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A quasi-static problem is usually formulated by the equations of static equilibrium and a load parameter
which shows the level of loading. Path-following methods are widely used to analyze these kinds of prob-
lems. These methods add a constraint function to the equilibrium equations in order to determine the
loading evolution. There is a parameter in the constraint function, the step-length, which should be pos-
itive in each analysis step and which is determined by a step-length adaptation law. Different adaptation
laws control the step-length growth differently, and thus, they influence the performance of the solution.
We propose two novel types of adaptation laws based on (a) a local degree of smoothness and (b) global
performance measures of the solution. The former uses the angle between the linearized solution path
and the tangent to the analytical solution curve while the latter employs simple prediction models for
the future evolution of two performance measures. Moreover, appropriate constraint functions for the
latter are suggested. Example problems of structural damage are solved by path-following methods uti-
lizing the proposed adaptation laws as well as a conventional one. Results show that the new laws raise

distinct possibilities to have solutions with an improved performance.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Solving a quasi-static nonlinear structural problem usually
requires determining the evolution of a load parameter. Path-
following methods are effectively used to find the load parameter
in each analysis step. The method, essentially, adds another equa-
tion, called a constraint function, to the system of equilibrium equa-
tions. The characteristic of this function is that it always increases a
response of the structure (e.g. the arc-length [1], dissipated energy
[2], etc.) by a positive valued step-length. The amount of step-
length increase in each analysis step influences the quality of the
numerical solution. Fig. 1 emphasizes the importance of using
appropriate step-lengths by showing the solution points obtained
from two different step-lengths in the analysis steps. The step-
length either is a constant during the analysis or is determined in
each analysis step according to a step-length adaptation law. The
former is not a practical choice because it usually faces conver-
gence issues for sharp nonlinear parts of the solution path or for
rather considerable changes in the displacement vector. It may also
lead to too many solution points which provide negligible progress
in the displacement vector. The latter usually utilizes current and/
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or previous solution points so as to modify the step-length of the
next step.

For example, Crisfield [1] and Ramm [3] used the ratio between
an optimal number of iterations and the number of iterations
needed to converge to a solution point in each step as a correction
to the current step-length. Bergan et al. [4] introduced a different
nonlinearity measure called ‘current stiffness parameter’. Bergan
[5] also recommended a step-length correction ratio that main-
tained the variation of this measure approximately constant. Wid-
jaja [6] used this measure to adapt the step-length but in a
different way than Bergan. And, Chan [7] adopted a simpler version
than Bergan’s current stiffness parameter. Like Bergan, Eriksson [8]
derived two stiffness measures which provided some information
about the iterative behavior of solution method, limit points of
load, bifurcations, etc. He used different iteration constraining
equations together with searching critical solution points [9]. He
also utilized derivatives of the tangential stiffness matrix and sev-
eral higher-order methods in order to improve predictions in the
incremental solution procedure and identification of critical points
[10,11]. With emphasis on the development of criteria utilized dur-
ing the corrector phase, Eriksson and Kouhia [12] developed two
step-length adaptation procedures. Schmidt [13] proposed an
adaptive step-length procedure which imposed the drifting error
to be within a contractive boundary at each analysis step. He, then,
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Fig. 1. Two methods have found different solution points on the exact solution
curve (solid black line). Method A has used better values for the step-lengths than
method B.

used it together with a set of conditions for the detection of
impending divergence of the corrector phase. From the view of cor-
rector phase, Georg [14] sketched a step-length adaptation law
based on elementary asymptotic error considerations while Den
Heijer and Rheinboldt [15] proposed an error model for the correc-
tor iterations. By the latter, one could predict an approximation of
the step-length value needed for a specified error. In contrast, Sch-
wetlick [16] investigated on the predictor phase. He proposed a
Newton-type path-following method by using a model based on
the Kantorovich theorem and provided a condition for the maximal
step-length. Szyszkowski and Husband [17] proposed a path-
following technique that monitored and used the curvature of
the equilibrium path to predict both the step-length and forward
direction. Main categories and aspects of using step-length adapta-
tion laws are discussed in [18,19], respectively.

The mentioned step-length adaptation laws focus on providing
relative robustness by keeping a simple measure of local degree of
nonlinearity almost constant in each analysis step. Although, it
may prove to be beneficial to consider other objectives (such as
smoothness and speed of the solution process explained in Sec-
tion 3.1) in forming the adaptation law. We, therefore, propose a
first law in Section 4 which modifies a local degree of nonlinearity
based on the angle between the linearized solution path and the
tangent to the analytical solution curve. As a second law, we pro-
pose an adaptation based on an objective combination of a speed
measure and a cosine measure in Section 5. An issue of using global
performance measures in the adaptation process is that it is
needed to know the complete solution path to be able to calculate
them, while only a part of the solution path is known when step-
length adaptations of intermediate steps are needed! This contra-

diction could be dealt with via the prediction of the (unknown)
future part of the solution path. For this, we employ simple and
effective mathematical models to solely predict the future values
of basic performance measures in each step. By using these predic-
tion models, a step-length which maximizes an objective perfor-
mance measure is determined and used as the step-length of the
next step. As mentioned before, path-following methods could be
improved in two aspects: the constraint functions and the step-
length. In [20], we focused on improvements of the quality of
path-following methods by focusing on new mathematical formu-
lations of constraint functions, while we, in this paper, propose
step-length adaptation laws to enhance the overall performance
of path-following methods.

2. Damage model and the path-following method

In this section, we present the damage model of our problem as
well as the path-following methods which are used in the next
sections.

2.1. Damage model

In the numerical examples of Section 6, an isotropic damage
model is adopted to model the nonlinear behavior of interface ele-
ments. The constitutive relation follows

tint = (] - w)cintuint (1)

where ti,, and u;,, are the traction and the relative displacement
field (or jump) of the interface, respectively, Ci, is the constant
stiffness matrix of an undamaged state of the interface, and w is
the scalar damage parameter of the isotropic damage model which
takes a value between 0 (no damage) and 1 (fully damaged). In case
of irreversible damage, w is defined as a function of a parameter
which stores the largest damage state occurred in each material
point. The parameter is usually called the damage history parame-
ter, k. The relation between x and u.q is depicted by the Karush-
Kuhn-Tucker conditions:

£>0, (Ugq—K)K=0 (2)
where K is the rate of change of damage history parameter and
Ueq = Ueq(Wine) is an invariant measure of the total relative displace-
ment. It should be noted that two other assumptions are made for
modelling damage in this paper: (a) healing of the damaged points
does not occur and (b) the damage history parameter is a continu-
ous function of (artificial) time. These assumptions together with
(2) guarantee the monotonic increase of k. Typical examples of
damage parameter functions are linear damage

0, K < Ko
o= 1-E50, Ko< K <Ky (3)
1, Ku <K

and exponential damage

0, K < Ko
“= 1—'%"EXP(—""’<°), Ko < K @

Bint

where i and k, are the values of the history parameter indicating
the initiation and end of the damage growth, respectively and g;,, is
a parameter that scales the exponential growth related to the frac-
ture energy.
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2.2. Path-following method

