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Abstract

Federated Learning (FL) is a machine learning ap-
proach that has gained considerable interest over
the years. FL allows global models to train without
compromising the data privacy of the clients’ train-
ing datasets by sending the global model to each
client to learn the weights and propagating only the
learned weights back to a central location. How-
ever, it is not without limitations as several chal-
lenges hinder the model’s performance. One of
those challenges is the presence of non-IID (Inde-
pendent and Identically Distributed) properties in
the training data. Most real-world data is non-IID,
and this imbalance in data distribution has been
shown to significantly affect the model’s perfor-
mance. To address this issue, we propose a gener-
ative federated learning by pre-training the global
model on synthetic data created by a generative
model that follows the collective distribution of all
clients’ training datasets. Our research shows that
this approach bridges the performance gap between
IID and non-IID in FL, except for certain extreme
non-IID cases.

1 Introduction to GenFL

1.1 Background to Federated Learning

Federated Learning (FL) is a distributed machine learning
approach where multiple users, known as clients, train iden-
tical models locally. First introduced by Google researchers
in 2016 [1], its purpose is to maintain the privacy of each
client’s training data. In that regard, FL has been particularly
useful in domains, such as medical or financial, where data
cannot be stored in a centralized location due to data privacy
regulations such as GDPR.

The FL process is coordinated by a central server, where the
clients send the weights of their trained models back to this
central server. These weights are then combined using some
aggregation method, such as averaging, to form a global
model. This is an iterative method that can be repeated
multiple times to improve the model’s performance. Figure 1
shows these steps of a typical FL process. This demonstrates
how FL allows machine learning models to train without
centralizing the distributed datasets.

1.2 Background to Non-IID

A significant challenge in FL is non-IID (Independent and
Identically Distributed) data. IID data indicates that the sam-
ples are independently drawn from a fixed distribution and
each client dataset has the same distribution. In a non-IID
setting, clients can have data distributions that differ greatly
from each other, resulting in imbalanced datasets. For in-
stance, a hospital that is close to an industrial area that re-
leases toxic fumes may have significantly more lung cancer
patients than other hospitals. Most real-life data are non-IID
but models are usually trained based on the assumption that
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Figure 1: FL process: (1) Initialize model in central server and send
to clients. (2) Clients train model on their respective local datasets
and upload weights to central server. (3) Central server aggregates
weights and updates global model. (4) Repeat steps 1 - 3 until global
model converges.
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data is IID, thus leading to significant performance reduction
when the data is non-IID [2]. This has led to non-IID data be-
ing one of the most significant challenges to the advancement
of FL [3].

1.3 A New Approach: GenFL

In this paper, we propose a new generative FL approach
called “GenFL”. It introduces a generative model that has
the collective distribution of each client’s dataset. This is
achieved by training the generative model itself using FL
with the same clients that will later participate in the FL
process of the downstream model. The generative model
will create synthetic data, which the downstream model will
pre-train on in the central server before its FL process begins.
Figure 2 shows step-by-step the process of GenFL. This
demonstrates how the generative model is introduced into the
FL process and used with the downstream model.

1.4 Research Questions

We investigate the effectiveness of GenFL on bridging the
performance degradation in non-IID settings and to what de-
gree of data imbalance it can support. The goal is to provide
more insight as to how training the downstream model with
synthetic data beforehand can bridge the performance gap
between IID and non-IID in FL. To achieve this, this paper
aims to answer the following research question:

Would pre-training the downstream model with synthetic
data help its performance during the federated training on
non-IID data?
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Figure 2: GenFL process: (1) Initialize generative model in cen-
tral server and send to clients. (2) Clients train generative model on
their respective local datasets and upload weights to central server.
(3) Central server aggregates weights and updates global generative
model. (4) Repeat steps 1 - 3 until global generative model con-
verges. (5) Use generative model to create synthetic data to pre-
train downstream model. (6) Send pre-trained downstream model to
clients. (7) Clients train downstream model on their respective local
datasets and upload weights to central server. (8) Central server ag-

gregates weights and updates global downstream model. (9) Repeat
steps 6 - 8 until global downstream model converges.

The qualitative main question can be further divided into the
following quantitative sub-questions:

e What is the performance difference for downstream
models that were pre-trained on synthetic data in the
central server compared to those that did not?

* What is the performance impact on GenFL as data im-
balance increases?

