

Delft University of Technology

SiloFuse
Cross-silo Synthetic Data Generation with Latent Tabular Diffusion Models
Shankar, Aditya; Brouwer, Hans; Hai, Rihan; Chen, Lydia

DOI
10.1109/ICDE60146.2024.00016
Publication date
2024
Document Version
Final published version
Published in
Proceedings - 2024 IEEE 40th International Conference on Data Engineering, ICDE 2024

Citation (APA)
Shankar, A., Brouwer, H., Hai, R., & Chen, L. (2024). SiloFuse: Cross-silo Synthetic Data Generation with
Latent Tabular Diffusion Models. In Proceedings - 2024 IEEE 40th International Conference on Data
Engineering, ICDE 2024 (pp. 110-123). (Proceedings - International Conference on Data Engineering).
IEEE. https://doi.org/10.1109/ICDE60146.2024.00016
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICDE60146.2024.00016
https://doi.org/10.1109/ICDE60146.2024.00016

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

SiloFuse: Cross-silo Synthetic Data Generation
with Latent Tabular Diffusion Models

Aditya Shankar
Distributed Systems

TU Delft
Delft, The Netherlands

a.shankar@tudelft.nl

Hans Brouwer
BlueGen.ai

The Hague, The Netherlands

hans@bluegen.ai

Rihan Hai
Web Information Systems

TU Delft
Delft, The Netherlands

r.hai@tudelft.nl

Lydia Chen
Dept. of Computer Science

University of Neuchatel/ TU Delft
Neuchatel, Switzerland

lydiachen@ieee.org

Abstract—Synthetic tabular data is crucial for sharing and
augmenting data across silos, especially for enterprises with
proprietary data. However, existing synthesizers are designed
for centrally stored data. Hence, they struggle with real-world
scenarios where features are distributed across multiple silos,
necessitating on-premise data storage. We introduce SiloFuse,
a novel generative framework for high-quality synthesis from
cross-silo tabular data. To ensure privacy, SiloFuse utilizes
a distributed latent tabular diffusion architecture. Through
autoencoders, latent representations are learned for each client’s
features, masking their actual values. We employ stacked dis-
tributed training to improve communication efficiency, reducing
the number of rounds to a single step. Under SiloFuse, we
prove the impossibility of data reconstruction for vertically parti-
tioned synthesis and quantify privacy risks through three attacks
using our benchmark framework. Experimental results on nine
datasets showcase SiloFuse’s competence against centralized
diffusion-based synthesizers. Notably, SiloFuse achieves 43.8
and 29.8 higher percentage points over GANs in resemblance and
utility. Experiments on communication show stacked training’s
fixed cost compared to the growing costs of end-to-end training
as the number of training iterations increases. Additionally,
SiloFuse proves robust to feature permutations and varying
numbers of clients.

Index Terms—Distributed databases, Synthetic data, Data
privacy, Distributed training

I. INTRODUCTION

Today’s enterprises hold proprietary business-sensitive data

and seek collaborative solutions for knowledge discovery

while safeguarding privacy. For example, cardiologists and

psychiatrists gather patients’ heart rates and mental stress

levels, respectively, for potential joint treatments [1]. However,

privacy regulations like GDPR [2] restrict sharing such cross-
silo datasets, i.e., feature-partitioned or vertically-partitioned

datasets, across enterprises. Yet, their importance in data

management beckons novel solutions to learn over vertically-

partitioned data silos [3]–[5].

In this regard, the database community is looking towards

using synthetic data as an alternative to real data for pro-

tecting privacy [6]–[9]. The current tabular generative models

encompass technologies ranging from autoencoders [10], [11],

flow-based models [12], autoregressive (AR) models [13],

score-based models [14], Generative Adversarial Networks

(GANs) [9], [15]–[18], and the state-of-the-art diffusion mod-

els [19]–[21]. Recent findings show that diffusion models excel

Cardiac center

ID Gender
(G)

Heart
Rate (R)

1
3
7
8

al
ig

ne
d

sa
m

pl
es

Psychiatric center

ID Stress level
(S)

2 ..
3 ..
5 ..
7 ..

Centralized data
ID G R S

3
7

Generative
Model

Client 1

Client 2

Trusted Party/
Coordinator

Synthetic data
ID G R S
9

13

sharing

sharing

Fig. 1: Synthetic data for data sharing and augmentation. Fea-

tures from a cardiac center (client 1) and a psychiatric center

(client 2) are centralized from the common patient IDs and a

generative model synthesizes new samples to share with the

clients, augmenting their datasets and enabling collaboration

without sharing real data.

over previous technologies, including the dominant GAN-

based approaches [19], [22]. This may stem from GANs’

training instability, resulting in mode-collapse and lower sam-

ple diversity compared to diffusion models [23]. Despite their

promise, extending diffusion models to cross-silo data requires

centralizing data at a trusted party before synthesis, as shown

in Fig. 1. This violates the constraint of having data on-

premise, defeating the purpose of privacy preservation.

Cross-silo methods using federated learning [24], [25] al-

ready exist for GANs [16], [17]. These are based on cen-

tralized models, such as Table-GAN [9], CTGAN [15], and

CTAB-GAN [18]. However, diffusion-based cross-silo solu-

tions do not exist despite their promising results over GANs.

Therefore, we tackle the research problem of designing and

training high-quality tabular diffusion synthesizers for cross-

silo data.

Developing a cross-silo tabular synthesizer poses several

challenges. First, tabular data has a mix of categorical and

continuous features that require encoding for training. The

mainstream one-hot encoding [19], [21] for categorical vari-

ables increases the difficulty in modeling distributions due

110

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00016

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
00

16

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

to expanded feature sizes and data sparsity, and provides

poor obfuscation to sensitive features. Second, for synthetic

data to resemble the original distributions, capturing cross-silo

feature correlations is needed. However, learning the global

feature correlation is challenging without having access to a

centralized dataset. Third, training on data spread across silos

is expensive due to the high communication costs of distributed

training. Traditional methods, such as model parallelism [26],

[27], split the model across multiple clients/machines, in-

curring high communication overhead due to the repeated

exchange of forward activations and gradients between clients.

Given these challenges, we design, SiloFuse, a novel

framework with a tabular synthesizer architecture and an

efficient distributed training algorithm for feature-partitioned

data. Motivated by the recent breakthrough of diffusion models

in generating high-quality synthetic data using latent en-

codings [28], the core of SiloFuse is a latent tabular
synthesizer. First, autoencoders encode sensitive features into

continuous latent features. A generative Gaussian diffusion

model [20] then learns to create new synthetic latents based on

the latent embeddings of the original inputs. By merging latent

embeddings during training, the generative model learns global

feature correlations in the latent space. These correlations are

maintained when decoding latents back into the real space. As

a result, SiloFuse generates new synthetic features while

keeping the original data on-premise.

SiloFuse incorporates multiple novelties. First is the

architecture and training paradigm for the tabular synthesizer.

Autoencoders and the diffusion model are trained separately

in a stacked fashion, with the latent embeddings being com-

municated to the diffusion backbone only once. This keeps

communication rounds at a constant regardless of the number

of training iterations for the generator and the autoencoders.

Second, our design allows the synthetic data to be generated

while retaining the vertical partitioning. This has stronger

privacy guarantees compared to existing cross-silo generative

schemes that centralize synthetic data [16], [17]. Third, we fur-

ther develop a benchmark framework to evaluate SiloFuse
and other baselines regarding the synthetic data quality and its

utility on downstream tasks. Theoretical guarantees show the

impossibility of data reconstruction under vertically partitioned

synthesis, and risks are quantified when synthetic data is

shared. Extensive evaluation on nine data sets shows that

SiloFuse is competitive against centralized methods while

efficiently scaling with the number of training iterations.

Contributions. SiloFuse is a novel distributed framework

for training latent tabular diffusion models on cross-silo data.

It’s novel features make the following contributions.

• A latent tabular diffusion model that combines au-

toencoders and latent diffusion models. We unify the

discrete and continuous tabular features into a shared

continuous latent space. The backbone latent diffusion

model captures the feature correlations across silos by

centralizing the latents.

• A stacked training paradigm that trains local autoen-

Ta
bu

la
r

in
pu

t

no
is

e

Backward denoising process:

Forward noising process :

...

Fig. 2: Forward and backward diffusion process. X0 is an

input dataset of samples and XT is the fully-noised dataset

after T timesteps.

coders at the clients in parallel, followed by latent diffu-

sion model training at the coordinator/server. Decoupling

the training of the two components lowers communication

to a single round, overcoming the high costs of end-to-

end training.

