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SUMMARY

In the recent decades, various dynamic process models on complex networks have been
built to study the mechanisms by which an opinion, a disease or generally the infor-
mation spreads in real-world networks. For example, opinion models are developed to
illustrate the competition of opinions in a population, and epidemic models are used
to describe, e.g. how an epidemic spreads in a social contact network or how informa-
tion propagates in an online social network. Classic models always assume the homoge-
neous interactions. For example, the infection rates are the same for all pairs of nodes.
However, the infection rates between different pairs of nodes which may depend on e.g.
interaction frequencies are usually different , thus heterogeneous. In this thesis, we aim
to explore the influence of heterogeneity on dynamic processes especially on the preva-
lence of an epidemic or opinion. We consider two types of dynamic processes: the Non-
Consensus Opinion (NCO) model and the Susceptible-Infected-Susceptible (SIS) model.
This thesis is mainly devoted to the latter one. We investigate the heterogeneity in both
network topology models, e.g. directed networks, and dynamic process models, such as
heterogeneous infection rates.

In Chapter 3, we explore how the heterogeneity in network topology (particularly
directed networks) affects the NCO model, especially the critical threshold, i.e., the min-
imal initial fraction of population for a given opinion such that this opinion survives
(forms a giant cluster) in the steady state, where the fraction of an opinion remains sta-
ble. We propose two approaches to construct directed networks with different propor-
tion of unidirectional links and different correlation between the indegree and outde-
gree. We find that networks with more (less) unidirectional (bidirectional) links and a
higher indegree and outdegree correlation tend to have a higher critical threshold. Our
conclusions indicate the critical role of the directionality and the asymmetry between
indegree and outdegree in real-world opinion competitions.

We continue to investigate the SIS epidemic model on directed networks in Chapter
4. We aim to understand how to allocate the limited recovery rates heterogeneously to
the nodes such that the prevalence of the epidemic can be reduced. We propose a strat-
egy that assigns each node a recovery rate, which is dependent on the in- and outdegree
of that node. In general, our strategy is evidently better than the classic homogeneous
allocation of recovery resources in reducing the overall infection, especially when the
given recovery resources are sufficient. Our degree based heterogeneous recovery rates
allocation strategy illustrates the potential to more effectively reduce infection than the
classic homogeneous allocation.

We consider further the heterogeneous infection rates in Chapter 5 and Chapter 6,
motivated by real-world datasets. Employing the classic SIS model as the benchmark in
Chapter 5, we study the influence of the independently identically distributed infection
rates on the average fraction of infected nodes in the metastable state where the infec-
tion fraction is nonzero and stable. We find that, when the prevalence is high, the hetero-
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geneity of infection rates on average retards the virus spreading and a larger even-order
moment of the infection rates leads to a smaller average fraction of infected nodes, but
the odd-order moments contribute in the opposite way. However, when the prevalence
is low, i.e., the epidemic may die out or infect a small fraction of the population, the het-
erogeneity may enhance the probability that the epidemic spreads out. Chapter 6 goes
one step further than Chapter 5: the heterogeneous infection rate of each pair of nodes
is not i.i.d. any more, but correlated with the degrees of its two end nodes. We discover
that, when the prevalence of the epidemic is high, a negative correlation between the
end node degrees and the infection rate tends to help the epidemic spreading. However,
when the prevalence is low, a positive correlation is more likely to enhance the spread-
ing. Our results in Chapter 5 and Chapter 6 shed light on that how the epidemic spreads
in the real-world could be far away from classic homogeneous models and reveal the
essential role of the heterogeneity in real-world dynamic processes.

In this thesis, the continuous-time simulation is the main approach to study the SIS
model with heterogeneous infection or recovery rates. We are interested in how accurate
a mean-field approximation could be in such cases. Hence, in Chapter 7, we explore how
the heterogeneous infection rates affect the accuracy of NIMFA – an advanced mean-
field approximation of SIS model.

The previous chapters as well as most studies on SIS model consider mainly the av-
erage fraction of infected nodes, which ignores the infection probability of each node.
In Chapter 8, we explore the heterogeneous performance of the nodes, i.e. , the infec-
tion probability or vulnerability of each node, motivated by the fact that the ranking of
the nodal vulnerability given the effective infection rate of an SIS epidemic can be cru-
cial for a network operator to understand which nodes are more vulnerable or should be
protected. Via both theoretical and numerical approaches, we unveil that the ranking
of nodal vulnerability tends to change more significantly as the effective infection rate
varies when the effective infection rate is smaller or in Barabási-Albert than Erdős-Rényi
random graphs.

As an initial start, this thesis tries to depict an overview how the prevalence of opin-
ion and epidemic could be influenced by various types of heterogeneity, such as the
heterogeneity in dynamic processes (heterogeneous infection or recovery rates) and in
network topology. This thesis also inspires more future works. Though various types
of heterogeneity are considered in this thesis, the heterogeneity in real-world could be
vastly complicated and unexploited. For example, the study of the influence of the tem-
poral heterogeneity, i.e., the infection or recovery rates change and adapt over time, on
the prevalence is yet open. Furthermore, how can we design the optimal immunization
strategy when different types of heterogeneity are considered?



SAMENVATTING

In de afgelopen decennia zijn verscheidene modellen van dynamische processen op
complexe netwerken opgesteld om de mechanismen te bestuderen hoe een mening, een
ziekte of informatie in het algemeen zich verspreidt in de praktijk voorkomende netwer-
ken. Zo zijn opiniemodellen ontwikkeld om de strijd tussen meningen in een populatie
te illustreren en worden epidemische modellen gebruikt om bijvoorbeeld te beschrijven
hoe een epidemie zich door een sociaal contactennetwerk verspreidt of hoe informatie
zich voortplant in een online sociaal netwerk. Klassieke modellen veronderstellen al-
tijd dat interacties homogeen zijn. Een voorbeeld van een klassiek model zou kunnen
aannemen dat de kans op infectie gelijk is voor alle knopenparen in een netwerk. De
kans op infectie tussen verschillende knopenparen kan echter afhangen van hoe vaak
er interacties tussen deze knopen plaatsvinden. Doorgaans is deze interactiefrequentie
verschillend per knopenpaar en is er dus sprake van heterogene interacties.

In dit proefschrift onderzoeken we de invloed van heterogeniteit op dynamische pro-
cessen, in het bijzonder de prevalentie van een epidemie of opinie. Hierin beschouwen
we twee soorten dynamische processen: het non-consensusopiniemodel (NCO) en het
susceptibel-geïnfecteerd-susceptibelmodel (SIS). Dit proefschrift richt zich voorname-
lijk op het laatstgenoemde. We onderzoeken de heterogeniteit in zowel netwerktopolo-
giemodellen, bijvoorbeeld gerichte netwerken, als in dynamische procesmodellen, zoals
heterogene infectiesnelheden.

In hoofdstuk 3 bekijken we hoe de heterogeniteit in netwerktopologie (voorname-
lijk gerichte netwerken) invloed heeft op het NCO-model, met name de kritieke drempel
(het minimaal benodigde percentage van een populatie dat een gegeven mening aan-
vankelijk moet delen zodanig dat deze opinie het overleeft, d.w.z. een aanzienlijke clus-
ter vormt, in de stabiele toestand van het netwerk, waarin het percentage van de bevol-
king dat de mening deelt onveranderd blijft). We stellen twee manieren voor het constru-
eren van gerichte netwerken met verschillende verhoudingen van enkelgerichte verbin-
dingen en verschillende correlaties tussen de ingraad en uitgraad voor. Uit onze bevin-
dingen lijken netwerken met meer enkelgerichte (minder bidirectionele) verbindingen
en een grotere correlatie tussen de ingraad en uitgraad een hogere kritieke drempel te
hebben. Onze conclusies wijzen op de cruciale rol van de gerichtheid en de asymmetrie
tussen de ingraad en uitgraad bij een daadwerkelijke opiniestrijd.

We vervolgen ons onderzoek met het bestuderen van het epidemische SIS-model op
gerichte netwerken in hoofdstuk 4. Dit hoofdstuk richt zich op het ontwikkelen van een
inzicht hoe de beperkte herstelsnelheden dienen te worden verdeeld over de knooppun-
ten in het netwerk zodanig dat de prevalentie van de epidemie kan worden gereduceerd.
We stellen een strategie voor waarbij elke knoop in het netwerk een herstelsnelheid krijgt
toegewezen die afhangt van de in- en uitgraad van dat knooppunt. In het algemeen is
onze voorgestelde strategie evident beter dan de klassieke, homogene toewijzing van
herstelmiddelen in het reduceren van de totale infectiegraad, vooral wanneer de gege-
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ven herstelmiddelen toereikend zijn. Onze heterogene strategie voor het toewijzen van
herstelmiddelen gebaseerd op de graad van een knoop toont potentie om effectiever het
aantal infecties terug te brengen dan de klassieke, homogene toewijzing.

Gemotiveerd door datasets uit de praktijk gaan we verder in op heterogene infectie-
snelheden in hoofdstuk 5 en 6. Met het klassieke SIS-model als maatstaf bestuderen we
in hoofdstuk 5 de invloed van onafhankelijk identiek verdeelde infectiesnelheden op het
gemiddelde percentage geïnfecteerde knooppunten in de metastabiele toestand, waarin
het infectiepercentage niet nul en stabiel is. Onze bevindingen tonen aan dat, wanneer
de prevalentie hoog is, de heterogeniteit van infectiesnelheden gemiddeld de versprei-
ding van een virus vertraagt en dat een groter even-orde moment van de infectiesnelhe-
den tot een lager infectiepercentage leidt, maar dat oneven-orde momenten een tegen-
overgestelde bijdrage leveren. Wanneer echter de prevalentie laag is, d.w.z. de epidemie
mogelijk uitsterft of slechts een klein percentage van de populatie infecteert, zien we dat
heterogeniteit de kans dat een epidemie breder uitspreidt kan vergroten. Hoofdstuk 6
gaat een stap verder dan hoofdstuk 5: de heterogene infectiesnelheid tussen elk kno-
penpaar is niet langer onafhankelijk identiek verdeeld, maar gecorreleerd aan de gra-
den van elk van de knooppunten. We zien dat, wanneer een epidemie zeer prevalent is,
een negatieve correlatie tussen de graden van twee knooppunten en de infectiesnelheid
doorgaans gunstig is voor de verspreiding van de epidemie. Wanneer echter de prevalen-
tie laag is, zorgt een positieve correlatie eerder voor een versterkte verspreiding van de
epidemie. Onze resultaten in hoofdstuk 5 en hoofdstuk 6 brengen aan het licht, dat hoe
een epidemie zich in de praktijk verspreidt ver kan afwijken van wat een klassiek, homo-
geen model voorspelt, en onthullen de essentiële rol van heterogeniteit in dynamische
processen uit de praktijk.

De voornaamste aanpak in dit proefschrift om het SIS-model met heterogene infectie-
of herstelsnelheden te bestuderen zijn simulaties waarin de tijd als continu wordt be-
schouwd. Hierbij zijn we geïnteresseerd in hoe nauwkeurig een gemiddeldeveldbena-
dering kan zijn. Derhalve onderzoeken we in hoofdstuk 7 de invloed van heterogene in-
fectiesnelheden op de nauwkeurigheid van NIMFA—een geavanceerd gemiddeldeveld-
benadering van het SIS-model.

Zowel de hoofdstukken tot nu toe als de meeste studies rond het SIS-model nemen
voornamelijk het percentage geïnfecteerde knooppunten in acht en negeren daarbij de
besmettingskans van elke individuele knoop in het netwerk. In hoofdstuk 8 kijken we
naar de heterogene prestaties van de knooppunten, d.w.z. de kans op infectie of kwets-
baarheid van elke knoop, met als motivatie dat de ranglijst van knoopkwetsbaarheid
gegeven de effectieve infectiesnelheid van een SIS-epidemie cruciale informatie voor
een netwerkoperator kan zijn om te begrijpen welke knooppunten kwetsbaarder zijn of
welke knooppunten moeten worden beschermd. Via zowel een theoretische als nume-
rieke aanpak tonen we aan dat de ranglijst van knoopkwetsbaarheid neigt om significant
te veranderen bij een kleine wijziging in de effectieve infectiesnelheid wanneer deze in-
fectiesnelheid kleiner is dan dat deze groter is. Hetzelfde geldt voor wanneer het netwerk
een Barabási-Albert-stochastische graaf is dan dat een Erdős-Rényi-stochastische graaf
is.

