
Bsc thesis applied mathematics

Using relaxations of sum of squares formulations for the kissing
number problem

Jugo Rang

Delft University of Technology

Supervisor
Dr. F.M. de Oliveira Filho

Other committee members
Dr. K.P. Hart

June, 2020 Delft

Abstract

In recent years the importance of sum of squares and semidefinte pro-
gramming has been seen in the field of combinatorial optimisation. All
linear programs can be rewritten into a semidefinte one and by using
hierarchies of semidefinite programs these can be solved for polynomial
optimisation problems. Recently, in 2019, A.A. Ahmadi and A. Majumdar
released a paper called “DSOS and SDSOS Optimization: More Tractable
Alternatives to Sum of Squares and Semidefinite Optimization”[1] where
they introduced the concept of sum of square polynomials obtained from
diagonally dominant matrices. Since this concept is relatively new I am
going to look at the viability of these sum of square polynomials in older
known optimisation problems such as the kissing number problem. I will
do this by writing a semidefinite program in which the sum of square poly-
nomials are created by diagonally dominant matrices. I will then compare
the newly found upper bounds with the upper bounds found by sampling
and the volume bound.

1

Contents

1 Introduction 3

2 The volume bound 4

3 Semidefinite programming 6

4 The linear programming bound of Delsarte, Goethals, and Sei-
del 6

5 Modeling the linear programming bound as semidefinite pro-
gram. 9
5.1 Sampling the linear programming bound. 9
5.2 Modeling the linear programming bound as a semidefinite pro-

gram using sums of squares . 10

6 Sums of squares from diagonally dominant matrices 12

7 Results 13

2

1 Introduction

The kissing number problem asks for the maximum number of non-overlapping
unit balls in Rn that can simultaneously touch a central unit ball. This maxi-
mum is denoted by τn. The problem owns its name to a billiard term: two balls
“kiss” when they touch. Over the last few centuries the kissing number problem
has become a well-known problem in the field of combinatorial geometry as it
is one of the best-known packing problems. In dimension 1 the kissing number
is 2. As can be seen in Figure 1, in this dimension the unit circles are actually
intervals on the line segment. The only manner to put an interval next to a
central interval one while being on the line is by placing one interval on the left
and one the right of the central interval.

Figure 1: The kissing number problem in R1.

In dimension 2 the kissing number problem is 6, as illustrated in figure 2. A
short proof is given.

Let C be the center of an unit circle which is touched by unit circles centred
at C1, C2,, Cn. Now for the circle centered at Ci consider the line segments
connecting C and Ci. Each of these line segments starts in C so the sum of
angles between adjacent line segments is 2π.

Now assume by contradiction there are more than six circles touching the
central circle C. This means at least two adjacent line segments are separated
by an angle of less than π

3 . Lets say these are the line segments CC1 and CC2.
All segments CCi have the same length of 2, which is twice the radius, for all i.
Now the triangle CC1C2 is isosceles and the side C1C2 has a length of less than
2. This means that the circles constructed form centers C1 and C2 intersect, a
contradiction.

Figure 2: The kissing number problem in R2.

3

The first real disagreement about the kissing number problem arose when
the mathematicians Isaac Newton (4 January 1643 – 31 March 1727) and David
Gregory (3 June 1659 – 10 October 1708) tried to solve the kissing number
problem for dimension 3 in 1694. Newton said the maximum to be 12 but
Gregory argued it was 13 [3]. The discussion on this subject was raised because
of the configuration of 12 spheres touching the middle sphere. To get this
configuration we start with the case in dimension 2, One central unit sphere
surrounded by six unit spheres. We can then put three unit spheres on top of
the central unit sphere and three unit spheres on the bottom. As can be seen in
Figure 3 when the 12 outer spheres touch the middle sphere they do not touch
each other. This led to believe that by moving the outer spheres around another
sphere could be placed touching the central sphere.

Figure 3: The kissing number problem in R3.

The answer to who was correct was only found in 1953 by Schütte and van
der Waerden [11]. As it turns out the kissing number in dimension 3 is 12, so
Newton was correct. However Gregory’s assumption was not that far fetched.
The lower bound of the kissing number problem in R3 should be 12 as can be seen
from the configuration in Figure 3. As for an upper bound, the volume bound,
see Section 2, is often seen as the simplest bound for the kissing number problem
which givens an upper bound of 14. Later, Odlyzko and Sloane [8] determined
the values for the n = 8 and n = 24, namely τ8 = 240 and τ24 = 196560. After
that Musin [7] determined that τ4 = 24. To this day these 6 dimensions, 1-4, 8
and 24, are the only dimensions for which the kissing number is known.

