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Abstract A review is presented of measurement techniques to characterise dispersed multiphase flows, which
are not accessible by means of conventional optical techniques. The main issues that limit the accuracy
and effectiveness of optical techniques are briefly discussed: cross-talk, a reduced signal-to-noise ratio, and
(biased) data drop-out. Extensions to the standard optical techniques include the use of fluorescent tracers,
refractive index matching, ballistic imaging, structured illumination, and optical coherence tomography. As
the first non-optical technique, a brief discussion of electrical capacitance tomography is given. While truly
non-invasive, it suffers from a low resolving power. Ultrasound-based techniques have rapidly evolved from
Doppler-based profiling to recent 2D approaches using feature tracking. The latter is also suitable for time-
resolved flow studies. Magnetic resonance velocimetry can provide time-averaged velocity fields in 3D for
the continuous phase. Finally, X-ray imaging is demonstrated to be an important tool to quantify local gas
fractions. While potentially very powerful, the impact of the techniques will depend on the development of
acquisition and measurement protocols for fluid mechanics, rather than for clinical imaging. This requires
systematic development, aided by careful validation experiments. As theoretical predictions for multiphase
flows are sparse, it is important to formulate standardised ‘benchmark’ flows to enable this validation.

1 Introduction

Dispersed multiphase flows are encountered in an abundance of industrial processes and natural phenomena,
with examples including catalysts in chemical reactors, the production of food, sediment transport in rivers,
and blood flow [1]. Dispersed multiphase systems consist of small (typically between 1µm and a few mm)
particles, bubbles, or droplets suspended in a continuous medium. The continuous medium generally acts as a
carrier, often exhibiting turbulent flow; the dispersed phase can in turn affect the behaviour of this carrier flow
[2].

Despite the fact that multiphase flows are ubiquitous, they remain difficult to predict. While theoretically
possible, in practical applications the sheer number of dispersed particles prevents exact numerical solution of
the governing equations. Only relatively simple geometries with a limited amount of particles or droplets can
be simulated in a fully resolved manner [3]. Current state-of-the-art direct numerical simulations may model
up to hundreds of thousands of particles [4]. This is far removed from what is needed to simulate, for example,
a human heart pumping approximately 5× 1011 red blood cells with each beat. Naturally, detailed knowledge
of each of the particles or elements is often not needed, as long as the overall behaviour of the flow is captured.
To predict practical applications with realistic computational efforts, one therefore uses models describing
the average effects of groups of particles [5]. These models obviously require a thorough knowledge of the
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underlying physics. Unfortunately, the formulated models are difficult to validate due to a lack of experimental
data.

Experimental data sets in multiphase systems are difficult to obtain, as the current state-of-the-art flow
measurement techniques used by the fluidmechanics community are based on optical principles—using lasers,
cameras, etc. [6]. As soon as there is an appreciable volume fraction of a dispersed phase (as low as 0.5%),
the turbidity of the flow renders these techniques useless [7–9].

In this review article, an overview is presented of several (relatively new) measurement techniques that
are able to measure in opaque flows, i.e. dispersed multiphase flows that defy quantification using optical
techniques. Note that optical flow measurement techniques require not just a transparent fluid, but also a
distortion-free, transparent geometry. The latter is usually referred to as ‘optical access’. Examples where
this is an issue include flow measurements inside the human body, turbomachinery, and internal combustion
engines. The focus of this review is on techniques that deal with the opacity of the fluid itself, but the techniques
can often also be used to address the optical access issue. Flow visualisation and measurement are discussed,
with an emphasis on non-intrusive, whole-field measurements, rather than single-point measurements using
intrusive probes [10,11]. Similarly, techniques based on the tracking of individual, labelled particles (e.g.
radioactive [12], or magnetic [13]) are excluded. The latter are Lagrangian methods which produce relatively
sparse velocity data, often in three dimensions. In principle they can also provide time-averaged whole-field
velocity data, provided that the experiment can be operated at constant conditions for a sufficiently long time.
The focus of this reviewwill predominantly be onmeasuring velocities and phase distributions in non-colloidal
systems. As this manuscript intends to give a broad overview, references are included to more extensive texts or
reviews for each of the techniques discussed. Dedicated earlier reviews are available for particular application
areas, such as for fluidised beds [14], granular mixing, [15] and chemical reactors [7].

Before addressing the individual techniques, Sect. 2 first discusses some important concerns that are
applicable to virtually all measurement techniques. In Sect. 3, special optical techniques are discussed; these
can be seen as extensions of the techniques routinely used in single-phase flows. Section 4 briefly discusses
electrical capacitance tomography. Three techniques that have risen to prominence in the medical world are
discussed in Sects. 5, 6, and 7: ultrasound velocimetry,magnetic resonance velocimetry, andX-ray tomography.
The review concludes with a summary and suggestions for future research.

2 General issues while measuring in multiphase flows

In this Section, some issues are discussed that either make it difficult to obtain data or which make it difficult
to interpret the data. Some of them might be well known, while others are often overlooked. It has not been
the intention to list examples of studies that are flawed (e.g. as they contain cross-talk or might have biased
statistics). On the contrary, they are all excellent, state-of-the-art studies that are cited here to demonstrate
certain measurement difficulties that might arise in multiphase experiments.

2.1 Cross-talk

Experiments aimat obtaining velocity data of the dispersed phase, the continuous phase, or both simultaneously.
In any case, it is essential to know which phase contributed to the information that is acquired. Many studies
have used some sort of phase discrimination as a post-processing step of the collected data. In laser Doppler
anemometry (LDA), the shape of individual bursts can be used to distinguish between small tracer particles
and larger, dispersed phase particles or droplets [16]. Similarly, features in particle image velocimetry (PIV)
images can be used to discriminate between fluid tracers and suspended particles. For example, Khalitov et al.
segmented images into a series just containing tracer particles and a series just containing dispersed particles,
based on the brightness and size of the objects in the image [17]. These two new sets of images were then
processed using particle image velocimetry and particle tracking to obtain the velocity fields of the continuous
and dispersed phase, respectively. If there is an appreciable mean velocity difference between the two phases,
this slip velocity can also be used to separate the two phases [18]. The advantage of these post-processing
approaches is that both phases can be obtained with a single instrument (LDA system, camera, etc.). This also
guarantees that the data are free frommisregistration errors, i.e. errors caused by non-overlappingmeasurement
volumes.

Unfortunately, it is difficult to perform such a phase discrimination with 100% accuracy in this approach.
Small differences in particle size, non-uniform illumination, overlapping particles, occlusion by other particles,
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etc., will lead to variations in the signal. When information of one phase inadvertently spills over into the phase
under investigation, this is referred to as ‘cross-talk’.Naturally, this should be avoided, as itmakes interpretation
of the data very difficult. One approach is to make the selection criteria very strict, avoiding any ambiguous
signals. For instance, one can only select very bright and large particles. However, such a strict selection may
bias the results, as velocities will predominantly be obtained from, for example, the largest droplets only. These
effects can largely be avoided by performing the discrimination not as a post-processing step, but by optically
separating the signals before they reach the camera. Later, in Sect. 3.1, examples are given how this can be
achieved.

