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Abstract

Solar energy is essential for the transition to a net-zero energy system. It serves not only
as a renewable energy source but also influences local climate, thereby affecting human
energy consumption patterns. However, solar energy is inherently unstable, particularly in
urban environments, where shading and sky visibility can change rapidly, even within short
distances and timeframes. These characteristics lead to the underutilization of solar energy.
As a result, accurately simulating solar irradiance in urban environments and at city-scale
is crucial for reducing the gap between predicted and actual energy demand and supply in
urban energy systems, helping to minimize energy waste.

This thesis develops, implements, and tests a scalable, high-resolution, and realistic solar
irradiance simulation tool using Semantic 3D City Model (3DCM). The methodology specif-
ically accounts for the complexities of urban environments while maintaining manageable
computational overhead. It includes shadow calculation based on Bounding Volume Hi-
erarchy (BVH) for direct beam irradiance, viewshed calculation for sky diffuse irradiance,
and an iterative global reflective irradiance calculation using semantic viewshed and scene
voxelization. The results demonstrate that the method achieves higher accuracy, particularly
under clear-sky conditions, while maintaining computational efficiency. For a city model
covering 35 km2 with over 4 million surfaces, 16 million sample points, the simulation for 54
timesteps can be completed in approximately 27 hours on a consumer-level laptop.
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1. Introduction

Modelling solar energy resources in urban environments has received much attention in
recent years. The WorldBank states that in 2023, 56% of the global population lives in urban
areas, and the number is expected to increase to 70% by 2050 World Bank [2023]. The
growing urban population density has challenged the urban energy and climate systems.
For example, urban heat island Oke [1982] brought by dense built environment in urban
areas can increase up to 40% of cooling demand Mauree et al. [2019]. To tackle the issues
brought by dense population and buildings in the built environment, whether through urban
planning or market adjustment (such as the energy market), quantification of the demand
and supply of energy is crucial. Determining incoming solar irradiance is critical as it can
not only be the source of the distributed solar power grid but also affect the environment
and the occupants’ behaviour within the building Diao et al. [2017]. The more accurate the
estimation of the solar power available, the better cities will be able to be powered by green
and sustainable energy and reach the goal of net zero.

Accurate estimation of the clean energy, represented by solar energy, is essential for the
energy system to schedule its usage distribution of energy resources. Incorrect quantifica-
tion of the current and expected energy demand Allegrini et al. [2012]; Mauree et al. [2019];
Boccalatte et al. [2020]; Wang et al. [2020] and supply Song et al. [2021]; Shaik et al. [2023];
Tercha et al. [2024]; Kwok and Hu [2023] of buildings can lead to erroneous decisions and
misguided planning for energy systems Erell and Zhou [2022]; Staffell et al. [2023]. Con-
versely, accurate estimations can significantly enhance energy efficiency Staffell et al. [2023].
Considering the situation where the predicted output of clean energy is lower than actual
values, more fossil fuels that are not necessary will be prepared and used, wasting clean
energy. Research indicates that lowering the thermostat by 1°C could reduce Europe’s gas
consumption by 240 TWh per year, equivalent to one-sixth of historical imports from Rus-
sia, highlighting the substantial potential for improving energy efficiency through precise
energy demand predictions Staffell et al. [2023].

Despite the hope brought by solar energy for energy transitions, solar energy in urban en-
vironments has high variability, and modelling the solar radiation hitting surfaces of urban
objects (e.g. a building, a shed, or the solar panels placed on top of them) is rather chal-
lenging. The complexity arises from the unique geometrical characteristics of these objects
(such as surface tilt and inclination), the position of the sun, and varying weather conditions.
Consequently, solar irradiance on surfaces in urban areas can exhibit significant variability
in both time and space, even at tiny scales. These abrupt changes in solar energy resources
of the solar panels can put excessive pressure on the power grid’s consumption of these
resources Litjens et al. [2018]. Research suggests that any surface in an urban environment
will be able to host solar panels with technology advancement Calcabrini [2023], which indi-
cates there could be more challenges for more accurate prediction of solar energy resources
to aid the power grid scheduling. In addition, solar energy also affects the building occu-
pants’ behaviour, such as cooling when there is excessive solar energy reaching the building
surfaces and heating the building, and heating when there is less solar energy reaching the

1



1. Introduction

Accuracy

Generalizability Computation Complexity

Figure 1.1.: The impossible triangle of current methods for solar irradiance simulation. The
three aspects are essential for city-scale simulations

building surfaces. Therefore, accurate solar radiation estimation in urban environments is
highly beneficial.

There are several significant methods to predict solar irradiance. RT models simulate light
behaviour (travelling with fixed direction) and interactions like reflections and scattering,
providing detailed and realistic irradiance simulations Ward [1994]; Erdélyi et al. [2014];
Liang et al. [2014, 2020]; Jaillot et al. [2017]; Wang et al. [2023]; Xu et al. [2023]. Empirical
methods are data-driven, typically using empirical equations or techniques like Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks to predict solar ir-
radiance Loutzenhiser et al. [2007]; Nielsen et al. [2021]; Gneiting et al. [2023]; Tercha et al.
[2024]. Viewshed methods merge vector-tracing and empirical methods techniques to calcu-
late Sky View Factor (SVF) from viewshed maps, usually estimating irradiance over longer
durations Fu and Rich [1999]; Tabik et al. [2013]; Liang and Gong [2017]; Oh and Park [2018];
Stendardo et al. [2020]. Pixel-counting methods utilize game engines to relate RGB values in
rendered images to solar irradiance through mapping functions Ward [1994]; Hegazy et al.
[2021]; Meines [2023]; Epic Games [2023]; Unity Technologies [2023].

However, for RT methods, computational demand grows exponentially with increased cal-
culation depth, limiting scalability for city-wide applications. For Time-series methods, the
short-term prediction by these methods can be accurate, but the data collection and training
have to be repeated for different surfaces. The viewshed methods often oversimplify the 3D
urban environment. Moreover, for pixel-counting methods, simplifications for visual effects
in game engines can create inaccuracies like false shadows Piórkowski and Mantiuk [2015];
Piórkowski et al. [2017]. Recalibration and recomputation are also needed for changed solar
positions.

These methods prioritize different aspects of solar irradiance computation, focusing on ei-
ther accuracy, computational efficiency, or generalizability. However, as illustrated in fig-
ure 1.1, none of the existing approaches can achieve all three simultaneously, which is critical
for city-scale simulations.
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1.1. Research Objectives

This thesis introduces a method that balances these three essential characteristics: accuracy,
scalability, and long-term prediction capabilities. The proposed framework offers a scal-
able and realistic approach to solar irradiance simulation by combining Ray Tracing and
Viewshed techniques. This approach holds significant potential for advancing urban climate
modelling and energy systems research.

1.1. Research Objectives

1.1.1. Research questions

The main research question of the thesis is:

How can a solar irradiance simulation tool be developed to balance accuracy and computa-
tional efficiency for city-scale simulations while utilizing semantic information from 3D city
models?

This question is extended further by the following sub-questions:

• In what ways can semantic data derived from 3D city models refine the precision
of solar irradiance simulations by considering the direct, diffuse and reflected solar
components?

• What are the potential trade-offs between accuracy and computation simplification
when utilizing 3D city models for estimating solar irradiance at an urban scale?

1.1.2. Scope of research

The thesis will focus on developing and testing a method to compute large-scale, high-
resolution solar irradiance with 3D city models to support energy transition, architecture
design, and urban planning. A model with case study values will be the final product.
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2. Theories and Background

2.1. Semantic 3D City Model

To account for the variations brought by the complexity of the built environment for solar
potential analysis, it is essential to consider the geographical location and surroundings. The
required information for such consideration can be obtained from semantic 3DCM Agugiaro
et al. [2020]. With 3DCM, we can derive the required parameters to accurately determine
the local solar irradiance value on any surface, such as surface orientation and tilt, and
shadowing effect.

A 3DCM is a digital twin of the urban environment with three-dimensional geometries of
urban objects and structures, with buildings as the most prominent feature Ohori et al.
[2024]. The structure, format, and characteristics vary significantly as typical 3DCM are re-
constructed from various acquisition techniques, such as photogrammetry, laser scanning,
extrusion, conversion from architectural and drawings, procedural modelling, and volun-
teered geoinformation Biljecki et al. [2015].

3DCM allow the representation of relevant city objects (and their sub-parts) to be organized
in a more structured manner, with geometry and semantic attributes. More specifically,
the urban environment is modelled and decomposed hierarchically Ohori et al. [2024]. For
example, a city can be decomposed into classes such as ’building’, ’road’, or ’vegetation’.
Moreover, a building can be further decomposed into a ’building part’, which can be further
decomposed into several surfaces; examples include wall, roof, or ground.

The Open Geospatial Consortium (OGC) CityGML standard has been developed to represent
3DCM to improve interoperability while preventing the redefinition of urban environment de-
composition Gröger and Plümer [2012]. The data model has provided a unified framework
for representing semantic 3d models. For the thesis, several key relevant concepts of the
CityGML data model will be introduced.

Boundary representation of geometry Rather than ”modelling a 3D object through a vol-
umetric representation, ” it implicitly models the object by representing the 3D surfaces that
bound it. This modelling technique provides a flexible way to represent arbitrary 3D vol-
umes. In the thesis, the geometries of the urban objects are, by default, considered with
boundary representation.

Geometry template Other than explicitly modelling the geometry of urban objects, an
alternative way is to use geometry templates for urban objects that generally do not vary
significantly in shape. Examples include road lamps, where each road lamp is identical in
geometry but differs in geographic location. In the thesis, the trees that are being modelled
are stored as implicit geometries in the KNMI weather station dataset.
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2. Theories and Background

Level of Detail LoD in CityGML standard are formalised definitions of the granularity of
representing the urban objects Biljecki et al. [2016]. There are five main LoDs, LoD0, LoD1,
LoD2, LoD3, LoD4. LoD0 is a 3D footprint representation of urban objects. LoD1 is a box
model, where 3D models are normally derived by extruding the 2D footprint to a given
height. In LoD2, the generalised roof shape and larger roof superstructures are present.
Lod3 enable more detailed modelling of building openings such as windows and doors,
chimneys, and other facade details. LoD4 models the interior structure within buildings. In
the thesis, LoD2 will be the most common LoD adopted as it is the highest LoD available
from open data. Meanwhile, it provides sufficient detail for solar irradiance modelling of
building exterior surfaces.

Figure 2.1.: Semantic 3D City model. Screenshot of the the semantic 3D city model in Rot-
terdam. Screenshot retrieved from 3DBAG online viewer.

Figure 2.2.: Illustration of a single building in different LoD. Figure retrieved from Biljecki
et al. [2016]

2.2. Ray Tracing and Global Illumination

The general RT technique refers to the simulation of light travelling, which could reflect,
diffuse, and travel along a straight line in space. In the more specific region of rendering,
RT refers to ”A rendering technique in 3D computer graphics that calculates the color of
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2.2. Ray Tracing and Global Illumination

pixels by tracing the path that light would take if it were to travel from the eye of the viewer
through the virtual 3D scene.”

The RT that refers to rendering can be described in Kajiya’s rendering equation:

Lo(x, ωo) = Le(x, ωo) +
∫

H2
fr(x, ωo, ωi)Li(x, ωi) cos θidωi (2.1)

Figure 2.3.: Illustration of the rendering equation. Figure retrieved from Contributors [2024]

where Lo(x, ωo) refers to the outgoing irradiance from position x to direction ωo. In the
context of rendering, this is the observed irradiance value or color when looking at the
surface at point x from direction ωo. Le(x, ωo) represent the emitted irradiance. In most
case where x is not a light source, the black body radiation can be ignored. The latter
term represent the reflected irradiance. Where

∫
H2 represent the hemisphere at point x.

fr(x, ωo, ωi) is the Bidirectional Reflectance Distribution Function (BRDF), which describes
how incoming light from direction ωi is reflected at the surface point x to direction ωo.
Li(x, ωi) is the incoming irradiance from direction ωi. cos θi is the cosine of the incident
angle of light from direction ωi at point x. An illustration of the equation is shown in 2.3.

In the case of solar irradiance simulation, what is of interest will be the specific term:∫
H2 Li(x, ωi) cos θidωi, the solar irradiance received at the point of interest x. However,

the deriviation of this term would further require a recursive calculation as each of Li(x, ωi)
is also derived from Lo(xi, ωi). The multibounce of light would indicate computation that
grows exponentially as seen in figure 2.4.
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2. Theories and Background

Figure 2.4.: The illustration of multi bouncing of light in the backward RT. Notice for each
intersection, a new set of rays need to be sampled to simulate the light reflection.

Instead of tracing rays that could grow exponentially to consider the indirect reflected or
diffused irradiance in the scene, there are other techniques to consider the global indirect
irradiance.