Als een eerste begin probeert dit proefschrift een overzicht te schetsen hoe de pre-
valentie van een opinie en epidemie kan worden beïnvloed door verschillende vormen
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van heterogeniteit, zoals heterogeniteit in dynamische processen (heterogene infectie-
of herstelsnelheden) en in netwerktopologie. Dit proefschrift dient ook ter inspiratie
voor toekomstig onderzoek. Hoewel verscheidene soorten heterogeniteit worden be-
schouwd in dit proefschrift, kan de heterogeniteit die men in de praktijk tegenkomt een
stuk complexer en onbenut zijn. Zo is bijvoorbeeld de invloed van tijdsveranderlijke
heterogeniteit, d.w.z. de infectie- of herstelsnelheden veranderen en passen zich over
tijd aan, nog een open vraagstuk. Verder rest de vraag: hoe kunnen we de optimale
immuniseringstrategie ontwerpen wanneer verschillende vormen van heterogeniteit in
beschouwing worden genomen?





1
INTRODUCTION

No man is an island,
entire of itself;

every man is a piece of the continent,
a part of the main.

John Donne

For never will be found
two eggs, or two drops of milk, or two leaves, or two animals,

and in general two things
so similar that after an accurate inspection,

a difference cannot be detected.

Gottfried Leibniz
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2 1. INTRODUCTION

1.1. BACKGROUND

A Chinese proverb says: “One more friend, one more way". This ancient Chinese wis-
dom simply reveals the importance of social relationship for humans and their nat-

ural tendency to form networks. In such networks, we are connected with each other
in many different ways, including the family ties, professional connections or any other
type of social relations. The rapid development of the Internet, data generation and shar-
ing technology, as well as data storage and computing, has resulted in extreme network-
ing effects connecting thousands of even millions of people in massive online social net-
works. The immense commercial success and societal impact of online social networks
are mainly due to the processes that run in such networks, for instance information ex-
change or various types of interactions. While information exchange on such a large
scale undoubtedly has the potential to enrich our lives, not all effects of such processes
are desirable. For instance, the discussions have been raised whether online interaction
processes in social networks have started to replace physical interactions among people
[117]. Furthermore, the so-called frictionless sharing [132] of information – the mech-
anism underlying modern social networks – has led to the emergence of filter bubbles
and the fake-news phenomenon. Consequently, understanding the social networks and
the processes inside such networks is critical for us to be able to draw maximal bene-
fit from them, while reducing the undesired effects. This, however, is not trivial in view
of a significant complexity of such networks, characterized by the number of participat-
ing entities (in this case, people), the diversity of links connecting these entities and the
complicated, dynamic interaction and information exchange processes running across
these links over time. Challenges of similar nature can also be encountered in other types
of complex networks, including brain networks [21, 115], metabolic networks [59, 102],
computer networks [54], and finance networks [4].

An analysis of a dynamic process on a complex network requires an effective rep-
resentation of network topology and a network process. Under the network topology
we consider a set of nodes representing the entities joined in the network and the links
representing the presence of a relation or an interaction between each two entities. By
connecting the nodes using links, a graph can be constructed, that is typically used to
represent a network topology. A large number of measures have been proposed to char-
acterize topological features of networks by looking at various graph properties. Central-
ity measures have been proposed to capture the specific feature of each node. For exam-
ple, the degree [41] of a node tells us about the number of connections the node has. The
betweenness [41] of a node is the number of shortest paths1 that pass through the node.
Network measures, on the other hand, have been proposed to capture the features at
the network level. For example, the clustering coefficient [130] measures how nodes in a
network tend to cluster together. This is important since in most real-world networks,
and in particular in social networks, the nodes tend to create tight groups characterized
by a relatively high density of links. The assortativity [88, 133] is used to indicate that
the nodes being similar to each other2 connect to each other. For example, in social net-
works, which show assortativity, nodes tend to connect to nodes with similar degrees.

1For every pair of nodes in a network, there exists a shortest path between the nodes such that the number of
links that the path passes through is minimized.

2In network theory, assortativity is often examined in terms of a node’s degree
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As another example, technological and biological networks typically show dissortativity,
as high degree nodes tend to attach to low degree nodes [88]. Finally, network mod-
els have been developed to represent networks that show different global topological
characteristics. Examples are the Erdös-Rényi (ER) model [38], the Bárabasi-Albert (BA)
scale-free model [9] and the small-world model [131]. For example, the degree distribu-
tion of a scale-free network follows a power law, which means that only a few nodes have
very large degrees while a large number of nodes have small degrees. Such a feature has
been reported in many real-world networks and explained by the preferential attach-
ment process (e.g. in reality, people who are already wealthy receive more than those
who are not). Also, the small-world network, possessing a large clustering coefficient,
captures the small-world phenomenon (e.g. strangers being linked by a short chain of
acquaintances).

Beyond network topologies, stochastic models have been developed to describe the
real-world dynamic processes on networks, such as the diffusion of information, the
spread of epidemics and the cascade of failures. In such models, the state of any node in
a network could change over time and the changes are usually caused by local or global
interactions with other nodes. Here we briefly introduce two sorts of models: the opin-
ion models and the epidemic models.

The opinion models are used to study how the opinion changes in a population. For
example, a person may first like or dislike a product, and then change his/her opinion
because of the influence of a friend. Companies producing the product would be highly
interested in understanding how consumers influence each other in their opinion and
how to accelerate the propagation of the positive opinion towards their products. For
example, in the non-consensus opinion (NCO) model, the state of a node, representing
the opinion of the node, is binary (to like the product, policy, etc. or not), and the state of
each node changes with the states of its neighbors: each node adopts the majority opin-
ion of its neighbors and itself. Many opinion models have been developed for different
scenarios, such as the voter model [66, 78, 109], the majority rule model [43, 65] and the
social impact model [67, 90].

Epidemic models have been developed to describe, e.g. how an epidemic spreads
in a social contact network, how a computer virus spreads in a computer network, or
how information propagates [52, 57] in an online social network. Basic epidemic models
include the susceptible-infected (SI) model [5], the susceptible-infected-susceptible (SIS)
model [91, 95], and the susceptible-infected-recovered (SIR) model [13, 112]. Numerous
variants of these models [49, 63, 74] have been proposed as well. Taking the SIS model
as an example, a node could either be infected or susceptible at any time. An infected
node could recover to be susceptible with a given recovery rate, whereas a susceptible
node could be infected by each of its infected neighbors with a given infection rate. This
model could be used to describe, for example, how an infectious disease spreads in a
population: an infected person could be cured after a treatment, whereas a susceptible
person could be infected through a physical contact with infected persons. The fraction
of the infected nodes in the steady state reveals the prevalence of the disease, informa-
tion or the adoption of a product or behavior. A key question that has been widely stud-
ied is how the network topology properties influence the prevalence. Given an epidemic
spreading model that is used to describe the spreading dynamics of epidemics, virus,
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behavior or information, immunization problems have been explored with the objective
to immunize a small subset of nodes and minimize the scope of the infection.

1.2. MISSION AND SCOPE OF THIS THESIS
“In a forest of a hundred thousand trees, no two leaves are alike. And no two journeys
along the same path are alike." Either Paulo Coelho3 in our time or Gottfried Leibniz4

in 1600s, they both point out the ubiquitousness of heterogeneities: every object in this
world is actually different from another, so is the interaction between any two objects.

In the past, the study of dynamic processes started with the homogeneous dynamic
models, where the interaction, e.g. the infection rate, between each pair of nodes is
the same, and on the homogeneous networks, where each node has the same number
of connections with others. However, most real-world networks are heterogeneous in
topology. For example, a few influentials in Twitter have many followers whereas the ma-
jority has only a few followers. Therefore, researchers started to consider heterogeneous
network topology where different nodes may have different number of connections. For
example, epidemic models have been studied intensively on heterogeneous networks
[79, 93, 134], where the prevalence of epidemic and the epidemic threshold5 are the-
oretically and numerically derived via different approximation methods. Lately, a few
studies on epidemic spreadings considered directed networks [72], where the infection
may happen in only one direction of a pair of nodes.

In addition to the network topology, real-world dynamic processes also manifest het-
erogeneities. As an example, the infection rate between two individuals, which depends
on their contact frequency, has been shown to be heterogeneous, i.e. different for differ-
ent pairs of individuals. As more real-world data become traceable, the heterogeneity
in dynamic processes has further been investigated. Following the above example, a
number of recent works on epidemic models [23, 42, 96, 97, 135] have considered the in-
fection or recovery processes with different rates. Preciado et al. [96, 97] discussed how
to choose the infection and recovery rates from given discrete sets to let the virus die out.
Fu et al. [42] studied only the epidemic threshold when the infection rates depend on the
node degrees. Buono et al. [23] considered a specific distribution of infection rates and
observed slow epidemic extinction phenomenon. Yang and Zhou [135] gave an edge-
based mean-field solution of the epidemic threshold in homogeneous networks with
i.i.d. heterogeneous infection rates (following uniform or power-law distribution).

What can be observed from the literature is that heterogeneities in networks have
been considered, but mainly partially: either heterogeneous network topologies were
investigated in combination with homogeneous processes, or dynamic processes with
very specific heterogeneities, such as a specific infection-rate distribution, were inves-
tigated on homogeneous networks or undirected heterogeneous networks. We still do

3Paulo Coelho de Souza (born 24 August, 1947) is a Brazilian lyricist and novelist.
4Gottfried Wilhelm (von) Leibniz (1 July, 1646 – 14 November, 1716) was a German polymath and philoso-

pher who occupies a prominent place in the history of mathematics and the history of philosophy, having
developed differential and integral calculus independently of Isaac Newton.

5The epidemic will die out if the ratio of the infection rate to the recovery rate is below the epidemic threshold.
Hence, the epidemic threshold is also an important indicator to show how vulnerable a network is against the
epidemic other than the prevalence.



1.3. OUTLINE OF THIS THESIS

1

5

not know enough about heterogeneous processes running on heterogeneous networks,
e.g. how should we model the heterogeneous network topologies and processes more
realistic and what is the influence of such heterogeneities on the prevalence of an opin-
ion or an epidemic. Furthermore, most studies have looked only at the prevalence, the
average infection probability of an epidemic on a network, but ignored the heteroge-
neous performance of each node, the infection probability of a node. The heterogeneous
performance of the nodes could be significant for designing the optimal immunization
strategy.

The first part of the mission of this thesis is to provide more insight in this insuffi-
ciently explored case, i.e., the insufficient study on the realistic heterogeneities. In order
to make our investigation as relevant to real-world problems as possible, in addition to
undirected networks, we particularly consider heterogeneous directed networks in parts
of this thesis. While such networks can often be encountered, both opinion dynamics
and epidemic spreading have been seldom studied in these network contexts. Taking
the epidemic spreading process as an example, we characterize and model the hetero-
geneous infection rates in a systematic way such that our infection rate models could
capture several key features of real-world infection rates. Finally we rely on real-world
datasets to evaluate our models.

The second part of the mission is to provide more insight in the influence of hetero-
geneity on dynamic processes especially on the prevalence of an epidemic or opinion.
More specifically, this thesis investigates how heterogeneities influence the prevalence
of an opinion or epidemic and how heterogeneities can be used to directly control the
epidemic spreading or indirectly inspire the immunization strategies.

The third part of the mission of the thesis is to explore the heterogeneous perfor-
mance of the nodes in e.g. an epidemic spreading process. Instead of the prevalence,
we investigate further the infection probability per node, or in other words, how the
ranking of the nodal infection probability would change as the infection rate varies in a
broad range and in different types of networks. The ranking of nodal infection probabil-
ity, which reflects the heterogeneous performance of nodes, can be crucial for network
operators to assess which nodes are more vulnerable or should be protected.

1.3. OUTLINE OF THIS THESIS
The technical part of the thesis starts with Chapter 2, in which we introduce the network
models and the dynamic models studied in this thesis, including the non-consensus
opinion (NCO) model and the susceptible-infected-susceptible (SIS) model. Moreover,
we also introduce there an individual-based mean field approximation of the SIS model
called the N-Intertwined Mean-Field Approximation (NIMFA). The scientific contribu-
tion by which we pursue the mission defined in the previous section is organized as il-
lustrated in Fig. 1.1 and can be found in chapters 3 to 8.