2.2 Reduced signal-to-noise ratio

The presence of a dispersed phase generally reduces the signal quality compared to the single-phase case.
For imaging-based approaches, the dispersed phase blocks incoming light from a laser or another source of
illumination. For small particles (or bubbles, etc.), scattering leads to a gradual, Lambert–Beer-like exponential
decay of the intensity as we move into the medium [19]. This is, for instance, the case when particles are much
smaller than the thickness of the light sheet in a PIV experiment. Larger particles or bubbles can create bright
specular reflections, overpowering the rest of the image and potentially damaging hardware. These larger
structures can create distinct shadows, as can be observed in the region marked by ‘C’ in Fig. 1. This Figure
shows a typical raw image taken during a PIV experiment in a bubbly flow [20].

Even if sufficient light remains, the dispersed elements in between the field of view and the camera
(or another detection device) will reduce the signal-to-noise ratio. Depending on the conditions, particles or
bubbles may appear as black outlines (i.e. simply occluding the field of view; see, for example, [21]). However,
generally they will be out of focus, leading to a blurred, low-contrast image [22]. An example of the latter can
be observed in the centre region of the left panel of Fig. 2. The reduced signal-to-noise ratio of these dispersed
systems will lead to either noisier velocity data (potentially useable) or will not yield velocity data at all (data
drop-out/loss).

2.3 Biased statistics

Under certain conditions, it may seem feasible to accept the data drop-out due to the reduced signal-to-noise
ratio and simply compensate for it by collecting a very large amount of data. For example, in a bubbly
column some parts may still give a patch of vectors in a PIV measurement or a short burst of LDA velocity

Fig. 1 Raw image of a bubbly flow; reproduced from Deen et al. [20] with permission from the authors. The small bright spots
are tracers for the continuous phase (water). The presence of bubbles leads to a deterioration of the image, as they block the
optical and illumination paths. The area labelled with ‘A’ represents a region with a relatively low bubble concentration, while
‘B’ represents an area with a higher concentration. Above label ‘C’ a shadow can be seen, caused by a bubble inside the light
sheet. Note that the majority of the bubbles is outside the light sheet
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Fig. 2 Simultaneous imaging of tracers in the ambient gas phase (left) and spray droplets (right) using two different fluorescent
dyes and two cameras with suitable optical filters. Note the dark region in the middle of the left panel, caused by the presence of
the jet. Reproduced from Kosiwczuk et al. [26] with permission ©2005 Springer Nature

measurements. In the example of Fig. 1, some parts of this image (region A) will give a relatively high chance
of obtaining useful data. However, these will likely be regions with only a few bubbles, as these conditions
lead to a better signal. Regions containing more bubbles may not produce valid data (region B). This implies
that the average statistics will not represent the true temporal average of the flow, but will be conditionally
averaged, biased towards regions with a lower local concentration of the dispersed phase. To avoid this issue,
it is essential to verify beforehand that all events have an equal likelihood of a successful measurement. This is
especially the case for bubbly flows, particle-laden jets, sprays, and other flowswith considerable concentration
variations (e.g. turbidity currents). Even if the data drop-out is truly random (i.e. unbiased), further analysis
has to be done with great care if large patches are missing. For instance, if correlation functions or power
spectra are of interest, interpolation of the missing data should be avoided as this strongly affects the resulting
spectra [9]. Alternative methods, such as ‘slotting’, are more suitable for data with significant drop-out [9,23].

2.4 Noise level versus turbulence

Even if no signal drop-out occurs, data will generally be noisier due to the presence of a dispersed phase: the
image contrast will be lower in PIV recordings, or the shape of bursts will be less than ideal in LDA data.
Both lead to increased (random) errors in the estimation of the velocity. Depending on which information is
of interest, this can in turn lead to erroneous flow statistics. A very thorough analysis is given by Adrian and
Westerweel [24]. While that monograph deals with PIV, the theory is readily applicable to other measurement
techniques. Only a brief summary is given here:

Assume a true, instantaneous velocity u and a random measurement error ε (ignoring systematic errors).
A measured velocity will thus be û = u + ε.

When estimating the mean velocityU , the random error cancels out, so that the correct mean is estimated:

U = 〈û〉 = 〈u + ε〉 = 〈u〉 + 0 = 〈u〉 (1)

However, if we want to estimate the variance σ (e.g. to estimate the turbulent kinetic energy), we find:

σ = 〈û2〉 = 〈(u + ε)2〉 = 〈u2〉 + 〈ε2〉 + 〈2uε〉. (2)

Note that, for simplicity, the mean value is not subtracted. The last term is zero if the error is uncorrelated
with the actual velocity value (which is generally the case).However, the averageof the error squared is nonzero.
Hence, the measured variance will be the sum of the contribution from the actual velocity fluctuations and
from random errors. While for most well-designed single-phase experiments the error in the velocity is in the
order of 1%, this error can increase considerably in multiphase experiments. For example, error contributions
to the uncorrected variance of up to 25% have been reported [9]. If subtle differences compared to a reference
single-phase flow are investigated, it is essential to quantify the noise level before a meaningful comparison
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can be done. One way to achieve this is by evaluating the correlation function of the velocities, either using
spatial or temporal data series. Even without knowledge of the expected shape of the correlation function, this
method allows one to separate correlated (physical) and uncorrelated (noise) parts of the signal. This approach
is better than blindly ‘smoothing’ the data, yet it requires sufficient spatial or temporal resolution [25].

3 Optical approaches

Over the years, there have been many approaches to expand the capabilities of existing optical techniques in
densely laden flows. In this Section, a number of common approaches are reviewed that stretch the limits of
imaging-based techniques.

3.1 Fluorescent tracers

A number of problems discussed in Sect. 2 can be reduced by using fluorescent tracers, rather than conventional
tracer material for the continuous phase. This concepts relies on the fact that these small tracers will emit light
at a different (longer) wavelength than the (laser) light used to illuminate the field of view. The advantage
is that only the tracer particles will be visible on a camera equipped with an appropriate band-pass filter to
block the original laser light. Scattering and reflections of the geometry, bubbles, or dispersed phase particles
are effectively removed, which allows measurement at somewhat higher volume fractions, as the imaging
conditions (aperture, exposure time, etc.) can be optimised for just the fluorescent particle images. Recently,
a variant of the fluorescent tracer approach was introduced that utilises the incandescence of small tracer
particles, heated by a laser light sheet. The larger droplets that formed the dispersed phase were not heated
significantly, yet the small, tungsten carbide tracer particles created a signal that could be separated from
the scattering of the dispersed phase [27]. These approaches, based on wavelength separation, also no longer
require image processing to distinguish between tracer and dispersed phase particles. This strongly reduces
chances of cross-talk (see Sect. 2.1). Unfortunately, the presence of a dispersed phase will still lead to the same
reduction in image quality, so that attainable volume fractions are still modest.