2 The volume bound

A sphere is the set of all points equidistant from a single point in space. There-
fore a unit sphere is defined as Sn−1 = {x ∈ Rn : ‖x‖ = 1}. A spherical cap is
the region of a sphere which lies above a given plane, see Figure 4. The spherical
distance between two points P and Q on a sphere is the distance of the shortest
path along the surface of the sphere. The minimum angular distance is the
angle these two points make with the center of the sphere. A spherical code is

4

Figure 4: A spherical cap.

a finite set of points on the surface of a sphere in n dimensional space. The
volume bound is based on a spherical code which covers the entire surface of a
sphere. Now we can define a spherical cap with a centre in point x and angle
θ as S(x, θ) = {y ∈ Rn : x · y ≥ cos θ}, which is the set containing all points at
spherical distance at most θ from x. The parameter A(n, θ) denotes the maxi-
mum size of a spherical code in Sn−1 with minimum angular distance θ. If two
unit spheres touch a central unit sphere, in the same manner as in the case of
R2, the angle between two contact points is at least π

3 . Therefore arranging the
unit spheres such that they do not overlap and all touch a central unit sphere is
the same as finding a spherical code in Sn−1 with minimum angular distance π

3 .
This means that finding the kissing number in Rn is equal to finding A(n, π3).

A spherical code in Sn−1 with minimum angle distance θ can form a set of
interior-disjoint spherical caps of radius θ

2 by placing such cap on every point
of the spherical code. Let ω be surface measure of Sn−1 so that

ω(Sn−1) =
(2π)

n
2

Γ(n2)
(1)

where Γ(n2) is the Euler gamma function. The area of spherical cap S(n, α) can
be computed as following:

ω(Sn−2)

∫ 1

cosα

(1− u2)
n−3
2 du (2)

So because a spherical code corresponds to a packing of spherical caps on the
sphere we have the upper bound.

A(n, θ) ≤

⌊
ω(Sn−1)

ω(S(n, θ2))

⌋
(3)

This is an upper bound because the surface of the sphere is covered by spherical
caps which is greater than the maximum size of a spherical code with minimum
angular distance θ. By filling in this upper bound for the kissing number prob-
lem for R2, θ = π

3 , the upper bound is 6, which as seen before is exactly the

5

kissing number for R2. However filling this in for R3 gives a right hand side of
approximately 14.9282 which means that τ3 ≤ 14.

3 Semidefinite programming

Important for semidefinite programming is the trace inner product of two ma-
trices A,B ∈ Rn×n which is

〈A,B〉 = Tr(ATB) =

n∑
i,j=1

Ai,jBi,j

We will denote by Sn the set of symmetric n×n matrices and write A � 0 when
A is positive semidefinite. Now we let C ∈ Rn×n and Ai ∈ Rn×n for i = 1, ..., n
be symmetric matrices. A semidefinite program is a special case of a linear
program in which these C and A1, ..., An are diagonal. Furthermore let b ∈ Rm
be a given vector with real numbers for bi with i = 1, ...,m. A semidefinite
program is thus a maximization problem in the form of

p∗ = supX{〈C,X〉 : 〈Ai, X〉 = bi for i ∈ [m], X � 0} (4)

where the symmetric n × n matrices A1, ..., Am ∈ Sn and the vector b ∈ Rm
are the date of the semidefinite program and the matrix X is the variable,
constraind to lie in a subspace and to be positive semidefinite. Writing (4)
down as an optimisation problem it looks like this:

max 〈C,X〉
subject to 〈Ai, X〉 = bi ∀i = 1, ..., n

X � 0

(5)

So this function maximises the linear function X → 〈C,X〉 where X ∈ Rn×n
ranges over all positive semidefinite matrices while satisfying the given linear
constraints.

The efficient algorithms for semidefinite programming makes it favourable as
a generalization of linear programming. This is because semidefinite programs
can solve moderately-sized problems more efficiently.

4 The linear programming bound of Delsarte,
Goethals, and Seidel

As seen in Section 2 it is important to find an accurate upper bound for A(n, θ)
in order to solve the kissing number problem. One such upper bound is the linear
programming bound found by Delsarte, Goethals, and Seidel [4]. In order to get
to this upper bound we model spherical codes as independent sets in a certain
graph.