A quasi-static structural finite element problem which is para-
metrized for external loads by a load factor normally takes the fol-
lowing form of a nonlinear algebraic system of equations

r(a, ) =fn(a i) —fex(a,2) =0 (5)

where r is the vector of unbalanced or residual forces, fiy and fex
are the vectors of internal and external forces, respectively, a is
the displacement vector, and / is the load factor. A path-following
method utilizes an extra equation, called a constraint function, in
order to solve (5) and find the evolution of the displacements and
the load factor. In other words, the method searches for a solution
with respect to an artificial (or pseudo) time. A typical constraint
function can be formulated as

g(a’ Ay ’7) = h(a7 }) -n =0 (6)

where g is the (total) constraint function, h is the (total) constraint
kernel, and # is the independent scalar total step-length parameter
which must monotonically increase. The function h is called the
(total) constraint kernel because its increase by the magnitude of
n controls finding the solution points. In a sequential process of
searching for responses by an incremental-iterative method, it is
presumed for the decomposition of @y, Ay+1, and 1, that

My =My + A’/’nﬂ (7)

where A@, 1, A1, and Az, are the increments of a, 4, and 7 in
step (or increment) n + 1, respectively. In addition, the system com-
posed of Egs. (5) and (6) is reformulated to have functions of
A@,.1,Alpsq, and An,,, (instead of functions of @, 4n.1, and
#,.1) for two reasons: (a) it is more convenient to explicitly show
the evolution of the system which is going to be solved in each step
and (b) (incremental) constraint functions which are functions of
the increment of the displacements and the load factor are usually
proposed and utilized:

Ap = @y +AQyiq, Iyt = Ao + Adnyr,

Foy1 (A1, Adnia)

=0 8
8ni1 (Aan+]7A)°n+17Arln+1) (8)

where Tni (Aa,H] s A;Ln+]) = r(an_1 s in+1) and Eni1 (Aan+1,A;»n+1,
AWpq) = 8(@ni1, ins1,M,,,) are the residual force vector and
the (incremental) constraint function in step n+ 1, respectively.
The (incremental) constraint function is equal to
hni1(A@yiq, Adniq) — An,,, where hyyq and Ap,,, are the (incremen-
tal) constraint kernel and step-length, respectively. It should be
noted that r..4,8,.,, and h,,; are different functions from r,g,
and h. We have employed the Newton-Raphson method to solve
(8)in stepn+1:

Klt< Vk 5(1’,;:} — lr§+1 (9)
zZk wk 5/11;11 g’éﬂ

where the components of the Jacobian matrix of step n+1 are
defined by

kb= Ot (10)
O(Aanﬂ)
vk = 78”,(“ : (11)
o(ak)
zk _ Bgnﬂ (12)
T
a(AaﬁH)
Wk _ 8gnk+l , (13)
a(A}Lnﬂ)

the difference vector of the solution is composed of

oy} = Aayy — Ay, (14)
diniy = Adgly — Ay, (15)
and the components of the right-hand side of (9) are equal to

My =Tua (AaﬁﬂvAiﬁﬂ)v (16)

ghon = &nn (A A% ), (17)

in which superscript k indicates the kth iteration, and X" is the
transpose of vector x. The Jacobian matrix in (9) is unsymmetric
in general. Therefore the bordering algorithm (e.g. see [21]) is
employed to benefit from the symmetry of the tangential stiffness
matrix K, by the following decomposition:

Sk+1 _ Spak+1 2k+1 5 pk+1
banﬂ - 5an+1 - 5’“n+1 banﬂ (18)

Sak+l Saktl i i
where éa;7} and oa;*] are obtained by solving

kS pk+1 k
Kt banﬂ =T,

Kfoakl = v* (19)
and 5&’;:} is calculated by substituting Eq. (18) in the second part of
(9):

5/'Lk+] _
k kS ak+1
Wk — zK 5an+1

n+1 —

2.3. Constraint functions

The constraint functions used in solving the example problems
are the energy release control [2] and slightly different versions of
Kk and k- control proposed by the authors in [20]. The energy
release control constraint is

81 = hnH (Aanﬂ ; AAHH) - Annﬂ
1 T

=5 (n AG] ;= Al al) fex — A1, (21)

where h,, is defined as the variation of the energy release in step
n+1, fEX is the unit vector of external forces when the external

force is independent of the deformations (i.e. fgx = 4 fEX). The sec-
ond constraint function is called modifiedrccontrol:

8n+1 (Aanﬂ 5 Annﬂ) = /!; AK"H dQO - Arlnﬂ (22)

0

where Ak, 1 = Kn,1 — K, is the increment of the history parame-
ter in step n+1,k,.¢ is equal to max(Kmueq(an +Aan+1)),xn is
the converged value of the damage history in step n, and Qo
and dQq are the domain of and the volume element of the unde-
formed body under analysis. The only difference between this
constraint function and its original formulation in [20] is that it
integrates over the undeformed domain of the body instead of
over last deformed configuration. For the formation of a third
constraint function, the same idea of k- control in [20] is
adopted except that k (instead of Ak) is weakened for the points
with more damage. To do this, firstly, we suggest the following
function

@ (K) :/O (1 —co)kdt = /OK(l —qw)dx (23)

which, after integration, becomes



4 A. Fayezioghani et al./ Computers and Structures 223 (2019) 106100

Cr, = 0
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cL = 0.4
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Fig. 2. The curve of @ versus « for different values of c;.
K, 0<K <Ky
In (’Lo) —%H
K+—5—~, Ko < K <Ky
w(K) = ko Fu (24)

(x)
K+Ce|—F+—-K|, Ku<K

Ko Ku

where @ is an augmented damage parameter, @, is the linear dam-
age function of (3), and ¢y is a coefficient between 0 and 1 to modify
the contribution of damaged points for the solution progress. By
setting smaller values of ¢, the contribution of fully damaged
points will increase and vice versa. Fig. 2 shows the curve of @ ver-
sus k for different values of c;. The figure obviously illustrates that
(a) @ is equal to k from x = 0 to ko regardless of the magnitude of
ci, (b) the curve with ¢, =0 is @ = k, and (c¢) @ remains as a con-
stant value (= In(xyu/Ko)/(1/K0 — 1/x,)) after x, when c. =1.
Finally, the integration of the increment of @ is proposed as the
modifiedik-w control:

8ni1 (AanHzA”nH) = /Q (Awﬂﬂ - Ar’nﬂ) dQo (25)

0

where At,,; = @Wy,1 — @, is the increment in the augmented dam-
age parameter. It should be noted that the function of w in (1) can
differ from wy. The difference of the above constraint function from
the original k-w control is that (a) it integrates over the unde-
formed domain of the body and (b) it uses the augmented damage
parameter instead of directly multiplying 1 —  to the increment of
K.

The constraint functions (22) and (25), like their original forms,
possess the advantage of leading the solution path to a dissipative
one and preventing global artificial unloading. In addition, the
increments of the constituent parameters of modified x and k-
control can be precisely calculated according to the values
obtained in the analysis steps without knowing how those values
are evolved between the steps. This is a significantly required
property of a constraint function when utilizing the global adapta-
tion law as will be discussed in Section 5.