Photon mapping with irradiance caching Jensen et al. [2002] is a commonly used solution
for global irradiance computation. Photon mapping generally works as follows: First, rays
are cast from the light sources, the path of each ray will be traced. Once a ray hit a surface,
a hit record will be generated, representing a new light source. New rays will be shot
from the new light source. The iteration will continue, until the energy is absorbed or a
maximum depth is reached. With this photon mapping being constructed, when considering
the indirect irradiance received at the point of interest x, it is only necessary to do one
hemisphere sampling, for each ray in the hemisphere, the cloeset photon hit records will be
found and interpolated to obtain the corresponding irradiance. Photon mapping method
avoids the exponentialy growing rays that need to be traced when evaluating the irradiance
of a point of interest. However, in the scenario of solar irradiance modelling, the photon
mapping needs to be reconstructed each time the solar position changes, which makes this
method unsuitable for large-scale, long-term simulation.

Radiosity is another technique that is able to preserve the simulation of light bounces while
maintaining a manageable computation complexity. The method works according to follow-
ing equation:

L(x) = Le(x) + γre f l

∫
H2

Fx,yi L(yi)dωi (2.2)

where L(x) represent the radiosity of point x, Le(x) represent the self-emission, γre f l rep-
resent the albedo, and Fx,yi represent the form factor between points x and yi, and L(yi)
represent the radiosity of point yi. The function describes the outgoing irradiance from
point x is dependent on the outgoing irradiance of x’s visible patches and their geometric
relationship.
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2.3. Solar Irradiance Simulation

The form factor Fx,yi is defined as:

Fx,yi =
cos(x, yi)cos(yi)

πr2 (2.3)

where cos(x, yi) represents the angle away from the normal of x and the incoming direction
from yi, and cos(yi) represents the angle away from the normal of yi and the outgoing
direction from yi to x.

Discritizing equation (2.2), we can obtain:

L(x) = Le(x) + γre f l

n

∑ Fx,yi L(yi) (2.4)

Le is generally ignored or known, γre f l is known, Fx,yi is computable. For all the sample
points in the scene, we can obtain such equation. These equations forms a linear system that
can be solved.

Radiosity methods provide good inspirations as it also eliminates the need to trace rays that
will grow exponentially. But this method has not been adopted in large scale due to its
complexity and high-memory requirement.

The thesis proposed a method that has a similar spirit of Photon mapping and Radiosity, but
with more efficient computation techniques including aggregation, caching, lookup etc.

Figure 2.5.: Illustration of photon mapping technique. Figure retrieved from Komura [2013]

2.3. Solar Irradiance Simulation

It is essential to utilise a transition model based on meteorological data to analyse the solar
irradiance impacting tilted surfaces. This data provides measurements of solar irradiance
that reach the ground, which are expressed by equation (2.5) Loutzenhiser et al. [2007].

GHI = DHI + DNI · cos(θZ) (2.5)
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2. Theories and Background

Figure 2.6.: Solar irradiance components. Figure retrieved from Xu et al. [2024]

Global Horizontal Irradiance (GHI), Diffuse Horizontal Irradiance (DHI), Direct Normal Ir-
radiance (DNI) are key metrics recorded in weather data, essential for understanding solar
energy potential and distribution. GHI refers to the total solar irradiance received on a hor-
izontal surface, which includes both direct sunlight and scattered light from the sky. DHI
measures the irradiance from the sky, excluding direct sunlight, and is crucial for assessing
the potential for diffuse sky radiation to contribute to solar energy generation. DNI is the
irradiance received on the surface that is perpendicular to the sun’s rays and is a measure of
the direct beam solar energy. θZ represents the solar zenith angle. The diffuse components
are divided into sky and horizon figure 2.6. The general form of the transition model is
formulated as equation (2.6).

IS,β = IS,dir,β + IS,di f f ,β + IS,re f l,β (2.6)

Where IS,dir,β, IS,di f f ,β, IS,re f l,β represent the direct beam irradiance, sky diffuse irradiance,
and ground reflected irradiance. IS,β represent the total solar irradiance and β stands for
surface inclination. The determination of the direct beam solar irradiance is articulated as
equation (2.7).

IS,dir,β = Mshadow · DNI · cos δ (2.7)

Here, Mshadow represents the binary shadow mask and δ represent the angle between surface
normal and the solar vector.

Over the past several decades, there has been extensive research on estimating the diffuse
sky component of total solar irradiance Loutzenhiser et al. [2007]. Typically, these methods
involve analyzing the visible part of the sky. The level of detail considered in these analyses
necessitates different kinds of input data. In the thesis, Isotropic model Kamphuis et al. [2020]
will be adopted for sky diffuse solar irradiance. The isotropic model considers the sky as
a uniform source of diffuse radiation. The decision to adopt this model in the thesis is
primarily driven by its implementation simplicity, which is a critical factor given the study’s
emphasis on simulating reflective solar irradiance.

Moreover, the thesis acknowledges the dominant role of direct solar irradiance in contribut-
ing to the overall solar energy received under clear-sky conditions. Given these consider-
ations, the isotropic model has been selected to estimate sky-diffuse solar irradiance. The
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2.3. Solar Irradiance Simulation

isotropic model is chosen for its ability to provide a straightforward approach to accounting
for the diffuse components of solar irradiance that originate from the sky.

The diffuse components of solar irradiance in the isotropic model can be formulated by
equation (2.8).

IS,di f f ,β = DHI · SVF (2.8)

In most cases, SVF is simplified Heim and Knera [2021] as:

SVF =
1 + cos β

2
(2.9)

The reflective irradiance calculation methods can be categorised into two primary approaches:
simplified Ground View Factor (GVF) methods and RT methods. GVF-based methods assess
the reflective solar irradiance from surrounding objects by a straightforward calculation.
That is achieved by multiplying the global horizontal irradiance by the GVF and a prede-
termined albedo value. The GVF plays a pivotal role in various solar irradiance estimation
models, including the Perez Perez et al. [1990] and isotropic models. These models are
typically represented as follows:

GVF =
1− cos β

2
(2.10)

Where θ is the surface inclination. This estimation oversimplifies the surrounding envi-
ronment, ignoring shading behavior and surface types. In this case, the resulting ground
reflected solar irradiance will be:

IS,re f l,β = GHI · γre f l · GVF (2.11)

Where γre f l represents the albedo.

For RT based methods, the reflected solar irradiance is determined by tracing rays in the
hemisphere as illustrated in Equation equation (2.1):

IS,re f l,β =
∫

H2
Li(x, ωi) cos θidωi (2.12)

Although importance sampling Bako et al. [2019] can reduce the number of rays need to
be traced will still grow exponentially with the number of bounces the calculation will
consider.
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3. Related work

Over the past decades, researchers have investigated methods for calculating solar irradi-
ance while considering the surrounding environment. These methods can be categorized
as view-shed based methods, pixel counting methods, ray-tracing methods, and empirical
methods.

3.1. Viewshed-based methods

The viewshed method simulates the view from the perspective of a shadow-receiving posi-
tion. The general workflow involves sampling rays from a hemisphere originating at the test
position. Each ray undergoes an intersection test, producing a viewshed map representing
the test point’s surroundings which support the solar irradiance calculations. Direct solar
irradiance is determined by projecting the sun’s location onto the viewshed map; if the solar
position overlaps with surrounding objects, the direct beam solar irradiation is masked out.
Diffuse solar irradiance is calculated based on the visible sky patch in the viewshed.

Fu and Rich Fu and Rich [1999] developed one of the first viewshed-based methods. Their
approach involves generating a viewshed map and a sun map that plots the sun’s locations
in the same hemispheric coordinate system. The overlay of the sunmap and the viewshed
map supports solar irradiance calculations. However, this method only supports 2.5D digital
elevation model (DEM) with limited resolution. Subsequent research has focused on optimiz-
ing computation through GPU acceleration Tabik et al. [2013]; Stendardo et al. [2020], voxel
octree data structures Liang and Gong [2017], and data pyramids Oh and Park [2018].

Novel methods for deriving viewsheds with 3D data, such as fisheye image rendering Liang
et al. [2020], have also been proposed. While most models can consider diffuse and reflective
components due to the embedded surroundings and sky patches in the viewshed map, they
do so in a simplified manner. Furthermore, most methods cannot handle 3D data with high
levels of detail (LoD2 or above), and computational requirements and the availability of 3D
environmental data often limit the resolution of viewsheds.
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(a) The scene (b) The resulting viewshed

Figure 3.1.: Illustration of viewshed-based method. Figure retrieved from Calcabrini [2023]

3.2. Pixel counting methods

Pixel counting methods leverage modern rendering engines that utilize GPU acceleration.
These methods involve rendering images of areas of interest and recording the pixel values
of the planes of interest. By validating with ground measurements, a mapping function
between pixel values and solar irradiation can be derived, enabling accurate predictions
of solar irradiation. Modern rendering engines, designed with physically based rendering
principles, can simulate the physical behavior of light, including diffusion and reflection,
providing accurate results Hegazy et al. [2021]; Ward [1994]. However, these methods can be
computationally intensive due to the exponential growth of ray path tracing from diffusion,
and the need to render new images each time lighting conditions change Andres et al.
[2023].

Recent rendering engines like Unreal Engine Epic Games [2023] and Unity Unity Technolo-
gies [2023] are designed for photo-realistic real-time rendering, showing great potential for
simulating solar irradiance at a city scale. However, since they are optimized for visualiza-
tion, sample values on surfaces must be manually extracted after rendering Meines [2023].
Additionally, these sample values are deeply coupled with the defined surface material
and light source properties. For urban-scale simulations with high temporal resolution, the
manual effort required to account for extraterrestrial irradiance changes, camera position
settings, and the lack of surface material information make rendering engines unsuitable for
most users.
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3.3. Ray Tracing based methods

Figure 3.2.: Illustration of pixel counting method. Figure retrieved from Meines [2023]

3.3. Ray Tracing based methods

RT methods determine solar irradiation by casting ray vectors, and they can be categorized
into two types: forward RT and backward RT. Forward RT involves casting rays directly from
the solar position, but this approach is often considered inefficient because many rays do
not intersect with the plane of interest, leading to redundant computations Arias-Rosales
and LeDuc [2022]. Backward RT is more commonly used as it casts rays originating from
the plane of interest toward the sun followed by tests for intersections with objects. The
intersection results directly affect the calculation of direct beam solar irradiance.

The SORAM model is a RT-based solar irradiance calculation method that utilizes 3D city
models. For a given point of interest, hemispheric sampling is applied, and energy is accu-
mulated for each sampled ray. However, the 3D models are limited to box representations,
and the diffuse and reflected solar irradiance from the surroundings are excluded from the
calculations Erdélyi et al. [2014]. Wieland et al. developed one of the first models to use
semantic 3D city models, employing RT methods to account for more complex urban envi-
ronments Wieland et al. [2015]. In this model, a single ray is cast from the point of interest
toward the sun, ignoring the reflected component and simplifying the calculation of the dif-
fuse component without considering the surrounding environment. SURFSUN3D is another
model that applies RT to account for shadowing effects in solar irradiance computation. To
reduce computation, it employs view-frustum culling and radius culling methods to de-
crease the number of ray-object intersection tests. However, the model also disregards the
reflected and diffuse components from surrounding objects, directly computing these com-
ponents using the r.sun model Liang et al. [2014, 2015]. To minimize redundant ray-object
intersections, various techniques such as solar azimuth filtering, nightside filtering Wang
et al. [2023], semantic bounding volume hierarchy Jaillot et al. [2017], and bounding volume
hierarchy Xu et al. [2023] have been employed. These methods enable fast and accurate de-
termination of direct beam irradiance but make little consideration for reflected and diffuse
irradiance.

Essentially, viewshed-based methods and pixel-counting methods are also RT-based meth-
ods. The difference is that viewshed methods precompute a viewshed map while ray-tracing
methods determine shadowing effects on the fly. Pixel-counting methods are indirect, sam-
pling values from rendered images, whereas RT methods provide direct results.
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Figure 3.3.: Illustration of RT method. Figure retrieved from Andres et al. [2023]

3.4. Empirical Methods

Empirical methods predict solar irradiance based on historical data, often supplemented by
external parameters. One of the earliest models is the Perez model Perez et al. [1987], which
uses coefficients derived from historical data, combined with surface inclination and orien-
tation, to generate predictions. Other models in this category include the Hay and Davies
model Hay [1993], the Klucher model Klucher [1979], and the Reindl model Reindl et al.
[1990a,b]. These methods rely on empirical equations to convert weather data into solar
irradiance estimates for specific surfaces. While they offer good generalizability, their sim-
plifications and broad applicability can lead to significant deviations from reality in specific
locations.

In recent years, advancements in machine learning techniques, particularly RNN and LSTM
networks, have significantly improved solar irradiance prediction Nielsen et al. [2021]; Gneit-
ing et al. [2023]; Tercha et al. [2024]. These deep learning models eliminate the need for
manual feature engineering or empirical equation derivation, relying primarily on historical
data for training, and sometimes incorporating satellite imagery. While these models can
achieve high accuracy for short-term forecasts, they lack the ability to sense or account for
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3D environmental factors. Consequently, for new surfaces or varying climate conditions, ad-
ditional historical data must be collected, and the models need to be retrained. As a result,
existing empirical methods either lack precision for specific surfaces or lose generalizability
across different scenarios.