As a camera with a band-pass filter will only record the fluorescent light of the tracers, a second camera is
needed if the dispersed phase is also of interest. Often the scattering and fluorescence intensity of the tracer
particles is weak enough so that their signal is comparable to the noise level of the camera. This implies
that no filters are needed for the camera that images the dispersed phase [9]. For small particles or droplets
(comparable to the tracer material), more elaborate approaches need to be used to avoid any possible cross-talk.
An example is the use of two different dyes, with an appropriate band-pass filter on each camera [28]. If only
mean statistics are of interest, two experiments can be performed in succession to obtain each of the phases
sequentially (with and without filter). Naturally, only simultaneous recording using two cameras will provide
instantaneous velocity data, significantly facilitating the study of the interaction of the phases.

Fluorescent tracers have been used to study both phases in bubbly flows [8,21], particle-laden flows [9,29],
and sprays [26,30]. These examples show that the technique works for any combination of continuous phase
(gas/liquid) and dispersed phase (gas/liquid/solid). An example of raw image data obtained using two different
fluorescent dyes in a spray is shown in Fig. 2. Note that the costs of commercial fluorescent tracers can be
prohibitive for large-scale experiments, but methods to produce them in-house are available [31,32].

3.2 Refractive index matching

The deterioration of the image quality in multiphase flows, as described in Sect. 2.2, is caused by scattering
and refraction of light in and around the field of view. These effects are governed by the difference in the index
of refraction of the continuous and dispersed phase. By selecting two phases with identical indices, the flow
becomes transparent, as light propagates unhindered and the dispersed phase ‘disappears’. This approach is
also used to measure in fluids that are transparent, but which flow in devices that have a complex geometry with
limited optical access. By constructing geometries from materials that have the same refractive index as the
fluid, detailed measurements are possible, even through strongly curved walls. Examples include studies inside
a cylinder head of an internal combustion engine [33], turbomachinery [34,35], blood vessels [36,37], and
nasal cavities [37,38]. In some cases, such as the flow through a packed bed (discussed later), the distinction
between the ‘opacity of the suspension’ and ‘limited optical access due to the geometry’ becomes blurred. As
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Fig. 3 Droplet collision study using refractive index matching of both liquids, to allow simultaneous velocity measurement
outside and inside the droplets. Panel a shows the raw images (notice the seeding particles in both phases and the fluorescent dye
to demarcate the droplet phase). Panel b shows the velocity field (vectors) and the vorticity (colour coding). Reproduced from
Kim and Longmire [45] with permission ©2009 Springer Nature (color figure online)

the dispersed phase disappears completely in a well-matched system, a small subset of the dispersed particles is
often marked (e.g. dyed) to be able to obtain velocity information without affecting the image quality too much
[39]. For large particles, it is also possible to embed fluorescent marker dots on the surface of the transparent
sphere, so that the particle velocity and rotation can be tracked [40].

Refractive index matching has been demonstrated first in the 1990s for LDA [41] and PIV [42]. As the
refractive indices of gases under normal conditions are always much lower than those of liquids and solids, it
is not feasible to perform index matching in gas–liquid systems. All studies using refractive index matching
thus focus on liquid–liquid or solid–liquid systems. Reviews of suitable combinations are given by Budwig et
al. [41] and more recently by Wiederseiner et al. [43] and Wright et al. [44]. Unfortunately, finding suitable
combinations for the materials leads to a rather restrictive parameter space: the density and viscosity ratios
cannot be chosen freely, as one has to rely on materials that have relatively similar physical properties.
Furthermore, the materials should be available at reasonable cost, but also have limited corrosiveness and
toxicity.

Examples where the technique has been shown to be useful include studies of droplet–droplet interaction
[45,46] and film rupture [47] in liquid–liquid systems. An example of a PIV measurement to study droplet–
droplet interaction is shown in Fig. 3, where two droplets have just coalesced. The strong curvature of the
interfaces would lead to strong distortion without index matching, making visualisation of, for instance, film
drainage near-impossible.

While the idea is simple, the practical implementation of the refractive index matching technique can be
difficult. Refractive indices are dependent on temperature [48]. Similarly, evaporation will affect the refractive
index of mixtures or salt solutions used as continuous phase [49]. It is difficult to give precise guidelines for
the required agreement of the refractive indices to obtain accurate data. For systems that are geometrically
simple, such as, for example, a Taylor bubble, it is possible to use ray tracing to predict the exact distortion
or refraction due to a mismatch in the refractive index [50]. Dijksman et al. performed ray tracing to generate
images through stacked layers of spheres with a small mismatch. They derived an acceptable upper limit of
the mismatch of 0.2% for their application [51]. For systems containing many small, dispersed particles or
droplets, this ray tracing approach is no longer feasible. For relatively large objects, examples are available
where a 0.5% mismatch in the refractive index made the difference between a completely transparent system
and one where the contours of the solid phase were visible [49]. This implies that the refractive indices need
to match the third decimal, requiring precise temperature control of the experiment. A further complication
is the fact that commonly used dispersed phase material is often produced in bulk. Non-uniformities in the
refractive index can be introduced during manufacturing of glass beads, which will limit the success of index
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matching [52]. Between batches of the same particles, variations in the refractive index of 0.01 (or 0.6–0.7%)
have been reported [51]. For a given volume fraction, a smaller dispersed phase will result in a larger number
of interfaces where slight refraction can occur. Hence, most studies that successfully employ refractive index
matching use fairly large dispersed phases. In particular, studies through porous materials or packed beds lend
themselves to this approach [48,53]. Recently, there is an increased interest in hydrogels—particles that absorb
water and swell to millimetre-sized spheres [40,54]. As they consist mostly of water, their refractive index is
easily matched. Recent examples are particle–flow interaction [55] and flow through a porous medium [56].
A drawback is their lower mechanical strength compared to solid particles.