3. Objective performance assessment

A method can increase its speed by jumping over curved parts of
the analytical solution, which decrease the smoothness of the
numerical curve; or, a method could be very fast for a specific
problem while it does not converge well in most of other problems,
which shows a weak robustness. To assess the performance of the
numerical solutions found by using the adaptation laws, it is

required to use performance measures as well as appropriate com-
binations of them.

3.1. Performance measures

We utilize the same speed and robustness measures proposed by
Fayezioghani et al. [20]

1
Py, = N (26)
Py =~ 27)
b TN

where Py, is the speed measure, N' = S"™ | N! is the total number of

iterations of the analysis steps, NL is the number of iterations
needed to find the solution point in step n,m is the total number
of steps (increments), Py, is the robustness measure, N* = Y"1" /Ny
is the total number of restartings of a complete analysis, and Nj, is
the number of restartings needed in step n. It is common that if a
method cannot find a solution in an increment, the searching pro-
cess of that increment will restart with different parameters (e.g.
different step-length, initial guess of the solution vector, or search
method), which is often called the restarting strategy. In contrast
to these two measures, we use a different smoothness measure
based on the distance followed on a piecewise linear solution curve:

*%ﬂ 7D < Dref
Psm = . (28)
DD D > Dret

where Py, is the smoothness measure, D = "' |D,, is the sum of
lengths of the lines connecting consecutive solution points,
D, = ||Aw,| is the length of that line, Av} = [Aaf,y,A4,] is the gen-
eralized solution vector, 7, is a scale factor between the space of
nodal displacements and the load parameter, ||x|| is the Euclidean
norm of vector x, and subscript Or indicates the reference value.
The solution curve obtained from a very comprehensive analysis
is referred as a reference solution here. Practically, a reference solu-
tion is obtained by setting very small step-lengths which provide a
very smooth numerical curve. Moreover, a measure which shows
the relative smoothness of a numerical curve and is appropriate
to be used in the procedure of step-length adaptation in Section 5
is introduced:

1 1
Pcos _ _cos©-1 + 2 (29)

1
€OS Opr—1 + 2
where Py is the cosine measure and
>t 3 AN, (cos @n_1 4 COS O)
m
Zn:lArln

is the weighted average of the hyper cosines of consecutive lines

cos® = (30)

Avy  Avy,
l[Awn]l Ayl

the hyper cosine in step n. Fig. 3 graphically shows the linearized
solution curve and the relative location and numbering of the hyper
angles. It should be noted that (a) the same piecewise linear curve
as that in the smoothness measure is assumed for the calculation of
the hyper cosine of each step, (b) the reference values are suggested
for each example problem of Section 6, and c) P.s is specifically
defined for the global adaptation law because it is more straightfor-
ward and more effective to construct a prediction model for it.

connecting consecutive solution points, and cos ®, =

3.2. Objective combinations of the performance measures

The objective performance measure, P,,j, is composed of the
normalized performance measures, and their corresponding
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Fig. 3. Smaller angles (®) between two consecutive linearized solution paths (solid
blue lines) makes the numerical curve get closer to the analytical one (black line),
which means having a more smooth numerical solution. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

importance factors. In the example problems, we utilize two of the
objective measures recommended in [20]:

Pobji = Y X 31
i

Posin = [ [XF (32)
i

where X; is the normalized measure, o; is the positive importance
factor of X; relative to the other ones, and > and [] are sum and
product operators. A normalized measure is a performance measure
which is scaled to fall between a certain interval, say 0 and 1. We
assess the performance of the numerical solutions by three mea-
sures for smoothness, speed, and robustness. Therefore, two impor-
tance ratios, o;/o;, will affect the comparison results based on (31)
or (32). We use the space of importance ratios proposed in [20] to
uniformly visualize the areas in which each solution has the best
performance (i.e. has the largest objective performance measure).

4. The local adaptation law based on local responses

A well-known and mostly used conventional adaptation law|[1] is

AN, = (%>A (33)
n+1 Ni nn

where Nf)pt is the optimal number of iterations per increment. This
law is designed to approximately maintain the number of iterations
needed for convergence in each step constant for the whole system
of problem and solution method. To also consider the smoothness
of the numerical curve in a new step-length adaptation law, we first
define a measure of local degree of smoothness and include it in the
formulation of the conventional law.

A numerical curve is usually drawn by connecting consecutive
solution points by lines. The larger the number of solution points
on a complete solution curve, the smoother the linearized numer-
ical curve. In a perfect case of an infinite number of points, the
direction of any line connecting two consecutive points is approx-
imately the same as the tangent to the analytical curve. Thus, we
suggest utilizing a hyper angle between the line connecting two
solution points and the tangent to the analytical curve at the sec-
ond point. The cosine of the hyper angle is calculated by

JAv,

Av! ()Ann
05(&n) = T3 e (34)

" Al 2

where ¢, is the hyper angle of step n and

dAa
0Av, |: 91 :|

oA, Yo Zﬁﬁ

is the generalized tangent to the analytical curve at the end of step
n. The tangent vector dAa,/dAn, and the tangent value dA%,/9An,
are determined from solving the following algebraic equation

K v [ae] (o 35
Zk wk i | T 1 (35)
n LoAny,

Av,

analytical solution
Un_7||Av,|

path

d0Av, /0An,
104V, /0An,|

: n

'
'
'
'
'
'
'
'
'
'
!

vV,

linearized solution
path

Fig. 4. If the linearized solution curve (the solid blue line) between two consecutive
solution points,»,_; and #,, has a smaller inclination with the tangent to the curve
(i.e. it has a smaller ¢,), a smoother curve will be obtained. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

2 T T
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Fig. 5. The local modification factor in Eq. (36) versus the hyper angle, &,, is drawn
for different values of &, and f, in (a) and (b), respectively.
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where the Jacobian matrix is calculated according to the converged
values at the end of step n. By the same analogy of the conventional
law, we define a desired optimum value of the hyper angle, &, and
then try to keep &, as close to it in every step as possible. The idea is
to use the cosine distance between the linearized vector of solution
and the tangent to the curve in order to obtain a smoother solution.
Thus, we propose a modified version of the conventional adaptation
law and call it local adaptation law:

N h cos(é) +1\"

A’/’n+1 ( N;T ) Cos(éopt) T 1 Ann (36)
where B, and j, are the parameters to adjust magnification of each
ratio in (36). Fig. 4 depicts a schematic visualization of the vectors
and the hyper angle. The conventional adaptation law is a special
case of the adaptation law (36) when g, and B, are set to 1 and O,
respectively. Fig. 5 shows the variation of the local modification fac-
tor with respect to &, and f,. It is illustrated in the figure that (a)
the modification factor decreases the step-length for the hyper
angles larger than &, and vice versa and (b) for larger f,, the mod-
ification is sharper and vice versa. For the analysts who want to use
CPU time in the definition of the speed measure, the calculation of
the tangent vector needed by the local adaptation law should be
considered as a surplus to the computations of each increment by
a conventional law.

