to its neighbors and then fuses this
estimate with the ones communicated by the neighbors.
These estimates are then fed to a consensus-type dis-
tributed control law that includes an estimation of the
target’s velocity, to achieve exact target tracking. Our
algorithm is designed to ensure the observability of the
system, represented by a persistence-of-excitation con-
dition on the relative motion of the agents, and the
attenuation of noise. The stability properties induced
by our algorithm are established through a thorough
Lyapunov analysis. Finally, the performance of our
scheme is analyzed by means of two simulation scenar-
ios that show among others the robustness to

unaccounted acceleration measurement noise and the

possibility to consider a formation geometry and inter-

agent collision avoidance.
In the near future, these theoretical results are

expected to be tested experimentally on our fleet of

quadrotors and under realistic environmental and com-

munication scenarios.
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Notes

a. With some slight abuse of notation we denote the relative

measurements for each agent as yi instead of the more

correct yij. Similarly, in what follows we define the state

of the observer as ni instead of the more appropriate nij
that would be coherent also with the notation of the cor-

responding vector xij. The same notation will be adopted

for the mapping bi.
b. Observe that compared to Hong et al.21 we define slightly

differently the error variable S.
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