3.5. Solar Irradiance Simulation with 3D City Models

In the methods discussed above, the input data formats are not standardized, ranging from
DEM, meshes, and fisheye images to environmental representations with undefined data
models. This heterogeneity in data types makes the methods and their results difficult to
reproduce, especially when data models lack detailed specifications.

An increasing number of studies are turning to standardized 3DCM models, such as CityGML,
for input data. The required information for accurate solar irradiance analysis can be de-
rived from semantic 3DCM models, as highlighted by Agugiaro et al. [2020]. These models
enable the extraction of detailed information about urban environments, including build-
ings, terrain, and vegetation, which is essential for accurately determining solar irradiance
on any surface.

Several studies have developed solar irradiance simulation tools based on 3DCM. One of
the earliest tools is SimStat Rodrı́guez et al. [2017], which provide functionalities to evaluate
solar energy potential using 3DCM. However, SimStat does not explicitly model the shading
effects from surrounding objects, the visible sky, or reflected solar irradiance. Instead, it ap-
plies a reduction coefficient to simulate shading effects. Similarly, CitySim is a software that
offers a solar potential simulation tool Walter and Kämpf [2015]; Giannelli [2021]; Giannelli
et al. [2022].

Wieland et al. introduced one of the first methodologies that utilize 3DCMç while accounting
for precise shading effects Wieland et al. [2015]. Their method uses the PostGIS function
“ST 3DIntersects” PostGIS [2024] to calculate shadowing. However, this function can only
test intersections between a single sun ray and a single geometry, requiring the model to
exhaustively traverse through all geometries for each ray, resulting in computational com-
plexity that scales quadratically with the size of the scene. Additionally, their method does
not model the sky diffuse component in detail.

Hurkmans improved the ray-object intersection tests by incorporating an R-tree data struc-
ture, which accelerates the process Hurkmans [2022]. However, the R-tree is two-dimensional
and only filters neighboring buildings. This limitation introduces errors in environments
with significant elevation changes, such as urban areas with high-rise buildings or moun-
tainous regions. In addition, Hurkmans’ study does not consider the sky’s diffuse and
reflective components.

It is important to note that, although existing models are integrated with 3DCM, they do
not fully exploit the detailed geometry and semantics available for comprehensive solar
irradiance computation. Simplifications are often made, not due to a lack of geometric
or semantic data, but to avoid the excessive computational demands imposed by current
simulation methods, which are not optimized for city-scale, high-resolution simulations.
This highlights the need for new methods that can fully leverage 3DCM datasets and modern
computational power to enable realistic, city-scale solar irradiance simulations at a high
resolution.
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4. Methodology

The methodology consists of four key components: Point Grid Generation, Viewshed Calcu-
lation, Shadow Calculation, and Solar Irradiance Calculation, as illustrated in Figure 4.1.

First, in Point Grid Generation, points are sampled on the surfaces of the 3D city model to
form a grid of samples representing the points of interest.

Next, Viewshed Calculation generates a viewshed for each sample point, representing the
3D environment surrounding it. This step captures the visibility of the surroundings from
each point.

In the Shadow Calculation step, the shadow effect is simulated for each sample point at
different time steps, creating a binary mask to indicate whether a point is in shadow or
sunlight at any given time.

Finally, the Solar Irradiance Calculation be applied to transport the weather data to actual
irradiance received at each sample points, taking into account the viewshed and shading
effects determined in the previous steps.

The details of these steps will be discussed in the following subsections.
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Figure 4.1.: The workflow diagram of the methodology
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4.1. Point Grid Generation

4.1. Point Grid Generation

This step aims to create a set of samples that can describe the scene’s solar access. Therefore,
it is necessary to sample points on the scene surfaces. In the case of 3DCM, their triangulated
geometry is used for simplicity. Three main strategies for uniformly sampling points on
triangle meshes are probability distribution function Probability Distribution Function (PDF)
based, projection-based, and recursive splitting methods.

In this work, we adopt the recursive splitting method. In city-scale simulation, the number
of samples must be manageable. In the solar irradiance simulation, the number of points
generated using a PDF-based approach may be too small to ensure uniform distribution
across the triangle mesh. For the projection-based method, each triangle in 3D space must
be projected onto its underlying plane; then a uniform grid needs to be constructed on the
plane, followed by constructing a uniform grid on the plane and checking whether each
point lies within the triangle. However, this method may not provide holistic coverage,
particularly near acute angles of the triangle.

We use the recursive splitting method to address these limitations, which is better suited
for city-scale solar irradiance simulations. This method calculates the number of splits re-
quired to achieve the desired sampling density. For each split level, we split the triangle
by connecting the three midpoints on the three edges. The centroid of each new triangle is
then computed and used as a sample point. The algorithm is described in algorithm 4.1 and
figure 4.4. It is important to note that due to the splitting process, the density of sampled
points is not perfectly uniform across the study area. For example, if a triangle has an area
of 16 m2 and the sampling density is 4 m2, one split is required. However, for a triangle
with an area of 18 m2, two splits are necessary. This can result in triangles with similar areas
having significantly different numbers of sampled points. Despite this, the sampling density
generally ensures even coverage across arbitrary triangles.

A comparison of sampling methods is shown in figure 4.2. In the experiment of the thesis, a
typical scenario involves a triangle with an area smaller than 20 m2, as indicated in figure 4.3,
where a sampling density of 4 m2 per point is required, leading to around five sample points.
It can be observed that the recursive splitting method provides better stability and coverage
of the entire triangle. In contrast, grid sampling places points near the edges, and the
randomness of PDF sampling can lead to poor coverage.
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(a) Grid sampling (b) PDF sampling (c) Split sampling

Figure 4.2.: Comparison of the three sampling methods

(a) Heino weather station dataset (b) TU Delft dataset

Figure 4.3.: The surface area distribution of the study areas in the thesis
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Algorithm 4.1: Algorithm to Calculate Grid Points and Mass Centers in a Delau-
nay Tetrahedralization

Input: Triangle meshes (meshes), maximum recursion depth (max depth), the area
represented by each sample point (sτ)

Output: A list of grid points (P)
1 foreach triangle ∈ meshes do
2 depth← 0;
3 p← (triangle.A + triangle.B + triangle.C)/3;
4 append(P, p);
5 s← calculate area(triangle);

6 num split← log3

(
2×s

density + 1
)

;

7 depth← depth + 1;
8 if num split > 0 and depth < max depth then
9 split the triangle into three new triangles new triangles by connecting p and

the three vertices;
10 foreach new triangle ∈ new triangles do
11 loop back to step 3

12 else
13 terminate the recursion;

14 return P

Figure 4.4.: The triangle splitting process for grid point sampling 23
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4.2. Shadow Calculation

This step will calculate the shadowing effect essential for direct beam solar irradiance. The
solar positions of the desired calculation times are first obtained. For each sample point, a
ray that is originating from the point, pointing towards the sun will be traced as illustrated
in figure 4.5. The result for each point and at each timestep will be stored as binary values,
where 1 indicates the point is not shadowed, and 0 indicates it is in shadow. This binary
mask will be applied to the direct beam solar irradiance to account for the shading effect of
the surroundings.

The ray-object intersection test is at the core of shadow calculation, similar to the one used in
viewshed calculation. Previous methods, such as radius culling, view-frustum culling, and
nightside culling, have been employed to reduce the number of intersection tests required.
However, even with these optimizations, the number of mesh surfaces to test remains signifi-
cant, and these simplifications may introduce errors in complex environments, such as areas
with high-rise buildings or mountainous terrain. Here we adopt the BVH strategy in Xu et al.
[2023] reduces the time complexity of the intersection tests from O(NM) to O(Nlog(M)),
making the shadow calculation process more efficient without sacrificing accuracy.

Figure 4.5.: Illustration of shadow calculation based on ray-object intersection test

24



4.3. Viewshed Calculation

⁞ ⁞ ⁞ 

⁞ 

Figure 4.6.: Illustration of the BVH accleration structure

4.3. Viewshed Calculation

Viewshed calculation plays a crucial role in determining both sky diffuse irradiance and
reflective irradiance. In this step, a hemisphere of rays is sampled from each grid point,
with the direction of the hemisphere aligned with the orientation of the underlying mesh.
Each ray is then traced, and the results are stored in a vector. If a ray hits an object, the
closest hit object and its position are recorded. Based on this hit position, the voxel ID that
encloses the location is stored. Additionally, the incident angle of the ray relative to the
voxel is also saved.

This process is detailed in algorithm 4.2 and figure 4.7a. With the ray tracing result stored
as an vector with shape (N, M), where N represent N azimuth steps and M represent M
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4. Methodology

elevation steps, the SVF can be computed. The resulting vector is also used for reflective
irradiance calculations and can be reused for different solar positions.

(a) The scene

(b) The resulting vector

Figure 4.7.: Hemisphere Sampling

4.4. Direct and Sky Diffuse Irradiance calculation

The direct beam component of the solar irradiance are calculated according to equation (2.7).
The sky diffuse component of solar irradiance are calculated according to the isotropic model
as illustrated in equation (2.8). But instead of using the simplified SVF and GVF calculation
method described in equation (2.9) and equation (2.10), we calculate them while tracing the
hemiphere sampled rays.
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Algorithm 4.2: Hemisphere Viewshed Rendering
Input: Grid point p, azimuth resolution ra, elevation resolution re, 3D City model

Mesh
Output: Semantic Viewshed map M

1 number of azimuth steps nazimuth = 360/ra;
2 number of elevation steps nelevation = 90/re;
3 foreach i, j ∈ nazimuth, nelevation do
4 Raydir = p.normal + i · ra + j · elevation;
5 hit = Trace(Raydir);
6 if hit then
7 find closest hit location X;
8 find enclosing voxel Voxel of X;
9 M[i][j] = Voxel.id

10 else
11 M[i][j] = UINT32 MAX

12 return M

SVF =
1
π

∫
H2

f (ωi)dωi ≈
1
π

N

∑
i=1

f (ωi) cos θi∆ωi (4.1)

GVF = 1− SVF (4.2)

Where:

• N is the number of samples in the hemisphere

• ωi is the ith sampling direction

• f (ωi) is an indicator function, determining whether direction ωi is visible to the sky.
f (ωi) = 1 if direction ωi is visible to the sky. f (ωi) = 0 if direction ωi is not visible to
the sky.

• cos θi represent the cosine value of the angle between ωi and the surface normal.

• ∆ωi is the direction weights. In the case, the weight is 2π/N

4.5. Iterative Global Reflective Irradiance Calculation based
on Semantic Viewshed and Scene Voxelization

In this step, a method is proposed for simulating the reflective solar irradiance of the
surroundings. The proposed approach, Iterative Global Reflective Irradiance Calculation
Based on Semantic Viewshed and Scene Voxelization, optimizes irradiance calculations us-
ing cached semantic viewsheds and a voxelized irradiance field. The core of this method
is to use cached semantic viewshed and voxelized scene irradiance field to eliminate the

27
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need to trace rays that grow exponentially with the number of bounces. In this method, the
computation complexity will be linear to the number of bounces rather than exponentially.

The methodology is outlined as follows. To prevent the exponential growth of calculations,
this method does not trace the bounces of each ray within the sampling hemisphere. First,
for each grid point sampled, the shading effect and SVF are computed to determine the initial
direct beam irradiance and sky diffuse irradiance.

Next, the scene is voxelized to aggregate the irradiance values from the grid points into
voxels. Reflective solar irradiance is treated as a low-frequency signal Marques and Santos
[2010], meaning using voxels to represent the 3D irradiance distribution of the scene is an
efficient approach, particularly for reflective irradiance from urban objects.

For each grid point, rays are sampled within a hemisphere to gather surrounding informa-
tion, storing the voxel identifier of the hit surface for each ray to form a viewshed. The
solar irradiance from the identified voxels is then propagated to the grid point from each
hemisphere’s rays, completing the first bounce of solar rays. In subsequent iterations, repre-
senting additional bounces, voxel irradiance values will be first updated (voxelization in the
previous step) based on the grid point irradiance, followed by another propagation step.

This iterative process ensures that reflective irradiance is calculated efficiently without the
need for complex ray-tracing algorithms, maintaining manageable computational loads even
with the number of bounces increases.

4.5.1. Semantic Scene Voxelization

This step involves aggregating the previously calculated direct beam and sky diffuse solar
irradiance through voxelization to create a light field within the scene, as illustrated in
figure 4.8. Therefore, instead of tracing the bounces of rays, the reflective irradiance from
urban objects is treated as irradiance emitted from the voxels.