• A benchmarking framework that computes a resem-

blance score by combining five statistical measures and

a utility score by comparing the downstream task per-

formance. We also prove the impossibility of data re-

construction when the synthetic data is kept vertically

partitioned and quantify the privacy risks of centralizing

synthetic data using three attacks.

II. BACKGROUND AND PROBLEM DEFINITION

In this section, we commence with the background on

tabular diffusion models, focussing on the current state-of-the-

art centralized synthesizer, TabDDPM [19]. We then formally

define the problem setting for cross-silo tabular synthesis,

identify existing research gaps, and elucidate the limitations

of current centralized methods in addressing this challenge.

A. Background: Diffusion models for tabular data synthesis

Denoising diffusion probabilistic models (DDPMs) generate

data by modeling a series of forward (noising) and backward

(denoising) steps, as a Markov process [20]. Fig. 2 depicts

tabular synthesis with this scheme. A dataset X0 ∈ R
n×d,

has n samples {x0
1, x

0
2, .., x

0
n} and d features. It produces a

noisy dataset XT over T noising steps. The reverse process

iteratively denoises XT to obtain a clean dataset X0.

As tabular data contains both continuous and categorical
features, it requires different encoding and noising/denoising

methods, which we describe below. Table I summarises the

mathematical notations used.

Continuous features. The forward noising transitions,

q(Xt|Xt−1), as shown in Fig. 2, gradually noise the dataset

over several steps. Each transition is modeled as a normal

distribution, using a variance schedule with fixed constants

βt ∀t ∈ [1 : T] [20]. Through a reparameterization trick

mentioned in Ho et al. [20], the forward transition q(Xt|X0)
for a sequence of t steps can be done in a single step:

F (X0, t, ε) = q(Xt|X0) =
√
ᾱtX0 +

√
1− ᾱtε (1)

111

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

[1, 0]

[0, 1, 0]

-0.91

-0.03

0.23

ca
te

go
ric

al
fe

at
ur

es
co

nt
in

uo
us

fe
at

ur
es

[0.8, 0.2]

[0, 0.9, 0.1]

-0.87

-0.05

0.21

minimize difference

de
no

is
ed

ou
tp

ut

[0, 1]

[1, 0, 0]

3.42

-1.21

0.53

backward
process

Multinomial + Gaussian diffusion model

Fig. 3: Design of TabDDPM. Internally, the model predicts the

noise added to xt
i to minimize the difference with the original

inputs after denoising.

Here, the function F obtains the noisy samples Xt after t
forward steps, ᾱt =

∏t
j=1(1−βj), and ε ∼ N (0, I) is a base

noise level.

The reverse transitions pθ(X
t−1|Xt), are modelled using a

neural network with parameters θ. It learns these denoising

transitions by estimating the noise added, quantified using the

mean-squared-error (MSE) loss [20]:

Lt = EX0,ε,t

∥∥ε− εθ(X
t, t)

∥∥2
2

(2)

Here, εθ(X
t, t) predicts the base noise from the noised features

at step t. By minimizing this loss, the neural network reduces

the difference between the original inputs and the denoised

outputs. Predicting the added noise brings the denoised outputs

closer to the actual inputs. Hence, (2) can be viewed as

minimizing the mean-squared-error (MSE) loss between the

inputs and denoised outputs.

Discrete features. Working with categorical and discrete fea-

tures requires Multinomial DDPMs [21]. Suppose the dataset’s

v-th feature, i.e., Xt[v] ∈ {0, 1}n×k, is a categorical feature

with a one-hot embedding over k choices. Adding noise over

its available categories changes this feature during the forward

process. At each step, the model either picks the previous

choice Xt−1[v] or randomly among the available categories,

based on the constants βt [21]. This way, it gradually evolves

while considering its history. The multinomial loss, denoted as

Mt[v], measures the difference between (Xt[v]) and Xt−1[v],
in terms of the Kullback-Leibler divergence. Averaging the

losses over all categorical features produces the final loss.

The combined loss of TabDDPM from the continuous and

categorical losses is as follows:

Lt
TabDDPM = Lt +

∑

v∈V

Mt[v]/|V | (3)

Here, V denotes the index set of the categorical features.

Example 2.1: Consider Fig. 3, where discrete features for

a sample x0
i such as gender (M/F) and marital status (single,

divorced, married) are one-hot encoded as [1, 0] and [0, 1, 0]
respectively. This encoding expands the feature size of a

single discrete column to 2 and 3 columns, respectively. Other

continuous features with values 0.23, -0.03, and -0.91 may

also be present. Using a combination of multinomial and

continuous (Gaussian) DDPMs, the model noises the inputs

using forward process F and then denoises (using backbone

G) over multiple timesteps t, giving outputs x̃0
i . Intuitively,

the model minimizes the difference between the reconstructed

output x̃0
i and the original inputs x0

i by predicting the added

noise. Mathematically, this combines the multinomial and

diffusion losses using (3).

B. Problem Definition: Cross-silo tabular synthesis

Input. In the considered scenario, there exist M distinct parties

or clients {C1, ..., CM}. Each party Ci possesses a subset of

features Xi ∈ R
n×di , where n is the total number of samples

and di is the number of features owned by client Ci. These

originate from a feature-partitioned dataset X ∈ R
n×d, with n

samples and d =
∑M

i=1 di features that is spread across multi-

ple silos: X = X1||X2||...||XM , where || represents column-

wise concatenation. All the features Xi∈1:M are assumed to

have aligned samples (rows) with other clients. This means

only the rows corresponding to the common samples are

selected, as shown in Fig. 1. Private-set intersection schemes

achieve this through a common feature such as a sample

ID [29], [30]. Without loss of generality, we assume party C1

is the coordinator and holds the generative diffusion model G.

Objective. The primary objective is to generate a synthetic

dataset X̃ ∈ R
n×d = X̃1||X̃2||...||X̃M whose distribution is

close to that of the original features while maintaining the

privacy of their actual values. Each client C1≤i≤M , possesses

the partition X̃i ∈ R
n×di with synthetic features correspond-

ing to their respective features while maintaining the sample

alignment across clients. After generation, the feature sets

X̃i∈1:M can be kept vertically partitioned or shared with other

clients for downstream tasks.

Constraints and Assumptions. Due to the sensitive nature of

each client’s original features, they are considered confidential

and, therefore, cannot be directly shared with other participants

in plaintext. In other words, the original feature data that is ver-

tically partitioned stays on the client’s premise. Moreover, we

assume all parties are honest-but-curious or semi-honest [29].

This implies that all participants (including the server) follow

the training and synthesizing protocols, but can attempt to infer

others’ private features solely using their own data and any

information communicated to them. Also, malicious behavior,

like violating the protocols or feeding false data, is prohibited.

C. Research gaps

Several reasons make the cross-silo scenario challenging to

centralized tabular DDPM methods.

First, methods such as TabDDPM [19] and multinomial

diffusions [21] require categorical features to be one-hot
encoded. This induces sparsity and increases feature sizes,

as explained in Example 2.1 and Fig. 3. This can lead to

complications, as the increased feature complexity increases

the chances of overfitting.

Second, naively extending such methods using model-

parallism [26] incurs high communication costs. For methods

112

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

Ta
bu

la
r

in
pu

t

Decode

Encode
Forward noising process

Backward denoising process

...

Fig. 4: Centralized latent tabular DDPM. Z denotes the latent

space.

such as TabDDPM to be amenable to cross-silo dataset sce-

narios, clients must encode their local features into latents,

which are then sent to the coordinator holding the generative

backbone G. As seen in Fig. 3, this would involve sending

one-hot encodings to the backbone model held by the coordi-

nator, which becomes more expensive due to the feature size

expansion. We later show the increase in feature sizes due

to one hot encoding in Table II, under Section V. Moreover,

training requires end-to-end backpropagation with multiple

communication round-trips between the coordinator and the

clients. This scales poorly with increasing training iterations

as the clients and the coordinator must exchange gradients and

forward activations for every iteration.

Third, from the privacy front, centralized tabular synthesiz-

ers do not consider the risks associated with sharing synthetic

features with other parties in cross-silo scenarios. As we

explain in Example 2.2, links between synthetic features

could allow parties to model the dependencies and recon-

struct private features of the other parties, posing a risk.