Chapter 3 and Chapter 4 consider the heterogeneity in network topology, particu-
larly the directed network. In Chapter 3, we study the NCO model on different types of
directed networks and explore how the fraction of nodes with a given opinion changes.
Chapter 4 concentrates on the SIS model with correlated heterogeneous recovery rates
on directed networks, where the recovery rate of a node is correlated with the number
of its in-links (by which other nodes affect this node) and out-links (by which this node
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Heterogeneity	in	
topology：	
Directed	networks	

Chapter	3	
opinion	dynamics,	directed	networks	

Chapter	4:	
epidemic	spreading,	directed	networks,	
										heterogeneous	recovery	rates	
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process：	
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recovery	or	infec4on	
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Chapter	5:	
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Chapter	6:	
epidemic	spreading,	correlated	infec=on	rates	

Chapter	7:	
epidemic	spreading,	accuracy	of	mean-field	
both	i.i.d.	and	correlated	infec=on	rates	

Chapter	8:	
epidemic	spreading,		

ranking	of	infec=on	probability	

Focus	on	each	node	

Figure 1.1: The structure of this thesis.

affects others). There, we discuss how to suppress the epidemic spreading by allocating
recovery rates.

Chapter 5, 6 and 7 all consider the SIS model with heterogeneous infection rates on
different types of undirected networks, and thus the heterogeneity in dynamic processes.
In Chapter 5, we start from the independent and identically distributed (i.i.d.) infection
rates, whose distributions are modeled based on real-world datasets. We investigate how
the average fraction of infected nodes in a network is affected by the distribution, and
especially by the variance of the infection rates. Chapter 6 discusses a more complex
infection-rate scenario, where the infection rate is correlated with the degrees of the two
end nodes of a link, as motivated by our observations in real-world systems. We explore
how the prevalence of an epidemic is influenced by such heterogeneous infection rates.
In Chapter 5 and Chapter 6, we explore the heterogeneous epidemic spreading on het-
erogeneous networks via mainly continuous-time simulations, but also via a theoretical
approach – the mean-field approximation of the SIS model. In Chapter 7, we evaluate
the precision of the mean-field approximation.

All the above chapters, which are devoted to the first and second parts of the mission
of this thesis, focus on computing the average state of all nodes, such as the fraction of
nodes with a given opinion in the NCO model or the average fraction of infected nodes
i.e. the average infection probability of all nodes. In Chapter 8, we shed light on a new
direction: instead of the average of all nodes in the classic SIS epidemic spreading, we
explore the state of each node. Particularly, we explore if the ranking of the nodal in-
fection probability could change with the effective infection rate, in which range of the
effective infection rates and in which types of networks such changes are more dramatic.
This chapter serves the third part of the mission of this thesis.

Chapter 9 concludes the thesis, highlights the main contributions and discusses the
directions for future work.
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2
NETWORK STRUCTURES AND

DYNAMIC PROCESSES

The dynamic processes on complex networks have been developed to represent the infor-
mation propagation for years. On one hand, complex networks, modeling a large popula-
tion, have been described by mathematical graph theory. On the other hand, dynamic
processes have been studied by various deterministic or compartmental mathematical
models. This chapter first introduces the network models and then elaborate the dynamic
models investigated through this thesis.

9
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2.1. NETWORK STRUCTURES

I N graph theory, a graph is made up of a set N of nodes which are connected by links
in a set L . Such a graph G = (N ,L ) is usually used to represent a complex network.

The numbers of nodes and links are then denoted by N = |N | and L = |L | respectively.
Node i is a neighbor of node j if there is a link connecting the two nodes. The degree di of
node i is the number of its neighbors. The degree vector is denoted by d = [d1 d2 · · ·dN ]T

and the degree of an arbitrary node is denoted by the random variable D . The basic law

for the degree is
∑N

i=1 di = 2L, and the average degree E[D] =
∑N

i=1 di

N = 2L
N . The N × N

adjacency matrix A, consisting of elements of ai j where ai j = 1 if there is a link from
node i to node j or else ai j = 0, is a representation of a graph. The largest eigenvalue of
the adjacency matrix A is λ1, also called the spectral radius. The principal eigenvector
x1 corresponding to the largest eigenvalue λ1 satisfies Ax1 = λ1x1. The i -th component
of the principal eigenvector is denoted by (x1) j .

2.1.1. ERDÖS-RÉNYI RANDOM GRAPHS
The Erdős-Rényi (ER) random graph [38] is one of the most widely-used and well-studied
models. In an ER random graph Gp (N ) with N nodes, each pair of nodes is connected
with probability p independent from every other pair. The distribution of the degree of
a random node is binomial: Pr[D = k] = (N−1

k

)
pk (1− p)N−1−k and the average degree

E[D] = (N −1)p. For large N and constant E[D], the degree distribution tends [123] to a
Poisson distribution: Pr[D = k] = e−E [D](E[D])k /k !. Moreover, if the link density p > pc =
ln N

N for large N , the graph Gp (N ) is almost surely connected.

2.1.2. BARABÁSI-ALBERT RANDOM GRAPHS
Besides the ER random graph, the scale-free model is often used to capture the scale-free
degree distribution of the real-world networks such as the Internet [24] and World Wide
Web [2]. In this thesis, we consider the SF networks generated by the Barabási-Albert
(BA) model and the configuration model. The BA model is first introduced in this sub-
section and then the configuration model in Section 2.1.3.

The BA network begins with an initial connected network of m0 nodes. New nodes
are added to the network one at a time. Each new node is connected to m ≤ m0 exist-
ing nodes with a probability that is proportional to the number of links that the exist-
ing nodes already have. The degree distribution of BA random graphs [123] is given by
Pr[D = k] = ck−3 for sufficiently large N , where c = (

∑N−1
k=m k−3)−1 and the minimum de-

gree is m. We set m0 = m+1 and start with a full graph with m0 nodes, then add one new
node connecting m existed nodes at a time until the graph size is expected. Hence, the
number of links is L = m0(m0 −1)/2+ (N −m0)m = (N − m0

2 )m and the average degree is

E[D] = 2L
N = 2N−m0

N m, thus approximately 2m in this work.

2.1.3. CONFIGURATION MODEL
Given a degree distribution Pr[D = k], the configuration model can be used to build up
random graphs. The degree vector d = [d1 d2 · · ·dN ]T is first generated by comparing
N uniformly distributed random numbers ri ∈ (0,1) with the cumulative distribution
function (CDF) Pr[D ≤ k]: di = k if ri > Pr[D ≤ k − 1] and ri ≤ Pr[D ≤ k]. A sequence
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of "stubs" (one end of a link) is then constructed by repeating the index i of node i di

times. Afterwards, the 2L stubs are randomly paired. Hence, the nodes are randomly
connected.

2.2. DYNAMIC PROCESSES
Dynamic processes, such as the percolation [116], epidemics spreading [15, 28, 33, 69,
111, 121, 128], opinion dynamics [34, 43, 56, 65–67, 90, 109, 118], and cascading failures
[26], have been intensively studied in recent years. In this section, the models considered
in this thesis are introduced.

2.2.1. OPINION DYNAMICS
Treating opinion as a variable allows us to model patterns of opinion formation as a
dynamic process on a complex network with nodes as agents and links as interactions
between agents. Shao et al. [110] proposed a non-consensus opinion (NCO) model that
achieves a steady state in which two opinions can coexist. Their model reveals that when
the initial population of a minority opinion is above a certain critical threshold, a large
steady-state spanning cluster with a size proportional to the total population is formed
[110]. This NCO complex network model belongs to the same universality class as per-
colation [22, 110, 116], and have received much attention.

NCO MODEL

In a NCO model [110] on a single network with N nodes, each with binary opinions, a
fraction f of nodes has opinion σ+ and a fraction 1− f has opinion σ−. The opinions
are initially randomly assigned to each node. At each time step, each node adopts the
majority opinion, when considering both its own opinion and the opinions of its nearest
neighbors (the agent’s friends). A node’s opinion does not change if there is a tie. Follow-
ing this opinion formation rule, at each time step the opinion of each node is updated.
The updates occur simultaneously and in parallel until a steady state is reached. Note
that when the initial fraction f is above a critical threshold, f ≡ fc (even minority), both
opinions continue to exist in the final steady state.

Figure 2.1 shows an example of the dynamic process of the NCO model on a small
directed network with ten nodes. Here we consider the in-neighbors of a node as the
friends influencing the node, and the out-neighbors as the friends influenced by the
node. At time t = 0 five nodes are randomly assigned the opinion σ+ (empty circle),
and the other five nodes the opinion σ−. At time t = 0 nodes A1 and A2 have opinion
σ− and σ+ respectively but are in a local minority and thus updating it means changing
their opinions to σ+ and σ− respectively. At time t = 1 node B belongs to a local minor-
ity and thus needs updating. At time t = 3 all nodes hold the same opinion as their local
majority, and the system has reached a final non-consensus steady state.

2.2.2. EPIDEMIC SPREADING
A network node could be infected, become a new infection source and infect other hosts.
On the other hand, network nodes are usually equipped with certain recovery resources,
so that they can be recovered from the infection in a finite time. The infection and recov-
ery processes above have been described by epidemic models[3, 25, 45, 46, 60, 92]. One



2

12 2. NETWORK STRUCTURES AND DYNAMIC PROCESSES

A
2

B

(a) t = 0

A
1

(b) t = 1

A
2

B

A
1

(c) t = 2

A
2

B

A
1

Figure 2.1: Schematic plot of the dynamics of the NCO model on a directed graph with 10 nodes.

of the most widely studied models is the susceptible-infected-susceptible (SIS) model[5,
6, 8, 15, 28, 33, 64, 69, 111, 121, 136].

THE SIS MODEL

In the continuous-time Markovian SIS model on a network with N nodes, the state of
a node at any time t is a Bernoulli random variable Xi (t ), where Xi (t ) = 0 represents
that node i is susceptible and Xi (t ) = 1 that node i is infected. Each infected node in-
fects each of its susceptible neighbors with an infection rate β. The infected node can
recover with a curing rate δ. Both the infection and recovery process are independent

Poisson processes. The ratio τ = β
δ is called the effective infection rate. Independent of

the effective infection rate τ, the infection process dies out in any finite graph after an
unrealistically long time, and the corresponding steady state is the absorbing state, i.e.
the overall-healthy state. However, if τ is larger than the epidemic threshold τc , there is
a non-trivial metastable state, where the average fraction of infected nodes is non-zero
and stable for a long time [124]. The vulnerability or the infection probability vk∞ is
defined as the metastable state infection probability of node k. The average fraction of
infected nodes in the metastable state is denoted by y∞ = 1

N

∑N
j=1 v j∞.

THE N-INTERTWINED MEAN-FIELD APPROXIMATION OF THE SIS MODEL

The N-Intertwined Mean-Field Approximation (NIMFA) is one of the most accurate ap-
proximation of the SIS model that takes into account the influence of the network topol-
ogy [121]. The single governing equation for a node i in NIMFA is

dvi (t )

dt
=−δvi (t )+β(1− vi (t ))

N∑
j=1

ai j v j (t ) (2.1)

where vi (t ) is the infection probability of node i at time t , and the adjacency matrix
element ai j = 1 or 0 denotes if there is a link or not between node i and node j . With
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V (t ) = [v1(t ) v2(t ) · · · vN (t )]T , the matrix evolution equation of NIFMA is

dV (t )

dt
= (βdiag(1− vi (t ))A−δI )V (t ) (2.2)

where A is the N ×N adjacency matrix of the network, I is the N ×N identity matrix and
diag(vi (t )) is the diagonal matrix with elements v1(t ), v2(t ), ...., vN (t ). In the steady state,
defined by dV (t )

dt = 0, or equivalently limt→∞ vi (t ) = vi∞ and limt→∞V (t ) =V∞, we have

(τdiag(1− vi∞)A− I )V∞ = 0 (2.3)

Given the network and the effective infection rate τ, we can numerically compute the
infection probability vi∞ as a function of the effective infection rate τ for each node i by
solving (2.3).