Here we consider the voxel as an anisotropic emissive object. And the emissive intensity for
each direction is dependent on the actual irradiance sources i.e., the grid points within the
voxel. The emissivity of the voxel can be descibed in:

Iout,ωi =
∑ max(0, Ip · cos(p.normal, ωi)) · γre f l

∑ I(cos(p.normal, ωi) > 0)
(4.3)

Where:

• Iout,ωi represents the outoging irradiance of the voxel to direction ωi

• Ip represents the irradiance value of the grid point that is within the voxel

• p.normal is the normal of the grid point

• γre f l is the albedo value of the grid point’s underlying surface material

• I is an indicator function. If x > 0, then I(x) = 1, I(x) = 0 otherwise
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In equation (4.3), A irradiance source could have infinite number of emissive directions (ωi),
but for computation efficiency and implementation simplicity, here we choose to use only
six directions: up, down, left, right, front, back, which is coherent to the voxel representa-
tion of the scene (as shown in figure 4.8 and figure 4.9). The method is also described in
algorithm 4.3.

To better illustrate the process. The example in figure 4.8 is given here: Consider there are
two grid points inside the voxel, and they have normal vector (not normalized) (1, 1, 1) and
(−1,−1, 1), and intensity values 50 and 30. Then the intensity values for the voxel faces:

Face up = (cosine(normalize((1, 1, 1)), (0, 0, 1)) · 50 + cosine(normalize((−1,−1, 1)), (0, 0, 1)) · 30)/2
= (0.577 · 50 + 0.577 · 30)/2
= 23.094

Face down = 0

Face le f t = cosine(normalize((−1,−1, 1)), (−1, 0, 0)) · 30
= 0.577 · 30
= 17.32

Face right = cosine(normalize((1, 1, 1)), (1, 0, 0)) · 50
= 0.577 · 50
= 28.868

Face f ront = cosine(normalize((−1,−1, 1)), (0,−1, 0)) · 30
= 0.577 · 30
= 17.32

Face back = cosine(normalize((1, 1, 1)), (0, 1, 0)) · 30
= 0.577 · 50
= 28.868
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Figure 4.8.: Voxelization of the scene
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(-1,-1,1), 30
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17.32

17.32
Voxel Data Aggregation

Figure 4.9.: Semantic Voxel

4.5.2. Iterative Irradiance propagation

We can begin simulating reflective solar irradiance with the voxelized irradiance field and
the viewshed map for each grid point being constructed. We reference all the ”pixels” in
the stored viewshed map for each grid point, where the voxel ID and the incident angle
towards the voxel are recorded. Using this information, we identify the three faces of the
voxel visible to the pixel.

By calculating the cosine of the incident angle between the ray and the surface normals
of the three visible faces, the cosine of the ray direction and the surface normal of the grid
point, and multiplying them by the irradiance intensities of these faces, we can determine the
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Algorithm 4.3: Voxelization
Input: Grid Points with initial irradiance values (Grid), a predefined space of

voxels of the scene (V)
Output: Voxels with aggregated Irradiance (VI)

1 foreach Voxel ∈ VI do
2 Find grid points PinsideVoxel inside Voxel;
3 foreach f ace ∈ Voxel. f aces do
4 Find grid points PvisibleFromFace where cosine(dp, d f ace > 0);

5 VI [ f ace] =
∑p∈PvisibleFromFace

(p.albedo·p.irradiance·cosine(θp, f ace))

|PvisibleFromFace |
;

6 return VI

amount of irradiance transferred from the voxel to the grid point (as shown in figure 4.10).
The computation follows:

Ip =
2π ·∑

npixels
pixel ∑

n f aces
f ace max(0, Iout, f ace · cos(raydir, f ace.normal) · cos(raydir, p.normal))

npixels
(4.4)

Where

• npixels represent the number of pixels in the viewshed

• n f aces = 6

• Iout, f ace represent the outgoing irradiance of the corresponding voxel face for current
pixel

• raydir represent the corresponding ray direction of the pixel in the viewshed (Viewshed
is generated by sampling a hemisphere or rays).

The detailed process is described in algorithm 4.4
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(a) The ray incident to the voxel

(b) Updating the grid point irradiance by finding visible voxels according to the
viewshed

Figure 4.10.: Illustration of the irradiance propagation process
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Algorithm 4.4: voxel propagation
Input: Grid point with irradiance value p, index map storing the hemisphere

sampling result for the grid point (M), Voxels with aggregated Irradiance
(VI)

Output: Grid point with updated irradiance values (pupdated)

1 foreach index ∈ M do
2 Relevant voxel Voxel = VI [index];
3 foreach f ace ∈ Voxel. f aces do
4 if cosine(θ f ace,ray > 0) then
5 p.irradiance += Voxel[ f ace] · cosine(θ f ace,ray) ∗ ·cosine(p.normal, ray)
6 else
7 continue

8 ;

9 pupdated = 2π · p/M.length return pupdated

The above computation accounts for a single bounce of light. If multiple bounces are re-
quired, further iterations of semantic scene voxelization (section 4.5.1), and iterative irradi-
ance propagation (section 4.5.2) can be applied to simulate additional light interactions.
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5. Implementation

The method has been implemented using both C++ and Python. This chapter is divided into
three sections that cover the following components: section 5.1 Input and Data Processing,
section 5.2 Shadow Calculation and Viewshed Calculation with Nvidia Optix API Nvidia
[2024], and section 5.3 Semantic Scene Voxelization and Iterative radiance Propagation. C++
and Nvidia Optix are primarily used for the first part, while Python is employed for the
subsequent sections.

The schematic representation of the method’s implementation is depicted in Figure 5.1. This
figure delineates the physical configuration of the deployed functions, elucidating the inter-
device data interactions and the flow dynamics. It can be noted that data is either directly
accessed from the memory or indirectly, via memory mapping from the hard drive. The
computational tasks and resource loading are strategically distributed across the Central
Processing Unit (CPU) and Graphics Processing Unit (GPU), respectively. This judicious dis-
tribution, which leverages the computational prowess of both the CPU and GPU, has facil-
itated a harmonious balance among implementation simplicity, operational efficiency, and
code legibility.
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Figure 5.1.: The implementation overview

5.1. Input and Data Processing

The input to the program is a triangulated 3D City Model that adheres to the OGC CityGML
standards. Since the triangle mesh representation of the geometry is optimal for ray tracing,
the input 3DCM must be triangulated. This triangulation is performed using FME.

The simulation considers three types of city objects: Buildings, Terrain, and Vegetation. The
geometry for buildings and terrain is stored explicitly, while vegetation is represented as
implicit geometry. Each vegetation object is instantiated according to its geometry template
and transformation matrix.

To maintain a link between the sampled grid points and the input 3DCM, each triangle
surface in the scene is assigned a unique identifier, which is inherited by the sampled grid
points from that surface.
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5.2. Shadow Calculation and Viewshed Calculation with
Nvidia Optix Ray Tracing Engine

The Nvidia Optix Ray Tracing Engine leverages RT cores on Nvidia GPUs, alongside Compute
Unified Device Architecture (CUDA) programming, to enable hardware-accelerated RT. Al-
though ray tracing is typically associated with rendering, it is well-suited for simulating
light behaviour for radiance calculations in solar iradiance simulations. Nvidia Optix offers
several key advantages:

GPU Optimization The Optix Ray Tracing Engine is optimized for GPU usage, utilizing
dedicated RT cores to achieve hardware-level acceleration.

Programmability The ray tracing pipeline is customizable, allowing flexible program de-
sign. The API offers a straightforward programming model using C++.

Built-in Geometry Acceleration Structures Optix provides built-in acceleration structures
like BVH to optimize ray-object intersection searches within the scene’s geometric data.

The general structure of Optix Ray Tracing programs are illustrated in figure 5.2. The pro-
gram will start with Ray Generation. Next, for generated rays, the scene objects will be
traversed for ray-object intersection test to be applied. And based on the intersection result,
there will be user defined Miss programs, Closest Hit programs, and Any Hit programs.

Figure 5.2.: The optix program structure. Figure retrieved from Parker et al. [2018]

For shadow calculation, rays are generated at each time step, with the sampled points on the
triangle meshes serving as the ray origins. The rays are directed towards the sun for each
time step. In this specific application, we are only interested in a binary result—whether the
ray hits an object or not—so the program uses Miss and Any Hit programs.

For semantic viewshed calculation, a hemisphere of rays is generated from each sample
point for viewshed rendering. In this application, both the Miss and Closest Hit programs
are implemented as described in algorithm 4.2.
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The semantic viewshed for each grid point is stored on the hard drive, allowing the reuse
of ray tracing results for different solar positions. The data is stored as a flattened multi-
dimensional array, where the dimensions represent grid points, azimuth, elevation, and
voxel face indices. To avoid redundant computations, the cosine of the angle between the
ray and the voxel’s faces is cosine(θ f ace,ray) precomputed. The structure of the array is as
follows:

Array[Grid Point Index][Azimuth Index][Elevation Index][Face Index] = cosine(θ f ace,ray)

The flattened array is indexed as:

Index 1d = Face Index + 6 · (Elevation Index + n elev · (Azimuth Index+
n azi · Grid Point Index))

Array[Index 1d] = cosine(θ f ace,ray)

The resulting file can be huge (approximately 20-200 GB depending on the resolution and the
scale of the study area) in binary format, making loading entirely into memory on most com-
puters impractical. Although compression can reduce file size, it introduces extra overhead
for decompression. Instead, memory-mapped files are used to read the data in a streaming
manner, which minimizes memory usage while maintaining Input/Output efficiency.

5.3. Irradiance calculation

For implementation simplicity, this step is mainly accomplished with Python programming
language, with open-source libraries such as Numpy, Pandas.

First, the grid point and shadowing information is processed to calculate the initial direct so-
lar and sky diffuse irradiance. The scene is then voxelized based on the grid points with irra-
diance values. Following this, iterative irradiance propagation, as described in section 4.5.2,
is applied using Numpy functions. Numpy’s array operations and broadcasting features
enable efficient parallel computing, which improved both the readability and performance
of the code.
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Experiments were conducted to validate the accuracy of the developed methods and assess
their scalability for city-scale simulations. All experiments were performed on a laptop
equipped with a 12th Gen Intel(R) Core(TM) i7-12700H CPU 2.70 GHz, 32GB of RAM, and
an NVIDIA GeForce RTX 3070 Laptop GPU.

6.1. Validation

To substantiate the effectiveness of the proposed method for solar irradiance computation,
an ideal validation strategy involves a direct comparison of the estimated solar irradiance
values with those obtained from ground-based measurements. While validation against
ground measurements is optimal, it necessitates the availability of both a comprehensive
3D model of the experimental setting and corresponding sensor recordings captured by
pyranometers. The majority of existing open-source datasets for solar irradiance simulation
primarily provide tabular data for sensor readings, which do not encompass the detailed
spatial information required for thorough validation.

An alternative validation approach involves correlating the estimated results with outputs
from other established simulation software, as exemplified in Xu et al. [2024]; Giannelli
[2021]. In scenarios where such measurements are lacking, the existing solar irradiance
computation methods can provide a reference. However, in the case when their model fails
to predict the solar irradiance in the specific settings of our experiment, this evaluation can
be erroneous.

In this thesis, the primary validation method is selected due to the availability of two datasets
that include ground truth measurements, namely the Koninklijk Nederlands Meteorologisch
Instituut (KNMI) Weather Station dataset and the TUDelft dataset. These datasets, which
feature both 3DCM and pyranometer recordings, are instrumental in ensuring the robust-
ness of the validation process. The datasets are further elaborated upon in the subsequent
sections.

6.1.1. Heino KNMI Weather Station Dataset

The KNMI is the Royal Dutch Meteorological Institute, with nationwide weather stations.
KNMI [2024]. It provides historical weather recordings from 1951 to now at hourly inter-
vals. The dataset contains recordings of the solar irradiation, including GHI, DNI, DHI. This
climate data is available in text files, and it does not include a 3DCM of the weather sta-
tion and its surroundings. Therefore, the 3D Geoinformation Group prepared a CityGML
v2.0-compliant dataset.
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Dataset Overview

The details of the dataset are presented in table 6.1. The study area is in Heino. The
geographic coordinates of the weather station are 52.43°and 6.26°. Weather data are available
as epw files, which provide typical year values for solar irradiance simulation. In addition,
there are also historical values available for download from 1991 up to now. The screenshot
of the study area is presented in figure 6.1. It can be observed that the area that surrounds
the weather station is open space. Moreover, the only potential occluding object is a tree.
It is expected that the reflective solar irradiance will not contribute a significant portion to
the total solar irradiance. However, this dataset is still valuable for validating the direct and
diffuse solar irradiance computation.

Attribute Value
Geographic center 52.43, 6.26
Spatial extent 2665 * 2665 * 17
#Buildings/#Faces 272/29409
#Trees/#Faces 3950/94800
#Terrain/#Faces 121/86020
#Total faces 210229
#Sample points 1539022

Table 6.1.: KNMI dataset details

(a) Overview of Heino dataset (b) Zoomed in view of Heino
dataset

(c) Satellite image of Heino.
The weather station is labelled
with a red square

Figure 6.1.: Heino Weather Station
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Experiment Settings

A total of four days were simulated and compared for the Heino weather station dataset:
March 21st, June 21st, September 22nd, and December 22nd. Simulations were conducted
at hourly intervals, which is the highest time resolution available from the EPW file. For
each simulation, scenarios with 0, 1, and 2 light bounces were considered. Additionally, two
simplified scenarios were used as baselines for comparison.