Additionally, implementing end-to-end training in a distributed

setting requires communicating gradients across parties. This

increases susceptibility to attacks that exploit gradient-leakage

for inferring private data [31]–[33].

Example 2.2: Consider a scenario where Company A pos-

sesses personal information about individuals, such as names

and addresses. At the same time, Company B has individuals’

financial data, such as income and spending habits. By sharing

synthetic features, an adversary might detect links between

certain financial behaviors and specific names or addresses.

The attacker could infer or deduce patterns linking financial

behaviors to specific individuals or households as synthetic

features could unintentionally mirror the actual data.

III. SILOFUSE

This section presents our framework SiloFuse, with a

distributed architecture for latent tabular DDPMs. We first

explain the intuition and novelty of our framework, followed

by an overview of the architecture, training, synthesis, and

privacy analysis.

SiloFuse trains latent DDPMs [28], using autoencoders

to encode real features into latent embeddings. The coordinator

concatenates these to generate synthetic latents using the

DDPM backbone (illustrated in Fig. 4). Local decoders at the

clients then transform the outputs to the real space without the

coordinator accessing the real features.

This allows for the novelty of decoupling the training

of autoencoders and the DDPM, capturing cross-silo feature

TABLE I: Summary of key mathematical notations

Variable Description
q Forward noising process

X,Z Original dataset, latent dataset at step 0
Xt, Zt Dataset, latent dataset at t-th noising step
Xt[v] v-th feature of dataset
xt
i , x̃t

i Original and denoised i-th sample at timestep t
zti , z̃ti Input and denoised i-th latent sample at timestep t
t, T Timestep, Max number of timesteps

n, d, s Number of samples, real feature size, latent feature size

βt, ᾱt Variance schedule at timestep t, and
∏t

j=1(1− βt)
θ, pθ, εθ Neural network parameters, reverse process, estimated noise
Lt,Mt Continuous loss, multinomial loss at timestep t

ε Base noise level
Ci i-th client

F (, t, ε) Forward process output after t timesteps
Xi, Zi Original features, latent features of i-th client

X̃i Denoised original features of i-th client
G, Ei,Di Denoising backbone, encoder, and decoder at i-th client

Z̃, Z̃i Centralized denoised latents, Denoised latents for Ci

[1, 0]
[0, 1, 0]

-0.91
-0.03 -0.17

ca
te

go
ric

al
fe

at
ur

es
co

nt
in

uo
us

fe
at

ur
es

-6.93
-1.29

0.23

original
space

Latent space

Minimize difference

Encoder

-0.15

-6.84
-1.26

denoised
latents

backward
process

Gaussian diffusion model

Fig. 5: Centralized latent DDPM. While E is the encoder, there

is also a decoder D (not shown) for translating latents back

to the original space. Internally, the DDPM predicts the noise

added during the forward process, which minimizes the gap

between z0i and z̃0i

correlations within the latent space without real data leaving

the silos.

A. Why the shift to latent space?

Latent DDPMs have several advantages over operating on

the real space directly. Firstly, they use encoders to convert

both categorical and continuous features into continuous la-

tents, reducing sparsity and size compared to one-hot encod-

ings (Fig. 5). This is quantitatively shown later in Table II, with

one-hot encoding increasing feature sizes by nearly 10 to 200

times on some datasets. Secondly, the training phases of the

autoencoder(s) and the diffusion model are decoupled/stacked,

thus reducing communication costs to just one round. In

contrast, the end-to-end distributed scheme jointly trains both

components, increasing the cost with the number of iterations.

SiloFuse has a two-step training process. For a cen-

tralized dataset X , an encoder E transforms X into a latent

representation Z = E(X), where Z ∈ R
n×s (s represents

the latent space’s feature size). Subsequently, a decoder D
minimizes the reconstruction loss to find optimal parameters

(E∗,D∗) for the autoencoder.

(E∗,D∗) = arg min
(E,D)

LAE(X,D(E(X))) (4)

113

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

Multinomial
distribution

heads

Normal
distribution

heads

Client M

minimize difference

Multinomial
distribution

heads

Normal
distribution

heads

Client 2

minimize difference

Multinomial
distribution

heads

Normal
distribution

heads

Client 1

minimize difference

Encoder

Latent

Decoder

(a) Step 1: Local autoencoder training

Client MClient 2Client 1

Encoders from
step 1

Backward process

...

...

...

M
in

im
iz

e
di

ffe
re

nc
e

Coordinator

G
au

ss
ia

n
la

te
nt

 D
D

PM

(b) Step 2: Coordinator trains latent DDPM

Fig. 6: Two step training in SiloFuse. Xcont
i and Xcat

i correspond to the continuous and categorical features.

Here, the loss function LAE is chosen as negative log-

likelihood or KL divergence. The coordinator then trains the

diffusion model G on the latents. The objective function is

similar to (2) to minimize the gap between the denoised

outputs and the original inputs. Hence, the function simplifies

to the MSE loss between the input latents Z = Z0 and the

noisy latents Zt:

Lt
G = EZ=E(X),t

∥∥Z − G(Zt, t)
∥∥2
2

(5)

Here, G(Zt, t) returns the denoised version of the samples

using the backward process. The noisy latents Zt, are com-

puted using the forward process F (Z0, t, ε), as described in

Section II-A.

B. SiloFuse overview: Distributed latent diffusion

Architecture and functionalities. The model architecture

of SiloFuse is depicted in Fig. 6. Each client Ci∈{1:M},

trains a local autoencoder, i.e., encoder-decoder pair (Ei,Di),

which are privately held. The coordinator holds the generative

diffusion model G. Without loss of generality, we assign this

role to C1.

The true features, Xi, consist of categorical features Xcat
i

and continuous features Xcont
i , as shown in Fig. 6a. The

encoders convert these features to continuous latents: Zi ∈
R

n×si = Ei(Xi) ∀i ∈ {1 : M}. Like the original space,

the latent dimensions, si, sum up to give the total latent

dimension, i.e., s =
∑M

i=1 si. The decoders then convert these

latents features back into the original space, i.e., X̃i = D(Zi)
∀i ∈ {1 : M}. Similar to tabular variational autoencoders
(VAEs) [11], [15], each decoder’s head outputs a probability

distribution for each feature. A typical choice for continuous

features, Xcont
i , is the Gaussian distribution where the head

outputs the mean and variance parameters to represent the

spread of feature values.

A multinomial distribution head is used for categorical or

discrete features, Xcat
i , giving probabilities for the different

categories or classes.

After training the autoencoders, the encoded latents (Z =
Z1||Z2||...||ZM) centralize at the coordinator (see Fig. 6b).

These undergo forward noising via function F , resulting in

Zt = F (Z0, t, ε). The backward denoising produces Z̃ =
Z̃0 = Z̃1||Z̃2||...||Z̃M . Training a standard Gaussian DDPM

on the continuous latents (Z) using MSE (5), eliminates the

need for a separate multinomial loss. Centralizing latents

instead of actual features enables the model to learn cross-

silo feature correlations within the latent space, which are

preserved in the original space upon decoding.

In synthesis, a client requests the coordinator to synthesize

new samples (refer to Fig. 7). The coordinator begins by

sampling random noise ZT . This is then denoised over several

timesteps T , producing Z̃ = Z̃1||Z̃2||...||Z̃M . Each client,

Ci, receives a part of the synthetic latents, i.e., Z̃i. Using

their private decoder Di, clients convert these into the original

space, i.e., X̃i = Di(Z̃i). This generates feature-partitioned

synthetic samples while preserving inter-feature associations.

IV. SILOFUSE : DISTRIBUTED TRAINING AND SYNTHESIS

In this section, we describe the algorithms for training and

synthesis and discuss the privacy implications in SiloFuse.

We provide theoretical arguments for privacy based on latent

irreversibility for vertically partitioned synthesis. We also

indicate the risks of sharing features post-generation.

A. Distributed Training

SiloFuse’s training process adopts a stacked two-step

approach, departing from standard end-to-end training. Fig. 6

illustrates the two-step procedure detailed in Algorithm 1.

Individual Autoencoder Training (lines [1-8] of Algo-

rithm 1): For input sample features Xi∈1:M , client Ci converts

114

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

Client MClient 2

Backward process

...