6

Let G = (V,E) be a graph without loops or parallel edges. A set of vertices
V ′ ⊆ V is said to be independent if x, y are nonadjacent for all x, y ∈ V

′
.

The independence number of G, which is denoted by α(G), is the maximum
cardiality of any independent set of G. Given n ≥ 1,θ ∈ (0, π], consider the
graph G(n, θ) where we use Sn−1 as the set of vertices. In G(n, θ) distinct
vertices x, y ∈ Sn−1 are adjacent if cos θ < x · y < 1. Now the subset of vertices
V ′ ⊆ Sn−1 is independent in G(n, θ) if and only if V ′ is a spherical code with
minimum angular distance θ. Therefore it follows that A(n, θ) = α(G(n, θ)).
An important thing to note however is that the graph G(n, θ) is infinite, though
the independence number is finite.

Since we know A(n, θ) = α(G(n, θ)) we need to find an upper bound for the
Independence number α(G(n, θ)). One such upper bound is the theta prime
number, ϑ′(G), which was introduced by McElliece, Rodemich, and Rumsey
[6] and Schrijver [10]. This number was based on the Lovász theta number,
ϑ(G), introduced by László Lovász [5] in 1979. One way to define ϑ′(G) for a
finite graph G is as the optimal value of the following semidefinite programming
problem:

inf λ

subject to Z(x, x) = λ for all x ∈ V,
Z(x, y) ≤ 0 if x 6= y and xy /∈ E,
Z : V × V → R is symmetric and Z − J is positive semidefinite.

(6)
Here J is the all-ones matrix.

The graph used to define ϑ′ was a finite graph while the graph G(n, θ) is
infinite as stated before. So in order to get an upper bound for A(n, θ) using
ϑ′ the definition should be extended so it holds for infinite graphs. Let V be a
compact space, A kernel is a continuous function K : V × V → R. A kernel K
is positive if (K(x, y)x,y∈U is positive semidefinite for all finite sets U ⊆ V . For
G = (V,E) where V is compact, ϑ′ is the optimal value of:

inf λ

subject to Z(x, x) = λ for all x ∈ V,
Z(x, y) ≤ 0 if x 6= y and xy /∈ E,
Z : V × V → R is a symmetric kernel

and Z − J is positive.

(7)

This time J is the constant 1 kernel. The following theorem now holds.

Theorem 1. Let G(V,E) be a graph where V is a compact topological space. If
(Z, λ) is feasible for (7) then α(G) ≤ λ. In particular α(G) ≤ ϑ′(G)

Proof. Because of the assumptions we made on V we can use the following
observation of Bochner [2]: a continuous and symmetric kernel K : V × V → R
is positive if and only if ((K(xi, xj))

N
i,j=1 is positive semidefinite for every choice

7

x1, ..., xN of infinitely many points in V . So if (Z, λ) is feasible for (7) and C ⊆ V
is a nonempty independent set then,

0 ≤
∑
x,y∈C

(Z − J)(x, y) =
∑
x,y∈C

Z(x, y)− |C|2 ≤ λ|C| − |C|2 (8)

and thus |C| ≤ λ. Therefore α(G) ≤ λ and in particular α(G) ≤ ϑ′(G)

Since Sn−1 is compact it holds that α(G(n, θ)) ≤ ϑ′(G(n, θ)). This leaves
the final problem, computing ϑ′(G(n, θ)). As seen from the definition this means
finding the optimal solution of (7). In order to do this we will use the fact that
G(n, θ) is symmetric. We start by introducing the orthogonal group O(n) =
{A ∈ Rn×n : ATA = I} which acts on Sn−1 by sending x to Ax which preserves
the inner product. This means that every A ∈ O(n) gives an automorphism
of G(n, θ). For A ∈ O(n) the orthogonal group O(n) also acts on the kernels
K : Sn−1 × Sn−1 → R as follows.

(A ·K)(x, y) = K(A−1x,A−1y) ∀x, y ∈ Sn−1 (9)

Further more we say that the kernel K is invariant if for all A ∈ O(n) we have
A ·K = K. The reason we want to restrict ourselves to invariant kernels in (7)
is because we can then use the following theorem of Schoenberg [9] to rewrite
(7).