In Setting 1, both the sky diffuse and ground reflected components of solar irradiance were
calculated without accounting for the occluding effects of the surroundings, as described
in equation (2.9) and equation (2.10). In Setting 2, the ground reflected component was
calculated without tracing ray-object interactions in the scene, using a global albedo value
as shown in equation (2.11). However, in this scenario, the SVF and GVF are still calculated
with consideration of the actual surrounding environment, as indicated in equation (4.1)
and equation (4.2).

For surface albedo, referring to Google Maps satellite images and the ECOSTRESS Spectral
Library, the following albedo values were used for each type of surface:

Surface Type Materials Albedo
WallSurface White paint; Grey Paint; Reddish Brown Paint; Brick 0.4
RoofSurface Solar Panels; Red Tiles 0.1
Terrain Asphalt; Bare Soil; Grass; Water 0.2
Tree Tree Crowns 0.3

Table 6.2.: Surface types, materials, and albedo values for Heino dataset

6.1.2. TU Delft Dataset

Dataset Overview

The second dataset was created using data collected by the Photovoltaic Materials and De-
vices (PVMD) group at Delft University of Technology Group [2024]. In their previous work,
the group collected solar irradiance measurements on top of a building on the TU Delft cam-
pus, along with a 3D model of the surrounding environment Andres et al. [2023]; Calcabrini
[2023]. A total of 82805 records, at minute intervals, from 2020 August 19 to 2021 February 4,
were collected. The 3D city model created from their raw data is illustrated in Figure 6.2.

Four sensors were deployed: A Kipp & Zonen SOLYS2 sun tracker equipped with a SMP 21
pyranometer and a SHP1 pyrheliometer was used to measure the DHI and the DNI, respec-
tively. A monocrystalline ISET sensor (IKS Photovoltaik) facing south and tilted 30 degrees
(S1); a SMP10 thermopile pyranometer (Kipp & Zonen) facing 65 degrees east of north and
tilted 90 degrees (S2); and a MS-700 spectroradiometer (EKO Instruments) mounted hori-
zontally (S3). Since the thesis does not require spectral data, the measurements from sensor
S3 are not used.

41



6. Experiment and Results

Attribute Value
Geographic center 52.6, 4.23
Spatial extent 1174 * 1178 * 99
#Buildings/#Faces 1114/99738
#Trees/#Faces 3/153
#Terrain/#Faces 20/964403
#Total faces 1064294
#Sample points 889500

Table 6.3.: TUD dataset details

Figure 6.2.: screenshot of the TU Delft weather station dataset generated from PVMD group
data Andres et al. [2023]

Figure 6.3.: TU Delft weather station sensors, screenshot PVMD
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Dataset Preparation

The 3D model provided by the PVMD group was in 3dm format, and it included the geome-
tries of the target building, sensors, surrounding buildings, and trees. Upon manual inspec-
tion, the target building model was found to be at LoD3, while the surrounding buildings
were mostly at LoD1. Additionally, the dataset included only a plain terrain representation
of the area.

To prepare the dataset for use, the 3dm file is first converted to wavefront OBJ format, which
is more convenient for reading and editing without relying on closed-source software. Next,
the geometry of the sensors and the LoD3 building adjacent to them was extracted. This
also included an adjacent building that was not present in the 3D BAG dataset to ensure
that the 3D city model aligned with the scene as it existed during data collection. The
extracted geometries were then manually reoriented to correct any reversed orientations in
the triangle meshes that could affect the computation.

Afterwards, any overlapping buildings from the 3D BAG dataset were removed. The final
step involved merging the extracted triangle mesh, the 3D BAG dataset, and the terrain to
create the complete 3DCM of the scene. This process resulted in a model containing one LoD3
building adjacent to the sensors and other surrounding LoD2 buildings, trees, and terrain.

The screenshot of the PVMD group data, the 3D BAG data, and the final merged data are
illustrated in Figure 6.13b and 6.14. From Figure 6.13b, it can be observed that the 3D
model of the PVMD group data features a high level of detail (LoD3) near the sensors, with
the detail decreasing to LoD1 for the other buildings. The PVMD dataset does not include
realistic terrain data. In addition, there are no buildings on the south side of the sensors
included. These characteristics impede the consideration of global reflective irradiance in
the scene.

Experiment Settings

A total of seven days are spent simulating and comparing the TUDelft dataset. They are 2020
Aug 20, 2020 Sept 1st, 2020 Oct 1st, 2020 Nov 1st, 2020 Dec 1st, 2021 Jan 1st, and 2021 Feb
1st. Simulations are completed at 10-minute time intervals. For each simulation, we consider
the situation with 0, 1, and 2 times the bounces of the light—the two additional simplified
baseline settings used in section 6.1.1. The setting 1 scenario refers to calculating both the sky
diffuse component and ground reflected component of solar irradiance without considering
the occluding effect of surroundings, as indicated in equation (2.9) and equation (2.10). The
setting 2 scenario refers to calculating the ground reflected component without tracing the
ray object interaction in the scene but simply using a global albedo value as indicated in
equation (2.11). In this scenario, the SVF and GVF are still calculated with considerations of
the actual surrounding environment, as indicated in equation (4.1) and equation (4.2).

For surface albedo, referring to the albedo values presented in PVMD, google map satellite
images, and the ECOSTRESS Spectral Library, the following albedos were used for each kind
of surface:
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Surface Type Materials Albedo
WallSurface White paint; Grey Paint; Reddish Brown Paint; Brick 0.4
RoofSurface Pebbles; Ethylene Propylene Diene Monomer; Glass 0.1
Terrain Asphalt; Brick; Bare Soil; Grass; Water 0.05
Tree Tree Crowns 0.3
Window Glass 0.3

Table 6.4.: Surface types, materials, and albedo values for TU Delft dataset

Figure 6.4.: TU Delft Google map

Figure 6.5.: TU Delft dataset material from PVMD

6.1.3. Result

In previous studies on solar irradiance simulation, there has often been a lack of compar-
ison between estimated results and ground-truth measurements. While some research has
explored solar irradiance modelling in 3D environments, few have tested these models in
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complex urban settings. In this thesis, the solar irradiance simulation model was evalu-
ated in two scenarios representing varying levels of complexity: one using a weather station
dataset for a simple, unoccluded scene and the other using the TU Delft dataset to reflect
more intricate urban conditions.

The method proposed in this thesis improves upon previous approaches that simplify the
estimation of sky diffuse and ground-reflected components. This model takes into account
the detailed 3D geometry and material properties of the urban environment. Moreover, it
is optimized for city-scale simulations, avoiding the exponential growth in computational
requirements typical of earlier methods.

Viewshed generation

The viewshed results for the Heino weather station dataset, as well as for sensors S1 and S2
from the TU Delft dataset, are shown in figure 6.6, figure 6.7c, and figure 6.7d.

The tree adjacent to the Heino weather station can be clearly identified in the viewshed from
figure 6.6. However, the viewsheds for sensor S1 and sensor S2 are more challenging to
interpret for two reasons. First, the viewing direction is not horizontal, making the resulting
viewshed less intuitive to analyze. Second, the colours in the viewsheds are randomly
assigned based on the voxel ID, which complicates mapping the pixels to the actual objects
in the corresponding directions. Despite these challenges, the surroundings of the Heino
weather station and sensor S1 remain recognizable from their respective viewshed results.

Figure 6.6.: Viewshed heino
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(a) Scene S1 (b) Scene S2

(c) Viewshed S1 (d) Viewshed S2

Figure 6.7.: Scene and corresponding viewshed

Solar Irradiance Prediction

As shown in figure 6.9, figure 6.10, figure 6.11, figure 6.12, the results for the weather sta-
tion dataset closely align with ground-truth measurements. As expected from the irradiance
propagation mechanism, increasing the number of bounces in the simulation leads to higher
estimated solar irradiance values. In this particular scenario, the reflective component con-
tributed minimally to the overall solar irradiance, as there was little difference between the
zero-bounce and one-bounce estimates.

Figures figure 6.15 to figure 6.21 present the results for the TU Delft dataset across vari-
ous settings and dates. For sensor S1, the estimated solar irradiance matches the ground
measurements well. However, for sensor S2, the degree of alignment varied across differ-
ent dates. For instance, on August 21, 2020, which coincides with data from the PVMD
research, our results (especially for bounce 1) follow a similar trend to the PVMD estimates.
The bounce 1 setting shows the closest alignment with ground truth, particularly between
9:30 AM and 1:00 PM, when solar irradiance was at its peak. After 1:00 PM, however, our
method overestimated the irradiance values.

A similar pattern emerged on September 1, 2020, though the discrepancies were more minor
in the afternoon when irradiance levels were lower. On October 1, 2020, when irradiance was
consistently below 100, the misalignment was notable, especially with the global reflective
setting. In contrast, the ”no global reflective” setting performed better. This trend was also
observed on February 1, 2021. On November 1, December 1, 2020, and January 1, 2021, the
method with one or two bounces showed the tiniest discrepancies. Notably, on December 1,
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2020, our bounce 1 method closely followed the rapid changes in solar irradiance after 11:00
AM.

Additional visualizations of the results are presented in figure 6.8. In these figures, solar
irradiance values are represented by the colour of each grid point. It is evident that for the
building where the sensors are located, surface inclination and orientation are the dominant
factors influencing solar irradiance. Vertical surfaces receive lower irradiance due to self-
shading effects. Shading is also prominent for grid points on the ground and those near
adjacent buildings.

In figure 6.8e and figure 6.8f, we can observe that sample points on the window ledges
across different floors show more significant variation in irradiance values when using our
method, which models reflective solar irradiance more detailedly. In contrast, the simplified
method for estimating reflective irradiance results in much more minor variations.
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(a) Predicted daily solar irradiance. Looking at
north direction

(b) Predicted daily solar irradiance with simplified
reflective solar irradiance. Looking in the north
direction

(c) Predicted daily solar irradiance. Looking at
south direction

(d) Predicted daily solar irradiance with simplified
reflective solar irradiance. Looking in the south
direction

(e) Daily solar irradiance of points on the window
structure

(f) Daily solar irradiance of points on the window
structure with simplified reflective solar irradi-
ance

Figure 6.8.: Visualization of the irradiance calculation result of TU Delft dataset. Value unit
is KWh/m2
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Quantitative Evaluation

table 6.5 provides more quantitative evaluation than the line plots discussed in the above
section. The table presented four evaluation metrics of the estimated solar irradiance. They
are Pearson Correlation Coefficient (PCC), Normalized Mean Bias Error (nMBE), Normalized
Mean Absolute Error (nMAE), Normalized Root Mean Square Error (nRMSE).

PCC is calculated as:

PCC =
∑(Pi − P̄)(Oi − Ō)√

∑(Pi − P̄)2 ∑(Oi − Ō)2
(6.1)

Where:

• Pi is the predicted solar irradiance value at time step i,

• Oi is the observed or actual solar irradiance value at time step i,

• P̄ is the mean of predicted values, and

• Ō is the mean of observed values.

PCC measures the strength of the linear relationship between predicted and observed values.
A PCC value of positive and negative values indicate positive and negative linear correlation,
respectively, and 0 indicates no linear relationship. In the context of solar irradiance pre-
dictions, PCC evaluates how well the predicted values follow the trend of actual irradiance
values over time, making it an essential metric for evaluating time-series predictions.

The nMBE is computed using the following equation:

MBE =
∑(Pi −Oi)

∑ Oi
(6.2)

Where:

• Pi is the predicted value,

• Oi is the observed value.

nMBE quantifies the average deviation of the predicted values from the observed values.
A positive nMBE indicates that the model tends to overestimate, whereas a negative nMBE
indicates underestimation. This metric is handy in solar irradiance forecasting as it helps in
identifying systematic bias in predictions, which is critical when forecasting energy yields
for solar power systems.

nMAE is calculated as:

nMAE =
∑ |Pi −Oi|

∑ Oi
(6.3)

Where:
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• |Pi −Oi| is the absolute difference between the predicted and observed values.

nMAE measures the average magnitude of errors between the predicted and observed values
without considering their direction. It provides an intuitive measure of the accuracy of
the predictions by quantifying how far, on average, the predictions deviate from the actual
values. This metric is robust to outliers and is particularly useful for understanding the
overall error distribution in solar irradiance forecasts.

nRMSE is given by the following equation:

nRMSE =

√
1
n ∑(Pi −Oi)2

Ō
(6.4)

Where:

• n is the number of time steps,

• Pi is the predicted value,

• Oi is the observed value,

• Ō is the mean observed value.

nRMSE represents the square root of the average of the squared differences between the pre-
dicted and observed values, normalized by the mean observed value. nRMSE is particularly
sensitive to significant errors due to the squaring of differences, making it more responsive
to outliers than nMAE. This metric is commonly used to assess the accuracy of solar irradi-
ance models, as it provides insight into how well the model captures both the magnitude
and variability of the irradiance data.