3.3 Ballistic imaging

Ballistic imaging allows visualisation of densely laden flows with a much improved contrast and clarity
[57]. The technique makes use of the (very small) difference in passage time of photons that travel without
interactions and photons that scatter at least once, due to droplets or particles in the observation region. To
achieve this, the technique requires very short (picosecond) pulsed laser illumination and/or a very fast camera
shutter. The fast shutter essentially filters out the scattered photons (which have a longer path and thus time of
flight), so that the unscattered photons can be used to create a shadowgraphy image. By removing light that
scatters multiple times, an image with a higher contrast can be obtained [57]. Due to the complicated optical
set-up and specialised light source, only a few applications have been reported—mostly in sprays, by a limited
number of research groups [58,59]. When the system is expanded to two ultrashort light sources, the velocity
field can be determined; see, for instance, the study by Sedarsky [60]. By utilising a third illumination pulse,
even the acceleration field can be determined [61]. As stated, this approach requires equipment that is not
readily accessible to most researchers, hence it will likely not find widespread use in dispersed multiphase
flows in the near future.

3.4 Structured illumination

In the previous approach (ballistic imaging), light that scattersmultiple timeswas removed by very fast shutters.
An alternative method to remove contributions from multiple scattering is to use structured illumination. The
main idea of this technique is to create a recognisable signature in the light that scatters from within the laser
sheet, while light that scatters multiple times (outside the sheet) loses this signature [62]. In the structured
laser illumination planar imaging (SLIPI) method [63], the field of view is therefore not illuminated by a
conventional, uniform light sheet. Rather, three consecutive images are recorded with a spatially modulated
illumination to create the ‘signature’. As shown in Fig. 4, each illumination is modulated in the y direction
with a sine wave and there is a shift of 2π/3 between the recordings. If these recordings are simply summed, a
conventional image is obtained (as if a uniform light was used); see the top right panel of Fig. 4. However, by
calculating the pair-wise difference,1 an image can be reconstructed without multiple scattered contributions
(the ‘SLIPI’ image, bottom right of Fig. 4).

As with ballistic imaging, the optical set-up is more complex than conventional imaging. Apart from
the need for three pulsed illumination sources, an accurate spatial phase shift has be introduced for each
illumination. The images need also to be captured sequentially, but within a timeframe so that there is minimal
motion of the scatterers. In the original paper by Berrocal et al. a rotating glass plate in combination with a
grating was used to create the modulation offset (i.e. phase shift). The total acquisition time for their system
was 110µs, which meant that only time-averaged images could be obtained for a spray. For slower flows (<
25 cm/s with their set-up), true ‘single-shot’ images could be obtained [63]. In a more recent paper, a version
of the method requiring only two images was presented [64], making the technique more feasible using the
common dual-head lasers used for PIV. With two images, residual lines appear in the reconstructed image,
which need to be filtered by means of a low-pass filter. By carefully choosing the modulation pattern, this
filtering can be done without affecting the image features that are under investigation. The SLIPI method,
predominantly applied within the spray and combustion community, has also been extended to obtain droplet
diameters and concentrations [65].

1 The SLIPI image is obtained from the pair-wise differences of the three modulated images, each with a 2π/3 phase shift
[63]: Is = √

2/3 · [(I1 − I2)2 + (I1 − I3)2 + (I2 − I3)2)]1/2.
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Fig. 4 A spray imaged using the structured illumination (SLIPI) method. Three images are obtained using amodulated light sheet,
each with a 2π/3 phase difference in the y-direction. Adding these will give a conventional image (top right), while the pair-wise
difference gives a higher-contrast image, as multiple scattered light is removed (bottom right). Reproduced from Berrocal et al.
[63] with permission ©2008 The Optical Society (OSA)

3.5 Optical coherence tomography

Optical coherence tomography (OCT) is a low-coherence interferometry method [66] that can be considered
to be the optical equivalent of ultrasound imaging (see Sect. 5): an image is reconstructed by scanning a sample
and evaluating the reflections (amplitude and time of flight) of a laser beam. While this method can achieve a
superior resolution (sub-micrometre), the drawback is a limited depth range (of order millimetres) and slow
imaging rate; the latter inhibits correlation-based flowmeasurement in, for example, turbulent flows. Velocities
can be obtained from the Doppler shift in the signal [67], but this will only provide the wall-normal component
if the laser beam enters perpendicular to the flow. While most of the applications of OCT have focussed on
bloodflowmeasurements, there are someproof-of-principlemeasurements in (steady-state) particle suspension
flows [68]. A recent review by Koponen et al. summarises applications in dispersed multiphase flows [69].
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Fig. 5 A schematic representation of a typical electrical capacitance tomography system. Reproduced from Yang and Peng [71]
©2002 IOP Publishing. Reproduced with permission

4 Electrical capacitance tomography

Electrical capacitance tomography (ECT) is a technique that uses the variation of dielectric propertieswithin the
measurement region to reconstruct the distribution of two ormore phases [70]. It utilises a number of electrodes
that are mounted in the wall of (typically) a pipe; see Fig. 5. As a bubble or droplet with different dielectric
properties moves through the field of view, it will affect the electrical signal travelling between two electrodes.
Typically, a voltage is first applied to one electrode, and the charge on the remaining electrodes is recorded
[71]. This process is then repeated sequentially with the other electrodes. The entire process typically takes
milliseconds, but this obviously depends on the hardware used [72]. The material distribution is not measured
directly, but must be reconstructed by solving an inverse problem using the data obtained from the electrodes
[71]. The theoretical resolution of this tomographic reconstruction is proportional to the number of electrode
pairs used: forN electrodes, there are N (N−1)/2 independent capacitymeasurements.As generally a relatively
small number of electrodes is used (10–20), this means that only large-scale structures can be reconstructed.
Small individual particles or bubbles thus cannot be resolved, nor tracked. Simply increasing the number of
electrodes is not trivial, as that would reduce their size and thus their sensitivity. Furthermore, it increases the
complexity of the electronics hardware and achievable frame rate [72]. Nevertheless, the technique is able to
discern flow regimes (‘stratified’ versus ‘churn flow’, etc.). Depending on the distribution of the electrodes,
the technique will provide cross-sectional slices or even 3D volumes [73].

Calibration of ECT systems to obtain accurate quantitative data is not trivial [74]. As velocity information is
not available and the technique has a relatively low resolution, it is currently suitable for mostly qualitative flow
regime classification. Applications and recent developments are summarised in recent review papers. [75,76].
Note that other application areas use variations of the technique, such as electrical resistivity tomography for
geophysical studies [77] and electrical impedance tomography in clinical studies [78].

A related technique is the use of a mesh of conducting wires in the cross section of the pipe. By sequentially
measuring the electrical current between combinations of wires, the local permittivity can be determined [79].
With a calibration procedure, this can be used to determine the local void fraction [80]. While no longer a non-
intrusive measurement technique, it can give fairly detailed insight in, for example, gas–liquid flows. As the
flow passes through the wire mesh, the subsequent slices can be stacked to reconstruct a quasi-3D distribution
of both phases [80].