5. The global adaptation law based on prediction of
performance measures

The conventional as well as the local adaptation law use previ-
ous converged values to adapt the step-length in each analysis
step. In other words, they adjust the step-length according to the
past information. These kinds of adaptation laws are usually simple
and easy to implement while they do not consider any information
related to the global performance of the solution (i.e. the perfor-
mance of the solution up to the final increment). The global perfor-
mance is assessed by an objective combination of performance
measures like in Egs. (31) or (32). To be able to use these global
measures in the global adaptation law in each step, the future
responses should be known. Obviously, the future values are
unknown in each step and, thus, an approximation or prediction
of the future responses should be adopted, where it should be
noted that the prediction of desired responses does not mean pre-
diction of the whole solution path. In this section, we propose a
global adaptation law based on the prediction of the speed and
cosine measures defined in Section 3.1.

5.1. Progress indicator

For our global adaptation law, it is necessary to define the pro-
gress of a solution. In order to determine the progress of a problem
with a progress indicator, we suggest using the sum of the step-
lengths up to the current increment, q:

q
Se =) A, (37)
n=1

where s, is the indicator of the progress of the problem along the
solution path up to increment q. To consider the ability of the
method to reach to a desired stage of an analysis, the progress indi-
cator is selected to be equal to a reference value at the final step, m.
Thus,

m
Sm= Y AN, = Ser (38)
=1

n

where s, is a reference value determined according to our desired
stage and will be specified for each example problem in Section 6.

5.2. Prediction of two basic measures

Prediction, here, means giving an approximation to a future
response of a problem during an analysis based on relevant infor-
mation of the problem or simplifying assumptions. In this subsec-
tion, we propose simple models to predict two basic measures
which are applicable in step g (the current step) during an analysis.
The basic measures are the total number of iterations for a com-

plete solution, N', and the weighted average of cosines of linear
hyper angles, cos ®, which are used to calculate the speed and
the cosine measure, respectively. While having a larger Ps, needs
fewer solution points, a larger P.,s imposes more points and thus
a smoother numerical solution curve. Therefore, there will theoret-
ically be an optimum set of solution points for each objective per-
formance function composed of the two performance measures.
However, finding such set of points requires conducting full analy-
ses of a problem several times, which is rather time consuming. If
finding the optimum set of points is not of interest but obtaining a
full analysis which fairly balances the solution against the perfor-
mance measures is desired, a predict-and-reorient strategy can be
employed. For instance, we predict the future part of the men-
tioned basic measures in each step, calculate P,,;, and find an opti-
mum value of the step-length and use it at the start of the next
step.

The prediction model, y;, is a simple function which allows the
calculation of the future part of each basic measure up to the final
step. For the future trend/evolution of the step-length used in the
constraint function, it is assumed that

An, = Ay for n>q (39)

where A77 is a fixed step-length for the rest of the steps to the end.
With the assumption (39) for s, (the progress indicator of the final
step), the following equation is obtained

q

Sm= Y A, +¥, (40)
n=1

where

Yo =m: An (41)

and s,, is the prediction of the progress indicator of the final step, y,
is a prediction of the future part of s, which is ;' An,, and
m; = m — q is the remaining number of steps to the final analysis

step. The prediction of the total number of iterations, N', is written
as

—~ 9. .
N = Ny +» (42)
n=1

where y, is a prediction of the future part of N' which is Zg‘:q_lNL.
To propose a prediction model for y,, it is needed to assume some
minimal information: (a) the restarting strategy should be consid-
ered in the model, (b) if a determined maximum number of itera-

tions considering a maximum number of restartings (i.e. Ni)
occurs in an increment of an analysis, the solution of that increment
is labeled as non-convergent, (c) the mentioned number is propor-
tional to the rest of the progress, and (d) if the total number of iter-
ations of a complete path goes to infinity, the step-length goes to
zero, and consequently the increments converge with one iteration.
Therefore, every function with a minimum number of parameters
which satisfies these assumptions is a candidate for y,. Here, we
propose the following equation

Yy, = aym; + by exp(—c;m;) (43)
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where ay, by, and c; are the parameters of y,; and should be updated
in each step. To determine these parameters in step g, three pairs of
(m,,y,) are needed. These pairs are determined according to the

minimal assumptions of y;: (O,Ni ),(l,( 75—">Ni ) and

ref Sref ref

(400, m;), respectively, which leads to

a =1 (44)

bi = Nigs (45)
— dl

ci=-In (b_1> (46)

where In is the natural logarithm. In order to prevent a logarithm
with a negative value in the very last analysis steps, we suggest

d; to be equal to (1 75%) i

Lot — @y if it is positive; otherwise, a very
small value such as 0.05a, is used for d;. Fig. 6 shows a schematic
curve of y,. A decrease of y, is seen from the figure, which confirms
consideration of the restarting strategy in the formulation of y,. As
assumed, m; = 0 means non-convergence which happens when the
path-following method is not able to find a solution within the
maximum number of iterations per step as well as within the max-
imum number of restartings. In general, the method converges with
fewer restartings and consequently with a smaller total number of
iterations as m, increases from 0. This trend continues until around
the point where no restarting occurs (i.e. the minimum point of the

curve indicated by m; = f% In (CI“—;)]) and y; = %} (1 - ln(cf—;jl) ).
Afterwards, y, starts to increase simply because the final number
of steps is increased without any restartings. Adopting the assump-

tion (38) for cos ® leads to

— 1 (&1 1
cos® =— =A1,(Cos Op_1 + C0S Oy) + = A1, COS Og_1 + ¥,
Sref i 2 2 q
(47)
where y, is a prediction of the future part of the weighted sum of
cosines of linear hyper angles which is
m l

neq3 AN, (cos ©,_1 + COs Bp) — %Anq cos ©¢_;. By the same analogy
of proposing y,, we minimally assume that (a) the minimum value
of cos ®, (which is equal to —1) occurs in case of non-convergence,
(b) the linearized solution curve approaches to a linearized curve
with cos® = cos @, (which is not equal to its ideal value, +1,

by

aj + by exp (—¢1)

S a@-In()

0 1 Lin (-4

- E c1by
my

Fig. 6. The prediction value of y; starts from Ni,; and decreases to a minimum as m,
increases; then, the curve approaches to the bisector as defined in the minimal
assumptions.

+1r
COSOpefr === == m - - mm - mm == o= o
—
=
V)
|
o
<
V)
~—
~
o
>
-1
0

my

Fig. 7. The prediction value of y,/(syr —Sq) starts from its lowest possible value,
—1, and monotonically increases to approach to cos ®,f when m; goes to infinity.

because of the machine precision) when the number of increments
goes to infinity, and (c) the prediction function should be monotonic
with respect to m,. We propose the following candidate for y,:

S 21
Y2 = (Sref — Sq) ((12 cos (( - ;l) . 2) + Cz) (48)

where a, and ¢, are the parameters of y, and are updated in each
step. The minimal assumptions of y, are interpreted as two pairs
of (M, y,) : (0, —(Sref —Sq)) and (+o0, COS Oref - (Srer — Sq)), TeSpec-
tively, which gives us

4= 1+ cos ®1.:f (49)
1 —cos ((1 —i) 71:)
Cy = COS O — . (50)

Fig. 7 draws a schematic illustration of y, versus m,. The curve
in the figure shows to possess a value of —1 in case of non-
convergence. In addition, approaching to cos®,s which is not
equal to +1 expresses that the machine precision as well as the
numerical deviation from the exact analytical solution curve are
considered in the formulation of y,.