Furthermore, the NIMFA epidemic threshold τ(1)
c = 1

λ1
, where λ1 is the largest eigen-

value of the adjacency matrix A, is a lower bound of the exact epidemic threshold τc , i.e.
τ(1)

c < τc . The Laurent series of the steady-state infection probability is given by [123]

vi∞ (τ) = 1+
∞∑

m=1
ηm (i )τ−m (2.4)

possesses the coefficients η1 (i ) =− 1
di

and

η2 (i ) = 1

d 2
i

(
1−

N∑
j=1

ai j

d j

)
(2.5)

and for m ≥ 2, the coefficients obey the recursion

ηm+1 (i ) =− 1

di
ηm (i )

(
1−

N∑
j=1

ai j

d j

)
− 1

di

m∑
k=2

ηm+1−k (i )
N∑

j=1
ai jηk

(
j
)

THE CONTINUOUS-TIME SIMULATION OF THE EXACT SIS MODEL

In order to study the effect of the various heterogeneities on the virus spread, we further
develop a continuous-time simulator, which was firstly proposed by van de Bovenkamp
and described in detail in [69]. A discrete-time simulation could well approximate a con-
tinuous process if a small time bin to sample the continuous process is selected so that
within each time bin, no multiple events occur. A heterogeneous SIS model allows dif-
ferent as well large infection or recovery rates, which requires even smaller time bin size
and challenges the precision of a discrete-time simulation. Hence, we implement the
precise continuous-time simulations.





3
OPINION DYNAMICS ON DIRECTED

NETWORKS

Dynamic social opinion models have been widely studied on undirected networks, and
most of them are based on spin interaction models that produce a consensus. In reality,
however, many networks such as Twitter and the World Wide Web are directed and are
composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee
brand to deciding who to vote for in an election, two or more competing opinions often co-
exist. In response to this ubiquity of directed networks and the coexistence of two or more
opinions in decision-making situations, we study a non-consensus opinion model intro-
duced by Shao et al. on directed networks. We define directionality ξ as the percentage
of unidirectional links in a network, and we use the linear correlation coefficient ρ be-
tween the indegree and outdegree of a node to quantify the relation between the indegree
and outdegree. We introduce two degree-preserving rewiring approaches which allow us
to construct directed networks that can have a broad range of possible combinations of di-
rectionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion
competitions. We find that, as the directionality ξ or the indegree and outdegree correla-
tion ρ increases, the majority opinion becomes more dominant and the minority opinion’s
ability to survive is lowered.

This chapter have been published as: Bo Qu, Qian Li, Shlomo Havlin, Nonconsensus opinion model on di-
rected networks, Physical Review E, 2014, 90(5): 052811 [99].
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3.1. INTRODUCTION

T HE study of social networks is one of the most important applications of graph the-
ory. Social scientists began refining the empirical study of networks in the 1970s,

and many of the mathematical and physical tools currently used in network science
were originally developed by them [86]. Social network science has been used to un-
derstand the diffusion of innovations, news, and rumors as well as the spread of disease
and health-related human behavior [20, 31, 47, 51, 61, 121, 128]. The decades-old hot
topic of opinion dynamics continues to be a central focus among researchers attempt-
ing to understand the opinion formation process. Although it may seem that treating
opinion as a variable or a set of variables is too reductive and the complexity of human
behavior makes such an approach inappropriate, often human decisions are in response
to limited options: to buy or not to buy, to choose Windows or Linux, to buy Procter &
Gamble or Unilever, to vote for the Republican or the Democrat.

Treating opinion as a variable allows us to model patterns of opinion formation as a
dynamic process on a complex network with nodes as agents and links as interactions
between agents. Although the behavior dynamics of human opinion are complex, sta-
tistical physics can be used to describe the “opinion states” within a population and also
the underlying processes that control any transitions between them [1, 14, 19, 27, 35, 44,
92]. Over the past decade numerous opinion models have combined complex network
theory and statistical physics. Examples include the Sznajd model [118], the voter model
[66, 78, 109], the majority rule model [43, 65], the social impact model [67, 90], and the
bounded confidence model [34, 56]. All of these models ultimately produce a consensus
state in which all agents share the same opinion. In most real-world scenarios, however,
the final result is not consensus but the coexistence of at least two differing opinions.

Shao et al. [110] proposed a non-consensus opinion (NCO) model that achieves a
steady state in which two opinions can coexist. Their model reveals that when the initial
population of a minority opinion is above a certain critical threshold, a large steady-
state spanning cluster with a size proportional to the total population is formed [110].
This NCO complex network model belongs to the same universality class as percolation
[22, 110], and have received much attention. Among the variants are a NCO model with
inflexible contrarians [75] and a NCO model on coupled networks [12, 76].

To date the model has not been applied on directed networks. Directed networks are
important because many real-world networks, e.g., Twitter, Facebook, and email net-
works, are directed [72]. In contrast to undirected networks, directed networks contain
unidirectional links. In opinion models, a unidirectional link between two nodes indi-
cates that the influence passing between the two nodes is one-way. A real-world example
might be a popular singer who influences the opinions the fans hold, but the fans do not
influence the singer’s opinion. In contrast, bidirectional links occur when the influence
between two agents is both ways. Real-world unidirectional links are ubiquitous and
strongly influence opinion formation, i.e., widespread one-way influence has a powerful
effect on opinion dynamics within a society.

Our goal here is to examine how the NCO model behaves on directed networks. We
compare the results of different networks in which we vary the proportion of unidirec-
tional links. We also measure the influence of asymmetry between indegree and out-
degree. We find that when the indegree and outdegree of each node are the same, an
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increase in the number of unidirectional links helps the majority opinion spread and
when the fraction of unidirectional links is at a certain level, increasing the asymmetry
between indegree and outdegree increases the minority opinion’s ability to survive. We
also observe that changing the proportion of the unidirectional links or the relationship
between the indegree and outdegree of the nodes causes phase transitions.

3.2. BASIC DEFINITIONS AND NOTATIONS

3.2.1. THE DIRECTIONALITY ξ AND INDEGREE OUTDEGREE CORRELATION

ρ
To quantitatively measure the one-way influence in a network, we define the direction-
ality ξ as the ratio between unidirectional links and all links. The directionality is ξ =
Lunidirectional/L, where the normalization L = Lunidirectional+2Lbidirectional, because a bidi-
rectional link can be considered as two unidirectional links. Because we want to deter-
mine how much one-way influence affects the NCO model, we consider as a variable
the fraction of one-way links ξ, where ξ = 0 represents undirected networks. Although
the sum of indegree and the sum of outdegree are equal in a directed network, the inde-
gree and outdegree of a single node are usually not the same. To quantify the possible
difference between the node’s indegree and outdegree, we use the linear correlation co-
efficient ρ between them,

ρ =
∑N

i=1(di ,in −E[D])(di ,out −E[D])√∑N
i=1(di ,in −E[D])2

√∑N
i=1(di ,out −E[D])2

(3.1)

where di ,in and di ,out are the indegree and outdegree of node i respectively. The average
degree E[D] is the same for both indegree and outdegree. Note that when ρ = 1 the inde-
gree is linearly dependent on the outdegree for all nodes, and when ρ = 0 the indegree
and outdegree are independent of each other. In this paper we confine ourselves to the
case in which the indegree and outdegree follow the same distribution. In this case, ρ = 1
implies that di ,in = di ,out holds for every node i .

3.3. ALGORITHM DESCRIPTION
Inspired by earlier research on directed networks [76, 89, 106, 108, 137], we propose two
algorithms to construct directed networks. One is a rewiring algorithm that can be ap-
plied to any existing undirected network to obtain a directed network with any given
directionality but each node has the same indegree and outdegree as the original undi-
rected network. The other constructs directed networks with a given directionality and
indegree-outdegree correlation, and with the same given indegree and outdegree distri-
bution. Note that all networks considered in this paper contain neither self-loops nor
multiple links in one direction between two nodes.

3.3.1. DIRECTIONALITY-INCREASING REWIRING (DIR)
Here we introduce a rewiring approach that changes the directionality but does not
change the indegree and outdegree of any node. It was first proposed in Ref. [127], and
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also employed by Ref. [72]. Here we improve it to gradually increase the directionality,
via a technique we call directionality-increasing rewiring (DIR).

Many undirected network models with various properties have been designed. Ex-
amples include the Erdös-Rényi model [38], the Bárabasi-Albert scale-free model [9],
and the small-world model [131]. If the links of an undirected graph are considered bidi-
rectional, for an arbitrary undirected graph the indegree and outdegree correlation will
be ρ = 1. Figure 3.1 demonstrates an approach that changes the directionality but does
not change the indegree and outdegree of any node norρ. We randomly choose two bidi-
rectional links connecting four nodes and treat them as four unidirectional links. Note
that this differs from the technique presented in Ref. [72] in that we choose two bidi-
rectional links instead of two random links that may also contain unidirectional links
so that the directionality increases after each step. Then we choose two unidirectional
links, one from each bidirectional link, and rewire them as follows. For both unidirec-
tional links the head of one link is replaced with the head of the other. If this rewiring
introduces multiple links in any direction between any two nodes, we discard it and
randomly choose two other bidirectional links. We can increase the number of unidi-
rectional links by repeating the rewiring step and increasing the directionality in each
step. The directionality ξ can be varied from 0 to 1. In general, DIR can be applied to any
directed network to further increase its directionality.

Figure 3.1: (Color online) Directionality-increasing rewiring (DIR)

3.3.2. CONSTRUCTING AN ASYMMETRIC INDEGREE AND OUTDEGREE NET-
WORK AND REWIRING IT TO DECREASE ITS DIRECTIONALITY (ANC-
DDR)

We have shown how to obtain a desired directionality ξ when the indegree and outde-
gree correlation is ρ = 1. We further propose an algorithm to construct a network with a
given combination of ξ and ρ, where ρ 6= 1. Inspired by the work presented in Ref. [108],
which focuses on generating directed scale free (SF) networks with correlated indegree
and outdegree sequences, we extend it to a scenario in which the indegree and outdegree
sequences follow a distribution that is arbitrary but the same, and we control not just the
correlation between the indegree and outdegree but also the directionality, which was ig-
nored in Ref. [108]. We generate an indegree sequence (following a Poisson distribution
or power law) and a null outdegree sequence. We then copy a fraction ρ of the indegree
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sequence to the outdegree sequence, and shuffle the fraction 1−ρ of the indegree se-
quence as the rest of the outdegree sequence. We thus create an outdegree sequence, a
fraction ρ of which is identical to the corresponding part of the indegree sequence and a
fraction 1−ρ of which is independent of the indegree sequence. After randomly connect-
ing all nodes (given their indegree and outdegree), as in the configuration model [89], we
obtain a network with a directionality1 ξ≈ 1 and an indegree and outdegree correlation
close to ρ. Note that we can further control the indegree and outdegree correlation in a
small range close to ρ by discarding networks with indegree and outdegree correlations
outside the expected range. This enables us to construct a network with the indegree and
outdegree correlation ρ (0/ ρ ≤ 1), a technique we call asymmetric indegree-outdegree
network constructing (ANC).

We use the following rewiring steps to further tune the directionality without chang-
ing the indegree and outdegree of each node or the indegree and outdegree correlation
ρ. The goal is to decrease the directionality by repeatedly rewiring two unidirectional
links into one bidirectional link. In each step, we choose four nodes linked with at least
three directed links as shown on the top half of Fig. 3.2(a). We rewire these three links
to the positions shown at the bottom of Fig. 3.2(a). If this rewiring introduces multiple
links between any two nodes in any direction we discard the rewiring, select four new
nodes, and repeat the step2. This rewiring produces at least one more bidirectional link
and thus decreases the directionality. We call this procedure directionality-decreasing
rewiring (DDR). We combine DDR with ANC and call the entire algorithm ANC-DDR. It
seems that ANC-DDR may introduce disconnected components. However, we will see
later in Section 3.5 that, the networks generated by all the algorithms are well connected,
i.e. almost all the nodes are included in the largest component.