Theorem 2. A kernel K : Sn−1 × Sn−1 → R is positive and invariant if and
only if

K(x, y) =

∞∑
k=0

fkP
n
k (x · y) (10)

for some non-negative numbers f0, f1... such that
∑∞
k=0 fk converges, in which

case the series in (10) converges absolutely and uniformly over Sn−1 × Sn−1.
The numbers fk are uniquely determined by and uniquely determine K.

Here Pnk is the Jacobi polynomial of degree k and parameters α = β = n−3
2 .

In order to compute these polynomials the Gram-Schmidt orthogonalisation can
be applied to the inner product of the sequence of polynomials 1, t, t2. With
inner product:

(ϕ,ψ) =

∫ 1

−1
ϕ(t)ψ(t)(1− t2)

n−3
2 dt (11)

for ϕ,ψ : [−1, 1]→ R. The Jacobi polynomials can be computed with recursion
[12] as following:

2n(n+ α+ β)(2n+ α+ β − 2)P (α,β)
n (x)

= (2n+ α+ β − 1)((2n+ α+ β)(2n+ α+ β − 2)x+ α2 − β2)P
(α,β)
n−1 (x)

− 2(n+ α− 1)(n+ β − 1)(2n+ α+ β)P
(α,β)
n−2 (x), n = 2, 3, 4....

P
(α,β)
0 (x) = 1 P

(α,β)
1 (x) =

1

2
(α+ β + 2)x+

1

2
(α− β)

(12)

8

By filling in α = β = n−3
2 this will give:

Pn0 (x) = 1 Pn1 (x) =
1

2
(n− 1) (13)

It is also important to normalise the Jacobi polynomials such that Pnk (1) = 1.
Now since the Jacobi polynomial Pn0 is the polynomial 1, using Theorem 2, it
holds that a symmetric kernel Z : Sn−1 × Sn−1 → R is such that Z − J is
positive if and only if

Z(x, y) =

∞∑
k=0

fkP
n
k (x · y), f0 ≥ 1, f1, f2... are non-negative with

∞∑
k=0

fk <∞

(14)
If we use this fact combined with the fact that the vertices x, y ∈ Sn−1 are
adjacent in G(n, θ) if cos |θ| ≤ x · y ≤ 1 then (7) can be rewritten in a more
tractable form:

min

∞∑
k=0

fk

subject to

∞∑
k=0

fkP
n
k (t) ≤ 0 if− 1 ≤ t ≤ cos |θ|

f0 ≥ 1 and f1, f2...are non-negative with

∞∑
k=0

fk <∞

(15)

This minimisation problem is known as the linear programming bound of Del-
sarte, Goethals, and Seidel [4]. This linear program however is one with still
infinitely many variables and infinitely many constraints since every k introduces
a new variable and each t ∈[−1, cos θ] introduces a new constraint. Luckily this
problem is easily solved by either sampling or using sums of squares. In the
next Section I will elaborate more on these two methods.

5 Modeling the linear programming bound as
semidefinite program.

As seen in section 4 the linear programming bound (15) of Delsarte, Goethals,
and Seidel [4] still has infinitely many variables and constraints. There are two
ways to deal with this. One method is by sampling. The other method is to
adjusting the the linear programming problem, such that (15) can be modeled
as a semidefinite program. In order to do so the sum of squares restriction is
used.

5.1 Sampling the linear programming bound.

In order to turn (15) into a tractable optimisation problem, there are two prob-
lems to tackle. The first is that of the infinitely many variables generated by

9

each new k. In order to solve this, set an integer d > 0 and set fk = 0 if d > k.
This way the series

∑∞
k=0 fkP

n
k is shortened such that there is a finite amount of

variables added. Setting k = 2d results in the following optimisation problem:

min

2d∑
k=0

fk

subject to

2d∑
k=0

fkP
n
k (t) ≤ 0 if− 1 ≤ t ≤ cos |θ|

f0 ≥ 1 and f1, f2...are non-negative

(16)

The second problem is that of the infinitely many constraints generated by
t ∈ [−1, cos θ]. In order to solve this problem sampling is necessary. For this
choose a finite set S ⊆ [−1, cos θ] and only consider the constraint for t ∈ S in
(15). If the new linear program does not have a feasible solution a larger value
for d should be chosen. It then has to be checked whether or not the new linear
program has an optimal solution that is feasible for the original program. After
restricting to a sample, the optimal solution may not be feasible for the original
program. Then it is possible to fix this by rescaling the solution and changing
the variable f0. This however may result in a bound that is much worse if the
sample is not fine enough.