These metrics collectively provide a robust framework for evaluating solar irradiance pre-
diction models, capturing aspects such as correlation, bias, error magnitude, and variability.
This multidimensional evaluation is essential for accurately assessing the performance of
models used in solar energy forecasting and ensuring that energy generation predictions are
reliable and efficient.

The evaluation metrics for sensor S1 and sensor S2 from the TU Delft dataset are shown in
table 6.5 and table 6.6. Notably, the correlation values, represented by PCC, are consistently
high across all prediction settings and time steps, with most exceeding 0.95. For sensor S1,
as seen in table 6.5, settings b=2 and setting 1 show a clear advantage in terms of nMBE,
while no clear winner emerges for nMAE and nRMSE. For sensor S2, table 6.6 indicates that,
on average, settings b=1 and setting 1 outperform other methods. Meanwhile, the results
suggest that setting b=2 tends to overestimate values, and setting 1, which oversimplifies the
3D urban environment, does not deliver results as realistic as the proposed method. Further-
more, table 6.6 highlights how estimation accuracy is influenced by weather conditions, as
setting 1’s approach to reflective solar irradiance modelling fails to produce accurate results
on overcast days.

The computation times for solar irradiance estimation in the study areas are presented in
table 6.7 and table 6.8. Depending on the number of simulation time steps, the total compu-
tation time, which includes two iterations of global reflective solar irradiance, ranges from

50



6.1. Validation

one to four hours. This applies to a hemisphere sampling resolution of 5 degrees and ap-
proximately one million sample points. It is important to note that the computation was
conducted for all sample points in the scene.

As explained in the methodology section, the computation time should scale linearly with
both the number of time steps and the number of sample points, and the results have con-
firmed this. Additionally, around 99% of the total computation time is spent on reflective
solar irradiance calculations. The time required for shadow computation and the subsequent
direct solar irradiance estimation is negligible, taking less than one second. Even if the num-
ber of time steps were increased by a factor of 100, the overhead for direct beam component
computation would remain minimal.

It is worth noting that the majority of the time required for diffuse solar irradiance sim-
ulation is spent on viewshed rendering, which is necessary for accurately modelling the
occlusion effects of surrounding objects (obtaining SVF in this case). Since the viewshed ren-
dering is decoupled from the actual solar irradiance computation, the resulting SVF can be
reused multiple times after it has been computed once. The fact that the combined compu-
tation time for direct and diffuse components takes no more than two seconds for the tested
scenarios further supports this observation.

Overall, the results indicate that our method accurately predicts solar irradiance in complex
urban environments, particularly under conditions of high irradiance. In overcast condi-
tions, with lower irradiance, our method did not show a clear advantage over other settings.
Nonetheless, the data suggests that the global solar irradiance computation model holds
promise for more precise predictions in urban environments, especially on days with high
irradiance, where the alignment between the model and ground measurements is signifi-
cantly better.

Figure 6.9.: Result of March 21. Heino dataset. Value unit is W/m2
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Figure 6.10.: Result of June 21. Heino dataset. Value unit is W/m2

Figure 6.11.: Result of September 22. Heino dataset. Value unit is W/m2
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Figure 6.12.: Result of December 22. Heino dataset. Value unit is W/m2
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(a) Screenshot of the target sensors and building in 3DBAG Peters et al. [2022]

(b) Screenshot of the target sensors and building from Andres et al. [2023]

Figure 6.13.: screenshot of the sensors and the underlying building
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(a) Screenshot of the 3DCM from Peters et al. [2022]

(b) Screenshot of the 3DCM from Andres et al. [2023]

(c) Screenshot of the merged 3DCM

Figure 6.14.: Comparison of the 3DCM of TU Delft
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(a) Sensor S1

(b) Sensor S2

Figure 6.15.: Result of 2020 August 21. Value unit is W/m2
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(a) Sensor S1

(b) Sensor S2

Figure 6.16.: Result of 2020 September 1. Value unit is W/m2

57



6. Experiment and Results

(a) Sensor S1

(b) Sensor S2

Figure 6.17.: Result of 2020 October 1. Value unit is W/m2
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(a) Sensor S1

(b) Sensor S2

Figure 6.18.: Result of 2020 November 1. Value unit is W/m2
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(a) Sensor S1

(b) Sensor S2

Figure 6.19.: Result of 2020 December 1. Value unit is W/m2
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(a) Sensor S1

(b) Sensor S2

Figure 6.20.: Result of 2021 January 1. Value unit is W/m2
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(a) Sensor S1

(b) Sensor S2

Figure 6.21.: Result of 2021 February 1. Value unit is W/m2
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Metrics Setting 2020/8/20 2020/9/1 2020/10/1 2020/11/1 2020/12/1 2021/1/1 2021/2/1 Average

Correlation

b=0 0.9996 0.9979 0.9900 0.8938 0.9112 0.9946 0.9960 0.9690
b=1 0.9990 0.9976 0.9900 0.8946 0.9118 0.9947 0.996 0.9691
b=2 0.9989 0.9974 0.9900 0.8947 0.9 118 0.9947 0.9960 0.9691

setting 1 0.9995 0.9983 0.9900 0.8971 0.9125 0.9956 0.9960 0.9699
setting 2 0.9996 0.9980 0.9900 0.8941 0.9113 0.9947 0.9960 0.9691

nMBE

b=0 0.0000* -0.0282 -0.0647 0.0169* -0.2015 -0.1302 -0.0110† -0.0598
b=1 0.0401 0.0167* -0.0194† 0.0684 -0.1637 -0.0900 0.0370 -0.0158
b=2 0.0513 0.0281 -0.0093* 0.0803 -0.1548* -0.0807† 0.0477 -0.0053†

setting 1 0.0227 0.0264 0.0232 0.0915 -0.1564† -0.0661* 0.0821 0.0033*
setting 2 0.0099† -0.0173† -0.0526 0.0281† -0.1940 -0.1206 0.0019* -0.0492

nMAE

b=0 0.0194† 0.0462 0.0826 0.2002† 0.2508 0.1390 0.0406* 0.1113
b=1 0.0406 0.0453† 0.0595 0.2038 0.2201 0.1119 0.0553 0.1052*
b=2 0.0514 0.0517 0.0563* 0.2061 0.2129* 0.1061† 0.0628 0.1068

setting 1 0.0232 0.0453† 0.0592† 0.2101 0.2142† 0.1041* 0.0909 0.1067†

setting 2 0.0152* 0.0407* 0.0753 0.1983* 0.2445 0.1323 0.0409† 0.1067†

nRMSE

b=0 0.0255† 0.0726 0.1046 0.4191* 0.3613 0.2229 0.0576* 0.1805
b=1 0.0499 0.0789 0.0811† 0.4502 0.3382 0.1753 0.0811 0.1792
b=2 0.0602 0.0885 0.0796* 0.4593 0.3336* 0.1656† 0.0904 0.1825

setting 1 0.0310 0.0655* 0.0862 0.4441 0.3349* 0.1562* 0.1244 0.1775†

setting 2 0.0243* 0.0677† 0.0961 0.4231† 0.3566 0.2116 0.0597† 0.1770*

Table 6.5.: Sensor S1 Table showing various metrics across different settings and dates. Numbers marked with * represent the best
entry, while the numbers marked with † represent the worst entry
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Metrics Setting 2020/8/20 2020/9/1 2020/10/1 2020/11/1 2020/12/1 2021/1/1 2021/2/1 Average

Correlation

b=0 0.9695 0.9972 0.9897 0.9929 0.6786 0.9036 0.9966 0.9326
b=1 0.9735 0.9964 0.9897 0.9872 0.9907 0.9903 0.9966 0.9892
b=2 0.9558 0.9949 0.9897 0.9856 0.9932 0.9941 0.9966 0.9871

setting 1 0.9968 0.9928 0.9897 0.9825 0.7749 0.9256 0.9966 0.9513
setting 2 0.9949 0.9972 0.9897 0.9929 0.8111 0.9346 0.9966 0.9596

nMBE

b=0 -0.4327 -0.2205 -0.1831† -0.3358 -0.4966 -0.3751 -0.1822† -0.3180
b=1 0.2435 0.0487* 0.2865 0.0050* 0.1035† 0.1123* 0.2880 0.1554†

b=2 0.5738 0.2183 0.5091 0.1988 0.4224 0.3729 0.5108 0.4009
setting 1 -0.1065* 0.0513† 0.6040 0.0649† 0.0293* 0.2467 0.6059 0.2137
setting 2 -0.2009† -0.0995 0.0842* -0.1906 -0.2910 -0.1509† 0.0854* -0.1090*

nMAE

b=0 0.4327 0.2205 0.1831† 0.3365 0.4966 0.3776 0.1835† 0.3186
b=1 0.2554 0.0999* 0.2878 0.2071* 0.1142* 0.1436* 0.2880 0.1994†

b=2 0.5770 0.2410 0.5094 0.2241† 0.4224 0.3746 0.5108 0.4085
setting 1 0.1180* 0.1787 0.6041 0.3220 0.3162† 0.3318 0.6059 0.3538
setting 2 0.2024† 0.1221† 0.1024* 0.2491 0.3186 0.2021† 0.0874* 0.1834*

nRMSE

b=0 0.4968 0.3493 0.2119† 0.6674 0.7139 0.7306 0.2150† 0.4836
b=1 0.3234 0.1330* 0.3535 0.3141* 0.1395* 0.2083* 0.3498 0.2602*
b=2 0.6471 0.3613 0.6051 0.3212† 0.5451 0.6336 0.6109 0.5320

setting 1 0.1427* 0.2271 0.7133 0.4467 0.4023† 0.4745† 0.7227 0.4470
setting 2 0.2340† 0.2163† 0.1382* 0.5347 0.5158 0.4785 0.1190* 0.3195†

Table 6.6.: Sensor S2. The table shows various metrics across different settings and dates. Numbers marked with * represent the best
entry, while the numbers marked with † represent the worst entry
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Date #Timestep Shadow computation SVF computation Direct+Diffuse Reflective Total Reflective ratio

2024/3/21 12 0.13 37.37 0.29 3232.19 3269.98 98.84
2024/6/21 16 0.20 46.61 0.37 5271.96 5319.14 99.11
2024/9/22 12 0.22 44.67 0.29 4675.88 4721.06 99.04
2024/12/22 8 0.20 41.60 0.26 4022.49 4064.55 98.97

Table 6.7.: Computation time Heino with the proposed method. Unit is second

Date #Timestep Shadow computation SVF computation Direct+Diffuse Reflective Total Reflective ratio

2024/8/21 80 0.62 51.03 1.47 12319.02 12372.14 99.57
2024/9/1 77 0.58 49.63 1.39 15331.52 15383.12 99.66
2024/10/1 57 0.51 41.64 1.00 9093.19 9136.34 99.53
2024/11/1 50 0.44 32.25 0.99 8118.75 8152.43 99.59
2024/12/1 26 0.23 31.56 0.59 4073.14 4105.52 99.21
2024/1/1 26 0.12 23.44 0.46 3765.48 3789.50 99.37
2024/2/1 45 0.22 26.76 0.68 8017.02 8044.68 99.66

Table 6.8.: Computation time TU Delft with the proposed method. Unit is second
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6.2. Testing on larger areas

6.2.1. Study areas

In addition to the Heino weather station dataset and the TU Delft dataset, we conducted fur-
ther testing of our model on larger areas in the cities of Amsterdam, Delft, Rijssen-Holten,
and Rotterdam to evaluate its scalability and robustness. These cities, distributed across the
Netherlands as shown in figure 6.23, are representative of large-scale urban settings with
dense 3D structures. For each city, we generated a CityJSON file containing buildings, ter-
rain, and vegetation, covering areas exceeding 35 km2. The H3 tiling approach was used to
generate the test datasets, as hexagonal tiles minimize the boundary effects Uber Technolo-
gies [2024]. Details of the study areas are provided in table 6.9, where it can be noted that
these areas are significantly larger compared to the Heino weather station dataset (table 6.1)
and the TU Delft dataset (table 6.3). Each study area spans more than 35 km2 of land, con-
tains between 15,000 and 46,000 buildings, and includes a total of 1.4 to 4.1 million surfaces,
with sampled grid points ranging from 6 to 16 million.