Using ANC we can construct a network with a specified indegree and outdegree cor-
relation ρ, where the indegree and the outdegree follow the same given distribution
and, using DDR, we can change the directionality ξ in a range dependent on the given
ρ without changing the indegree and outdegree. The range within which we can tune
ξ ∈ [ξmin,1] depends on the given ρ. For example, for binomial networks3, ξ can be
changed from 0 to 1 when ρ = 1, but the minimum value of ξ must be approximately
0.3 and any smaller ξ value is disallowed when ρ = 0. We explore the relation between
the minimal possible directionality ξ and a given indegree and outdegree correlation ρ

first via numerical simulations4 in both binomial and SF networks5. Figure 3.2(b) shows
the linear relationship in both types of network. Binomial networks are characterized by
a Poisson degree distribution which is the same as ER random graphs.

For any network constructed using ANC-DDR with an arbitrary given degree distri-
bution Pr[D = k] (where the distribution is same in both indegree and outdegree), we
can analytically prove the relationship between the minimal possible directionality ξmin

1E[ξ] = 1−E[D]2N /(N −1)2, limN→+∞ E[ξ] = 1.
2An efficient rewiring program is available upon request
3Binomial networks are directed networks with the same Poissonian indegree and outdegree distributions.
4In each realization of the simulations, we apply DDR repeatedly on the network constructed by ANC until

the four-node structure in Fig. 3.2(a) cannot be found after a number M of consecutive attempts, then the
directionality ξ is considered the minimal directionality ξmin corresponding to the given ρ. For each given ρ,
we perform 100 realizations and calculate the average of the minimal directionality ξmin.

5SF networks are directed networks whose indegree and outdegree distributions follow the same power law.
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Figure 3.2: (Color online) (a) The degree-preserving rewiring for decreasing the directionality. (b) Plot of the
minimal directionality ξmin obtained by simulating ANC-DDR, for binomial networks (◦, E[D] = 4, 105 nodes)
and SF networks (ä, λ = 2.63, 105 nodes) with 100 realizations (M = E[D]N ), and the theoretical minimum
possible directionality ξmin, Equation (3.2), for binomial networks (the solid line) and for SF networks (the
dash line) as a function of the indegree and outdegree correlation ρ. (c) Plot of the minimal directionality ξmi n
obtained by simulating ANC-DDR with different values of the attempts M : 0.01 ∗ M0(◦),0.1 ∗ M0(4),100 ∗
M0(/), where M0 = E[D]N , and the theoretical minimum possible directionality ξmin (the dash line) for SF
networks. All the results are the averages of 1000 realizations.
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and the indegree outdegree correlation ρ,

E[ξmin] = 1−ρ
E[D]

N−1∑
k=0

kPr[d = k]

(
k∑

i=0
Pr[d = i ]−

N−1∑
i=k

Pr[d = i ]

)
. (3.2)

The proof of (3.2) is given as follows:
Proof. Given the indegree and outdegree of each node, the minimum directionality can
be reached if all the unidirectional links of each node are either indegree links or outde-
gree links but not both, because unidirectional indegree links and outdegree links of a
node may form bidirectional links by rewiring so that the directionality ξ is further re-
duced. This means that the minimum directionality can be reached if an arbitrary node
i has only |di ,in −di ,out| unidirectional indegree links or outdegree links but not both,
where di ,in and di ,out represent the indegree and outdegree links of node i , respectively.
Hence the minimum possible directionality, given the number of indegree and outde-
gree links of each node, is

ξmin =
∑N

i=1 |di ,in −di ,out|∑N
i=1(di ,in +di ,out)

. (3.3)

We denote the indegree and outdegree sequences by Sin = {di ,in|i = 1,2, ..., N } and
Sout = {di ,out|i = 1,2, ..., N } with the same length N . The indegree of each node di ,in is
independent and follows the distribution Pr[D = k] with the mean E[D]. In order to
introduce the indegree and outdegree correlation, Sout is constructed from Sin as follows:
a fraction ρ of the elements in Sout equals that in Sin (di ,out = di ,in, for i = 1,2, ...,ρN ,
without loss of generality, we assume ρN is an integer), while a fraction 1−ρ of Sout is
obtained by copying and shuffling the rest of Sin, such that for i > ρN and large N , di ,in

and di ,out are independent but follow the same distribution Pr[D = k]. Hence,

E(ξmin) = E(

∑N
i=ρN+1 |di ,in −di ,out|∑N

i=1(di ,in +di ,out)
)

= (1−ρ)E(
N |Din −Dout|∑N

i=1(Di ,in +Di ,out)
)

= (1−ρ)E[ξmin,ρ=0],

(3.4)

where Din and Dout are independent random variables following the same probability
distribution Pr[D = k], and ξmi n,ρ=0 indicates the value of ξmin when ρ = 0.

We then consider the case when ρ = 0, i.e.,

E(ξmin,ρ=0) = E[Max(Din,Dout)]−E[Min(Din,Dout)]

2E[D]
, (3.5)

where Max(· · · ) and Min(· · · ) are the maximum and minimum functions, respectively.
The minimum of random variables Din,Dout has the distribution,

Pr[Min(Din,Dout) = k]

= Pr[Din = k]Pr[Dout ≥ k]+Pr[Dout = k]Pr[Din ≥ k]

= 2Pr[D = k]
N−1∑
i=k

Pr[D = i ]

(3.6)
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when the two random variables are independent. In the same way, we have

Pr[Max(Din,Dout) = k] = 2Pr[D = k]
k∑

i=1
Pr[D = i ] (3.7)

Hence,

E(ξmin,ρ=0) = 1

E[D]

N−1∑
k=0

kPr[D = k]

(
k∑

i=0
Pr[D = i ]−

N−1∑
i=k

Pr[D = i ]

)
. (3.8)

Combining 3.5 and 3.4, we have

E[ξmin] = 1−ρ
E[D]

N−1∑
k=0

kPr[D = k]

(
k∑

i=0
Pr[D = i ]−

N−1∑
i=k

Pr[D = i ]

)
. (3.9)

Because of the finite number M of attempts and the random selection process de-
termining the four-node structure, the ξmin obtained using simulations is slightly larger
than the theoretical ξmin. To further understand the gap between the simulation and
theoretical results concerning the relationship between ξmin and ρ, we plot the min-
imal directionality ξmin obtained by simulating ANC-DDR with different values of the
attempts M in Fig. 3.2(c). We can see that, as M increases, the simulation results be-
comes closer to the theoretical results, but the simulation results seem not to converge
to the theoretical results. Actually, we find our algorithm may end up at the network in
which we cannot further rewire the links to lower the directionality even with exhaustive
searching, though the directionality of the network is still larger than the theoretical min-
imal. According to the proof of (3.2), the theoretical minimal possible directionality can
be reached if and only if all the unidirectional links of each node are either indegree links
or out degree links. However, such structure patterns are mostly unreachable. That’s to
say, the random process, DDR, almost certainly leads the network to the un-rewirable
structure patterns which are not the ones inducing the theoretical minimal directional-
ity.

The computational complexity of our algorithm comes mainly from DDR. Here, we
will discuss the total rewiring attempts to glimpse the worst case computational com-
plexity of DDR. For a network constructed by ANC, with N nodes, the average degree
E[D] and directionality ξ = 1, if we want to rewire it to a desirable directionality ξd

(≤ ξmi n), we have to successfully rewire E[D]N (1−ξd ) times. This is the maximal possible
number of successful rewiring steps since the minimal possible directionality is mostly
unreachable. In order to obtain one successful rewiring step, in the worst case, we carry
out M rewiring attempts. Hence, in the worst case, the number of the total rewiring at-
tempts including successful and unsuccessful ones is M E[D]N (1−ξd ).

Although using ANC-DDR we can construct a network with a given ρ and a given ξ

within a corresponding range to ρ, we cannot obtain a network with the directionality ξ
close to 0 by DDR. We thus apply DIR to undirected network models in order to generate
directed networks with a directionality ranging over [0,1], but with the given indegree
and outdegree correlation ρ = 1, to understand the effect of directionality on opinion
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competitions. We then use ANC-DDR to generate directed networks with a given inde-
gree and outdegree distribution and correlation, and a given directionality, to explore
the effect of both ξ and ρ on the opinion model.

3.4. THE INFLUENCE OF THE DIRECTIONALITY
In order to examine how the directionality ξ influences the NCO model, we apply DIR to
undirected network models to generate directed binomial networks, SF networks, and
random regular (RR) networks6 [18] with directionality ranging over [0,1]. The NCO
model is further simulated on each directed network instance. All simulation results
are the average of 103 networks with N = 105 nodes and E[D] = 4.

We use S1 to denote the size of the largest σ+ cluster in the steady state (where σ+
is the initial opinion randomly assigned to a fraction f of nodes) and S2 to denote the
size of the second largest cluster. For all three types of networks, we plot s1 ≡ S1/N and
s2 ≡ S2/N as a function of f for different values of the directionality ξ in Fig.3.3(a), 3.3(b),
and 3.3(c). Additionally, we plot the number of iterations to the steady state (NOI) as a
function of f for RR and binomial networks in Fig. 3.3(a) and 3.3(b) respectively. Note
that, depending on the value of ξ, there is a critical threshold f ≡ fc above which there
is a giant steady-state component of opinion σ+. The peak of s2 indicates the existence
of a second-order phase transition, where s1 is the order parameter and f is the control
parameter. Note that as the value of ξ increases, in all networks fc shifts to the right,
a shift observable from the shift of the peak of s2. Moreover, the first peak of NOI also
shifts to the right as ξ increases, and coincide with the peak of the second largest cluster
representing the critical fc for the minority to emerge as a giant component. The second
peak occurs due to symmetry at 1− fc . In RR networks we lose the peak of s2 when the
directionality ξ is close to 1, which suggests the disappearance of the second order phase
transition. The sharp jump of s1 around f = 0.5 also indicates the appearance of an
abrupt phase transition. When these networks contain an increasing one-way influence
(increasing directionality), in all cases the minority opinion will need a greater number
of initial supporters if they are to survive when the steady state is reached.

To further understand this change we consider two extreme cases, ξ= 0 and ξ= 1. In
the former, an agent influences only those who can influence the agent in return. In the
latter, an agent influences only those who cannot influence the agent in return. This lat-
ter case allows a much more rapid spread of opinions, each agent interacts with a larger
number of agents, each has in-neighbors as well as out-neighbors, and the opinion is
diffused over a wider area. Note that both the majority and minority opinions can ben-
efit from this wider diffusion, but there is a higher risk that the minority opinion will be
devoured at some point. This is the case because the bidirectional link connecting two
minority opinion agents benefits the minority opinion—the two agents can encourage
each other to keep the minority opinion. When rewiring this kind of link there is a higher
probability that the two agents will interact with the majority opinion and thus a higher
probability that their opinion will be changed to the majority opinion. Thus rewiring
makes it more difficult for the minority opinion to form a stable structure.

6In this chapter, random regular (RR) networks are directed networks in which the indegrees of all nodes and
outdegrees of all nodes are the same and the nodes are randomly connected.
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Figure 3.3: (Color online) Plot of the normalized largest cluster s1 of opinion σ+ as a function of the initial
fraction f for different values of the directionality ξ: 0(◦),0.2(ä),0.4(4),0.6(O),0.8(/),1.0(.), and for different
networks with N = 105 nodes and E[D] = 4: (a) RR, (b) binomial, (c) SF (λ= 2.63). In the upper insets of (a), (b)
and (c), we plot s2 as a function of f with the same symbols and for the same networks as in the main figure.
In the lower insets of (a) and (b), we plot the number of iterations to the steady state NOI as a function of f .
(d) Plot of the degree distribution of the nodes which keep the majority (◦) and the minority opinion (ä) in
binomial networks (also with N = 105 nodes and E[D] = 4), when the directionality ξ = 0.0 (the main figure)
and ξ= 1.0 (the inset). All results are based on averaging 1000 realizations.
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As directionality ξ increases, it is easier for minority opinion agents to keep their
minority opinion if they have fewer neighbors. Figure 3.3(d) plots the degree distribu-
tions (in which the indegree and outdegree follow the same distribution) of the minority-
opinion nodes and majority-opinion nodes respectively in the steady state at the critical
threshold f ≡ fc when the directionality is ξ = 0.0 and ξ = 1.0. Note that the degrees of
most of the minority-opinion nodes that keep their minority opinion are equal to 1, 2,
or 3. Minority-opinion nodes with a degree larger than 3 can keep their minority opin-
ion when ξ = 0.0, but seldom when ξ = 1.0, i.e., as the value of ξ increases, the number
of nodes following the majority opinion increases, and only low-degree nodes are able
to keep the minority opinion. Our results indicate that, a lower directionality helps the
existence of the minority opinion, which can be desirable e.g. when the society wants to
have different opinions coexisting to inspire or balance each other. We could decrease
the directionality of social contact networks by encouraging mutual social interactions
e.g. between friends and family members. Moreover, the minority opinion is likely hold
by individuals with few social contacts.
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Figure 3.4: (Color online) (a) Plot of the critical threshold fc as a function of the directionality ξ for different
networks with N = 105 nodes and E[D] = 4: RR(◦), binomial(ä) and SF(4) (λ = 2.63). All results are based
on averaging 1000 realizations. (b) Plot of the critical threshold fc as a function of the variance of the degree
sequence of the networks (N = 105 nodes and E[D] = 4) with different values of the directionality: ξ= 0(◦) and
ξ= 0.5(ä). All results are based on averaging 100 realizations.