5 Ultrasound

Ultrasound-based techniques have been a mainstay in medicine for more than half a century [81]. In its
original form, it was solely a technique for imaging inside the human body. It creates these images by sending
acoustic wave packets (with typical frequencies of 1–10 MHz) through a sample and recording the echoes
[82]. The delay in the received signal is determined by the depth at which the echo was created, while the
intensity gives information about the local (change) inmaterial properties—inparticular the acoustic impedance
(density multiplied by the speed of sound). The result is a (near-)instantaneous image representing a relatively
thick slice of the region of interest. The stronger the change in impedance, the more of the acoustic wave is
reflected. This also implies that the transition fromwater to air leads to a very strong reflection, with little signal
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propagating deeper into the system.Many commonmaterials have a relatively similar impedance, so that sound
can penetrate—to some extent—through geometries that are not transparent to visible light. Examples include
non-transparent elastic tubes [83,84], PVC pipes [85], and of course tissue [86,87]. Besides circumventing the
‘optical access’ criterion, sound also penetrates through suspensions, avoiding the opacity issues associated
with visible light.

‘Doppler imaging’ (or ‘colour Doppler’) was introduced later, which superimposes the velocity field as a
colour map on the original ultrasound image. This velocity, as the name implies, is derived from the Doppler
shift in the received echoes. Note that only the component along a single axis—the propagation direction of
the sound waves—can be obtained.

These clinical techniques also found their way to fluid mechanics research. An extensive review of
ultrasound-related applications and developments is available elsewhere [88]. In short, three techniques are
in use: time-of-flight flow metering, Doppler profiling, and correlation-based techniques. The first of these
provides only a mean flow rate [89] and is thus not very useful for most research situations. It will therefore
not be discussed here.

5.1 Doppler profiling

Doppler profiling uses a single line (in contrast to the imaging discussed above) to estimate a velocity profile. As
the Doppler shift is only caused by velocities in the direction of the propagation of sound, the axis is generally
placed at an angle to estimate the velocity profile in a pipe. By selecting different delay ‘windows’ for the
received echoes, the velocity at different depths can be obtained. The technique was made popular outside
clinical settings by Takeda in [90], who also popularised the term ‘ultrasound velocity profiling’ (UVP) [91].
It is a popular technique in hydrological studies [92], as it does not need calibration, can extract velocity and
density information over a large profile, and can be housed in a single, sturdy instrument to be used in the
field. Other application areas include food production [93] and pulp flow during the production of paper [94].
Unlike time-of-flight measurements, Doppler profiling (and imaging) requires changes in material properties
to create echoes. It thus cannot work in a single, continuous medium (e.g. clear water). However, as these
techniques are deployed exactly because of the opacity of a fluid, this is obviously not an issue.

5.2 Ultrasound imaging velocimetry (‘echo-PIV’)

Already in the late 1980s, the idea was pitched to estimate flow velocities using the correlation of features in
ultrasound images [95]. The technique was introduced to measure blood flow in clinical settings, but never
gained traction. In the early 2000s, it resurfaced in the fluid mechanics community by the work of Kim et
al. [96]. Several names are used for very similar measurement techniques: digital ultrasound speckle imaging
velocimetry [97], ultrasound imaging velocimetry (UIV) [88] and echo-PIV [96]. The latter name invokes the
basic concept: images are acquired with an echography system (rather than a camera), and these images are
processed using conventional PIV algorithms to estimate the local velocity. While this explanation conveys
the general approach—and is accurate with respect to how the first studies were performed—it ignores many
of the intricate differences between conventional PIV and ultrasound-based PIV. One important example is
the sweep correction that is needed due to the fact that the ultrasound image is not obtained instantaneously,
but in a column-by-column fashion. This means that velocities (and accelerations) need to be corrected to
account for the time difference between various regions of the image [98]. Another big difference is the large
resolution difference in the axial and transverse direction (i.e. ‘horizontal’ and ‘vertical’ axis of the image), as
well as the way the image is produced from the raw data. These raw data, the output of piezo-electric transducer
elements, are traditionally processed to generate a clean, noiseless image for clinical evaluation. This leads to
processing steps that are generally not optimised for correlation-based velocity estimates (e.g. de-noising, lossy
compression) [88]. After a decade of mostly development and validation studies, the technique is currently
employed for, among others, in vivo blood flow studies [87,99] and fundamental studies of particle-laden flows
[100].

As ultrasound images are created based on changes in acoustic impedance, it is generally the dispersed
phase that will create the signal. As such, the outcome of UIV is the velocity field of the dispersed phase. For
colloidal particles (much smaller than the wavelength of sound), the signal will be speckle-like in nature [101].
For larger particles, the individual particle images can often be distinguished in dilute flows [102]. As water by
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Fig. 6 In vivo measurement of the velocity in a carotid artery using ultrasound imaging velocimetry/echo-PIV a raw ultrasound
images (using contrast medium). The tick marks have units of centimetres, b instantaneous velocity field, combining data from
two measurements. The colours represent the velocity magnitude. The red marker at the top indicates the time instance during
the cardiac cycle (blue curve). Reproduced from Zhang et al. [86] with permission ©2011 Elsevier (color figure online)

itself will not create a signal, tracer material has to be added for single-phase measurements. While UIV might
not be the first choice for single-phasemeasurements, it is common to perform referencemeasurementswith the
same technique before addressing particle-laden cases [100]. For single-phasemeasurements, conventional PIV
tracer material can be used [102]. Much higher signal-to-noise ratios can be obtained by using tracer material
specifically designed for ultrasound imaging: contrast medium. Although pricey, this ‘contrast-enhanced’
echo-PIV approach provides unsurpassed image (and thus velocity) information [86,87]. An example of a
contrast-enhanced UIV measurement of the velocity field in a carotid artery is shown in Fig. 6.

The two main drawbacks of UIV are the relatively low resolution and the maximum achievable frame rate.
The low resolution—compared to optical techniques—directly follows from the much longer wavelength of
ultrasound. For most studies the image resolution is 0.1–0.5 mm and the resolution of the velocity field is often
an order of magnitude coarser. While the use of higher ultrasound frequencies (and thus shorter wavelengths)
can improve the resolution, it leads to a reduced signal penetration depth [88], as sound is absorbed more at
higher frequencies. The maximum achievable frame rate predominantly stems from the relatively low speed of
sound: in conventional ultrasound imaging, the time required for the sound wave to travel through the sample
and back leads to a non-negligible delay time. As typically 128–256 columns are read-out sequentially, the
frame rate is often limited to 50–200 images/second. This limits the velocities that can be measured: for very
fast flows, image features will have left the image in the subsequent frame. The frame rate can be improved
by using ‘plane wave imaging’, where all transducer elements emit and are read-out at the same time, rather
than sequentially [103]. While allowing frame rates of several thousand images per second, it leads to a
lower signal-to-noise ratio [25]. Nevertheless, this technique has been a breakthrough, allowing time-resolved
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Fig. 7 Axial (top) and radial (bottom) velocities in a fully developed turbulent pipe flow (Re = 5300), obtained with UIV using
plane-wave imaging at 1 kHz. From each vector field, one radial profile is shown as a function of time. Reproduced from
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velocity measurements. An example is given in Fig. 7, showing data of a turbulent pipe flow obtained at 1
kHz. Recently, even 4D measurements have been reported [104]. These measurements relied on a prototype
matrix transducer (rather than the usual linear transducer), which are not yet readily available. Furthermore,
averaging over several cycles was needed to obtain a sufficient signal-to-noise ratio.