Client 1

Random
noise

Denoised
synthetic
latents

Request synthesis

Coordinator

D
D

PM

Fig. 7: Sample generation by stacking the DDPM and de-

coders. A requesting client, C2, triggers synthesis.

all Xi features into numerical embeddings, employing one-

hot encoding for categorical features. These continuous and

categorical embeddings pass through an MLP of an encoder

(Ei), producing continuous-valued latents Zi. A decoder pro-

cesses these latents, using output heads to map each feature

to a normal or categorical distribution akin to other tabular

VAEs [11], [15]. The loss function (4), measures the logarithm

of the probability density between the output distributions and

input features, for both categorical and discrete features.

Generative Diffusion Model Training: After training the

autoencoders, each client Ci∈{1:M} produces latent features of

the original training samples, i.e., Zi = E(Xi), and commu-

nicates these to the coordinator. The coordinator concatenates

these to obtain Z = Z1||...||ZM ((lines 10,12)).

The coordinator then trains locally for multiple epochs. It

samples random base noise level ε and timesteps t at each

epoch and performs the forward noising process F (Z0, t, ε).
It then internally predicts the noise level added during the

forward process to update the generator G for modeling the

backward process (lines 13-16).

B. Distributed Synthesis

The DDPM backbone G and local decoders at each client

are stacked for post-training synthesis, detailed in Algorithm 2.

Upon receiving a client’s request, the coordinator samples

Gaussian noise ZT (line 3). Over multiple iterations in G,

noise is removed, yielding Z̃ = G(ZT , T). Clients then use

their local decoder Di to translate their partition of the latent

samples Z̃i into real samples X̃i = Di(Z̃i). Links between Z̃i

are preserved in X̃i due to the centralization of latents during

training.

C. Privacy in training

The localized training of autoencoders and the diffusion

model ensures that sensitive information remains confined

within each client’s domain. Despite sharing latent embed-

dings with the coordinator, the absence of decoders at the

Algorithm 1: Two-step training with SiloFuse

Data: Local feature sets Xi on client Ci ∀k ∈ [1 : M]
Result: Trained autoencoders (Ei,Di), max training

timesteps T , and diffusion backbone G
/* Local autoencoder training */

1 for each client Ci in parallel do
2 for e1 epochs do
3 Zi ← Ei(Xi); /* encoded latents */
4 X̃i ← Di(Zi); /* Decoded latents */
5 Loss ← LAE(X̃i, Xi); /* (4) */
6 Update (Ei,Di);
7 end
8 end
9 for each client Ci in parallel do

10 Zi ← Ei(Xi) ; /* local latents */
11 end
12 Z = Z0 ← Z1||Z2||..||Zi ; /* coordinator */
13 for e2 epochs on coordinator do
14 t, ε ← Uniform({1, T}), N (0, 1)
15 Zt ← F (Z0, t, ε) ; /* forward process */
16 Z̃ ← G(Zt, t); /* Denoise */
17 Update G ; /* (5) */
18 end

Algorithm 2: Synthesis with SiloFuse

Data: Trained decoders Di on client Ci ∀i ∈ [1,M],
backbone G, requesting client Cj , and synthesis

timesteps T
Result: Synthetic feature set X̃i at Ci

1 Client Cj send request to coordinator

2 At Coordinator:
3 ZT ← N (0, I) ; /* Sample noise */

4 Z̃ = Z̃0 ← G(ZT , T) ; /* Denoise */
5 Partition: Z̃ = Z̃1||Z̃2||..||Z̃M

6 for all clients Ci in parallel do
7 X̃i ← Di(Z̃i) ; /* Decode locally */
8 end
9 return X̃i on client Ci

coordinator prevents data reconstruction from the latents. The

coordinator aggregates latents to capture cross-client feature

associations without observing the original features, thereby

preserving privacy.

Crucially, at no point during the training phase are raw,

identifiable features shared. Instead, the communication re-

volves around derived latent representations or aggregated

latent spaces, mitigating the risk of sensitive information

exposure. Access to the decoders is necessary to revert latents

to the real space. But as they are privately held, access is

restricted, preventing the reversion process.

115

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

D. Privacy in synthesizing

In our formulation, synthesis occurs in two scenarios. In the

first case, the synthesized data remains vertically partitioned,

with each client retaining only their respective features post-

generation. In the second case, parties may share their syn-

thetic features after generating them. While the latter allows

parties to model downstream tasks independently, it introduces

privacy risks due to links between features, as explained

in example 2.2. In contrast, the first case offers stronger

guarantees by restricting access to other parties’ features.

However, it requires collaborative methods like vertical feder-
ated learning [29], [34], [35] for modeling downstream tasks,

incurring a higher cost.

When features are shared, privacy guarantees become

weaker, and we resort to empirical risk estimation, as shown

in Section V-F . But for the first case, reconstructing inputs

from just latents is challenging for the coordinator, as it

is akin to finding the encoding function’s inverse without

knowing the inputs or the function itself. While intuitive,

we formalize this here. Lemma 1 shows the impossibility

of data reconstruction without knowing the domain of the

inputs. Lemma 2 extends the impossibility result to cases

where the domain is known but requires a domain with at

least two elements. Both are building blocks for the latent
irreversibility theorem of SiloFuse.

Lemma 1: For any function E : X → Z, where Z is

the codomain (latent space), there exists no oracle function

O : Z → X capable of uniquely identifying the domain X
(input space) without knowledge of the function E : X → Z.

Proof: For the sake of contradiction assume there is an oracle

O : Z → X capable of identifying the domain X without

knowledge of E . However, since there are infinitely many

possible domains X that can map to a given codomain Z,

the oracle cannot uniquely map elements of Z to the correct

domain. Therefore, such an oracle O cannot exist. �

Lemma 2: For any surjective function E : X → Z,

where X has more than one element, there does not exist

an oracle O : Z → X capable of uniquely identifying

the pre-image1 of any element in Z without knowledge of

E : X → Z.

Proof: Assume, for contradiction, the existence of an oracle

O : Z → X capable of identifying the pre-image of any

element in Z without knowledge of E . We consider two

cases:

1) If E is not injective, then at least one element z ∈ Z
has multiple pre-images in X . This ambiguity makes it

impossible for O to uniquely identify a single pre-image

for z, contradicting the existence of O.

2) If E is injective, we can construct another function

E ′ : X → Z by swapping the mappings of two distinct

elements in X (i.e., E ′(x1) = E(x2) and E ′(x2) =

1Pre-images with cardinality one: https://mathworld.wolfram.com/Pre-
Image.html

E(x1)). This keeps the same codomain Z yet introduces

ambiguity in determining the right pre-image without

explicit knowledge of the function used, i.e., E ′ or E .

This scenario again contradicts the oracle’s supposed

capability to identify a unique pre-image.

Therefore, such an oracle O cannot exist. �

Theorem 1 (Latent irreversibility): In the SiloFuse
framework with private data (from input space X) and

privately-held encoder and decoder functions (E ,D), the

coordinator/server cannot reconstruct real samples from

latent encodings alone when the domain X is unknown.

Reconstruction remains impossible if the domain is known

and its size is greater than one.

Proof: Suppose, for contradiction, that the server can re-

construct real samples from just the latents. This implies the

existence of an oracle O : Z → X , from the latent space Z
to the real space X .

We consider two cases based on Lemmas 1 and 2:

1) Case 1: Without knowing the encoding/decoding func-

tions or the domain of X , the server cannot uniquely

identify the real samples from the latents alone. In this

case, Lemma 1 applies, so such an oracle O cannot exist.

2) Case 2: If the domain X is known, the server cannot

reconstruct real samples from just the latents. In this

case, Lemma 2 applies, so the oracle O cannot exist.

Since both cases lead to contradictions, we conclude that the

coordinator cannot reconstruct real samples from the latents

alone in SiloFuse’s framework. �

V. EXPERIMENTS

We assess SiloFuse’s performance on multiple aspects.

First, we evaluate its synthetic data quality against centralized

and decentralized methods, considering its resemblance to

original data and utility in downstream tasks. Second, we

compare SiloFuse’s communication costs with end-to-end

training, highlighting the reduced costs of stacked training.

Third, we analyze SiloFuse’s privacy risks when sharing

synthetic features post-generation. We also test SiloFuse’s

robustness to feature permutation under a varying number of

clients and partition sizes2.

A. Experiment Setup

Hardware & Software. We run experiments on an AMD

Ryzen 9 5900 12-core processor and an NVIDIA 3090 RTX

GPU with CUDA version 12.0. The OS used is Ubuntu

20.04.6 LTS. PyTorch is used to simulate the distributed

experiments by creating multiple models corresponding to

individual clients.