It has been shown that network topology may significantly influence such dynamic
processes in networks as epidemics or cascading failures [17, 62, 80, 85, 92]. We thus
compare the critical threshold fc on directed binomial, RR, and SF networks in which
the indegree and outdegree (i) follow the same binomial distribution, (ii) are a constant,
and (iii) follow a power-law distribution. Figure 3.4(a) shows that, as the directionality
ξ increases, the critical threshold fc of the RR networks increases more rapidly than the
others. As stated above, as ξ increases, only nodes with degrees less than 4, the average
degree, are likely to keep the minority opinion, and in RR networks all nodal degrees
are 4. Figure 3.4(a) also shows that the existence of hubs (extremely high-degree nodes)
in SF networks causes them, at ξ = 0, to have a much higher critical threshold fc than
the others, and that the critical threshold in binomial networks is slightly larger than the
critical threshold in RR networks. The existence of hubs benefits the majority-opinion
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nodes because the probability that an agent with many friends (i.e., a hub) will follow the
majority opinion and influence many others is high. They thus strongly contribute to the
diffusion of the majority opinion. This phenomenon suggests that public celebrities, i.e.
hubs in social networks, tend to help the propagation of the majority opinion.

Reference [104, 107] describes how a second-order phase transition becomes first-
order and the critical threshold is higher when the average degree increases. When the
average degree is the same, the variance of the degree sequence turns out to be the key
factor influencing the critical threshold. In fact, we find that in the networks with the
same average degree, the larger the variance of the degree sequence, the larger will be
its critical threshold. This is the case because networks with a wider degree variance are
more likely to have majority-opinion hubs that can influence many other agents. Fig-
ure 3.4(b) shows simulation results that support this behavior. Note that as the variance
of the degree sequence increases, the critical threshold increases. To change the variance
in these simulations we select a SF network with an average degree E[D] = 4, randomly
remove an existing link, and randomly add a link between two nodes previously uncon-
nected. As we remove and add links repeatedly, the variance of the degree sequence
decreases and we stop at an excepted variance. To obtain the specified directionality, we
apply DIR on the networks. This gives us a wide range of degree variance, which allows
us to study the relationship between the variance and critical threshold fc .

3.5. THE INFLUENCE OF INDEGREE AND OUTDEGREE ASYMME-
TRY

We have discussed how the critical threshold fc increases as the directionality increases
in networks in which the indegree and outdegree are the same for each node. The num-
ber of in-neighbors and out-neighbors of nodes in real-world networks often differ, how-
ever. We mentioned above how a popular singer can influence many people and not be
influenced in return. The social network of the singer has many more out-neighbors
than in-neighbors. Because this real-world phenomenon is so ubiquitous, we now ex-
amine how different correlations between the indegree and outdegree affect opinion
competition.

In Section 3.3.2 we use ANC-DDR to construct a network with an arbitrary but iden-
tical indegree and outdegree distribution, together with a given combination of the di-
rectionality ξ and the linear correlation coefficient ρ between the indegree and outde-
gree. We perform simulations to study the influence of both the directionality ξ and the
correlation coefficient ρ on the critical threshold fc . Figures 3.5(a) and 3.5(b) show that,
given the directionality, the critical threshold increases for binomial and SF networks, re-
spectively, as the indegree and outdegree correlation ρ increases. Figure 3.6 shows that
when the directionality ξ and the correlation coefficient ρ are increased in binomial net-
works, the critical threshold increases. The same behavior is observed in SF networks.
In Fig. 3.5(a), we can also see that when the initial fraction f is close to 1, the normal-
ized largest cluster s1 of opinion σ+ is close to 1, which means that the size of the largest
cluster approximately equals to the size of the network. Hence, the algorithm ANC-DDR
doesn’t introduce evident disconnected components of in the generated networks. Note
also that when the indegree outdegree correlation ρ = 1, the critical thresholds obtained
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by DIR and ANC-DDR agree with each other for different values of the directionality ξ.
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Figure 3.5: (Color online) Plot of the normalized largest cluster s1 of opinion σ+ as a function of the initial
fraction f , when the directionality ξ = 0.6, for different values of the indegree and outdegree correlation ρ:
0(◦),0.5(ä),1(4)), and for different networks with N = 105 nodes and E[D] = 4: (a) Binomial, (b) SF. In the
insets we plot s2 as a function of f with the same symbols and for the same networks as in the main figure. All
results are based on averaging 1000 realizations.

The influence of the indegree and outdegree correlation ρ on the critical threshold
can be understood as follows. A smaller ρ means a clearer inequality or asymmetry be-
tween the indegree and outdegree links. When the indegree and outdegree links are
asymmetrical, a node with more in-neighbors than out-neighbors is more likely to fol-
low the majority opinion and, because it has few out-neighbors, its own opinion will
have little influence. Compared with the nodes which have the same number of in-
neighbors and out-neighbors and tends to follow as well as spread the majority opinion,
such nodes (with fewer out-neighbors) cannot help. Nodes with more out-neighbors
than in-neighbors have greater influence and can thus hold the minority opinion and
contribute to its spread. Thus the minority opinion benefits more from an inequality
between the indegree and outdegree, or equivalently from a smaller ρ, so the lower cor-
relation coefficient ρ leads to a smaller critical value fc . Such imbalance between the
number of friends that influence you and the number of friends that you can influence,
actually, helps the existence of the minority opinion.

We now further explore the properties of nodes in the final steady state. We focus on
binomial networks in the steady state and calculate as a function of ρ, the average inde-
gree and outdegree in the largestσ+ andσ− clusters with a directionality ξ= 1 (generated
by ANC) when the initial fraction f of opinion σ+ equals 0.4 (minority). As discussed
above, and seen in Fig. 3.7, the outdegree links of a node with the minority opinion in
the steady state tends to be larger for all ρ < 1 than the indegree links, because nodes
with few in-neighbors are less influenced by other nodes and thus can more easily keep
their minority opinion. On the contrary, the indegree of a node with the majority opin-
ion tends to be larger than its outdegree. Note that, when the initial fraction f of the
opinion σ+ is 0.4, the average number of indegree links is smaller for the nodes in the
largest σ+ cluster compared with the nodes in the largest σ− cluster. Note also that in
the majority clusters (σ+) both the indegree and the outdegree are close to 4, which is



3

28 3. OPINION DYNAMICS ON DIRECTED NETWORKS

0
0.4

0.8

1

0.25

0.3

0.35

0.4

0.45

0.5

0.5
0.6

0.7
0.8

0.9
1  

f
c
 

 

Figure 3.6: (Color online) Plot of the critical threshold fc as a function of the linear correlation coefficient ρ
and the directionality ξ for binomial networks. All results are based on averaging 1000 realizations.
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Figure 3.7: (Color online) Plot of the average indegree and outdegree of the nodes in the largest σ+ and σ−
cluster for binomial networks, when the initial faction f of the opinion σ+ equals 0.4 as a function of ρ. The
representation of the four lines are as follows: the average indegree (◦) and outdegree (•) of the nodes in the
largest σ+ cluster; the average indegree(ä) and outdegree(■) of the nodes in the largest σ− cluster. All results
are based on averaging 100 realizations.
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the average degree of the whole network. This is in marked contrast with the average
indegree of the nodes in the largest minority cluster with degree approximately 2.5. The
average outdegree of minority is larger than 4 when the linear correlation coefficient is
ρ = 0. As ρ increases there is a higher correlation between the indegree and outdegree
and the average outdegree of minority decreases rapidly.

3.6. CONCLUSIONS
Because of the ubiquity of the non-consensus steady state in real-world opinion compe-
titions and the dominance of unidirectional relationships in real-world social networks,
we study a non-consensus opinion model on directed networks. To quantify the extent
to which a network is directed, we use a directionality parameter ξ, defined as the ratio
between the number of unidirectional links and the total number of links. We also em-
ploy a linear correlation coefficient ρ between the indegree and outdegree to quantify
any asymmetry.

We propose two approaches to construct directed networks. The first is directionality-
increasing rewiring (DIR) and is used to rewire the links of an undirected network to
obtain a directed network with any directionality value ξ without changing the indegree
and outdegree, i.e., the indegree-outdegree correlation value is fixed at ρ = 1. The second
is ANC-DDR, a combination of asymmetric indegree-outdegree network construction
(ANC) and directionality-decreasing rewiring (DDR). Using ANC we construct a directed
network (ξ ≈ 1) with an arbitrary but identical indegree and outdegree distribution and
a given indegree-outdegree correlation ρ. We then use DDR to further decrease the di-
rectionality ξ of the network.

We use DIR and ANC-DDR to generate directed networks with a given combination
of ξ and ρ and investigate how the directionality ξ and the linear correlation coefficient
ρ between the indegree and outdegree links affect the critical threshold fc of the NCO
model. We find that in both binomial and SF networks increasing ξ or ρ increases the
critical threshold fc . We also find that as ξ and ρ increase, the phase transition becomes
abrupt and is no longer second-order. We find that as a network becomes more directed
it becomes more difficult for a minority opinion to form a cluster, while increasing the
indegree-outdegree asymmetry makes the minority opinion more stable. Our work in-
dicates that directionality and the asymmetry between indegree and outdegree play a
critical role in real-world opinion competitions.
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EPIDEMIC SPREADING WITH

DEGREE-CORRELATED

HETEROGENEOUS RECOVERY

RATES ON DIRECTED NETWORKS

The nodes in communication networks are possibly and likely equipped with different re-
covery resources, which allow them to recover from a virus with different rates. In this
chapter, we aim to know how to allocate the limited recovery resources to efficiently pre-
vent the spreading of epidemics. Instead of considering the same recovery rate for all the
nodes in the SIS model, we propose to allocate the recovery rate δi for node i according to
its indegree and outdegree-δi∼kαi n

i ,i nkαout
i ,out , given the finite average recovery rate 〈δ〉 repre-

senting the limited recovery resources over the whole network. We consider directed net-
works with the same power law indegree and outdegree distribution, but different values
of the directionality ξ and linear correlation coefficients ρ between the indegree and out-
degree. We find that, by tuning the two scaling exponents αi n and αout , we can always
reduce the infection fraction y∞ thus reducing the extent of infections, comparing to the
homogeneous recovery rates allocation. Moreover, we can find our optimal strategy via the
optimal choice of the exponent αi n and αout . Our optimal strategy indicates that when
the recovery resources are sufficient, more resources should be allocated to the nodes with a
larger indegree or outdegree, but when the recovery resource is very limited, only the nodes
with a larger outdegree should be equipped with more resources. We also find that our
optimal strategy works better when the recovery resources are sufficient but not yet able to
make the epidemic die out, and when the indegree outdegree correlation is small.

This chapter have been published as: B. Qu, A. Hanjalic, and H. Wang, Heterogeneous Recovery Rates against
SIS Epidemics in Directed Networks, NetGCoop 2014: International Conference on NETwork Games, COn-
trol and OPtimization. Trento, Italy.
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4.1. INTRODUCTION

T HE classic SIS model assumes that the infection rate β is the same for all infected-
susceptible node pairs and so is the recovery rate δ, thus homogeneity. However,

the recovery time of real-world network components can be different, since they can be
equipped with, for example, different antivirus softwares and different levels of human
intervention that lead to different time to discover and cure the virus. Meanwhile, a fast
recovery which requires an antivirus software with a high scanning frequency or frequent
human intervention, is costly. The balance of the effect and cost of recovering capacity is
of key importance. That is to say, with the limited recovery resources, how to distribute
them, is critical.