2 Research Methodology and Experiment
Setup

2.1 Related Work

GenFL combines two widely researched topics in the
machine learning community: 1) using synthetic data as
alternatives to real data and 2) addressing the non-IID
challenge prevalent in FL.

There have been extensive studies in the context of FL for
generating synthetic data [4]. One possible reason for such
interest is due to the advancements in AI-Generated Content
and research is prevalent on how they can be alternatives to
real data in scenarios where the real data is not suited for
training models.

Solving the non-IID challenge is another heavily researched
topic in FL [3]. This may arise from the fact that most

real-world data is non-1ID and the presence of non-IID in FL
has been shown to considerably decrease the performance of
the model [2].

[5] explores how pre-training the downstream model ei-
ther with real or synthetic data can consistently improve
its accuracy during the FL process. While this process
very closely resembles this research, there are some key
differences. When pre-training the downstream model on
synthetic data, [5] experiments over only one data imbalance
setting. Our research goes beyond this and tests over several
data imbalance settings to observe the behaviour as the
imbalance increases. Moreover, we also test over a higher
data imbalance setting.

[6] also attempts to bridge the performance gap in non-1ID
settings of FL using synthetic data from a pre-trained
generative model. The key difference is that it uses data
augmentation by generating images for each client based on
its unique data distribution disparities, creating an augmented
dataset that becomes IID for each unique client.

Other papers attempt similar but different approaches to ad-
dress the non-IID challenge in FL. This includes globally
sharing a small subset of data [7] or a new benchmark called
NIID-bench [8] to address the various types of non-IID set-
tings that can be present in FL. Some papers further address
the privacy issue that arises when introducing a generative
model into the FL process [9].

2.2 Experiment Setup

Federated Learning Algorithm

For the federated process of both the generative model and the
downstream model, we use FedAVG [10]. This is a classic
aggregation algorithm in FL, where the weights of optimized
client models are shared and the central server averages these
weights to the global model. While there are other FL algo-
rithms, such as FedSGD or FedPA-GD, we chose FedAVG
for its simplicity and popularity in FL.

Data Imbalance

To set the degree of imbalance in the dataset, we use the
Dirichlet distribution [11] to set different ratios of class
labels and allocate different numbers of data samples to each
client. This can be controlled by the Dirichlet distribution’s
a > 0 parameter. As mentioned in 2.1, [5] only experiments
with one data imbalance setting, which is a = 0.1. For our
research, we explore over difference imbalance settings, with
the « value as 0.01, 0.1, 1.0, 10.0 and 100.0, where 0.01
is the most imbalanced and 100.0 is the least imbalanced
(closest to 1ID).

Generative Model and Metrics

Two commonly used generative approaches in synthetic
data research are Variational Autoencoders (VAE) [12] and
Generative Adversarial Networks (GAN) [13]. We decided to
use VAE as our generative model as they are more stable for
training and better for estimating the probability distribution
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Figure 3: Number of generated samples for each class using MNIST,
with (a) VAE Dirichlet « = 1.0, (b) VAE Dirichlet « = 0.1, (¢)
CVAE Dirichlet « = 1.0, (d) CVAE Dirichlet o = 0.1.

[14]. We used a VAE architecture from Google Colab L
After training the VAE in a federated manner, however, we
realized that the VAE was not adequate for our experiment,
as it gave us no control in the process of the random data
generation. As a result, the VAE generated imbalanced
datasets, which became worse as the Dirichlet « value de-
creased. Therefore, we switched to a Conditional Variational
Autoencoder (CVAE) [15] instead. By conditioning on the
class label, it resulted in a balanced dataset that was suited
for our experiment. Figure 3 shows the imbalanced synthetic
data from the VAE compared to the balanced synthetic data
from the CVAE.

We use the Classification Accuracy Score (CAS) to evaluate
the performance of the CVAE, which is a metric based on
the accuracy of a classifier trained on synthetic images [16]
created by the generative model and tested on real images.
We do not use traditional image quality metrics such as
Frechet Inception Distance (FID) as they are not indicative
of suitability for training downstream models [16].

Datasets

For the datasets, we use MNIST and FashionMNIST as these
are standard benchmark datasets widely used to develop and
test generative models. Moreover, both datasets consist of
grayscale images with 28x28 pixels and 10 classes. This
simplicity makes it ideal to test on our CVAE. While we also
considered CIFAR10, this proved to be a too complex dataset
for our CVAE to handle, as the generated images were too
poor to be used for downstream tasks.