5.2 Modeling the linear programming bound as a semidef-
inite program using sums of squares

One of the important constraints in the linear programming bound (16) is that

the polynomials
∑2d
k=0 fkP

n
k (t) with d < ∞ are non-negative. This is assured

because f0, f1, ... are all non-negative. A polynomial p ∈ R[x1, ...xn] is a sum of
squares if there are polynomials q1, ..., qm such that p = q21 ++ q2m. It is thus
easily seen that if p can be written as a sum of squares that p is non-negative
everywhere. What this sum of squares has to do with semidefinite programming
is made clear by the following Theorem. In this theorem R[x1, ...xn]≤d is the set
of polynomials with degree at most d for d ≥ 0. Furthermore, for any finite set
of polynomials B it holds that vB : B → B such that vB(p) = p for all p ∈ B

Theorem 3. Let p ∈ R[x1, ...xn] be a polynomial of degree 2d and let B be
a basis of R[x1, ...xn]≤d. Then p is a sum of squares if and only if there is a
positive semidefinite matrix Q : B ×B → R such that p = vTBQvB

Proof. Assume Q is a positive semidefinite matrix such that p = vTBQVB Then
for some vectors ui : B → R we have Q = u1u

T
1 + ...+umu

T
m. Writing qi = uTi vB

we have that each ui is a polynomial and

p = vTBQvB = vTBu1u
T
1 + ...+ vTBumu

T
mvB = q21 + ...+ q2m

so p is a sum of squares.

10

On the contrary assume p = q21 + ... + q2m for some q1, ..., qm. The degree
of each qi is at most d and thus can be expressed as linear combination of the
polynomials in B. So for i = 1, ...,m let ui : B → R be such that qi = uTi vB .
Then p = vTBQVB and Q = u1u

T
1 + ...+ umu

T
m positive semidefinite.

So in order to set up a tractable semidefinite programming problem the
given polynomial p ∈ R[x1, ...xn] should be of degree 2d and a sum of squares.
For it to be a sum of squares a basis B of R[x1, ...xn]≤d is chosen. This is
because Theorem 3 now tells us that p is a sum of squares if and only if here is a
positive semidefinite matrix Q : B×B → R such that p = vTBQvB = 〈vBvTB , Q〉.
Since this is an identity between polynomials where both sides are of degree 2d
the identity should be checked by expanding on a basis B= of R[x1, ...xn]≤2d
and comparing the coefficients. This can be done by letting coef(r, q) be the
coefficient of r ∈ B= in the expansion of q ∈ R[x1, ...xn]≤2d on the basis B=. By
applying coef(r, ·) to vBv

T
B entrywise we obtain a real matrix. We will denote

this matrix as coef(r, vBv
T
B). It follows that p = 〈vBvTB , Q〉 if and only if

〈coef(r, vBv
T
B), Q〉 = coef(r, p) for each r ∈ B= (17)

We now reduced the requirement of p beeing a sum of squares to the existance
of a positive semidefinite matrix Q : B×B → R satisfying the linear constraints
from (17). Since we want the polynomials

∑2d
k=0 fkP

n
k (t) to be non-negative in-

side a certain domain t ∈ [−1, cos θ] and because the polynomials are univariate
a theorem of Lukács [12] can be used. A polynomial p ∈ R[x] is non-negative
on the interval [a, b] if and only if there are polynomials q, q′ such that:

p(x) = q(x)2 + (x− a)(b− x)q′(x)2 if p has an even degree

p(x) = (x− a)q(x)2 − (b− x)q′(x)2 if p has an uneven degree
(18)

Because we are dealing with sums of squares p is always of even degree and the
interval is [−1, cos θ]. Therefore p can be written as:

p(x) = q(x)2 − (x+ 1)(cos θ − x)q′(x)2

The next step is to use this in order to write the linear program bound (15) as a
semidefinite program in order to find an upper bound for A(n, θ). The first step
we take is the same as it was with the sampling method in section 5.1, limiting
the amount of variables by setting k = 2d. Since we want

∑2d
k=0 fkP

n
k to be

non-positive on t ∈ [−1, cos θ] we can require the sum of squares polynomials q,
with degree up to 2d, and q′,with degree up to 2(d− 1), to be such that

2d∑
k=0

fkP
n
k (t) = −q(t)− (t+ 1)(cos θ − t)q′(t) (19)