5.3. The global adaption law

The value of the prediction of the objective performance mea-

sure, 15:,;] is calculated according to the prediction of the speed
and cosine measures. In other words,

P = Poni (X3 %) (51)
where
X =t (52)
Nl
i
5(\; _ _cos®-1 (53)

1 1’
€08 Opep—1 +3

and o and o5 are their corresponding importance factors. To find a
suitable step-length for the next step (i.e. step q + 1), the value of

should be found first,
ie.m; = arg(nrlnax Igovbj) Then, by substituting Eqgs. (37), (38), and

m, which maximizes Py
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(41) into Eq. (40) and reordering, an equation is found by which a
step-length corresponding to m; could be calculated:

_ Sref — Sq

m;

A (54)

where An* is the optimal value of Kﬁ according to the maximization
of IZ,EJ- . Therefore, the global adaptation law will be

Ang., = An'. (55)

It is significant for this adaptation law that the employed con-
straint functions to be derivative-free (i.e. the incremental con-
straint functions can be precisely calculated from the total
constraint functions without any need for discretization in artificial
time). Otherwise, the progress indicator, Eq. (38), cannot be
employed as an equation of finding the optimal step-length in
(54). For example, the constraint functions of the modified x and
K- control are derivative-free while the original k- control is
not. Again, for the analysts who define the speed measure as a
function of CPU time, the calculations solely assigned to the global
adaptation law should be considered as a surplus to the computa-
tions of the conventional law.

6. Example problems

In the following example problems, the proposed adaptation
laws with different sets of parameters are used and their results
are compared to the conventional adaptation law (Eq. (33)) accord-
ing to the objective performance measures. The example problems
share the following assumptions:

e It is assumed that the external force is deformation-
independent.

Table 1
The parameter sets of the global adaptation law used in the example problems.

Global adaptation law parameters

P-Type % o P-Type % %
I 1 1 il 1 1
I 1 10 I 1 10
I 1 25 1 1 25
I 1 50 il 1 50
I 1 100 I 1 100
I 10 1 I 10 1
I 25 1 il 25 1
I 50 1 I 50 1
I 100 1 I 100 1

02 0375 ,p

15 vVF

Fig. 8. Perforated beam problem set-up and its dimensions in mm.

e The problems are analyzed for each constraint function and for
different sets of adaptation parameters. The constraint func-
tions are energy release (En), modified k (Mk), and modified
K- (MKw). For the local adaptation law, the sets of parameters
are determined Ni,m =5,c05(&p) = 1.0, and B; =1 together
with 8, € {0,1,2,3} to simulate the influence of the modifica-
tion factor to the conventional law and N, =5,8; =0, and

, =1 together with cos(&) € {0.70,0.80,0.95} in order to
focus on the effectiveness of the modification factor itself. In

Table 2
Characteristics of the perforated beam problem.

Continuum region

o Modulus of elasticity: E = 100 N/mm?
e Poisson’s ratio: v = 0.30

e Thickness = 1 mm

o Constitutive law: ¢ = Ce

T1+v)(1-2v)

(=R
T
>

o Plain strain condition: € = iy [

B,

D

oo
LI

0

o Element type: 6-node triangular
o Integration scheme: 7-point Gauss

Cohesive zone

o Uniaxial tensile strength: f, = 1 N/mm?

o Mode-I fracture energy per unit area: Gy; = 2.5 x 1073 N/mm

e Damage law: t;y = (1 — @)Cinelline

e Damage parameter function: linear damage function of Eq. (3)

o t] = [ts, ta], Ul = [Us, un], and Cipe = [%5 (;)n
indicate directions tangent and normal to the interface surface in a 2D
space, respectively.

e d; =5 x 10°N/mm?3 and d, = 10* N/mm3.

o Ko = fy/dn and 1y = 2Gg /f,

o Element type: 3-node quadratic interface

e Integration scheme: 3-point Newton-Cotes

J where subscripts s and Oy

(e) ® (@ (h)

0.1F q
z
o 0.08F 1
o
2
S
= 006 1
= c
=]
2 o
w0 0.04f . §
g h
<!
g
S 0ol b 1
d f
0 . . . . . . .
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Loading point displacement [mm)]

Fig. 9. The interface elements which are responsible for the start of snap-backs are
indicated by red arrows in (a), (c), (e), and (f). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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addition, Table 1 lists the sets of parameters employed for the

global adaptation law.
e We adopted an abbreviated name for each simulation:

‘SymbolJ,J\Jint_cos(fopt)_/i1 _B,’ for the local adaptation law and
‘Symbol_G_P — Type_o; ;" for the global adaptation law. It

should be emphasized that the energy release constraint func-
tion is not derivative-free and, therefore, is not used together

with the global adaptation law.

100

En L5.0950 1

.

—
(=]
o
—
H{
o
(=}

ag/a; ay/az

(a) Pobj1 by the energy release control

100

o The analyses are initially started by force control on the body at
rest. They switch to one of the mentioned constraint functions
when passing a threshold for the dissipated energy increment
(defined in [2]) and continue to reach the desired stage. Both
the desired stage and the threshold value are reported for each
example separately.

e A simple adaptation rule is also used for the initial guess of each
step after adaptation of the incremental step-length:

100

N

~
&

w L5 09501

[

100

—

100

ag/al 051/063

(b) Pobj,i1 by the energy release control

100

Mx L 5 1.00 13"

Mrx G II_1.50
az/as az/as Mx_G_1I_1_50 ~
Mx_G_II_100_1 Mx_G_II_100_1
1 — — 1 o =N
I’ '/
,.’ Mx L 50950 1 I M L 509501
Qs / (e} i' 013/ (€3]
| Mk L 51.0010 Mk L 5 1.00 10
100 100
100 1 100 100 1 100
as/oq a1/ag az/ay ar/os
(c) Popj,1 by the modified « control (d) Popj,11 by the modified « control
100 100
Mxo G111 Mxo G117
as/a as/ag
Mxw_G_II_100_1
Mo G_II_100_1
1 : 1 :
M G_IT 1100 Mrxew_G_I1_1_100
Ots/ (e Oéa/ Q
- Mk G _II 150 My G 11150
- Mxkw G II_1_1 ~ Mko_G_I1_1_1
100 100
100 100 1 100

100

ag/oq ai/og

(€) Pobj,1 by the modified «—w control

a/as

as/a;

(f) Pobj,u by the modified x—w control

Fig. 10. The space of objective performance measures of the perforated beam example.
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il Y (56)
A;»EH Ann A/Ln

e Each time non-convergence occurs in an analysis step, the

restarting strategy adds 15 to NL and restarts the analysis
of the step from adapting the step-length and the initial
guess. In case of non-convergence after a predefined maxi-
mum number of restartings, the method is labeled ‘unac-
ceptable’. This maximum number is a value which scales
the incremental step-length down to almost one-
hundredth of its value at the start of each step. For example,

it will be 27 or 34 for NLPt =4orb5.

o If each of the simulations is able to reach a desired stage of the
analysis, its result is considered as an acceptable one for further
assessment; otherwise, it is assumed as an unacceptable simu-
lation and is excluded from the portfolio of simulations.