Figure 6.22.: Distribution of the study areas

(a) Amsterdam (b) Delft
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(c) Rijssen-Holten (d) Rotterdam

Figure 6.23.: Overview of the study areas in the scalability test

Attribute Amsterdam Delft Rijssen-Holten Rotterdam
Geographic center 4.88E, 52.37N 4.37E, 52.01N 6.52E, 52.31N 4.50E, 51.90N

871969c9bffffff 871f16cf1ffffff 87196bb52ffffff
871969526ffffff 871f16cf5ffffff 87196bb51ffffff

H3 indexes 871969534ffffff 86196bb17ffffff 871f16cc4ffffff 87196bb50ffffff
871969535ffffff 871f16ce6ffffff 87196bb53ffffff
871969530ffffff 871f16ce2ffffff 87196ba2cffffff

Spatial extent 7091 * 5070 * 98 6680 * 6689 * 119 6100 * 6200 * 50 6998 * 5109 * 190
#Buildings/#Faces 46273/3499950 40210/1744663 15744/717747 31004/1322841
#Roof surfaces 214927 119189 49827 28847
#Wall surfaces 780241 428357 174436 317257
#Trees/#Faces 21833/523992 28512/684288 25358/608592 28847/692328
#Terrain/#Faces 435/130241 535/173378 398/100091 435/130006
#Total faces 4154183 2602329 1426430 2145175
#Sample points 16214787 12000715 6457806 10279549

Table 6.9.: Dataset details for four different cities

6.2.2. Results

The simulation for February 2, 2021, was successfully run on the same laptop described
at the beginning of this chapter. The computation times are recorded in table 6.10, where
the most extended duration was observed for the city of Amsterdam. For more than 16
million sample points and 54 timesteps, the total computation time was 98,738 seconds or
approximately 27 hours. A similar trend, as seen during validation, was also observed here,
where the reflective solar irradiance calculation accounted for over 99% of the total compu-
tation time. Without simulating reflective solar irradiance, the entire simulation would take
less than 7 minutes. These results demonstrate the model’s capability to handle city-scale
simulations.

Screenshots of the results, presented as coloured point clouds, are shown in figure 6.24,
providing an overview of the computation outcomes.

67



6. Experiment and Results

(a) Amsterdam - overview (b) Amsterdam - zoomed in

(c) Delft - overview (d) Delft - zoomed in

(e) Rijssen-Holten - overview (f) Rijssen-Holten - zoomed in

(g) Rotterdam - overview (h) Rotterdam - zoomed in

Figure 6.24.: screenshot of cities results displayed as a coloured point cloud. Unit is Wh/m2
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City #Timestep Shadow computation SVF computation Direct+Diffuse Reflective Total Reflective ratio

Amsterdam 54 2.33 406.48 27.06 98302.20 98738.07 99.56
Delft 54 1.57 301.10 16.21 79782.55 80101.43 99.60
Rijssen-Holten 54 1.02 151.44 5.97 42941.12 43093.58 99.65
Rotterdam 54 1.58 240.70 14.39 80424.76 80681.43 99.68

Table 6.10.: Computation time of the four cities with the proposed method. Unit is second
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Additional analysis was conducted to explore potential applications for high-resolution, city-
scale solar irradiance simulations.

As shown in table 6.11, the orientation with the lowest average solar irradiance for Delft,
Rijssen-Holten, and Rotterdam is east, while for Amsterdam, surfaces facing north have the
lowest values. Conversely, surfaces oriented south receive the highest average solar irradi-
ance in Amsterdam, Delft, and Rotterdam. For Rijssen-Holten, surfaces facing southwest
have the highest solar irradiance.

Results in table 6.12 present the average solar irradiance values grouped by surface inclina-
tion. Surfaces with an inclination of -0◦(facing down) have the lowest average irradiance for
all four cities. The surfaces receiving the most solar irradiance have inclinations of 30◦for
Delft and Rijssen-Holten and 45◦for Amsterdam and Rotterdam.

Orientation Amsterdam Delft Rijssen-Holten Rotterdam

east 301.90 390.17- 361.43- 349.95-

north 267.16- 435.10 424.53 400.49
northeast 293.52 414.16 451.07 405.99
northwest 303.21 408.25 446.68 398.53
south 457.67* 615.00* 484.40 611.62*
southeast 440.36 549.69 492.35 516.33
southwest 379.14 587.55 494.79* 592.71
west 302.90 546.36 443.82 499.84

Table 6.11.: Average solar irradiance for each orientation. Unit is Wh/m2. Numbers marked
with * represent the best value, while the numbers marked with - represent the lowest
value

Inclination Amsterdam Delft Rijssen-Holten Rotterdam

-0◦ 135.98- 168.86- 116.81- 195.08-

-75◦ 304.13 453.66 329.67 442.60
-60◦ 265.97 368.49 220.01 328.79
-45◦ 214.57 276.47 209.53 237.93
-30◦ 163.63 277.59 135.32 165.47
-15◦ 131.12 144.04 128.71 155.22

0◦ 494.71 575.38 502.79 581.44
15◦ 440.42 553.81 506.38 540.40
30◦ 502.76 597.69* 518.69* 581.93
45◦ 504.07* 594.85 503.19 595.61*
60◦ 457.81 575.24 480.62 580.60
75◦ 428.53 543.52 426.92 545.44
90◦ 273.96 411.45 300.83 405.19

Table 6.12.: Average solar irradiance for each inclination. Unit is Wh/m2. Numbers marked
with * represent the best value, while the numbers marked with - represent the lowest
value. -0◦indicates surfaces that point towards the ground

We also calculated the average solar irradiance for all combinations of surface orientation
and inclination. table 6.13 and table 6.14 document the combinations with the highest and
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lowest average values. In all four cities, surfaces facing south with an inclination of 30◦or
45◦have the highest average solar irradiance. The lowest values are found for north-facing
surfaces with a -15◦inclination in Amsterdam and Delft. In Rijssen-Holten, the lowest irra-
diance occurs for surfaces facing southwest with an inclination of -30◦, while in Rotterdam,
it is for surfaces oriented northwest and inclined at -15◦.

Aggregation of solar irradiance values by surface type was also applied, as shown in ta-
ble 6.15. As expected, roof surfaces have the highest solar potential, while wall surfaces
show the lowest potential.

These macro-level statistics for the entire study area provide valuable insights for urban
planning. For example, in Delft, a general recommendation would be to install solar panels
on south-facing roof surfaces with an inclination of 30 degrees. Since the simulation was
conducted in winter, households with east-facing openings may require from additional
heating solutions, as these surfaces receive less solar heating.

City Orientation Inclination Irradiance

Amsterdam south 45◦ 634.20
Delft south 30◦ 791.49
Rijssen-Holten south 45◦ 636.74
Rotterdam south 30◦ 812.10

Table 6.13.: The combinations of orientations and inclinations that have the highest average
solar irradiance. Unit is Wh/m2

City Orientation Inclination Irradiance

Amsterdam north -15◦ 39.08
Delft north -15◦ 56.83
Rijssen-Holten southwest -30◦ 62.83
Rotterdam northwest -15◦ 78.83

Table 6.14.: The combinations of orientations and inclinations that have the lowest average
solar irradiance. Unit is Wh/m2

Surface type Amsterdam Delft Rijssen-Holten Rotterdam

Wall surface 260.65- 393.17- 288.28- 390.05-

Roof surface 497.54* 592.64* 509.72* 587.60*
Terrain surface 406.78 547.52 504.82 532.83

Vegetation surface 363.20 456.67 325.88 441.15

Table 6.15.: Average solar irradiance for each surface type. Unit is Wh/m2. Numbers marked
with * represent the best value, while the numbers marked with - represent the lowest
value

Analysis for specific buildings was also applied. The first chosen location is the BK Bouwkunde
building, the main building of the Faculty of Architecture at Delft University of Technol-
ogy.
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Screenshots in figure 6.26 show the simulation results for the BK building (figure 6.25). The
slanted rooftops facing southeast received higher total solar irradiance on the simulation
day, suggesting they may be optimal locations for solar panel installation. Additionally,
the marked polygons in figure 6.26e and figure 6.26f highlight the significant impact of
shading from surrounding objects on the solar irradiance, even for surfaces with identical
orientation and inclination. The points in polygon B in figure 6.26f further illustrate how
surface orientation and shading influence total irradiance values, suggesting that during
renovations, materials with varying thermal performance could be applied to these surfaces
to optimize energy efficiency.

Figure 6.25.: Google Maps view of BK

(a) Looking at the north direction (b) Looking at the east direction

(c) Looking at the south direction (d) Looking at the west direction
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(e) screenshot of the tower (f) screenshot of the wall

Figure 6.26.: Screenshot of the BK Bouwkunde, the main building of the Faculty of Architec-
ture at the Delft University of Technology. Unit is Wh/m2

The screenshot in figure 6.28 displays the simulation results for Delft station, the central train
station in the city. A comparison between our simulation and the actual scene on Google
Maps (figure 6.27) reveals that the existing solar panels are not located on the rooftops with
the highest solar potential. This finding highlights the potential of the proposed method to
guide solar panel placement more effectively.

Figure 6.27.: Google Maps view of Delft Station
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(a) Looking at the north direction (b) Looking at the east direction

(c) Looking at the south direction (d) Looking at the west direction

Figure 6.28.: Screenshot of the Delft Station, the train station of Delft. Unit is Wh/m2

The aggregation of solar irradiance data based on orientation, inclination, combinations,
and surface types was also applied to the BK building and Delft Station. Similar trends
observed in the whole study area of the cities were evident in both buildings. For instance,
roof surfaces exhibited higher average solar irradiance than wall surfaces, and south-facing
(south or southwest) surfaces with inclinations directed towards the sky tended to receive
more solar irradiance than others. Another observation can be found in the average solar
irradiance intensity for the BK building was 416.36 Wh/m2, slightly lower than the 439.06
Wh/m2 recorded for Delft Station. This difference is likely due to the concave structure of
the BK building and shading from nearby vegetation. This pattern can be seen in table 6.16,
table 6.17, and table 6.20, where surfaces with the same inclination, orientation, or surface
type tend to receive higher irradiance at Delft Station compared to the BK building.

It is also notable that within the same building, surfaces with different orientations and incli-
nations can show up to an 87% difference in solar irradiance intensity, as shown in table 6.18
and table 6.19. This underscores the importance of high-resolution solar irradiance simula-
tions, as lower-resolution methods struggle to capture such detailed variations, leading to
reduced accuracy in building-level energy demand and supply analyses.

We also calculated the total solar irradiance received by both buildings on the simulation
day, February 2, 2021, as shown in figure 6.29. Despite the winter conditions and low sky
clearness, the potential hourly solar energy reached as high as 26 kWh, with the BK building
receiving a total of 143.70 kWh in a day, equivalent to the electricity consumption of an
average Dutch household for 20 days Statistics Netherlands [2023].
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These simulation results can also be extended to further applications, such as building ther-
mal performance simulations, allowing for room-level or even surface-level energy perfor-
mance evaluations.

Orientation BK Delft Station

east 343.83 380.12
north 268.48- 340.37-

northeast 298.51 350.99
northwest 293.43 340.57
south 526.48 632.45*
southeast 465.82 545.03
southwest 676.35* 504.08
west 427.11 434.49

Table 6.16.: Average solar irradiance for each orientation. Unit is Wh/m2. Numbers marked
with * represent the best value, while the numbers marked with - represent the lowest
value

Inclination BK Delft Station

-75◦ 368.65 394.72
-30◦ 274.00- Nan

0◦ 409.29 383.80-

15◦ 424.01 582.82
30◦ 640.90* 670.40*
45◦ 609.10 602.24
60◦ 570.48 Nan
75◦ 471.85 Nan
90◦ 380.09 428.60

Table 6.17.: Average solar irradiance for each inclination. Unit is Wh/m2. Numbers marked
with * represent the best value, while the numbers marked with - represent the lowest
value

Figure 6.29.: Total solar irradiance received for BK building and Delft Station
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Building Orientation Inclination Irradiance

BK southwest 75◦ 867.58
Delft Station southwest 30◦ 779.85

Table 6.18.: The combinations of orientations and inclinations that have the highest average
solar irradiance. Unit is Wh/m2

Building Orientation Inclination Irradiance

BK northeast 90◦ 227.48
Delft Station north 45◦ 103.19

Table 6.19.: The combinations of orientations and inclinations that have the lowest average
solar irradiance. Unit is Wh/m2

Surface type BK Delft Station

Wall surface 379.01- 428.13-

Roof surface 576.70* 563.80*

Table 6.20.: Average solar irradiance for each surface type. Unit is Wh/m2. Numbers marked
with * represent the best value, while the numbers marked with - represent the lowest
value
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7.1. Answers to Research Questions

How can semantic data from 3D city models improve the accuracy of solar irradiance simu-
lations by accounting for direct, diffuse, and reflected solar components? The comparison
between the proposed method and two baseline approaches, demonstrates the significance
of incorporating semantic and geometric data from semantic 3DCM for enhanced precision.
Setting 1 uses simplified SVF and GVF to estimate both the sky diffuse and ground reflected
components. Setting 2 calculates SVF and GVF in detail but applies a global albedo value
for the reflective component. This comparison highlights the importance of incorporating
semantic data to achieve greater precision.

In the simplified reflective irradiance calculation described in equation (2.11), a universal
albedo value is applied to all occluding objects. The reflective irradiance is computed by
multiplying this fixed albedo by GVF and GHI. In Setting 1, SVF and GVF are calculated
based on surface inclination alone, ignoring the complex urban geometry, as articulated
in equation (2.10). Although Setting 2 uses detailed hemisphere sampling for GVF, the
reflective irradiance still follows the simplified computation in equation (2.11).