Now q is a sum of squares if and only if there is a positive semidefinite matrix
Q : B ×B → R such that q = 〈vBvTB , Q〉 with B the basis of R[t]≤d. This same
statement also holds for q′ and B′ the basis of R[t]≤d−1. So q′ is a sum of squares

11

if and only if there is a positive semidefinite matrix Q′ : B′×B′ → R such that
q′ = 〈vB′vTB′ , Q′〉. Therefore an upper bound for A(n, θ) is any feasible solution
of the semidefinite optimisation problem.

min

∞∑
k=0

fk

subject to

∞∑
k=0

fkP
n
k (t) + 〈vBvTB , Q〉+ 〈(t+ 1)(cos θ − t)vB′vTB′ , Q′〉 = 0

f0 ≥ 1 and f1, ..., f2d ≥ 0

Q : B ×B → R � 0 and Q′ : B′ ×B′ → R � 0
(20)

6 Sums of squares from diagonally dominant ma-
trices

As we have seen using sum of squares gives us a semidefinite optimisation prob-
lem which establishes an upper bound for A(n, cos θ). We wanted p to be a sum
of squares so we focused on the matrix Q to be positive semidefinite such that
p = vTBQvB . So p is a sum of squares constructed from a positive semidefinite
matrix Q. However in the hope more efficient inner approximations are obtained
the condition of Q being a positive semidefinite matrix can be changed to Q be-
ing a diagonally dominant matrix. This is a stronger condition but might effect
the accuracy. This idea was recently introduced by A.A. Ahmadi and A. Majum-
dar [1]. A symmetric matrix A is diagonally dominant (DD) if aii ≥

∑
j 6=i |aij |

for all i. Therefor it follows that p is a diagonally-dominant-sum-of-squares
(DSOS) if it admits a representation as p(x) = vTBQvB = 〈vBvTB , Q〉, where Q is
a diagonal dominant matrix and B the basis of R[t]≤d. It is also important to
note that a diagonal dominant matrix is positive semidefinite. If A is a diagonal
dominant matrix then:

xTAx =

n∑
i=1

ai,ix
2
i +

∑
i 6=j

ai,jxixj ≥
n∑
i=1

(
∑
i 6=j

|ai,j |)x2i −
∑
i 6=j

|ai,j ||xi||xj |

=
∑
j>i

(|ai,j |(x2i + x2j − 2|xi||xj |)) ≥ 0

(21)

So A is positive semidefinite. Finding an upper bound for A(n, θ) using dsos
was the main focus of my research. The optimisation problem I used in order

12

to do so resembled (20) closely but was in essence very different.

min

∞∑
k=0

fk

subject to

∞∑
k=0

fkP
n
k + 〈vBvTB , Q〉+ 〈(t+ 1)(cos θ − t)vB′vTB′ , Q′〉 = 0

f0 ≥ 1 and f1, ..., f2d ≥ 0

Q : B ×B → R and Q′ : B′ ×B′ → R are diagonally dominant
(22)

The two optimisation problems are different because we use DSOS for which
linear programming is used instead of semidefinite programming which was used
for the positive semidefinite matrices in (20). A diagonal dominant matrix A
can be modeled in a linear program by introducing a second matrix B. First
the diagonals of A are required to be non-negative. Because the absolute value
of every other entry in A is required, B is modeled such that every bi,j ∈ B is
the absolute value of ai,j ∈ A for j ≥ i since A is symmetric. This is done by
adding the constraints B[i, j] >= A[i, j] and B[i, j] >= −A[i, j]).

7 Results

In order to see whether or not using DSOS for the kissing number problem
provides a good upper bound for A(n, θ) I compared the upper bounds I found
with the ones found when using the volume bound and the sampling method
on the linear programming bound. I compared these different bounds for up to
24 dimensions and 5 different angles. As seen in chapter 2.1, the angle in order
to solve kissing number problem is π

3 . An important thing to note however is
that my sampling bound is slightly off due to a not fine enough sample. This is
clearly seen in the dimensions 1 − 4, 8 and 24 for which the kissing number is
known. The results I found are shown in the tables below.

As stated before the angle θ determines the size of the spheres touching.
Therefor θ = π

3 results in spheres as large as the center one. As can be seen
in Table 2 the DSOS method gives for n = 2 an upper bound which is a little
higher than the sample and volume bound method give, however rounded it is
still a correct upper bound. For n = 3 the DSOS method gives out an upper
bound which is better than that of the volume bound however worse than the
sample method but it is still close. For n = 4 to n = 24 the DSOS method
starts getting higher and higher than the actual upper bound is. It performs
worse than the sample bound the higher the dimension, n, gets. However the
DSOS method is still closer to the actual upper bound than the volume method
is.