"https://colab.research.google.com/drive/
1wMTCIPeyim3r6DHPC2jDs2pbur7-WHOO ?usp=sharing

(a) Before transformation (b) After transformation

Figure 4: Comparison of MNIST images (a) before transformation
and (b) after transformation.

Figure 5: Synthetic image from CVAE trained on transformed
MNIST images.

Both the MNIST and FashionMNIST datasets were already
normalized in the range of [0, 1]. However, while the shape
of the generated synthetic images was consistent with the
real images, the different pixel values between the synthetic
image and real image caused the CAS to drop to as low
as 30%. Further attempts have been made to change the
architecture of the CVAE but have shown no improvement.
Therefore, additional transformations on the real dataset
were required for both training and testing. We rounded
the already normalized pixel values to their nearest integer,
resulting in images with binary pixel values of O and 1.
Figure 4 shows the real images before and after applying the
transformation, and figure 5 shows a synthetic image from
the CVAE that was trained on the transformed dataset. This
resulted in an 89% CAS when we trained the classifier on the
synthetic images and tested on real images, thus allowing us
to proceed with the experiment.

Downstream Model and Metrics

The downstream model we use is ExquisiteNetV1 from [17],
which is a lightweight CNN that can be used for image clas-
sification. We chose ExquisitenetV1 due to its small size and
fast computation speed, while still delivering adequate per-
formance. This makes ExquisitenetV1 very suited for down-
stream tasks in FL, particularly when the participating clients
may be relatively low-computational devices such as mobile
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Dataset distribution MNIST FMNIST
non-federated IID (baseline) 89.03 +£0.33 | 65.27 £0.52
federated IID (baseline) 87.09 £0.17 | 62.11 +0.27
federated non-1ID (o« = 100) | 87.48 £0.52 | 63.41 +0.13
federated non-IID (o = 10) 86.77 £0.32 | 63.83 +0.4
federated non-IID (o = 1) 86.87 £0.56 | 63.9 +0.28
federated non-IID (o = 0.1) 84.38 +0.3 62.85 £0.09
federated non-1ID (oo = 0.01) | 60.65 £1.16 | 48.71 £0.47

Table 1: CAS of CVAE after 20 communication rounds for different
dataset distributions.

devices or IoT. For determining the performance of the down-
stream model, we use image classification accuracy. The ac-
curacy is depicted as the weighted average of each client in
the FL, where the weights are determined by the ratio of the
data quantity distributed to each client.

3 Experiment Results

3.1 Performance of Generative Models

Training the CVAE federatively was done over 20 commu-
nication rounds, 10 clients, and two local epochs per round.
The hyperparameters of the CVAE include a batch size of 32
and a learning rate of 0.001.

For each data distribution setting, the experiment was carried
out over five trials. The mean and standard deviation of the
CAS results can be seen in table 1. In addition, figure 6 dis-
plays the CAS per communication round. It shows that it
doesn’t take many communication rounds for the CVAE to
converge to its performance upper bound.

3.2 Performance of Downstream Models

Training the ExquisiteNetV1 federatively was done over 10
communication rounds, 10 clients, and two local epochs per
round. The hyperparameters of the ExquisiteNetV1 include
a batch size of 32 and a learning rate of 0.001. For baseline
comparison, each data distribution setting involved experi-
ments comparing the ExquisiteNetV1 without pre-training
on synthetic data against ExquisiteNetV1 with pre-training
on synthetic data. Pre-training the ExquisiteNetV1 with
synthetic data was done over five epochs before the federated
learning process began. It should be noted that for baseline
comparison, we used CVAEs with corresponding Dirichlet o
values to generate the synthetic data. This is to simulate the
real-life federated environment where the data distribution
of each client remains the same when training the generative
model and training the downstream model.

For each data distribution setting, the experiment was carried
out over five trials. As mentioned in 2.2, the accuracy is
depicted as the weighted average of the clients. The results
of the ExquisiteNetV1 can be seen in table 2. Figure 7 shows
the accuracy average and its standard deviation over time
throughout the communication rounds for ExquisiteNetV1
pre-trained with synthetic data.
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Figure 6: Mean and standard deviation of CAS over 20 communi-
cation rounds of various distribution settings for (a) MNIST and (b)
FashionMNIST