Datasets. To assess the quality of generated data, we

use nine benchmark datasets used in generative model-

ing: Abalone [36], Adult [37], Cardio [38], Churn Mod-

elling [39], Cover [40], Diabetes [41], Heloc, Intrusion [42],

2Full experimental results available here: https://www.dropbox.com/scl/fo/
carrcdl9v13b2813e58ui/h?rlkey=vakpjh83xt2ui6o8r51xljm32&dl=0

116

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

C
en

tra
lis

ed
fe

at
ur

es
...

Coordinator

...
C

en
tra

lis
ed

sy
nt

he
tic

fe
at

ur
es

Backward pass

Forward pass

Fig. 8: E2E: centralized end-to-end baseline.

C
lie

nt
 M

C
lie

nt
 2

C
lie

nt
 1

C
lie

nt
 M

C
lie

nt
 2

Coordinator

Forward pass

Backward pass

C
lie

nt
 1

Fig. 9: E2EDistr: distributed end-to-end baseline. Training

Loss = Lt
G + LAE

and Loan [43]. These are well-known benchmarks in the

context of generative modeling [18], [19].

From Table II, we can classify the datasets into three

categories based on the number of features: i. Easy - Abalone,

Diabetes, Cardio. ii. Medium - Adult, Churn, Loan. iii. Hard
- Intrusion, Heloc, Cover. Table II also includes the total

feature sizes before and after one hot encoding and their

corresponding changes (used by TabDDPM and GANs).

Baselines. We tested centralized tabular GAN methods [9],

[15], [18] falling under two architectural flavors: linear back-

bone, i.e., CTGAN (GAN(linear)) [15], and convolutional

backbone, i.e., CTAB-GAN (GAN(conv)) [18], which ex-

tends CTGAN and Table-GAN [9]. For DDPMs, the models

compared are tabular latent-diffusion models, SiloFuse, and

its centralized counterpart LatentDiff. In addition, we also

compare these models with their corresponding end-to-end

trained versions, i.e., centralized E2E (end-to-end centralized)

and distributed E2EDistr (end-to-end distributed), with ar-

chitectures as shown in Fig. 8 and Fig. 9 respectively. State-

of-the-art TabDDPM is also compared.

The architectures of E2E and E2EDistr, shown in Fig. 8

and Fig. 9 respectively, consist of an encoder followed by

the DDPM and a decoder at the end. During training, the

encoder(s) first compute(s) latents. The DDPM unit adds noise

and iteratively denoises it to generate synthetic latents. The

decoder(s) then recover the output in the original space and

compute the losses individually using (4). The MSE loss from

the DDPM component is added (5), and the entire network is

trained end-to-end.

TABLE II: Statistics of Datasets. We provide the number of

rows, categorical and numerical features, the total size before

(#Bef) and after (#Aft) one hot encoding, and the increase in

feature size (Incr).

#Rows #Cat. #Num. #Bef. #Aft. Incr.
Loan 5000 7 6 13 23 1.77x
Adult 48842 9 5 14 108 7.71x
Cardio 70000 7 5 12 21 1.75x

Abalone 4177 2 8 10 39 3.9x
Churn 10000 8 6 14 2964 211.71x

Diabetes 768 2 7 9 26 2.89x
Cover 581012 45 10 55 104 1.89x

Intrusion 22544 22 20 42 268 6.38x
Heloc 10250 12 12 24 239 9.96x

Training configurations. For SiloFuse, LatentDiff,

E2E, and E2EDistr models, we utilize an autoencoder

architecture with three linear layers for encoders and decoders.

The activation function used is GELU [44]. In centralized

versions, the embedding and hidden dimensions are set to

32 and 1024, respectively, equally partitioned between clients

in the distributed versions. The latent dimension is set to

the number of original features before one-hot encoding. In

the case of distributed models (SiloFuse, E2EDistr),

the centralized autoencoders are evenly split across different

clients. However, for TabDDPM, which lacks autoencoders,

a 6-layer MLP with a hidden dimension of 256 forms the

neural backbone of its DDPM. For the remaining models,

a neural backbone for the DDPM consists of a bilinear

model comprising eight layers with GELU activation and a

dropout factor of 0.01. For the GAN baselines, we use four

convolutional or linear layers with leaky ReLU activation

and layer norm for the generator. The discriminator uses the

transposed architecture but is otherwise similar. All models are

trained for 500,000 iterations encompassing the autoencoders

and the DDPM’s neural network, using a batch size 512 and

a learning rate of 0.001. DDPM training involves a maximum

of 200 timesteps, with inference conducted over 25 steps. In

the case of distributed models (SiloFuse and E2EDistr),

dataset features are partitioned equally among four clients. The

last client gets any remaining features post-division without

shuffling.

B. Benchmark Framework

SiloFuse uses three types of metrics for the evaluation:

resemblance, utility, and privacy. All metrics are in the range

of (0-100), with 100 being the “best”. The quality of syn-

thetic data is calculated using resemblance and utility. Privacy

metrics quantify the leakage associated with centralizing the

synthetic features post-generation. We explain these metrics in

detail as follows.

Resemblance measures how close the synthetic data is to the

original data regarding feature distributions. It is a composite

score that considers similarities between the real and synthetic

data by computing the mean of the following five scores:

1) Column Similarity: The correlation between the values

in each real and synthetic column using the Pearson

117

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Resemblance Scores (0-100). Higher scores indicate better resemblance. Zero std. deviation indicates negligible

deviation. Percentage point difference (PPD) of SiloFuse with the best GAN is also shown.

Model Abalone Adult Cardio Churn Cover Diabetes Heloc Intrusion Loan
GAN(conv) 64.0 ± 0.00 38.0 ± 0.00 59.8 ± 0.40 43.4 ± 0.80 45.2 ± 0.40 75.8 ± 0.40 54.0 ± 0.00 47.2 ± 0.40 76.4 ± 0.49
GAN(linear) 54.2 ± 0.40 28.6 ± 0.49 29.0 ± 0.00 30.8 ± 0.39 36.0 ± 0.00 51.0 ± 0.00 48.0 ± 0.00 39.0 ± 0.00 40.0 ± 0.00

E2E 85.2±0.40 60.0±0.00 60.2±0.40 88.2±0.40 51.0±0.40 72.4±0.80 68.4±0.49 48.0 ±0.00 81.2±0.40
E2EDistr 56.4±0.80 46.0±1.09 44.0±0.89 78.0±0.00 40.8±0.40 61.8± 3.12 61.0±0.00 37.0±0.00 49.8±1.16
TabDDPM 91.2±0.75 97.0±0.00 98.0±0.00 63.6±0.49 78.0±0.00 94.6±0.49 88.0±0.00 44.0±0.00 98.0±0.00

LatentDiff 92.0±0.00 78.0±0.00 72.2±0.40 89.0±0.00 92.0±0.00 90.0±0.63 83.4±0.49 68.0±0.00 83.4±0.49
SiloFuse 91.0±0.00 73.0±0.00 71.0±0.00 87.0±0.00 89.0 ± 0.00 84.0±0.63 79.0±0.00 67.0±0.00 81.2±0.40

PPD (vs GAN) 27.0 35.0 11.2 43.6 43.8 8.2 25.0 19.8 4.8

TABLE IV: Utility Scores (0-100). Higher scores indicate better downstream utility. Percentage point difference (PPD) of

SiloFuse with the best GAN is also shown.

Model Abalone Adult Cardio Churn Cover Diabetes Heloc Intrusion Loan
GAN(conv) 71.0 ± 0.63 82.6 ± 11.30 94.0 ± 3.63 85.0 ± 1.09 82.6 ± 1.01 96.2 ± 2.56 45.0 ± 0.63 36.2 ± 0.98 82.6 ± 0.49
GAN(linear) 65.2 ± 0.40 30.6 ± 1.62 47.6 ± 0.49 78.4 ± 1.02 36.2 ± 0.40 84.6 ± 1.62 38.4 ± 0.49 25.4 ± 0.49 82.0 ± 0.63

E2E 70.0±1.41 45.0±1.67 75.2±1.47 87.8±0.74 89.8±0.40 84.2±5.11 39.8±0.40 31.0±0.63 77.0±0.89
E2EDistr 70.8±1.72 33.6±1.02 55.3±0.33 87.0±0.89 56.8±1.46 89.0±2.28 39.2±0.40 24.2±1.16 71.2±2.92
TabDDPM 98.4±0.49 89.2±1.60 99.6±0.49 44.4±6.28 80.4±7.94 100.0±0.00 96.4±0.49 23.0±4.98 98.8±1.17

LatentDiff 100.0±0.00 100.0±0.00 86.4±2.33 100.0±0.00 95.8±0.40 99.6±0.49 76.4±0.49 61.2±1.16 94.8±1.93
SiloFuse 97.2±1.16 96.6±5.04 93.2±4.95 90.4±0.49 96.4±0.49 95.2±3.92 74.8±0.74 64.2±0.74 90.0±0.89

PPD (vs GAN) 26.2 14.0 -0.8 5.4 13.8 -1.0 29.8 28.0 7.4

correlation [45] for numerical columns, and Theil’s

U [46] for categorical ones.