The normalized measures mentioned in Section 3.2 are

Py

Psmmax

, Xz _ Psp ’ X3 _ Prob (57)

Pspmax Probmax

X1 =

where Psmmax, Pspay @A Probmax are the maximum of smooth-
ness, speed, and robustness measures among all acceptable sim-
ulations, respectively. It should be noted that only the parts of
the solution path which are obtained by employing the con-
straint functions are considered in these calculations with
excluding the path initially found by force control.

o The objective performance measures are calculated for each set
of measures, [X1,X>,X3], and the set which has the largest objec-
tive measure is shown with a specific color on the space of
importance ratios (e.g. see Fig. 10 or 14).

6.1. Perforated beam

This example problem is presented in [22] and is a modified
version of the numerical example in [2]. The problem considers
fracture of a perforated beam (see Fig. 8) by using cohesive zones
which are modeled by predefined planes in the beam. Pure
mode-I fracture is assumed to occur along the x-axis because of
the positions of holes and symmetry of the problem. Characteris-
tics of the continuum and cohesive zones are listed in Table 2.
For a smooth transition from force control to the control by the
employed constraint functions, a fixed 0.00156 N incremental
step-length (which is equal to & of the maximum force) is selected

for the force control together with 107" | for the dissipated energy
threshold. The desired stage of the perforated beam is defined to be
where the vertical displacement of the top loading point is equal to
0.075 mm. It is worth noting that the desired stage might be
defined in another way. For instance, by determining a value for
the progress indicator of a derivative-free constraint function. This
is not recommended for a constraint function which is not
derivative-free because the discretization adopted to obtain its
incremental form causes a difference between the cumulative
sum of step-lengths up to the current stage of the problem and
the current state of the constraint kernel. The reference distance
Dt and the reference total number of iterations Niref are equal to
2.063 mm and 510, respectively. Representative deformed meshes
of the perforated beam problem are shown in Fig. 9. In a quasi-
static analysis, the dissipation of energy (in the interfaces) requires
a decrease of the external load at the snap-backs (i.e. from a, c, e,
and g, to b, d, f, and h, respectively).

The performance measure values resulted from employing the
adaptation laws are listed in Appendix A. Fig. 10 shows the regions
of dominance of the best sets of adaptation parameters for the per-
forated beam example. It is observed from the figure that

e By using energy release control, the local adaptation law is
always better based on Pgy,. It also performs better based on
Popin except in the region 2.14 < o, /04 < 5.06 in which the con-
ventional law is the best.

e By using the k control, the global adaptation law has been the
best based on P.,; where o,/a; is greater than 1. The local
adaptation has  performed Dbetter in the region
117 < oy/0, N 1.0 < o1 /o3; the conventional law has been
dominant in 1.65 < o3 /02n1.0 < o3 /011 Based on Py, the glo-
bal adaptation has been better for 5.06 < o, /;; and, the con-
ventional law has the highest rank for
o /01 <5.06M 1.0 < a3/0; and for 1.69 < ap /03 < 5.06N1.0 <
o1/03. In the region of 1.0 < o4 /a3, the local adaptation law
has outperformed for 1.36< o,/ <1.69 and for
5.80 < oy/0. In this region, the global adaptation law has
owned another dominance subregion of 0.20 < o /ot < 5.80.

0.1
En_L51.00.10
= En_L51.00.1_1
£, 008 En_L.5.0.95.0_1
8
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S 0.06 |
=
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P o004t
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8 002}
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0 L L 1 1 1 L ]
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Loading Point Displacement [mm]|
(@
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—— Mk_L51.00.10
= Mk_L.51.001.3
£ 0.08 Mk_L50.9501
8 Mk GII.1.50
o
S oosl Mk G_II.100_1
=
3 | /
oot [y ] o~
o | /
g b 7
& 0.02]
S ;
0 L L 1 1 1 1 ]
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
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=l .
5 ydi
é" 0.04 | // — z
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3 0.02} LA
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©

Fig. 11. The loading point displacement-force curve of the dominant solutions
found by using (a) the energy release, (b) the modified x, and (c) the modified x-w
control for the perforated beam problem.
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e By using the modified k-w control, the global adaptation has
been the only dominant law. However, the dominance regions
are very different based on Poy;; and P

e The global adaptation law with Py has been more effective
than Pgy;. By using Poyn, the step-length is adapted to keep
the normalized speed and cosine measures almost equal; in
contrast, by using P, the step-length tends to a very large
or small value in order to maximize Pop;;.

e The proposed adaptation laws have been really competitive to
the conventional law, specially for the modified x-w control.

0.30 N/mm?

31z
[ 1
362 |

382

N
3

r L

320 230 430
(a) (b)

Fig. 12. Confined masonry wall problem set-up and its dimensions in mm. (a)
phase I: confining by a compressive load and (b) phase II: imposing a lateral load.

Table 3
Characteristics of the confined masonry wall problem.

Bricks

o Full brick dimensions: 210 mm x 52 mm x 100 mm
o Half brick dimensions: 100 mm x 52 mm x 100 mm
e Modulus of elasticity: E = 16700 N/mm?

e Poisson’s ratio: v =0.15

o Constitutive law: ¢ = Ce¢

1 v
o Plain stress condition: C=£; [ v 1
00
e Element type: 4-node rectangular
o Integration scheme: 4-point Gauss

foo
i

Mortar joints

e Dimensions: hj, = 10 mm and thickness = 100 mm

o Uniaxial tensile strength: f, = 0.25 N/mm?

o Uniaxial compressive strength: f. = 10.5 N/mm?

o Poisson’s ration: v, = 0.14

o Mode-I fracture energy per unit volume: G; = 0.018 N/mm?

e Damage law: tj, = (1 — @) Cinelline

e Damage parameter function: exponential damage function of Eq. (4)

ds 0

0 dy
indicate directions tangent and normal to the interface surface in a 2D
space, respectively.

e d; =36 N/mm?® and d, = 82 N/mm?

_ hineGry
fe

o Ko = fi/dn and iy =
o Equivalent relative displacement, ueq, is defined by a degenerated capped
Drucker-Prager model [23]:
— {AIU +B]u7 u 2%[“
Ueq =

Cly+DJy, Ju<pglu

o th = [ts, tal, ul, = [Us, upn], and Cipe =

J where subscripts (s and O,

1
— 1Ko

where Iy = (1 + Vipe)un,

Ju= 1+]v,,“ \/% (1 + Vine + V?m + V;‘m)u% + }TUE'
< — C — Jc — 2 c
A=t B— Pt ¢ = (of and D = V32
o Biaxial compressive strength: f, = 1.2f.

o Element type: 2-node linear interface
o Integration scheme: 2-point Newton-Cotes

Fig. 11 depicts the curve of the loading point displacement ver-
sus force for the perforated beam example. Note that the colors of
the curves are chosen for a clear distinction between them and
should not be confused with the consistent colors used for the
space of importance ratios in Fig. 10. Solely, the results which have
performed best in a region of the space of importance ratios are
shown in the figure. It is seen from the curves that (a) only the
smoothest local adaptation law has been able to trace the second
snap-back when using the energy release control, (b) the fastest
global adaptation law has skipped a part of the first, second, and
third snap-backs by the modified x control, and (c) the smoothest
path belongs to the global adaptation by the modified k- control
which has followed the end parts of the snap-backs quite well.