6 Magnetic resonance imaging

After breakthrough developments in the late 1970s, magnetic resonance imaging (MRI, previously known as
nuclear magnetic resonance) became a powerful clinical imaging modality in the 1980s [105]. It enables visu-
alising in non-transparent media, with the human body being the principle application. Similar to ultrasound,
it both addresses the ‘optical access’ issue, as well as the opacity of the fluid.

In MRI, a strong permanent magnetic field is used to align the magnetic moment of (typically) hydrogen
nuclei, i.e. protons [106,107]. This equilibrium state is then perturbed by a radiofrequency pulse. After this
perturbation, the protons will return to the equilibrium state, which creates a magnetic flux that can be detected
by receiving coils outside the measurement domain. The relaxation response of a proton is determined by its
bonding state, so that the relaxation time can be used to distinguish various compounds. As protons respond
only to certain frequencies (which are in turn dependent on the applied magnetic field strength), the use of
linear gradients in the magnetic field can be exploited to image only a certain region in space. To devise
acquisition strategies and to process the collected data, it is convenient to switch from 2D or 3D images to
their Fourier-transformed counterparts; this is referred to as ‘k-space’ [106].

While originally an imaging technique, it was extended to blood flowmeasurement in the mid-1980s [108].
This was achieved by using two gradient pulses with opposite phase. For non-moving material, there will not
be a phase shift in the recorded signal. If material moves between the two pulses, a phase shift can be observed.
This approach is often referred to as phase-contrast MRI.

An early review of the possibilities of MRI for general fluid mechanics is presented by Fukushima [109].
More recent reviews are given byElkins et al. [110] andGladden et al. [111],while Stannarius [112] summarises
MRI applications in granular matter. When the main goal is to obtain flow fields (rather than imaging), the
technique is often referred to as ‘flow MRI’ [111] or magnetic resonance velocimetry (MRV) [110].

One of the first more rigorous assessments of the capabilities for flow measurement was done by Ku et al.
[113]. They used, among others, fully developed pipe flow and the flow through a curved pipe to investigate
the suitability of the technique to quantify flow separation and turbulence. They reported a deterioration of the
results at higher turbulence levels. This could in part be attributed to vortical structures smaller than the voxel
size. Furthermore, fluctuations that are faster than the response time may provide random results [113]. This
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response time, as discussed above, is dependent on the state of the protons. As water has a long relaxation
time, it is often doped to strongly reduce the relaxation time. A typical image acquisition collects signal during
a timescale of the same order as this relaxation time. This means that acquisition times of doped media are
shorter, which improves the frame rate in so-called cine MRI (time series of MRI images). It also vastly
improves the image quality due to the fact that the signals are now emitted in a shorter time. Common doping
agents are MgCl2 [113], gadolinium-based [114], or CuSO4 [115].

Within the general fluid mechanics community, research groups in Cambridge [116,117] and Stanford
[118,119] paved the way. The latter closely collaborated with the group in Freiburg [120,121]. In Stanford, the
technique was extended to also measure concentration [122] and temperature fields [123]. In Cambridge, the
technique was used to study the flow in packed beds [124], fluidised beds [125], and to investigate turbulence
created by rising bubbles [126]. While these studies predominantly utilised MRV to deal with the opacity of
the fluid, it has also been used to measure in (transparent) fluids in complicated geometries. Examples include
the intake of an IC engine [127], stenotic blood vessels [128], model aneurysms [129], and nuclear fuel rod
bundles [130].

Time-dependent measurements, such as the study of bubble-induced turbulence [126], are made possible
by means of so-called ultrafast MRI, which allows recording velocity fields in a single slice up to 100–200
times per second [111]. It should be noted that the famous ‘4D’ visualisations of blood flow [131] are based on
phase-averaged recordings collected over many minutes and do not represent instantaneous data [132]. There
is a continuous drive towards faster acquisition times, by new hardware and acquisition strategies, to better
investigate unsteady phenomena such as turbulent flows. For instance, the use of compressed sensing allows
a dramatic reduction in the acquisition time [115]. In a recent study, a ‘4D’ data set of a cardiovascular flow
could be obtained within 2 min [114].

To demonstrate the capabilities of MRV in opaque flows, two examples are shown here of its application
to the flow through a venturi (with the aim to investigate cavitation). Recently, it was proposed that the
technique can also quantify void fractions in, for example, cavitating flows [133,134]. Figure 8 shows 3D
reconstructions of the cavitation cloud in a venturi. Figure 9 shows the velocity field of the continuous (water)
phase in a different, but very similar experiment using a venturi. In this study a comparison was made with
reference data using PIV. The agreement was good, apart from a spatial averaging effect in the regions with a
strong spatial gradient downstream of the throat.

Typical resolutions of MRI-derived flow fields are of the order of 0.2–1.0 mm (see, for example, Table 1 of
[115]). Note that each voxel here contains one velocity estimate. This is in contrast to UIV, where the velocity
is estimated using a group of pixels in an interrogation area. Due to the use of strong magnetic fields (0.5–3 T),
ferromagnetic materials cannot be used in the vicinity of the MRI device. Non-ferromagnetic materials can in
principle be used, but they distort the magnetic field and thus affect the measurement result if no correction is
applied. With the rapid rise of additive manufacturing techniques, complex geometries can be created using
MRV-compatible materials [127–130]. As MRI devices are expensive to acquire and to operate, only a limited
number of research groups have dedicated facilities. Most experiments are performed in close collaboration
with medical centres.

Similar to the process of translating ultrasound from clinical applications to fluid mechanics research, a
number of limitations needed to be overcome for MRV. One of them is the occurrence of misregistration errors
that appear in fast flows, i.e. flows that exceed the velocities of maximally 1 m/s seen in cardiovascular flows.
These arise from the fact that the linear gradients and read-out are not simultaneous—the fluid travels between
various encoding events. Recent work has highlighted these errors and provides an acquisition sequence that
strongly reduces them [115]. There are still open questions, such as the effect of turbulence or the presence
of a vapour phase on the accuracy of the velocity results. The latter has not been established, mostly because
there is very little reference data in these flows.