2) Correlation Similarity: The correlation between the cor-

relation coefficients between each pair of columns using

pairwise Pearson correlation and Theil’s U for numerical

and categorical features, respectively.

3) Jensen-Shannon Similarity [47]: This computes the dis-

tance between the probability distributions of the real

and synthetic columns. One minus the distance is used

so that all metrics are comparable, with higher scores

being better.

4) Kolmogorov-Smirnov Similarity [48]: This distance

measure computes the maximum difference between cu-

mulative distributions of each real and synthetic feature.

One minus the distance makes higher scores better.

5) Propensity Mean-Absolute Similarity [49]: A binary

classifier (XGBoost [50]) is trained to discriminate be-

tween real and synthetic samples. When the classifier

cannot distinguish between the two datasets, the mean-

absolute error of its probabilities is 0. One minus the

error is used so that higher scores are better.

Utility measures how the synthetic data performs on a down-

stream prediction task using an XGBoost model. Real or

synthetic datasets are used for training, and evaluation is done

using the same real hold-out set in each case. The downstream

performance is calculated by taking the 90th percentile of

macro-averaged F1 scores for categorical columns and the

D2 absolute error scores for continuous columns. Finally, the

utility score is calculated by taking the ratio of the synthetic

to the real data’s downstream performance (in percent, clipped

at the max value of 100).

Privacy quantifies the risk associated with sharing the syn-

thetic features post-generation by averaging the scores from

three attacks based on the framework in [51] and [52]. Again,

higher scores indicate better resistance against the following

three attacks.

1) Singling Out Attack [51]: This singles out individual data

records in the training dataset. If unique records can

be identified, the synthetic data might reveal individuals

based on their unique attributes.

2) Linkability Attack [51]: This associates two or more

records, either within the synthetic dataset or between

the synthetic and original datasets, by identifying records

linked to the same individual or group.

3) Attribute Inference Attack [52]: This deduces the values

of undisclosed attributes of an individual based on the

information available in the synthetic dataset.

C. Quantitative analysis

Setup. We quantitatively analyze the resemblance and util-

ity scores on the nine diverse datasets (abalone, adult,

cardio, cover, churn modelling, diabetes, heloc, intrusion,

and loan). The models compared are SiloFuse, GANs

(GAN(linear), GAN(conv)), centralized latent diffusion

(LatentDiff), end-to-end baselines (E2E, E2EDistr),

and TabDDPM. Four clients were used for the distributed

models (SiloFuse and E2EDistr). The resemblance and

utility scores (0-100) are averaged from 5 trials, results for

which are shown in Table III and Table IV.

Comparable model performance to centralized methods.

Coinciding with the results of other works [19], [22], we

see that our decentralized latent diffusion method significantly

outperforms centralized GANs. Improvements of up to 43.8
and 29.8 percentage points are achieved over GANs on re-

semblance and utility. This could be due to instabilities with

training GANs leading to mode collapse [23]. As a result,

the generator may end up oversampling cases that escape the

notice of the discriminator, leading to low diversity. Within

DDPMs, TabDDPM’s and LatentDiff’s performance are

generally an upper bound to what SiloFuse can achieve

118

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Feature correlation differences between real and

synthetic data. Darker colour indicates worse performance.

SiloFuse LatentDiff TabDDPM

C
ar

d
io

In
tr

u
si

o
n

since they are centralized baselines. Despite this, SiloFuse
achieves comparable resemblance and utility scores, especially

compared to its centralized version LatentDiff. Interest-

ingly, the end-to-end versions E2E and E2EDistr perform

the worst. This may be because the DDPM backbone at

the intermediate level needs to add noise to the latents and

then denoise them during training. This may be problematic,

especially during the initial training phases, as the received

latents are already quite noisy since the autoencoders are

initially untrained. Therefore, noise is added to more noise,

making it difficult to distinguish the ground truth from actual

noise. On the other hand, with SiloFuse and LatentDiff,

the noise needs to be removed from fully-trained autoencoders.

So, the latent values are less noisy, making it easier for the

DDPM to distinguish between noise and actual latents during

training correctly.

Result analysis. We generally observe that latent DDPMs are

better performing than TabDDPM on challenging datasets with

a lot of sparse features, such as Intrusion and Cover, whereas

TabDDPM does better on more straightforward datasets with a

smaller number of features, such as Loan, Adult, and Diabetes.

This indicates that combining multinomial and MSE loss may

be better for high-quality data generation with low feature

sizes and sparsity. At the same time, the conversion into latent

space may be better for highly sparse datasets with large

cardinality in discrete values.

D. Qualitative Analysis

Setup. We qualitatively analyze the generated synthetic data

based on the feature correlation differences between the real

and synthetic features. Based on the resemblance and utility

scores from Table III and Table IV, we select the top three

models (TabDDPM, LatentDiff, and SiloFuse) and

show the correlation difference graphs for one of the simpler

datasets (Cardio) and one hard dataset (Intrusion). Again, four

clients were used for SiloFuse3.

High correlation resemblance of SiloFuse. The graphs

in Table V show that SiloFuse captures feature correla-

tions well and is comparable to the centralized version, i.e.,

LatentDiff’s performance. It also performs better than

TabDDPM on the harder dataset, Intrusion, as we see a darker

shade for the correlation differences for TabDDPM. However,

we observe that TabDDPM performs better on the simpler

dataset, Cardio, due to the lower difference. These results

match the scores indicated in Table III and Table IV. As

explained earlier, the large feature size of Intrusion makes it

more challenging to model. It is amplified in difficulty for

TabDDPM due to the additional sparsity induced by one-hot

encoding. This makes it do worse than the latent space models.

On Cardio, the problem of sparsity is not amplified by a lot as

the number of discrete features is lower, enabling TabDDPM
to perform better. Nevertheless, SiloFuse does not perform

much worse than TabDDPM even on Cardio, as the correlation

differences are not very large.

E. Communication Efficiency

Setup. To demonstrate the benefits of stacked training over

end-to-end training with increasing iterations, we compare

SiloFuse with E2EDistr, using the same parameter sizes

for the autoencoders and the DDPM’s neural backbone in each.

Again, we use four clients with equally partitioned features.

The iterations are varied between 50,000, 500,000, and 5

million. We measure the total bytes transferred between the

clients and the coordinator over the course of the training

process. Without loss of generality, we show the results on two

datasets. One simple dataset with fewer features, i.e., Abalone,

and one difficult dataset, Intrusion.

Constant communication cost of SiloFuse. From Fig. 10,

we see that changing the number of iterations does not

increase the communication cost of SiloFuse. Due to the

stacked training, the latents for the original training data only

need to be transferred to the coordinator once after training

autoencoders on each client. As the autoencoders and the

DDPM are trained independently, there is no requirement

to communicate gradients and forward activations between

clients repeatedly, which results in a single round. End-to-end

training methods such as TabDDPM, E2E, and E2EDistr
thus suffer from increasing costs as the iterations increase, i.e.,

they have cost O(#epochs). Naively distributing TabDDPM
would incur even higher costs than E2EDistr, as one-hot

encoding significantly increases the feature sizes being com-

municated (see Table II). As shown in the table, some datasets

have a significant increase in size, leading to a proportionate

rise that exceeds even E2EDistr: Churn (>200x), Heloc

(>9x), Adult (>7x), and Intrusion (>6x).