6.2. Masonry wall

In this example, which is a slightly changed version of that
explained in [23], we discuss the quasi-static response of a
masonry wall preconfined with a vertical compressive load in
phase I and subjected to a lateral in-plane force at its top in phase
Il (see Fig. 12). Unlike the wall in [23], kinematics of both bricks
and joints are defined by conventional finite elements. In addition,
bricks and joints are modeled exactly with their mentioned dimen-
sions and geometry. Damage is assumed to only occur within the
mortar material by adopting mode-I fracture along the centerline
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Fig. 13. The interface elements which are responsible for the start of snap-backs are
indicated by green arrows in (c) and (f). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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of mortar joints while the bricks remain elastic. Consequently,
non-zero-width joints are modeled by interface elements located
in their centerlines [20]. Table 3 summarizes the properties of
bricks and mortar joints. For simulation purposes, a very stiff bar
is added on top of the wall so that the bar transfers the concen-
trated load to the top nodes of the wall.

The analysis is started by using force control with a fixed
incrementation of 297.24 N (which is equal to s of the maxi-
mum force) and a switching threshold of 0.001] in order to
smoothly switch to the employed constraint functions. After it

100

100

100 1 100

ag/oy ay/as

(@) Pobj1 by the energy release control

100

Mrx L 5 1.00_1 0

(6 / a3
e :
Mx G 11 1.50
a3/ o
e Mk L 50950 1
O"
100 #
100 1 100

al/a;;

043/041

(c) Popj,1 by the modified « control

100

(12/(13
1
013/(12
~ Mxkw G II 150
100
100 1 100

043/041 041/043

(€) Pobj1 by the modified k—w control

052/(13

(X:;/(!Q

(,\!2/(13

013/(12

switched to one of the mentioned control constraints, the analysis
proceeded to pass the desired stage which was defined by the
absolute value of the horizontal displacement of the top right
node to be equal to 1 cm. The reference distance and the refer-
ence total number of iterations are equal to 456.1 mm and 510,
respectively. Deformed meshes of the masonry wall problem at
representative steps are shown in Fig. 13. Like previous example,
a decrease of the external load in the snap-backs (i.e. from c and
f, to d and g, respectively) is required for energy dissipation (in
the interfaces) in a quasi-static analysis.

100

100
100 1 100
0(3/&1 (e51 /Clg

(b) Pobj1 by the energy release control
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M L 5 1.00_1 07

Mx_G_II 150

Mx L 509501
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(d) Popj,i1 by the modified « control

100

Mo L5 1.00_1 3

~ Mkw G II 1_50
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ag /oy Qy / [¢%]

(f) Popj,n1 by the modified k—w control

Fig. 14. The space of objective performance measures of the masonry wall example.
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Results of employing the adaptation laws are summarized by o In the region of 1.0 < a3/01N1.0 < o3/, the global adaptation
the performance measures in Appendix A. It is observed from law has the first rank among the others by the modified k-
Fig. 14 (which shows the regions of dominance of the best sets of control. While, in the rest of the regions, the local and conven-
adaptation parameters), that tional laws are the best based on (a) Py, where o, /a; < and

> 4.94 and (b) P,p;; where o, /04 < and > 12.90, respectively.

e The local adaptation law is the best when using the energy e The outperforming parameter sets does not vary by the objec-

release control. tive performance measure except the analysis En_L.5.1.00.1_2

e By utilizing the x control, the global adaptation law has outper- which is added in the very Ilimited region of
formed in the region of (a) 1.0 < a4 /a3No /o < 1.63 based on 1.0 < o /3n1.62 < 0 /oty < 1.70 based on Pyyr.

Popip and (b) 1.0 < oy JozNoty /ot < 2.96 based on Pgyyi; the con- o The proposed adaptation laws are functioning quite well com-

ventional law is better in the region of (a) pared to the conventional law.

1.0 < 0 /03N1.63 < otz /g based on P, and  (b)

1.0 < 02 /23N2.96 < oty /0y based on Poyyy; and the local adapta- Like the previous example problem, the loading point

tion law is almost dominant in the region of displacement-force curves of the best performing results of the

1.0 < o3/01n1.0 < o3 /ety masonry wall are shown in Fig. 15. Different colors from the space

of importance ratios are chosen for the sake of visual clarity. One
can see from the curves that (a) one of the results by the local
adaptation has skipped a small part of the second snap-back by uti-
PRI lizing the energy release control, (b) all of the dominant results
En_L.5.1.00.1.3 have smoothly traced the snap-backs by the modified x control,
En.L.50.95.0.1 and c) the conventional law has started the snap-back a little
before the other ones by the modified x-w control.
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7. Summary and conclusions
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In a quasi-static analysis of structures using a path-following

method, determination of the step-length in each analysis incre-

! ! ‘ ! ‘ ment is necessary to improve the performance of the method.

0 2 4 6 8 10 We proposed two new step-length adaptation laws: a local and a

Horizontal Displacement of Top [mm)] global law. The former locally considers the adaptation and adds

(a) a multiplier as a modification to a conventional law in order to

enhance the smoothness of the solution curve. The latter is based

on the global performance of the numerical solution and adopts

Mk.L5.1.00-1.0 prediction models to be able to determine the step-length in each

%:éi?f 55'8 & analysis step. The results of comparisons between the new and the

— conventional adaptation laws based on objective performance
measures show that:
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e As intended, the local adaptation modification factor has

increased the smoothness of solution when it is solely used.

However, if the modification factor is multiplied to the con-

ventional law, the step-length increases in some steps instead

of decreasing. The reason for this is that if the modification

0 5 i 2 s 7S factor significantly decreases the step-length calculated by
Horizontal Displacement of Top [mm] the conventional law in an analysis step, that step converges

b with a significantly smaller number of iterations which sharply

(b) increases the step-length of the next step. Thus, in problems

with sharp variations of the modification factor, a decrease
Mrw L5.1.00.1.0 in the smoothness might be observed when multiplying the
Mrw.L.5.1.00-1.3 modification factor to the step-length calculated by the con-
MG IT-1.50 ventional law.

e The global adaptation law has controlled the step-length well.
By assigning more importance to smoothness or speed, the
adaptation law has managed to increase the smoothness or
speed measure of the solution, respectively.

e The lower and upper bounds which are imposed to restrict the
step-length in practice as well as the restarting strategy affect
the results of the performance measures of a solution. They,

. . . . ) thus, may slightly change the overall performances which are

0 z 4 6 8 10 expected from the adaptation laws.
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© It should be noted that the example problems have been chosen
Fig. 15. The loading point displacement-force curve of the dominant solutions to e.xplore tl:Ie efficiency areas of the Stgdled and proposed con-
found by using (a) the energy release, (b) the modified «, and (c) the modified x-w straint functions and step-length adaptation laws. The above con-
control for the masonry wall problem. clusions can be generalized to problems with similar features such
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as finite element size, type of elements, underlying phenomena,
etc. and may change with variations of the problem features.