In this chapter, we consider the SIS epidemic spreading with homogeneous infec-
tion rate β in a network with N nodes. However, we propose heterogeneous recovery
rates allocation to minimize the fraction y∞ of infected nodes in the steady state for the
given finite average recovery rate 〈δ〉 = (

∑N
i=1δi )/N representing the limited recovery re-

sources.
It has been revealed that in real-world networks such as the Internet[24] and World

Wide Web[2], the probability that a node has k connections (degree k) follows a scale-
free distribution P (k)∼k−λ[29, 39, 113], with an exponent λ ranging between 2 and 3.
The studies[10, 37] have also shown the directed characteristics of those networks: when
a node i is connected to j , j is not necessarily connected to i . Hence, we consider di-
rected scale-free (SF) networks which has been less explored for the SIS model.

We propose to allocate the recovery rate of each node as a function of the indegree
and outdegree of the node, i.e. δi∼kαi n

i ,i nkαout
i ,out . The degree, which is easy to compute, has

been chosen for the following reasons: a) the nodal degree has been shown to be crucial
to select e.g. the nodes to immunize to reduce the infection fraction and the nodes to
protect to maintain the network connectivity[58, 119]; b) the degree is correlated with
many other network properties of a node[68, 71]. When the network is undirected, our
strategy becomes δi∼kαi . Our goal is to find the optimal allocation, i.e. the optimal scal-
ing parameter αi n and αout , which leads to a minimal infection fraction. We find that,
compared to the homogeneous SIS model, where the recovery rate is the same for all the
nodes, our optimal strategy can always further evidently reduce the infection fraction y∞
(even to 0, thus, the epidemic dies out) in the steady state. The novelty of our approach
lies in: a. We generalize the classic homogeneous SIS model to heterogeneous, which
allows each node to have a different recovery rate; b. We consider not only the clas-
sic undirected networks but also directed networks, characterized by the directionality
ξ and the indegree outdegree correlation ρ. This introduces heterogeneity into the net-
work structure; c. We propose a heterogeneous recovery rates allocation strategy based
on the degree of each node, the simplest network property to compute.

The main method to reduce the fraction of the infected nodes is immunization. The
immunization strategies[7, 31, 50, 82, 94] select a given number of nodes to be immu-
nized. When a node gets immunized, it can not get infected nor infect the others. To
immunize a node is equivalent to allocating an infinite recovery rate to this node. In this
sense, the immunization problem is to decide which set of a given number m of nodes
should we assign an infinite recovery rate whereas the rest nodes have the same given
and finite recovery rate. Our work addressed the more general case where each node
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may have a different recovery rate instead of assigning two possible recovery rates to the
whole network. Heterogeneous SIS model has been addressed recently [23, 42, 96, 97]
by taking into account either the heterogeneous infection or recovery rates. [42] studies
the epidemic threshold with variable infection rates. [23] also models heterogeneous in-
fection rates and observes slow epidemic extinction phenomenon. [96] and [97] discuss
how to choose the infection and recovery rates from given discrete sets to let the virus
die out, but our work addresses, more generally, how to reduce the fraction of infected
nodes-a zero fraction means the extinction of the virus.

The rest of this chapter is organized as follows. Section 4.2 introduces the direction-
ality ξ and indegree outdegree correlation ρ to describe the directed networks, and the
epidemic threshold as well. Section 4.3 illustrates the distribution of the recovery rate
δi , the infection fraction vs. the epidemic threshold, and the influence of the expo-
nents (αi n , αout ) on the infection fraction, when the recovery rate is distributed het-
erogeneously according to our strategy. Section 4.4 investigates the optimal exponents
(αi n,opt ,αout ,opt ) for different indegree outdegree correlations ρ, and compares the in-
fection fraction obtained by our optimal heterogeneous recovery rates allocation and by
homogeneous recovery rates allocation. Section 4.5 concludes the paper.

4.2. DIRECTED NETWORKS AND THE EPIDEMIC THRESHOLD

4.2.1. DIRECTED NETWORKS

In order to describe the directed SF networks, as in chapter 3, we employ the direction-
ality ξ and indegree outdegree correlation ρ. In this chapter, we confine ourselves to
the case in which the indegree and outdegree follow the same distribution. In this case,
ρ = 1 implies that di ,in = di ,out holds for every node i . Particularly, in this chapter, we
construct the directed SF networks with a given indegree outdegree correlation ρ using
the algorithm ANC we proposed in chapter 3, so we get the networks with the direction-
ality1 ξ≈ 1 and a specified indegree outdegree correlation ρ.

4.2.2. THE EPIDEMIC THRESHOLD

Given the adjacency matrix2 A of a network, the epidemic threshold of the homoge-
neous SIS model with the same infection rate and recovery rate for all the links and nodes
respectively, via the N-intertwined mean field approximation (NIMFA) is τc = 1/λ1(A),
where λ1(A) is the largest eigenvalue of the adjacency matrix A[121]. When the effec-
tive infection rate τ = β/δ is above this threshold τ > τc , the epidemic spreads out. Via
the mean field approximation-NIMFA, we can also obtain the sufficient condition for the
epidemic to die out in the heterogeneous SIS model, which is ℜ(λ1(−di ag (δi )+β∗A)) ≤
0[121][96], where A is the adjacency matrix of the network, di ag (δi ) is a N by N diagonal
matrix with elements δi and ℜ(λ1(•)) represents the real part of the largest eigenvalue of
a matrix3.

1The expectation of the directionality E [ξ] = 1−E[D]2N /(N −1)2, limN→∞ E[ξ] = 1.
2The entries of the adjacency matrix A are, ai j = 1 if node i is connected to node j or otherwise ai j = 0.
3If A is asymmetric, the largest eigenvalue of the matrix −di ag (δi )+β∗ A may be complex.
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4.3. THE EFFECT OF THE HETEROGENEOUS RECOVERY RATES

ALLOCATION
Instead of the approximated discrete-time SIS model simulations, we use a continuous-
time simulator, proposed by van de Bovenkamp et al. and described in detail in [69]. We
use the continuous-time simulations which precisely simulate the continuous SIS dy-
namics, instead of discrete-time ones, because the precision of a discrete time simula-
tion of a continuous process requires a small time bin to sample the continuous process
so that within each time bin, no multiple events occur. A heterogeneous SIS model al-
lows different as well large infection or recovery rates, which requires even smaller time
bin size and challenges the precision of discrete-time.

We are going to evaluate the effect of our degree based heterogeneous recovery rates
allocation strategy via the infection fraction y∞ in the steady state. In this chapter, we
consider directed SF networks (both the indegree and outdegree follow the same power
law distribution) with the power law exponent λ = 2.5, the networks size N = 1000, the
smallest degree dmin = 2 and the natural degree cutoff dmax = bN 1/(λ−1)c[30]. The direc-
tionality ξ and indegree outdegree correlation ρ can be tuned, using the algorithms we
proposed in[99]. For the heterogeneous SIS model, we set the infection rate β= 1 for all
links, and assign the recovery rate according to our strategy δi = c2dαin

i ,indαout
i ,out, where the

parameterαin andαout can be tuned and the constant number c2 is decided by the given
average recovery rate 〈δ〉. All the results are based on the average of 1000 simulations.

4.3.1. THE DISTRIBUTION OF THE RECOVERY RATE δi
In this paper, the indegree and outdegree of a node both follow the same power-law
distribution

Pr[Din = k] = Pr[Dout = k] = c1k−λ

where c1 = 1/
∑kmax

k=kmin
k−λ. The joint degree distribution of a random node in a directed

network with indegree outdegree correlation ρ and directionality ξ≈ 1 that we generated
using ANC follows

Pr[Din = kin,Dout = kout] ={ ρc1k−λ
in + (1−ρ)c2

1 k−2λ
in , when kin = kout

(1−ρ)c2
1 k−λ

in k−λ
out, when kin 6= kout

The recovery rate of each node is assigned according to our strategy asδi = c2dαin
i ,indαout

i ,out,

where c2 = 〈δ〉∑N−1
kin=1

∑N−1
kout=1 Pr[Din=kin,Dout=kout]k

αin
in k

αout
out

, so the probability density function of

the recovery rate ∆ of a random node is

Pr[∆= x] =
N−1∑

kin=1
Pr[Di n = kin,Dout =

(
x

c2kαin
in

) 1
αout

].

In special cases, but not always, the distribution of the recovery rate follows strictly
the power law. For example, when the indegree outdegree correlation is ρ = 1, the distri-
bution follows the power law with the exponentαin+αout−λ. Fig. 4.1 shows an example
of the distribution of the recovery rate with 〈δ〉 = 2, ρ = 0.5, αin = 0.3 and αout = 0.6. The
distribution in this case follows approximately a power law.
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Figure 4.1: The probability distribution of the recovery rate ∆ of a random node with 〈δ〉 = 2, ρ = 0.5, αin = 0.3
and αout = 0.6.

4.3.2. THE INFECTION FRACTION y∞ VS. ℜ(λ1(−di ag (δi )+β∗ A))
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Figure 4.2: The plots of the infection infraction y∞ (◦) and the largest eigenvalue λ1 (ä) of the matrix
−di ag (δi )+ A as a function of the exponent α for different values of the average recovery rate 〈δ〉.
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Figure 4.3: The plots of infected infraction y∞ as a function of the exponentsαin andαout with different values
of the average recovery rate 〈δ〉 and the indegree outdegree correlation ρ

From network designers’ point of view, we aim to either increase the epidemic thresh-
old or decrease the fraction of infection via network topology modifications, the alloca-
tion of the infection rates, recovery rates or immunization[70, 126, 128]. We would like
to first understand in the heterogeneous SIS, whether a small ℜ(λ1(−di ag (δi )+β∗ A))
would suggest a low infection fraction. If so, we could simplify the optimization of the
fraction of infection to the optimization of the ℜ(λ1(−di ag (δi )+β∗ A)).

We take undirected scale-free networks as an example. In this case, the largest eigen-
value is real, i.e. ℜ(λ1(−di ag (δi )+β∗ A)) = λ1(−di ag (δi )+β∗ A). We compare the
infection fraction y∞ in the steady state and the largest eigenvalue λ1 of the matrix
(−di ag (δi )+ A), when the infection rate β = 1 holds for all the links, the recovery rate
of each node is assigned according to our strategy, i.e. δi = c2dα

i and the average re-
covery rate 〈δ〉 is given as shown in Fig. 4.2. In Fig. 4.2(a), we can see that when the
infection fraction y∞ = 0, the largest eigenvalue λ1 is also close to 0 which supports that
λ1(−di ag (δi )+β∗ A) < 0 is the sufficient condition for an epidemic to die out. The
trends of the two curves are consistent-the larger the eigenvalue λ1 is, the larger the in-
fection fraction y∞ is. However, their trends are not the same when the average recovery
rate 〈δ〉 decreases (i.e. the recovery resources are reduced) as shown in Fig. 4.2(b) and
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4.2(c). In other words, we cannot use the magnitude of λ1 to indicate the extent that the
network is infected, which suggests that we have to design recovery allocation strategies
to minimize the fraction of infection.

4.3.3. THE INFLUENCE OF α OR (αin,αout)
We can also see in Fig. 4.2, compared to the homogeneous SIS model (α= 0), by applying
our strategy to allocate the recovery rate, the infection fraction y∞ can be significantly
reduced in a wide range of α, and we will discuss the maximum possible improvement
in detail in the next section. Moreover, the infection fraction is again increasing if the ex-
ponentα is larger than a certain value. That’s to say, more recovery resources distributed
to the high-degree nodes is not necessarily better in preventing infections; instead, too
unbalanced distribution helps the virus. In the extreme case where α→+∞, all the re-
covery rate is allocated to a single node, the one with the highest degree. In this case,
all the other nodes have recovery rate 0. The network always gets fully infected except
for the largest degree node, as long as the network is still connected after removing the
highest degree node.