13

n DSOS sample volume
2 4 4 4
3 6 6 6.828427
4 8 8 11.00775
5 10 10 17.22408
6 12 12 26.45964
7 14 14 40.14028
8 16 16 60.34002
9 18 18 90.07425

10 20 20 133.7223
11 22 22 197.6371
12 24 24 291.0232
13 26 26 427.2039
14 28 28 625.4436
15 30 30 913.5721
16 32 32 1331.759
17 34 34 1937.938
18 36 36 2815.604
19 38 38 4085.01
20 40 40 5919.233
21 42 42 8567.239
22 44 44 12386.96
23 46 46 17892.71
24 48 48 25823.15

Table 1: Different bounds for θ = π
2

n DSOS sample volume
2 6.207238 5.998485 6
3 14.24833 13.15824 14.9282
4 28.42756 25.55626 34.68075
5 52.5 46.33255 77.7562
6 96 82.61664 170.5784
7 184.8 140.154 368.7349
8 312.0515 239.8798 788.6448
9 514.8 380.0353 1673.205

10 833.4884 595.7408 3527.559
11 1389.143 915.0566 7399.303
12 2481.231 1415.472 15455.75
13 4081.586 2231.624 32171.21
14 6373.574 3489.68 66765.38
15 9905.333 5424.385 138204.5
16 15902.12 8309.671 285446.9
17 27370 12210.26 588408.1
18 44988.68 17871.02 1210822
19 68051.03 25883.95 2487778
20 104594.3 37897.33 5104370
21 164199.7 56812.3 10459975
22 275636.7 84687.58 21410546
23 477161.5 127903.6 43780148
24 695205.9 195679.3 89437026

Table 2: Different bounds for θ = π
3

As we increase the size of the angle to θ = π
2 it means that the spheres

touching the center ball are greater than the center ball itself. If we look at
Table 1, we see that the DSOS method performs as good as the sample method
and thus outperforms the volume bound for every dimension n = 3, ..., 24.

14

It is also possible for the spheres connected to the central ball to be smaller
than the central one. This happens when we set the angle θ ≥ π

3 .

n DSOS sample volume
2 8.123189 7.997757 8
3 24.60889 23.43172 26.27414
4 67.05047 54.51365 80.25386
5 168.1612 149.9185 236.1009
6 415.5058 339.8278 678.8385
7 964.9874 753.6535 1921.832
8 2291.226 1674.368 5380.519
9 5085.93 3566.616 14937.55

10 11858.51 7340.546 41198.21
11 25488.9 15521.48 113027.1
12 58992.93 32473.28 308746.7
13 123570.2 64613.24 840324.7
14 281533.4 127805.7 2280109
15 585184.4 260947 6170436
16 1357337 531172.6 16660155
17 4342620 1047376 44891909
18 2097213 1.21E+08
19 4309659 3.24E+08
20 8828220 8.7E+08
21 17303388 2.33E+09
22 33667448 6.23E+09
23 64571768 1.67E+10
24 1.27E+08 4.45E+10

Table 3: Different bounds for θ = π
4

n DSOS sample volume
2 10.18972 9.928458 10
3 39.05725 36.61617 40.86345819
4 133.0509 104.5787 155.0130054
5 423.5922 355.7884 565.8387787
6 1294.949 1034.855 2017.540024
7 3849.977 2849.126 7080.847757
8 11216.41 7761.113 24570.25043
9 38406.72 20615.85 84529.9863

10 414779.3 53121.31 288871.5206
11 140436.6 981895.7451
12 348027.2 3322859.149
13 888744.7 11203658.15
14 2222068 37657586.87
15 5412463 126235506.8
16 13696133 422182913.1
17 32906121 1409077838
18 79540043 4694481448
19 1.96E+08 15615089723
20 4.65E+08 51865548610
21 1.13E+09 1.72049E+11
22 2.69E+09 5.70058E+11
23 6.28E+09 1.88678E+12
24 1.51E+10 6.23896E+12

Table 4: Different bounds for θ = π
5

we fist have a look at what happens when we set the angle to be θ = π
4 . The

fist thing to notice is that in Table 3 the DSOS method does not work for all the
n = 24 dimensions it worked for before. This is because for higher dimensions
computing this becomes to hard for the program. Another thing to notice is that
it gives out higher upper bounds than the sampling method. However, except
for n = 2, the DSOS method provides lower upper bounds than the volume
bound does which is a good thing. For θ = π

5 the DSOS method produces for
even fewer dimensions results. As before however the DSOS method provides
a lower upper bound than that of the volume bound, except for n = 2. The
values of the sampling method are however even lower.