The proposed method refines this approach by using hemisphere scanning for both SVF
and reflective irradiance, accounting for reflections from all incident angles, as described in
algorithm 4.4.

For the Heino weather station dataset and TU Delft’s sensor 1, improvements are subtle.
However, for sensor 2 (S2), the advantage of incorporating semantic and geometric details
from the 3D city model becomes evident. On December 1, 2020, from 13:00 to 14:00, and
January 1, 2021, from 12:10 to 12:30, the simplified models not only deviate significantly from
ground measurements but also fail to capture the trend in irradiance changes, as shown in
figure 6.19b and figure 6.20b. Although the evaluation metrics in table 6.6 do not reveal
significant differences, it is clear that simplified settings are less reliable.

What are the trade-offs between accuracy and computational efficiency when using 3D
city models for urban-scale solar irradiance estimation? The computational feasibility of
city-scale reflective irradiance modeling has been confirmed. For the entire study area, all
three solar irradiance components were computed with logarithmic or linear complexity.
Direct solar irradiance, based on shadow calculations, has a time complexity of O(log(M)),
where M represents the number of sample points in the city. Sky diffuse irradiance at each
time step has a complexity of O(M), while reflected irradiance has a complexity of O(NM),
where N is the number of light bounces considered.

In terms of implementation and experiment, GPU acceleration has significantly reduced the
computation time for shadowing and SVF calculations. However, reflective irradiance is in-
herently computationally intensive, as each sample point requires processing every pixel in
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the viewshed, representing the result of hemisphere-sampled rays. In addition, the compu-
tation of reflective component is not implemented with GPU parallel computing. The main
bottleneck lies in data input/output and memory management. Despite this, the compu-
tation time remains acceptable for city-scale applications, with approximately 30 minutes
required for 1 million sample points across 20 time steps. Further optimizations are possible
to reduce this time.

In summary, the proposed method is scalable to city-scale simulations, effectively consider-
ing 3D urban environments and all solar irradiance components.

7.2. Research Implications

The methodology proposed in this thesis represents, to our knowledge, the first solar irradi-
ance simulation model capable of balancing realism, computational complexity, and general-
izability. Built on a combination of Ray Tracing and Viewshed methods, the model provides
a detailed estimation of the three main components of solar irradiance: direct beam, sky dif-
fuse, and ground reflected irradiance. Specifically, ground-reflected irradiance is estimated
efficiently, avoiding the exponential growth of traced rays while maintaining the physical
accuracy of light reflection.

The results demonstrate the model’s ability to capture the reflectance of solar irradiance in
complex urban environments. For instance, in the TU Delft dataset, sensor 2 results show
that the method accurately captures reflective solar irradiance, particularly under clear-sky
conditions with high overall irradiance. Additionally, the simplified version of the model,
focusing on direct beam and sky-diffuse irradiance, performs well under overcast conditions,
with predictions closely aligning with ground measurements.

These findings suggest that the proposed model holds promise as a suitable tool for real-
istic solar irradiance simulation in urban environments. By utilizing its predictions, urban
energy systems could improve energy efficiency through proactive responses. Furthermore,
researchers will be able to obtain realistic solar irradiance values for larger scales with re-
duced computational costs.

7.3. The influence of hyperparameters

A series of user-defined hyperparameters are needed for the methodology. The thesis did
not run a strict grid search and ablation studies to evaluate the influence of these parameters.
Here we provide some empirical evaluations regarding these evaluations.

• Grid Sampling Density. The grid sampling density defines the expected coverage
area of per sample point. The unit of this parameter is m2/point. It is worth noting
that the actual coverage area of each sample point does not perfectly equal this density
as the recursive splitting method described in algorithm 4.1 only sample points with
number (3n − 1)/2 where n represent the number of splits. In addition, addtional
splitting of sliver triangles will also alter the coverage area of the point. However, the
actual coverage area of each sample point will be recorded for subsequent computa-
tions to ensure consistency. This parameter mainly affects the spatial resolution of the
simulation, and it will also affect the choosing of the parameter voxel resolution. The
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computation overhead will grow linearly with the increase of grid sampling density.
A sampling density between 9 to 36 can provide good coverage of while maintain a
low computation overhead according to our test runs.

• Hemisphere resolution. The viewshed generation process involves tracing a hemi-
sphere of rays to obtain the visibility information of the sample point. Each ray in
the hemisphere represents a solid angle. The seperation of each ray is determined by
the hemisphere resolution. The computation overhead also grows linearly with the
resolution increase. Theoratically, the higher the resolution, the more detailed and ac-
curate the modelling. In our test runs, the we have testd seperation angle with 2, 3, 5
degrees. And the resolution of 5 degree seperation angle has shown almost equivalent
predictions but with faster computation speed.

• Voxel size. The voxel representation determines the resolution of the light field for
reflective solar irradiance computation. Similarly, the smaller the voxel size, the more
detailed the modelling. However, the voxel size should be larger than than the grid
point sampling density. Otherwise the aggregation function of the voxel light filed
will fail, reducing computation efficiency. The voxel size should also not too large to
matain accurate modelling. The computation overhead increase related to this param-
eter is negletable. The test runs indicate a voxel resoltuion between 9 and 15 meters is
optimal.

7.4. The influence of the scale of the study area

The relationship between city scale and computation time is illustrated in figure 7.1, fig-
ure 7.2, and figure 7.3, which show the computation time required per million points per
timestep. The results reveal a logarithmic relationship between computation time and city
scale, measured by the number of surfaces. For shadow computation, as depicted in fig-
ure 7.1, the computation time decreases as city scale increases, eventually stabilizing at a
nearly constant level for cities with over 1.5 million surfaces. This behavior may be attributed
to varying ray-object intersection hit rates caused by different urban morphologies.

It is also important to note that city scale cannot increase indefinitely for simulations to be
completed on a consumer-level laptop without modifying the code. We tested a significantly
larger tile in Rijssen-Holten with a spatial extent exceeding 20km by 20km, resulting in a
point grid size of 60 million, compared to the 10 million points in the Delft tile. This increase
in scale requires approximately six times more storage for intermediate files (around 1.5TB),
as well as six times more computation time and memory. Such resource demands indicate
that the current implementation may not be feasible for these larger scales. However, this
limitation can be addressed by refactoring the code. Since code optimization is beyond the
scope of this thesis, these improvements were not implemented.

In summary, these findings indicate that the method is scalable for larger areas, making it
suitable for urban-scale analyses.
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Figure 7.1.: Scatter plot and fitted curve for shadow computation. The unit of computation
time is millisecond per million points per timestep

Figure 7.2.: Scatter plot and fitted curve for direct and diffuse irradiance computation. The
unit of computation time is millisecond per million points per timestep
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Figure 7.3.: Scatter plot and fitted curve for reflective solar irradiance computation. The unit
of computation time is second per million points per timestep
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8. Conclusion

8.1. Research Overview

This thesis presents a methodology for scalable and realistic solar irradiance simulation
using 3D city models.

Solar irradiance plays a critical role in current and future energy systems, as it serves as a
clean energy source, influences weather conditions, and impacts human energy consumption
behaviors. Accurate modeling and prediction of solar irradiance are essential to reduce the
gap between predicted energy demand and supply. However, existing methods face signifi-
cant limitations. Some rely on data-driven predictions that are difficult to generalize, while
others use simplified simulations that overlook the complex urban landscape. Additionally,
ray-tracing methods, though accurate, are computationally expensive and time-consuming.
As a result, achieving accuracy, scalability, and efficiency in solar irradiance modeling at the
city scale, with high spatial and temporal resolution, remains a challenge.

This thesis develops a novel approach that specifically models the direct beam, sky diffuse,
and reflected components of solar irradiance on urban surfaces. Dedicated data structures
and algorithms ensure both computational speed and realism. The key innovation is the
semantic scene voxelization algorithm, which reduces the complexity of modeling reflected
solar irradiance from exponential to linear, making the method scalable for large-scale urban
simulations. The implementation, carried out using C++ and Nvidia Optix Ray Tracing En-
gine, ensures high computational efficiency. The implementation will be made open source,
and the details are described in the reproducibility self-assessment in appendix A. Valida-
tion against ground truth measurements shows that this method outperforms others with
simplified assumptions, achieving significantly higher accuracy under clear sky conditions.
Specifically, the proposed method reduces the average nRMSE by 18% compared to simplified
models for sensor S2. Additionally, experiments demonstrate the scalability of the method,
with simulations for a large urban area spanning over 35 km2 with approximately 16 million
sample points, accounting for two reflections over 54 timesteps, completing in 27 hours.

The experimental results suggest that leveraging the detailed semantic and geometric infor-
mation provided by 3DCM can significantly improve the accuracy of solar irradiance mod-
eling. In particular, the precise computation of reflected solar irradiance is more accurate
under clear sky conditions, when solar power is abundant.

8.2. Limitations

Several limitations persist:
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• Simplifications and assumptions. The 3DCM inherently involves simplifications in
geometry and semantics. Additionally, this thesis uses the isotropic model to approx-
imate sky diffuse radiation, which is a simplification. For reflective solar irradiance
estimation, all surfaces are assumed to behave as perfect Lambertian reflectors. How-
ever, in reality, reflection patterns vary by material and include specular and glossy
reflections, among others. These assumptions inevitably limit prediction accuracy.

• Limited validation data. The scarcity of ground measurements and surface material
information constrains the validation process. In essense, only Sensor S2 is represen-
tative in complex urban environments, capturing a wide variety of urban objects in its
viewshed. Consequently, additional validation remains necessary. Accurate reflective
irradiance computation requires specific surface material information, such as albedo
and reflection patterns, which was unavailable for most surfaces in the study area.

• High computational overhead for reflective irradiance. Reflective solar irradiance
computation consumes around 99% of the total processing time, yet the resulting ac-
curacy improvements are inconsistent.

8.3. Future Work

Potential improvements based on the identified limitations include:

• More detailed input data. Using 3DCM with higher LoD and comprehensive surface
material data could enhance prediction accuracy.

• Enhanced modeling of sky diffuse irradiance. This thesis adopts an isotropic model,
assuming uniform irradiance from the sky dome. Alternative models, such as the
Perez model, offer more realistic representations by dividing the sky into circumsolar,
horizon, and other zones. The semantic viewshed already includes the data necessary
to integrate advanced sky diffuse models.

• Improved light field representation. Currently, reflective solar irradiance is computed
with voxels that has limited directional resolution. Spherical harmonics could replace
this voxel representation to more accurately simulate irradiance distribution, while
supporting varied reflection patterns.

• Model calibration. Deriving empirical calibration factors from additional validation
data could further refine model accuracy.

• Database input support. Enhancing the method to accept input via database connec-
tions would improve interoperability, offering a more flexible alternative to the current
file-based input system.

• Integration with remote sensing data. Current methods simulate solar irradiance for
the entire area using the same values recorded by a single weather station. However,
these recorded values may not accurately reflect solar conditions across the study area
due to variations in cloud cover. Future work could incorporate remote sensing data
to provide more accurate GHI, DNI, and DHI values, thereby improving the accuracy of
the simulations.
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8.4. Applications

Despite these limitations, the proposed method has considerable potential across various
applications:

• Building energy performance evaluation. Detailed solar exposure modeling can assist
architects and energy planners in assessing building energy performance with greater
accuracy.

• Power grid management. The methodology can estimate the solar energy output of
distributed solar power grids, aiding in grid scheduling and management.

• Household solar potential assessment. This tool can help individuals assess the solar
potential of their homes, supporting informed decisions on solar panel installations.

• Visibility analysis. The semantic viewshed generated during simulations can also
serve as a substitute for Street View Imagery (SVI) in various applications.
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

1. Input Data [2]

2. Preprocessing [3]

3. Methods [3]

4. Computational Environment [3]

5. Results [2]

All datasets and code will be freely available on the GitHub repository: https://github.

com/longxiangxu321/ProjectSolar before the end of 2025. However, due to file size limi-
tations, the experiment results are not suitable for online sharing.
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A. Reproducibility self-assessment

A.2. Self-reflection

Reflecting on the process of completing this thesis, I have gained significant knowledge and
skills in both research and engineering.

Throughout the thesis work, I developed experience in handling various types of data, such
as 3DCM, point clouds, and arrays, across different formats and programming languages,
including C++ and Python. This experience made me realize that completing a project or
research requires not only a comprehensive set of skills and tools but also the ability to
continuously learn and adapt to new ones.

Moreover, I learned the importance of maintaining focus on the overall research objectives.
It is easy to become too focused in specific stages or implementations, losing sight of the
main goals. I am grateful to my supervisors for regularly reminding me of the research
purpose, which helped me stay on track.

Finally, resilience proved to be a crucial quality. Consistent effort is sometimes more impor-
tant than shot-term efficiency. Despite the challenges I faced, I continued to work through
them, solving each problem step by step.

I am thankful for choosing this topic and for the invaluable experiences I gained throughout
the thesis process.
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