7 X-ray imaging and tomography

The third and final modality that is widespread in the medical world and has found its way to fluid mechanics is
X-ray imaging [135] . X-ray imaging is a shadowgraphy technique, where a sample is placed between a source
and a detector (Fig. 10). X-rays can travel with relatively little absorption through opaque media, compared to
visible light. The absorption is proportional to the amount of matter present at a certain location, i.e. the local
mass density. X-rays do not significantly refract, as the refractive index is very close to unity. The amount
of intensity ‘lost’ at the detector is thus proportional to the integrated densities along the straight line from
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Fig. 8 Reconstruction of the time-averaged liquid and vapour phase distribution in a cavitating venturi. The venturi geometry
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isosurface). Case b–f shows that with increasing flow rate there is a larger vapour region (black region just below the throat). The
bottom figure shows a quantitative analysis of the volume of the cavitation cloud as function of the flow rate. Reproduced from
Adair et al. [134] with permission ©2018 Elsevier

Fig. 9 Average velocity field in a venturi (non-cavitating case). Validation of MRV (bottom left) against PIV reference data (top
left). The right-hand side figure shows that in regions with strong gradients theMRV data is smeared out compared to the reference
PIV data. Reproduced from John et al. [115] with permission ©2020 Springer
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a b

Fig. 10 a An X-ray computed tomography facility to investigate a cavitating venturi. The yellow device contains the source, the
black square is the detector. The venturi is placed in the measurement area in between the source and detector. b A schematic
representation. Reproduced from Jahangir et al. [144] with permission ©2018 ASME

the source to the location on the detector (often approximated by the Lambert–Beer law). In other words,
low-density regions (e.g. bubbles) lead to bright regions, while higher densities (e.g. particles, water) lead to
dark regions in the image obtained by the detector. As before, this modality avoids both the optical access and
fluid opacity issues.

The source of X-rays is generally either an X-ray tube [136–138] or a synchrotron [139–141]. The former
has the advantage of being cheap and readily available as component for medical or dental equipment, but the
light produced is not monochromatic and has a wider angle of emission. This wider angle can also be useful
if larger fields-of-view are of interest. Synchrotrons produce a much more confined, intense, monochromatic
beam. Themonochromatic nature (i.e. a limited spectral band of the photons) can be preferential for quantitative
measurements, as it eliminates the variation in the absorption coefficient for various parts of the spectrum (‘beam
hardening’ [137]). However, synchrotrons are special facilities, and the available beam time is generally limited
and/or expensive.

Detectors can be conventional (high-speed) cameras equipped with a scintillator plate (which converts
X-rays to visible light) [137,139,141] or dedicated detectors [136,138,142,143]. Naturally, strict safety rules
need to be implemented when operating X-ray sources.

An example of an X-ray tomography experiment is shown in Fig. 10, aimed at characterising the partial
cavitation process in a venturi; note that this is the same geometry as the MRV example shown in Fig. 9. The
X-ray result—in this case the local mean void fraction—is shown in Fig. 11.

As X-ray imaging works because of local differences in density, it is especially suitable to image flows
with a large difference in density, such as air or vapour in water. It has therefore found use in, for example,
the study of cavitation, but also in the field of fluidised beds [142,143,145]. Examples of cavitation studies
include 1D measurements of the flow over a wedge [136], time-resolved 2D measurements with a similar
wedge [137,146], high-speed visualisations in a nozzle [141], and 3D measurements in a venturi [138]. In all
these experiments, the local void fraction was the main goal, and often the result is qualitative [141], i.e. the
technique is used as a powerful visualisation technique. To make the results for the void fraction quantitative,
a careful calibration is required. This is often done using a two-point calibration: the geometry is measured
when it is completely filled with water and when it is completely filled with air.2 A more accurate approach is
the use of calibration targets, such as hollow plastic cylinders with a known diameter. These are placed in the
water-filled geometry and create a known, artificial void fraction [138] to obtain a more accurate calibration
curve. This is especially important for flows that have low expected void fractions, for which the two-point
calibration may lead to inaccurate results.

7.1 Computed tomography

As X-ray imaging is a shadowgraphy technique, the information that is obtained is the cumulative effect along
the path between source and detector. This means that the 3D flow information is collapsed onto a single 2D
plane. Most experiments therefore use a quasi-2D geometry [137,146] or refrain from discussing 3D effects.

2 Filling the geometry with vapour is difficult to do in practice, so the small error due to the difference in the density of water
vapour and air is ignored.
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Fig. 11 Void fraction in a cavitating venturi, obtained using X-ray computed tomography. The cross sections a–f are taken at
various downstream positions. Reproduced from Jahangir et al. [138] with permission ©2019 Elsevier

The actual 3D spatial distribution can be retrieved using a tomographic reconstruction. In this ‘computed
tomography’ (CT) technique, an inverse problem is solved to reconstruct a three-dimensional distribution,
based on various projections from different angles. This can be achieved using separate detectors [145], but
naturally this increases the costs of the facility. Alternatively, a single source and detector can be rotated around
the field of view—the approach used in a ‘CT scan’ in a hospital. This can only provide a time-averaged end
result, as the rotation is generally slow compared to the timescales of the flow of interest. Nevertheless, fast,
specialised systems have been developed to obtain instantaneous 3D data [143]. An alternative can be to rotate
the flow/experiment itself (if feasible) and to leave the source and detector stationary [140,147]. Finally, if
only time-averaged information is desired in an axisymmetric flow, a single view is sufficient to reconstruct
the 3D result from a single X-ray projection [138].

7.2 X-ray velocimetry

X-ray imaging requires relatively long exposures when low-power X-ray tubes are used. Furthermore, it is
not trivial to construct fast mechanical shutters to obtain a pulsed illumination [148,149]. This becomes
more difficult with increasing beam diameters, such as those of X-ray tubes. Therefore, the transition from
visualisation to measurement (based on consecutive image pairs) is not easy.
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Early examples are the tracking of a ‘bolus’ of contrast fluid in blood vessels [150], the tracking of individual
bubbles [139,151] or particles [152] in a bubble column. PIV algorithms have been applied to X-ray images
[153,154]. Note that most of the studies simply use the projected image, so that it is difficult to interpret the
obtained 2D velocity field. Fouras et al. aimed to reconstruct the true 3D field from the projected result using
a deconvolution approach [155]. By utilising various projections, they demonstrated that the time-averaged,
3D flow field can be reconstructed [140].

As conventional tracermaterial (e.g. for PIVmeasurements) generally has a density close to the surrounding
fluid, it will not be visible in X-ray images. Therefore, specialised tracer particles have been manufactured. For
example, Seeger et al. created particles that contained a dense ‘radio-opaque’ core, surrounded by a low-density
foam. This resulted in a particle with a distinct core, while maintaining neutrally buoyant characteristics [152].
Park et al. demonstrated that small CO2 bubbles could act as (bio-compatible) tracers for in vivo blood flow
measurements [156]. A similar approach was reported by Dubsky et al., who use contrast bubbles—intended
for ultrasound imaging—to enhance the quality of their X-ray images [140].