15

Lastly we have a look at Table 5 for which θ = π
6 has been set. Again the

DSOS method produces for even fewer dimension results. Again the sampling
method produces the lowest upper bound, than the DSOS method and lastly
the volume bound.

n DSOS sample volume
2 12.22214 11.90256 12
3 56.40706 52.87139 58.69548054
4 230.9418 205.1827 266.250479
5 900.9846 742.3813 1161.579769
6 4362.751 2533.932 4948.651604
7 8502.9 20748.1474
8 27275.96 85996.34402
9 87164.64 353362.313

10 270971.3 1442201.389
11 834523.6 5854337.592
12 2544858 23659177.73
13 7600980 95259955.58
14 22785184 382345317.5
15 67622510 1530486091
16 2E+08 6112042203
17 5.75E+08 24358638798
18 1.68E+09 96901986251
19 4.85E+09 3.84869E+11
20 1.41E+10 1.52638E+12
21 4.08E+10 6.04572E+12
22 1.20E+11 2.39206E+13
23 3.40E+11 9.40569E+13
24 9.79E+11 3.73652E+14

Table 5: different bounds for θ = π
6

So if we look at the results for all different dimensions and different angles
for θ it is clear that the DSOS method does not provide a better upper bound
for A(n, θ) than the sampling method does. However the DSOS method does
provide us with a lower, and thus better, upper bound for A(n, θ) than the most
arbitrary bound, the volume bound.

16

References

[1] Amir Ali Ahmadi and Anirudha Majumdar. Dsos and sdsos optimization:
more tractable alternatives to sum of squares and semidefinite optimization.
SIAM Journal on Applied Algebra and Geometry, 3(2):193–230, 2019.

[2] M Lashkarizadeh Bami. Bochner’s theorem and the hausdorff moment the-
orem on foundation topological semigroups. Canadian Journal of Mathe-
matics, 37(5):785–809, 1985.

[3] HSM Coxeter. An upper bound for the number of equal nonoverlapping
spheres that can touch another of the same size. In Convexity: Proceedings
of the Seventh Symposium in Pure Mathematics of the American Mathe-
matical Society, volume 7, page 53. American Mathematical Soc., 1963.

[4] Philippe Delsarte, Jean-Marie Goethals, and Johan Jacob Seidel. Spherical
codes and designs. In Geometry and Combinatorics, pages 68–93. Elsevier,
1991.

[5] László Lovász. On the shannon capacity of a graph. IEEE Transactions
on Information theory, 25(1):1–7, 1979.

[6] Robert J McEliece, Eugene R Rodemich, and Howard C Rumsey Jr. The
lovász bound and some generalizations. J. Combin. Inform. System Sci,
3(3):134–152, 1978.

[7] Oleg R Musin. The kissing number in four dimensions. Annals of Mathe-
matics, pages 1–32, 2008.

[8] Andrew M Odlyzko and Neil JA Sloane. New bounds on the number of
unit spheres that can touch a unit sphere in n dimensions. Journal of
Combinatorial Theory, Series A, 26(2):210–214, 1979.

[9] Isaac J Schoenberg. Metric spaces and completely monotone functions.
Annals of Mathematics, pages 811–841, 1938.

[10] Alexander Schrijver. A comparison of the delsarte and lovász bounds. IEEE
Transactions on Information Theory, 25(4):425–429, 1979.

[11] Kurt Schütte and Bartel Leendert van der Waerden. Das problem der
dreizehn kugeln. Mathematische Annalen, 125(1):325–334, 1952.

[12] Gabor Szeg. Orthogonal polynomials, volume 23. American Mathematical
Soc., 1939.

17

	Introduction
	The volume bound
	Semidefinite programming
	The linear programming bound of Delsarte, Goethals, and Seidel
	Modeling the linear programming bound as semidefinite program.
	Sampling the linear programming bound.
	Modeling the linear programming bound as a semidefinite program using sums of squares

	Sums of squares from diagonally dominant matrices
	Results