Dataset distribution MNIST — - — Fa§ thIlMNIST. . - —
Without pre-training | With pre-training | Without pre-training | With pre-training

federated IID 87.08 £1.03 93.92 +£0.28 71.35 £1.02 78.21 £0.24
federated non-1ID (o = 100) | 83.78 £5.32 93.80 £0.33 70.26 £1.93 78.32 £0.13
federated non-IID (a = 10) 81.70 £8.91 93.85 +£0.16 70.23 £2.55 78.0 £0.21
federated non-1ID (o = 1) 85.87 £2.87 93.59 £0.26 69.48 £2.64 77.77 £0.21
federated non-IID (o = 0.1) | 41.35 £15.28 88.24 £2.43 56.94 +4.32 68.96 +3.42
federated non-IID (o = 0.01) | 22.52 £5.24 57.45 £6.67 30.9 £4.9 48.85 £8.39

Table 2: Mean and standard deviation of ExquisiteNetV1 accuracy after 10 communication rounds for different dataset distributions.
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Figure 7: Mean and standard deviation of pre-trained

ExquisiteNetV1 accuracy over 10 communication rounds of
various distribution settings on (a) MNIST and (b) FashionMNIST
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Figure 8: Mean and standard deviation of ExquisiteNetV1 accuracy
over 10 communication rounds of non-IID Dirichlet « = 0.01 with

and without pre-training
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Figure 9: Mean and standard deviation of ExquisiteNetV 1 accuracy
over 10 communication rounds of non-IID Dirichlet & = 0.01 with
pre-training on same non-IID synthetic data against IID synthetic
data.

One notable behaviour from figure 7 is when the Dirich-
let « = 0.01, the accuracy actually decreases over time.
This is not the case when ExquisiteNetV1 goes through the
FL process with the same degree of imbalance but with-
out pre-training on synthetic data, as depicted in 8. To de-
termine whether pre-training the ExquisiteNetV1 with bet-
ter synthetic data can mitigate this behaviour, an additional
experiment was carried out where Dirichlet a = 0.01 but
the ExquisiteNetV 1 was pre-trained with synthetic data from
a CVAE trained on IID data. Figure 9 compares the per-
formance between pre-training on o = 0.01 synthetic data
against IID synthetic data for the @ = 0.01 ExquisiteNetV1.
The observed behaviour is the same, where the accuracy of
the ExquisiteNetV1 pre-trained with IID synthetic data also
decreases over time.

4 Discussion of Experiment
4.1 Analysis of Experiment Results

As the data imbalance increases, the overall CAS of the
CVAE decreases as depicted in table 1. This drop in per-
formance was not noticeable, however, except for the most
extreme data imbalance when the Dirichlet o = 0.01. This
could be attributed to the fact that when the data imbalance
is high to such a degree, each client in the FL process is
getting datasets with at most two classes, possibly even one
class, which leads to extreme class imbalance. In addition,
the imbalance in the quantity of the data per client can be
extreme as well. Given our experiment setup where there are
10 clients in the FL process, one client could be assigned as
much as 20% of the entire dataset while another could be
assigned as less as 0.1% when the Dirichlet v = 0.01. This
demonstrates that high degrees of data imbalance can have a
noticeable impact on the performance of the CVAE.

Table 2 show that across all data distribution settings,
pre-training ExquisiteNetV1 with synthetic data before the
FL process has a noticeable impact compared to results that
didn’t incorporate pre-training. This observation is consistent
with the conclusions from [5]. One observation to note is the
difference in accuracy with pre-trained ExquisiteNetV1 right
from the start (communication round #1) of the FL process.
This is particularly apparent between @ = 0.1 and o = 0.01
as shown in figure 7. This can be explained by the difference
in the synthetic data quality each ExquisiteNetV1 was
pre-trained on. As shown in table 1, there is a noticeable drop
in synthetic data quality when o = 0.01. Due to pre-training
on lower-quality synthetic data, the ExquisiteNetV1 under
a = 0.01 setting would have a lower accuracy compared to
the ExquisiteNetV1 under the o = 0.1 setting. This is further
supported by figure 9 where there is a noticeable starting
accuracy difference in the ExquisiteNetV1 under o = 0.01
setting when it is pre-trained on o = 0.01 synthetic data
compared to IID synthetic data.

There are, however, apparent limitations of GenFL as the
degree of data imbalance increases. As shown in figures 8
and 9, there is a noticeable decrease in accuracy over time
when data imbalance is extreme (o = 0.01), regardless of



the quality of the synthetic data the ExquisiteNetV1 was
pre-trained on. One possible explanation for this is due to the
extreme class imbalance and quantity imbalance in the client
dataset as mentioned previously. As a result, local training
would result in extremely biased local weights towards its
respective local majority class(es). Since our GenFL process
doesn’t incorporate any weight adjustments to mitigate class
imbalances and simply averages all the clients’ weights
(i.e. FedAVQ), it suggests that the initialized weights of the
pre-trained ExquisiteNetV1 will degrade over time with such
extreme data imbalance. This degradation would accumulate
for each communication round, thus leading to a performance
decrease.