3Additional results on feature distributions of real and
synthetic data are available in the appendix: https://www.dropbox.
com/scl/fi/lq01y9qbbzbvaqnh7owva/SiloFuse appendix.pdf?rlkey=
ed0bf2lb8pmc9g4siey665s3b&dl=0

119

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Privacy scores of latent models and TabDDPM

Model Abalone Adult Cardio Churn Cover Diabetes Heloc Intrusion Loan
TabDDPM 48.2±0.48 70.1±2.61 76.1±2.19 86.7±0.24 59.1±3.85 46.2±0.69 56.7±1.60 92.1±2.62 57.9±1.87

LatentDiff 50.3 ± 0.58 73.7 ± 2.29 88.7 ± 2.82 78.1 ± 4.18 55.7 ± 1.81 62.4 ± 1.32 51.9 ± 1.46 70.5 ± 2.89 64.8 ± 2.36
SiloFuse 55.9±0.46 92.1±0.60 93.2±4.97 92.3±1.84 65.1±2.25 78.1±2.40 56.4±1.58 70.5±2.46 79.3±5.35

Fig. 10: Bytes sizes communicated during training.

SiloFuse vs. E2EDistr

F. Empirical Privacy Risk Analysis

Setup. Typically, post-generation, the synthetic data partitions

from each client are shared with all parties. Although this

methodology offers significant practical utility, it also poses

privacy risks. Specifically, the distributions of the synthetic

data could leak information on the original features, e.g.,

attribute inference attacks [52]. We quantify this risk by

computing the privacy scores as explained in Section V-F.

The best-performing methods, SiloFuse. LatentDiff,

and TabDDPM are compared again, with the results shown

in Table VI.

Improved privacy against centralized baselines. From the

results, we see that SiloFuse has the overall best privacy

score, indicating it runs the lowest risk of leaking private

feature information post-generation. While TabDDPM and

LatentDiff were able to achieve better resemblance and

utility scores, we see that they lack in terms of privacy.

SiloFuse achieves higher privacy scores than the centralized

version, LatentDiff, on 8 out of 9 datasets, ranging from

4.5% (Cardio, Heloc), rising to 18.4%, 15.7%, and 14.2% on

Adult, Diabetes, and Churn respectively.

Privacy-quality tradeoffs. Despite the higher privacy score of

SiloFuse, there is an inherent tradeoff between achieving

very high utility and resemblance versus high privacy. For

example, in Intrusion data, we observe that TabDDPM achieves

the highest privacy score but has significantly lower resem-

blance and utility. Hence, data privacy may be better, but the

synthetic samples may be unusable for the downstream task.

Conversely, training the generative model using centralized

features allows the model to capture relations between features

better, leading to higher resemblance and utility. However,

having synthetic features that highly resemble original fea-

tures will enable adversaries to map the associations between

features better, lowering privacy. While differential privacy

adds noise to synthetic data for better privacy, it can lead to

performance tradeoffs that are hard to control [16], [53].

We also evaluate the sensitivity of privacy scores when the

TABLE VII: Sensitivity of privacy score to the number of

denoising steps

Dataset
Inference timesteps

2 5 25

Abalone 58.15 ± 0.90 51.6 ± 0.41 50.3 ± 0.58
Heloc 66.1 ± 1.15 53.4 ± 0.56 51.9 ± 1.46

number of denoising steps varies. Two datasets were chosen:

one easier dataset (abalone) and one difficult (heloc). As

shown in Table VII, increasing the denoising steps allows

the latent diffusion model to remove more noise, but lowers

the privacy score. Notably, the privacy scores saturate quickly

upon increasing the number of denoising steps. Hence, the

scores lose sensitivity to the noise level within a few timesteps.

G. Robustness to client data distribution

Setup. SiloFuse’s robustness to differing partition sizes on

clients and permuted feature assignments is measured. We vary

the clients between 4 and 8 and also experiment with two

orders of the feature assignments to clients. The first order

maintains unshuffled columns. The second order shuffles the

columns using a seed value of 12343. After shuffling, we

partition the columns for allocation to each client. Without loss

of generality, we show the results (Fig. 11) for three datasets:

Heloc, Loan, and Churn. Results on additional datasets are

available in the link pointing to the full experimental results

(see Section V).

Robustness to feature permutation and partitioning. From

the figures, we see that changing the number of clients or

shuffling the features does not make the resemblance/utility

deviate too much from the average level, indicating that

SiloFuse is generally invariant to feature permutation. This

is because centralization of the latents at the DDPM allows

it to capture cross-feature correlations that may have been

missed or poorly captured at the local encoders. This enables

the model to achieve similar resemblance and utility scores.

Exceptions stand out in specific scenarios. For instance, re-

semblance notably drops in the Loan dataset transitioning from

4 to 8 clients with permuted feature assignments (Fig. 11b). In

the Churn dataset, utility significantly improves when moving

from default to permuted partitioning (Fig. 11c). The drop

in resemblance might arise from correlated features being

reassigned to different clients in the 8-client setup, delaying the

learning of associations. Improved performance for the latter

case may stem from separating jointly-existing noisy features

during re-partitioning or permutation.

120

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

(a) Heloc (b) Loan (c) Churn

Fig. 11: Robustness results for 4 and 8 clients with two different partitions (default and permuted)

TABLE VIII: Overview of the related work. A yellow tick

indicates partial satisfaction.

Method Type Cross-silo Tabular Generating space
GTV [17] GAN � � Real

DPGDAN [16] GAN � � Real
MedGAN [10] GAN � � Latent
VQ-VAE [11] VAE � � Real

TVAE [15] VAE � � Real
dpart [13] AR � � Real

DP-HFLOW [12] Flow � � Real
STaSY [14] Score-matching � � Real

Hoogeboom et al. [21] DDPM/Flow � � Real
TabDDPM [19] DDPM � � Real

Rombach et al. [28] DDPM � � Latent
SiloFuse DDPM � � Latent

VI. RELATED WORK

Tabular Synthesizers. In the domain of generative model-

ing, deep neural network methods span variational autoen-

coders (VAEs), GANs, energy-based models (DDPMs, Score-

matching), autoregressive models (AR), and flow-based meth-

ods, outlined in Bond et al. [54]. Given our focus on tabular

data synthesis, our exploration centers on the techniques

delineated in Table VIII, predominantly comprising tabular

synthesizers. Although Hoogeboom et al.’s approach [21] pio-

neers multinomial DDPMs, it exclusively applies to categorical

features, addressing only part of the tabular data synthesis

need. Additionally, Rombach et al.’s work [28], a DDPM-

based method inspiring SiloFuse’s latent space modeling,

is tailored exclusively for image data.

Cross-silo synthesis. Other than SiloFuse, GAN-based

methods, such as GTV [17] and DPGDAN [16], tackle the

cross-silo challenge. Their backbones use centralized GAN

architectures, i.e., Table-GAN, CTGAN, and CTAB-GAN [9],

[15], [18], which SiloFuse outperforms. They also employ

end-to-end training, increasing communication costs.

End-to-end (real space) vs. stacked training (latent space).
Most generative methods directly operate in the original/real

space, requiring end-to-end training. In contrast, latent-based

models can decouple training into local autoencoder training

followed by generative modeling in the latent space. Limited

work exists in this paradigm: MedGAN [10] uses an autoen-

coder to transform features into continuous latents, followed

by a GAN-based generative step, but it is centralized and unfit

for cross-silo scenarios. Rombach et al. [28] operates in the

latent space solely for image data and in a centralized setup.

VII. CONCLUSION

We introduce SiloFuse, a distributed latent DDPM

framework for cross-silo tabular data synthesis. SiloFuse
trains models collaboratively by encoding original features into

a latent space, ensuring confidentiality while avoiding the high

costs of mainstream one-hot encoding. We introduce a stacked

training paradigm to decouple the training of autoencoders

and the diffusion generator. This minimizes communication

costs by transmitting latent features only once and avoids the

risks of gradient leakage attacks. Centralizing latent features

preserves cross-silo links while thwarting data reconstruction

under vertically partitioned synthesis.

Quantitative and qualitative analyses show SiloFuse’s

comparable performance with centralized baselines regarding

synthetic data quality, with diffusion-based models outper-

forming GANs. SiloFuse achieves improvements of up to

43.8 and 29.8 percent points higher than centralized GANs on

resemblance and utility, respectively. Stacked training reduces

communication rounds to one step, significantly better than

end-to-end training paradigms (O(#epochs)). When sharing

synthetic data post-generation, SiloFuse exhibits superior

resistance against attacks, with minor trade-offs in data quality.

Although robust under varied scenarios, slight susceptibility to

feature permutation suggests room for future improvement.

Sharing synthetic features across parties poses challenges

and potential privacy vulnerabilities. Future research could

explore controlled information exchange or employ trusted

third-party interventions to ensure privacy in collaborative

training. Exploring methods like vertical federated learning

would offer ways to achieve both privacy and high perfor-

mance in downstream tasks by retaining feature-partitioning.