8 Summary and outlook

Dispersed multiphase flows, with their inherent turbidity, have long eluded detailed characterisation using
conventional techniques. Issues such as cross-talk, a decrease in signal-to-noise ratio, and data drop-out become
particularly relevant while attempting to measure in these flows. By various adaptations, the applicability of the
conventional optical techniques has been stretched to higher void fractions. This was achieved by, for example,
Structured Illumination and the use of fluorescent tracer particles. However, these optical techniques will
remain useful only for relatively dilute suspensions. If the experiment allows for it, refractive index matching
can eliminate this void fraction boundary.

In the last decade or so, many non-optical measurement techniques that rose to prominence in the clinical
setting have crossed over to fluidmechanics laboratories, and they bringwith them the promise of access to even
the most densely laden systems. After a period of mostly development and ‘proof-of-principle’ experiments,
the community is now ready to reap the benefits and obtain detailed flow information that alluded us so far.

Each of the techniques reviewed here has its unique characteristics and there is not a single ‘silver bullet’
that works for each opaque flow problem. Considerations of spatial and temporal resolution needed, costs,
and accessibility all play a role in the choice of the most appropriate technique. In Table 1 a brief summary
of the main characteristics is given. Several of the techniques mentioned will likely remain rather niche: it
is expected that only a handful of research groups will have access to dedicated hardware needed for MRI
or X-ray imaging. This is in contrast to the prevalence of optical measurement systems that are present in
virtually all laboratories. As most techniques are available at medical centres, most of the work will likely be

Table 1 Overview of measurement techniques

Technique What is measured? Pros Cons

Fluorescent tracers Velocity of dispersed (S/L)
and/or cont. phase (L/G)

Simple extension from conven-
tional methods

Only effective in dilute sys-
tems, tracer material relatively
expensive

Refractive index
matching

Velocity of dispersed (S/L)
and/or cont. phase (L)

No restrictions on volume frac-
tion

Limited number of suitable flu-
ids (parameter space)

Optical coherence
tomography

Velocity of dispersed phase,
relatively slow flows only

Superior resolution (microme-
tres)

Small penetration depth and
FOV (mm)

Ballistic imaging,
SLIPI

Visualisation, droplet sizing Processing very similar to nor-
mal imaging

Complicated optical set-up

ECT 2D/3D volume fraction/phase
distribution

Relatively cheap, fast Low resolution (�1 mm)

Ultrasound Velocity of dispersed phase
(resolution ≈ 1 mm)

Relatively cheap, temporal res-
olution high

Only suitable for liquids as con-
tinuous phase

MRI/MRV Volume fraction (qualitative),
time-averaged 3Dvelocity (res-
olution ≈ 0.5 mm)

Can measure despite presence
of gas

Expensive, material restric-
tions, slow

X-ray (CT) Density/phase distribution (2D,
or 3D via computed tomogra-
phy)

No limitations on materials,
high resolution possible (syn-
chrotron)

Expensive, strict safety restric-
tions
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done in close collaboration with radiology departments. Of the techniques that are reviewed here, ECT and
ultrasound-based techniques are the most accessible ones.

8.1 Future perspectives

While the aforementioned collaboration with medical centres will provide easy access to state-of-the-art
facilities, it also highlights a potential pitfall: it should be stressed that the use cases are obviously different
for clinical work and fluid mechanics research. Both the hardware and software are developed for specific
demands (anatomical dimensions, real-time flowmeasurements, image enhancement to distinguish anatomical
structures, etc.). The hardware is also constructed to meet strict regulations as it needs to be safe to use
on patients. This limits, for instance, the maximum power that can be used to create ultrasound images.
Furthermore, it leads to ‘closed’ hardware, where extensions cannot be implemented. Developing custom
hardware for flowmeasurement is possible in principle [143,157], but likely beyond the capabilities or interests
of most fluid mechanics laboratories.

In contrast to the hardware aspects, there is a huge potential on the software side. While earlier studies
had to rely on the proprietary software used for clinical studies, it is now more and more feasible to run
custom software on standard hardware. This has two main advantages: (i) advanced acquisition protocols can
be implemented, and (ii) raw data are available. Examples of the former include, for example, interleaved
imaging to allow for the measurement of fast flows in echography [87], or the use of the ‘SYNC SPI’ sequence
for fast flows in MRV [115]. Access to raw data is essential to maximise the accuracy of flow measurement. It
also allows researchers to post-process the same raw data with different algorithms to see which one performs
better. Obviously, this is not feasible when the device only provides processed data—the latter being a direct
consequence of the need for clinicians to have robust (near) real-time data. In fluidmechanics research, research
strategies are generally based on offline processing.

In the last decade, a considerable number of ‘proof-of-concept’ studies that demonstrate the feasibility
of a new technique have been reported—in fact most of the studies referenced here fall within this category.
Unfortunately, not all of them compare the results that are obtained to reference data. This is in part due to the
fact that little of such data is often available. A notorious case is that of cardiovascular flow, where it is nearly
impossible to perform two sets of measurements with different techniques under the exact same conditions.
Regardless of the application area, there should be an effort to at least perform a basic check of the data.
One easy example is checking if mass is conserved, by integrating the velocity profile at various downstream
locations [115]. An alternative can be to link pressure drop measurements with the wall shear stress to evaluate
whether velocity gradients at the wall are resolved. Finally, evaluating data scatter (i.e. spatial or temporal
variation) in a flow that is expected to be laminar can provide an estimate of measurement errors. An honest
assessment of the measurement accuracy and/or limitations will not only promote the uptake of the techniques,
but also help in selecting the best data acquisition and processing strategies.

An important strategy in pushing the state of measurement techniques forward is to use well-described
benchmark cases. For single-phase flow, fully developed pipe flow is the most common one. For laminar flow,
we have the exact solution (‘Poiseuille’), and for turbulent flowwe have an abundance of trusted empirical data
[158]. For dispersed multiphase flows, these benchmarks have not yet been established. One approach could be
to test techniques using a relatively low volume fraction and compare to single-phase results [102]. However, it
is a better strategy to design specific multiphase cases. The example of the cavitating flow in a venturi (Figs. 9,
11) can be considered to be an effort to establish such a benchmark flow. By various techniques, a myriad of
data is now available that should in theory all be reconcilable. With these benchmarks, it is possible to compare
various processing strategies and evaluate the performance under specific conditions.

Despite these open questions, it has been established that the techniques reviewed here provide exciting
possibilities to study dispersed multiphase flows. They are ready to be used to study new phenomena or to
provide validation data for numerical simulations. They will likely push the field forward, as with these tools
we can finally unveil opaque flows.
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