An interesting behaviour to note when ExquisiteNetV1 is
pre-trained with synthetic data is the increase in its accuracy
standard deviation in two cases: (1) as « decreases as
depicted in table 2 and (2) as the FL communication rounds
progress for the ExquisiteNetV1 under « = 0.01 setting
as depicted in figures 7, 8, and 9. These cases can be
attributed to a similar explanation as mentioned previously:
as class imbalance and quantity imbalance increase, the
bias in local weights towards its respective local majority
class(es) also increases. Without any mitigation process for
such bias during the aggregation step, it accumulates over
each communication round and results in a more unstable
ExquisiteNetV1.

4.2 Experiment Limitations and Future Work

Generative Model and Datasets

For this research, we only used a VAE model, specifically a
CVAE. This was sufficient for this research as it used MNIST
and FashionMNIST, which are considered relatively simple
image datasets. Therefore, we can not make any definitive re-
lations from the conclusion of this research to other research
settings that used more advanced generative models, such as
GANSs or Diffusion models, and complex datasets. More-
over, we only considered image data but tabular data is an-
other common data type used in FL research [4]. Despite the
limited experiment settings, one could expect similar results
when using GenFL under different settings. [5] has different
experiment settings but methods similar to GenFL to increase
the performance of its downstream model in FL.

Data Imbalance

While there are several types of non-1ID [8], this paper only
considered label distribution imbalance and quantity imbal-
ance in the data. Other types of non-IID, including feature im-
balance, are prevalent in the real world, thus future research
should look into the effect GenFL can have on other types
of data imbalances. Specifically, future research can explore
non-IID challenges using the NIID benchmark [8].

Differential Privacy

Introducing generative models raises privacy issues. There
are known methods that uses generated synthetic data to ex-
tract the real data the generative models were trained on [18].
This is a crucial issue as ignoring data privacy defeats one

of the main purposes of FL. There are ways to introduce dif-
ferential privacy, such as adding noise during the generating
process [9], which has been shown to increase privacy but at
the cost of some performance. Due to limited resources, we
do not consider differential privacy in our experiment but it
is something extensions of this research should take into ac-
count.

Specific Domain

This research setup is focused mainly on the medical domain
but FL also includes the IoT and the cloud domain. These
domains have thousands, potentially millions of clients par-
ticipating in the learning process with additional complexi-
ties, such as communication latency and the number of par-
ticipants in the aggregation step. The idea of pre-training the
downstream model with synthetic images before starting the
federated process in such a setting can also be explored in
future research.

5 Conclusion to GenFL

FL is a keen interest in the machine learning community due
to its ability to enable distributed machine learning where
centralizing the training data is not an option. However, non-
IID data can severely affect the performance of the model.
In this research, we proposed a new FL approach called
“GenFL”, which pre-trains the downstream model with syn-
thetic data from a generative model that follows the collec-
tive distribution of all the clients’ datasets. Our results show
that GenFL can be an effective approach to bridging the per-
formance gap that occurs when data is imbalanced amongst
the clients. However, this performance increase is affected
by the degree of data imbalance. Our research showed that
as data imbalance increased, it resulted in less performance
gains and higher instability in the downstream model. In ad-
dition, GenFL was not able to bridge the performance gap
for extreme data imbalance settings, even showing decreas-
ing performance as the training progressed. Despite the lim-
ited scope of our experiment, our results and related works
mentioned in this paper show that there is potential in GenFL
and can be a guide to more effective approaches to solving
non-IID challenges in FL.

6 Responsible Research

We declare that there are no competing financial interests or
personal relationships that could have influenced the work in
this report. The code used in the experiments and resulting
experiment data are publicly available on GitHub. Moreover,
there were no human subjects involved in the experiment,
thus the research did not require any ethical approvals. As
mentioned in 4.2, introducing generative models raises pri-
vacy issues as the generated synthetic data can be used to
reconstruct the real training data. However, all data used in
this research are publicly available datasets specifically for
machine learning research purposes. Therefore, there are no
data privacy issues that arise from the context of the experi-
ments carried out in this research.
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