Appendix A. Performance measures resulted from the example
problems

The values of the performance measures of the acceptable
results by employing the adaptation laws are listed in Tables A.1,
A.2, and A.3 for the perforated beam as well as in Tables A.4, A.5,
and A.6 for the masonry wall example problem. In the tables, the
numbers of each column should be multiplied to the number
inside of bracket to obtain the value of objective performance mea-
sure of that column. For example, if the header of a column shows

Py [xmﬂ, and x is a number in that column, the value of Py, is

equal to x x 1073,

Table A.1
The performance measures are calculated for the acceptable results of the perforated
beam example which is controlled by the energy release constraint.

Analysis name Pom {me] Ps { «1 073] Prop
En1.5.1.00.1.0 5.635 9.091 1.00
En151.00.1_1 3.322 10.101 1.00
Enl151.00.12 5.667 8.264 0.50
En151.00.13 7.988 5.988 1.00
En_L50.70.0_1 10.698 6.098 1.00
En L 50.80.0.1 22.234 3.344 0.33
En 1509501 70.689 2.793 1.00

Table A.2
The performance measures are calculated for the acceptable results of the perforated
beam example which is controlled by the modified x control.

Table A.3
The performance measures are calculated for the acceptable results of the perforated
beam example which is controlled by the modified x-® control.

Analysis name Py [X 1 0+3} P [X 1 073} Prop
Mrxw L 51.00.1.0 7.243 4.016 1.00
Mxew_L 51.00.11 7.804 3.497 1.00
Mxw_L 5.1.00.12 10.264 3.345 0.50
Mrw_L5.1.00.13 7.877 3.436 0.50
Mrxw_L5.0.70.01 3.057 4.926 1.00
Mxw_L 5.0.80.0-1 3.230 4.149 1.00
Mrw L 509501 37.262 1.675 0.50

Mrw G111 2.770 5.682 1.00

Mkw-G1.1.10 3.505 5.376 1.00

Mrxw GI1125 5.199 5.465 1.00

Mrw_G1.1.50 3.695 5.076 1.00

Mxw_G1.1.100 2.687 5.000 1.00

MKkw_-G1.101 3.620 5.618 1.00

Mrw G1251 3.620 5.618 1.00

Mkw G 1501 3.620 5.618 1.00

Mkw-G1.100-1 3.620 5.618 1.00

Mrw G111 6.092 5.405 1.00

Mrw G110 9.826 3.311 1.00

Mrw_G11-125 15.200 2.381 1.00

MKw_G1-1.50 30.332 1.866 1.00

Mrw_G11:1.100 65.587 1.323 0.33

Mrw_G11.10-1 3.652 5.556 1.00

Mrw GI1.251 3.820 5.525 1.00

Mrw_G11.50-1 3.526 5.618 1.00

Mo G11:100-1 3.620 5.618 1.00

Table A.4
The performance measures are calculated for the acceptable results of the masonry
wall example which is controlled by the energy release constraint.

Analysis name Py [><10'3} Py [Xm—a] Prob
Mx_1.5.1.00.1.0 7.734 6.135 1.00
Mx_1.51.00_1_1 5917 4.274 0.50
Mk L 5.1.00-12 8.636 4.717 0.50
Mx_1.5.1.00.13 14.363 4.292 0.33
Mk_L1.5.0.70.0_1 4.511 3.268 0.25
Mk_1.5.0.80.0_1 7.516 3.802 1.00
Mx_L.5.0.95.0-1 44.967 0.916 0.14
Mr_GI.1.25 3.350 5917 0.50
Mi_G1-1.50 4.054 5.208 0.33
Mk _G1-1.100 4.095 4.926 0.33
Mk_G1.10-1 2.970 6.849 1.00
Mk_-G125.1 3.292 6.250 0.50
Mx_G1.50-1 3.292 6.250 0.50
Mx_G1100-1 2.858 7.463 1.00
Mk_G1I11 3.552 5.128 0.33
M G110 12.924 1.916 0.06
Mx_ G125 7.568 1.742 0.06
Mrx_G.I1-1.50 39.037 2.070 0.13
M G_11-1-100 29.639 1.675 0.09
M G101 3.126 5.025 0.25
Mx G251 3.274 6.211 0.50
Mrx_GI1.50-1 3.282 6.250 0.50

Mic_G_11-100_1 2.858 7.463 1.00

Analysis name Pem {Xmm] Py {x10’3] Prop
En_1.5.1.00.1.0 0.089 2.370 0.17
En151.0011 0.151 2.577 0.20
En151.0012 0.208 2.294 0.20
En151.00.13 0.138 2.907 033
En 1507001 0.081 2.169 0.17
En150.800.1 0.103 1.949 0.20
En15.0.950.1 1.032 0.849 0.25
Table A.5

The performance measures are calculated for the acceptable results of the masonry
wall example which is controlled by the modified x control.

Analysis name Pery [X10+3} Pq [meﬂ Prop,
M L 5.1.00-1.0 2.871 2.710 0.33
Mic 1 5.1.00-1-1 0.536 2.632 0.33
Mk L 5.0.80.0_1 0.176 2.370 0.25
Mic_L.5.0.95.0-1 1.083 1.370 1.0

M G1.1:10 0.193 1.992 0.06

M G1-1.100 0.397 2.359 0.17

Mr_G1.101 0.199 1.984 0.05
Mk G111 0.442 1.812 0.05
Mk_G1I-1_10 1.167 2.037 0.25
Mk G125 1.049 1.493 0.20
Mk _G11-1.50 31.128 1.203 0.50
Mk_G11-1-100 5.228 0.001 0.50
Mk_G1110_1 0.717 1.764 0.04
Mk_GI1-251 0.071 2.155 0.05
M G_11-100_1 0.051 2.174 0.05
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Table A.6
The performance measures are calculated for the acceptable results of the masonry
wall example which is controlled by the modified x-® control.

Analysis name Py [X 1 0+3} P [X 1 073} Prop
Mrxw L 51.00.1.0 0.104 2.833 0.50
Mrw L 51.00.1-1 0.150 2.591 0.50
Mrw_L 5.1.00.1.2 0.391 2.433 0.50
Mrxw_L51.00.13 1.666 2.294 0.50
M L 5.0.80.0-1 0.388 2.141 0.20
Mrw_L5.0.950.1 0.590 1.072 0.50

Mrw G111 0.160 1.502 0.03

Mrw G1.1.10 0.324 1.866 0.05

Mkw_-G1.1.50 0311 2.105 0.10

Mxw_G1.1.100 0.227 1.894 0.17

Mxrw_-G1.10_1 0.084 1.376 0.03

Mrw_G150-1 0.050 1.815 0.05

MKw G111 0.338 2.037 0.07

Mrw_G11.1.10 0.155 1.980 0.33

Mrw G125 0.656 1.300 0.25

MKkw_G11-1.50 0.435 1.212 1.00

Mrw_G11-1.100 0.838 0.001 0.50

Mo G11.10_1 0.066 1.439 0.03

Mrw G251 0.063 1.764 0.04
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