ACKNOWLEDGMENT

This paper is supported by the project Understand-
ing Implicit Dataset Relationships for Machine Learning
(VI.Veni.222.439), of the research programme NWO Talent

Programme Veni, partly financed by the Dutch Research

Council (NWO). It is also supported by the DepMAT project

(P20-22) of the NWO Perspectief programme.

121

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. De Hert, J. Detraux, and D. Vancampfort, “The intriguing relation-
ship between coronary heart disease and mental disorders,” Dialogues
in clinical neuroscience, 2022.

[2] P. Regulation, “Regulation (eu) 2016/679 of the european parliament
and of the council,” Regulation (eu), vol. 679, p. 2016, 2016.

[3] J. Vaidya and C. Clifton, “Privacy preserving association rule mining in
vertically partitioned data,” in Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining,
2002, pp. 639–644.

[4] Jaideep Vaidya and Chris Clifton, “Privacy-preserving k-means cluster-
ing over vertically partitioned data,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 206–215.

[5] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou, “Vertical partitioning
algorithms for database design,” ACM Trans. Database Syst.,
vol. 9, no. 4, p. 680–710, dec 1984. [Online]. Available: https:
//doi.org/10.1145/1994.2209

[6] A. Sanghi and J. R. Haritsa, “Synthetic data generation for enterprise
dbms,” in 2023 IEEE 39th International Conference on Data Engineer-
ing (ICDE), 2023, pp. 3585–3588.

[7] W. Li, “Supporting database constraints in synthetic data generation
based on generative adversarial networks,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 2875–2877. [Online]. Available:
https://doi.org/10.1145/3318464.3384414

[8] J. Fan, J. Chen, T. Liu, Y. Shen, G. Li, and X. Du, “Relational
data synthesis using generative adversarial networks: a design space
exploration,” Proc. VLDB Endow., vol. 13, no. 12, p. 1962–1975, jul
2020. [Online]. Available: https://doi.org/10.14778/3407790.3407802

[9] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” Proc. VLDB
Endow., vol. 11, no. 10, p. 1071–1083, jun 2018. [Online]. Available:
https://doi.org/10.14778/3231751.3231757

[10] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Gen-
erating multi-label discrete patient records using generative adversarial
networks,” in Machine learning for healthcare conference. PMLR,
2017, pp. 286–305.

[11] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” arXiv preprint arXiv:1711.00937, 2017.

[12] J. Lee, M. Kim, Y. Jeong, and Y. Ro, “Differentially private normalizing
flows for synthetic tabular data generation,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7345–
7353.

[13] S. Mahiou, K. Xu, and G. Ganev, “dpart: Differentially private autore-
gressive tabular, a general framework for synthetic data generation,”
arXiv preprint arXiv:2207.05810, 2022.

[14] J. Kim, C. Lee, and N. Park, “Stasy: Score-based tabular data synthesis,”
arXiv preprint arXiv:2210.04018, 2022.

[15] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” Advances in neural
information processing systems, vol. 32, 2019.

[16] Z. Wang, X. Cheng, S. Su, and G. Wang, “Differentially private
generative decomposed adversarial network for vertically partitioned
data sharing,” Information Sciences, vol. 619, pp. 722–744, 2023.

[17] Z. Zhao, H. Wu, A. Van Moorsel, and L. Y. Chen, “Gtv: Gen-
erating tabular data via vertical federated learning,” arXiv preprint
arXiv:2302.01706, 2023.

[18] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “CTAB-GAN: Effective
table data synthesizing,” in Asian Conference on Machine Learning.
PMLR, 2021, pp. 97–112.

[19] A. Kotelnikov, D. Baranchuk, I. Rubachev, and A. Babenko, “Tabddpm:
Modelling tabular data with diffusion models,” in International Confer-
ence on Machine Learning. PMLR, 2023, pp. 17 564–17 579.

[20] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020.

[21] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling, “Argmax
flows and multinomial diffusion: Learning categorical distributions,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 12 454–
12 465, 2021.

[22] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[23] R. Bayat, “A study on sample diversity in generative models: Gans vs.
diffusion models,” 2023.

[24] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE signal processing
magazine, vol. 37, no. 3, pp. 50–60, 2020.

[25] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[26] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” Advances in neural information processing systems, vol. 25,
2012.

[27] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[28] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 10 684–10 695.

[29] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith,
and B. Thorne, “Private federated learning on vertically partitioned data
via entity resolution and additively homomorphic encryption,” arXiv
preprint arXiv:1711.10677, 2017.

[30] M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elmagarmid, “Privacy
preserving schema and data matching,” in Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, 2007, pp.
653–664.

[31] X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “Cafe: Catas-
trophic data leakage in vertical federated learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 994–1006, 2021.

[32] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[33] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 16 937–
16 947, 2020.

[34] K. Wei, J. Li, C. Ma, M. Ding, S. Wei, F. Wu, G. Chen, and
T. Ranbaduge, “Vertical federated learning: Challenges, methodologies
and experiments,” arXiv preprint arXiv:2202.04309, 2022.

[35] Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-
Q. Zhang, and Q. Yang, “Vertical federated learning,” arXiv preprint
arXiv:2211.12814, 2022.

[36] Nash,Warwick, Sellers,Tracy, Talbot,Simon, Cawthorn,Andrew, and
Ford,Wes, “Abalone,” UCI Machine Learning Repository, 1995, DOI:
https://doi.org/10.24432/C55C7W.

[37] B. Becker and R. Kohavi, “Adult,” UCI Machine Learning Repository,
1996, DOI: https://doi.org/10.24432/C5XW20.

[38] S. Ulianova, “Cardiovascular disease dataset,” Jan 2019. [Online].
Available: https://www.kaggle.com/datasets/sulianova/cardiovascular-
disease-dataset

[39] ShrutiIyyer, “Churn modelling,” Apr 2019. [Online]. Available:
https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling

[40] J. Blackard, “Covertype,” UCI Machine Learning Repository, 1998,
DOI: https://doi.org/10.24432/C50K5N.

[41] [Online]. Available: https://www.openml.org/search?type=data&
sort=runs&id=37&status=active

[42] S. Bhosale, “Network Intrusion Detection,” 2018. [Online]. Avail-
able: https://www.kaggle.com/datasets/sampadab17/network-intrusion-
detection

[43] Habilmohammed, “Personal loan campaign - classification,” Jul 2020.
[Online]. Available: https://www.kaggle.com/code/habilmohammed/
personal-loan-campaign-classification

[44] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2023.

[45] P. Sedgwick, “Pearson’s correlation coefficient,” Bmj, vol. 345, 2012.

[46] F. Bliemel, “Theil’s forecast accuracy coefficient: A clarification,” 1973.

[47] M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The jensen-shannon
divergence,” Journal of the Franklin Institute, vol. 334, no. 2, pp. 307–
318, 1997.

[48] V. W. Berger and Y. Zhou, “Kolmogorov–smirnov test: Overview,” Wiley
statsref: Statistics reference online, 2014.

122

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

[49] A. Olmos and P. Govindasamy, “Propensity scores: a practical introduc-
tion using r,” Journal of MultiDisciplinary Evaluation, vol. 11, no. 25,
pp. 68–88, 2015.

[50] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[51] M. Giomi, F. Boenisch, C. Wehmeyer, and B. Tasnádi, “A unified
framework for quantifying privacy risk in synthetic data,” arXiv preprint
arXiv:2211.10459, 2022.

[52] F. Houssiau, J. Jordon, S. N. Cohen, O. Daniel, A. Elliott, J. Ged-
des, C. Mole, C. Rangel-Smith, and L. Szpruch, “Tapas: A toolbox
for adversarial privacy auditing of synthetic data,” arXiv preprint
arXiv:2211.06550, 2022.

[53] R. Tajeddine, J. Jälkö, S. Kaski, and A. Honkela, “Privacy-
preserving data sharing on vertically partitioned data,” arXiv preprint
arXiv:2010.09293, 2020.

[54] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep
generative modelling: A comparative review of vaes, gans, normalizing
flows, energy-based and autoregressive models,” IEEE transactions on
pattern analysis and machine intelligence, 2021.

123

Authorized licensed use limited to: TU Delft Library. Downloaded on August 13,2024 at 09:43:27 UTC from IEEE Xplore. Restrictions apply.