We investigate next the case of directed SF networks with directionality ξ ≈ 1 and
a given indegree outdegree correlation ρ. Two scaling exponents αin and αout can be
tuned to decide the recovery rate δi = ckαin

i ,inkαout
i ,out. We plot the infection fraction y∞ as a

function of αin and αout. In Fig. 4.3(a), compared to the undirected networks with the
same average recovery rate 〈δ〉 = 3, we find that most combinations of the two exponents
αin and αout around (0.5,0.5), i.e. αin ≈ 0.5,αout ≈ 0.5, can lead to the die-out steady
state. If we further decrease the average recovery rate 〈δ〉, though the die-out steady state
can not be reached any more, many combinations of (αin,αout) can reduce the infection
fraction effectively compared to the homogeneous case, where αin =αout = 0, as shown
in Fig. 4.3(b). Fig. 4.3(c) describes the case with a smaller average recovery rate 〈δ〉 but
larger indegree outdegree correlation (ρ = 0.5), the same phenomenon can be observed.

4.4. OPTIMAL HETEROGENEOUS RECOVERY ALLOCATIONS
Most interestingly, we would like to find out our optimal strategy, i.e. the optimal ex-
ponent αopt (or a combination (αin,opt,αout,opt)) which leads to the minimum infection
infraction y∞. Moreover, how much can our optimal strategy further reduce the fraction
y∞ of infection compared to the homogeneous allocation of recovery rate?

4.4.1. THE OPTIMAL EXPONENTS α OR (αin,αout)
We list the optimal exponent α for undirected SF networks with different average re-
covery rates 〈δ〉 in Table 4.1, and the optimal combination (αin,opt,αout,opt) of the two
exponents αin and αout for directed SF networks with different average recovery rates
〈δ〉 and indegree outdegree correlation ρ in Table 4.2. All the optimal exponents are ob-
tained by simulations, i.e. given 〈δ〉 and ρ, we run the simulations with different values
of α and select the exponent α which leads to the minimum infection infraction y∞ as
the optimal exponent. For some combinations of 〈δ〉 and ρ, like 〈δ〉 = 3 and ρ = 0, more
than one pair of (αin,αout) can reduce the infection fraction y∞ to 0, so we cannot list
the optimal one. Note that, when indegree outdegree correlation ρ = 1, the indegree and
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outdegree are the same for each node, so it is enough to list only one optimal exponent.
We still confine ourselves to directed networks with directionality ξ≈ 1.

Table 4.1: The optimal exponent αopt for undirected SF networks with different average recovery rates 〈δ〉

〈δ〉 1.5 1.75 2 2.25 2.5 2.75∼4

αopt 0.3 0.4 0.7 0.8 0.9 1

Table 4.2: The optimal combinations (αin,opt,αout,opt) for directed SF networks with different 〈δ〉 and ρ

〈δ〉
ρ

0 0.5 1

1.5 ( 0.1, 0.6) (-0.1, 0.6) 0.1

1.75 ( 0.2, 0.6) ( 0.1, 0.6) 0.3

2 ( 0.4, 0.5) ( 0.3, 0.6) 0.5

2.25 ( 0.5, 0.5) ( 0.4, 0.5) 0.7

2.5 ( 0.5, 0.5) ( 0.5, 0.5) 0.8

2.75 - ( 0.5, 0.5) 0.9

3 - - 1

By observing Table 4.1 and 4.2, we find that, with indegree outdegree correlation
ρ = 1, either the network is undirected or directed, the optimal exponent αopt decreases
as the average recovery rate 〈δ〉 decreases. A positive αopt implies that , we should dis-
tribute more recovery resources to the nodes with larger degrees. As the total recovery
resources, 〈δ〉 decrease, αopt decreases, suggesting a relative homogeneous allocation of
the recovery resources. When the recovery resources are large, αopt is large, implying
that a more heterogeneous distribution is most beneficial. Moreover, for directed net-
works with unequal indegree and outdegree, regardless of the average recovery rate 〈δ〉,
the optimal exponent αout,opt for outdegree is always around 0.5, though the optimal
exponent αin,opt for indegree declines as 〈δ〉 decreases. In other words, the nodes with
larger outdegree should always be equipped with faster recovery even if the total recov-
ery resources are very limited, but not the nodes with larger indegree. That’s reasonable
because a larger outdegree means more chances to spread the virus and a fast recovery
of such nodes is effective to prevent infections.

4.4.2. OPTIMAL HETEROGENEOUS VS. HOMOGENEOUS RECOVERY RATES

Furthermore, we would like to understand how much our optimal strategy could further
reduce the infection compared with classic homogeneous recovery rates allocation. We
compare the infection fraction y∞ of the homogeneous (α= 0 or αin =αout = 0) and our
optimal heterogeneous (α = αopt or αin = αin,opt,αout = αout,opt) recovery rates alloca-
tion.
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Figure 4.4: The plot of the infection fraction y∞ as a function of the average recovery rate 〈δ〉 for undirected SF
networks under both homogeneous (α= 0) and optimal (α=αopt ) recovery rates allocation.
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Figure 4.5: The infection fraction y∞ as a function of the average recovery rate 〈δ〉 in directed SF networks
with different indegree outdegree correlation ρ, under both homogeneous (◦, αin =αout = 0) and optimal (ä,
αin =αin,opt,αout =αout,opt) recovery rates allocation.
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Fig. 4.4 shows the results for undirected SF networks, and Fig. 4.5 for the directed
SF networks with different indegree outdegree correlation ρ. We find that, in general,
our optimal heterogeneous strategy outperforms the homogeneous one and such out-
performance becomes more evident when the average recovery rate 〈δ〉 is not too small
(not close to the infection rate β = 1). Our optimal heterogeneous strategy could even
reduce the outbreak epidemic state with the homogeneous strategy into a die out state
when the average recovery rate 〈δ〉 is close to 3.

Fig. 4.5 shows that a smaller indegree outdegree correlationρ retards the virus spread-
ing given the recovery rate allocation strategy, e.g. the homogeneous allocation. A smaller
indegree outdegree correlation ρ implies the larger difference between the indegree and
outdegree of nodes. On one hand, a node with large outdegree may have a small inde-
gree. Though such nodes have more chances to spread the virus, they are not likely to be
infected. On the other hand, a node with a small outdegree may have a large indegree.
Such nodes tend to be infected but do not help the virus to spread. Hence, a smaller
indegree outdegree correlation ρ prevents the spreading of the virus.

We further explore the performance of our optimal heterogeneous recovery rates al-
location strategy for different indegree outdegree correlation ρ. We calculate the fur-
ther improvement in the infection fraction,∆y∞, as the difference between the infection
fraction of the homogeneous (y∞,homo) and our optimal heterogeneous (y∞,opt) recovery
rates allocation, i.e. ∆y∞ = y∞,homo− y∞,opt, given the same average recovery rate 〈δ〉. In
Fig. 4.6, for different indegree outdegree correlation ρ, we plot ∆y∞ as a function of the
average recovery rate 〈δ〉 to show how much our optimal strategy can reduce the infec-
tion fraction, compared to the homogeneous SIS model. There seems to be a peak at 〈δ〉c

in each curve. That’s mainly because as 〈δ〉 increases, both y∞,homo and y∞,opt decrease
to 0, limiting the difference between the heterogeneous and homogeneous strategy. Be-
fore the peak, i.e. when δ < 〈δ〉c , we find that the effect of our optimal strategy is more
evident when the average recovery rate 〈δ〉 is large and when the indegree outdegree
correlation ρ is small. When the total recovery resources, i.e. the average recovery rate
is very small or very large, the epidemic will anyway spread out or die out respectively,
which is independent of the recovery rate allocation strategy. Whereas in between these
two extreme cases, i.e. with intermediate 〈δ〉, we always see the outperformance of our
heterogeneous strategy. Such outperformance appears in a range of 〈δ〉 with smaller
values when the indegree outdegree correlation ρ is smaller, likely due to the fact that a
smaller degree correlation contributes to the prevention of epidemic spreading.

4.5. CONCLUSION
In this chapter, we address a new challenging question: how to allocate the limited re-
covery resources heterogeneously so that the fraction of infection can be minimized? We
propose the heterogeneous recovery rates allocation strategy which allocates different
recovery rates to different nodes. Our strategy is based on the degree of each node, which
has the lowest computational complexity, δi = ckαin

i ,inkαout
i ,out. We consider both undirected

and directed networks, characterized by the directionality ξ and the indegree outdegree
correlation ρ.

Interestingly, our strategy via the optimal choice of the parameters αin and αout, ev-
idently outperforms the classic homogeneous allocation of recovery resources in gen-
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Figure 4.6: The variation of the infection fraction∆y∞ as a function of the average recovery rate 〈δ〉 for different
values of the indegree outdegree correlation ρ.

eral, especially when the given recovery resources are sufficient. The optimal choice of
the parameter αin and αout depends on the indegree outdegree correlation ρ and aver-
age recovery rate 〈δ〉. We find that in undirected networks, when the average recovery
rate 〈δ〉 is large, αopt is large, meaning that we should allocate the the recovery resources
more heterogeneously. In directed networks, it seems that we should allocate more re-
covery resources to the high outdegree nodes, whereas the indegree has minor influence
in determining the recovery rate as the average recovery rate 〈δ〉 decreases.

Our degree based heterogeneous recovery rates allocation strategy illustrates the po-
tential to more effectively reduce infection than the classic homogeneous allocation.
However, this is just a start and hopefully it could inspire better heterogeneous strate-
gies. It would be interesting to further consider the heterogeneous infection rate, moti-
vated by real-world data set. The allocation of recovery rates in that case is far from well
understood.





5
EPIDEMIC SPREADING WITH I.I.D.

HETEROGENEOUS INFECTION

RATES

In this chapter, we aim to understand the influence of the heterogeneity of infection rates
on the Susceptible-Infected-Susceptible (SIS) epidemic spreading. Employing the classic
SIS model as the benchmark, we study the influence of the independently identically dis-
tributed infection rates on the average fraction of infected nodes in the metastable state.
The log-normal, gamma and a newly designed distributions are considered for infection
rates. We find that, when the recovery rate is small, i.e. the epidemic spreads out in both
homogeneous and heterogeneous cases: 1) the heterogeneity of infection rates on average
retards the virus spreading, and 2) a larger even-order moment of the infection rates leads
to a smaller average fraction of infected nodes, but the odd-order moments contribute in
the opposite way; when the recovery rate is large, i.e. the epidemic may die out or infect
a small fraction of the population, the heterogeneity of infection rates may enhance the
probability that the epidemic spreads out. Finally, we verify our conclusions via real-world
networks with their heterogeneous infection rates. Our results suggest that, in reality the
epidemic spread may not be so severe as the classic SIS model indicates, but to eliminate
the epidemic is probably more difficult.

This chapter have been published as: B. Qu and H. Wang, SIS Epidemic Spreading with Heterogeneous In-
fection Rates, IEEE Transactions on Network Science and Engineering, Issue 99, 2017.
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5.1. INTRODUCTION

T HE studies on contagion processes in networks are strongly motivated and justi-
fied by the anticipated outbreaks of epidemic diseases in a population and non-

stop threats of cyber security in computer networks [3, 45, 46, 60, 83]. The Susceptible-
infected-susceptible (SIS) model [15, 28, 33, 69, 111, 121, 128] is one of the most widely
used models to describe such processes. In the continuous-time Markovian SIS model,
a node is either infected or susceptible at any time t . Each infected node infects each of
its susceptible neighbors with an infection rate β. The infected node can be recovered
with a recovery rate δ. Both infection and recovery processes are independent Poisson
processes. The average fraction y∞ of the infected nodes in the metastable state, rang-
ing in [0,1], indicates how severe the influence of the virus is: the larger y∞ is, the more
severely the network is infected.

The classic SIS model assumes that the infection rate β is the same for all infected-
susceptible node pairs and so is the recovery rate δ for all nodes. Most studies are focus-
ing on the relationship between the effective infection rate τ and the average fraction y∞
of infected nodes or the epidemic threshold in the virus contamination process with ho-
mogeneous infection (recovery) rates. However, in reality, neither the contact frequency
[40] between a pair of individuals in social networks nor the connecting frequency be-
tween a pair of nodes in computer networks is constant. Infection rates can be different
from pairs to pairs, thus heterogeneous. Many studies on real diseases, such as SARS
[129] and Plasmodium falciparum infection [114] also reveal the heterogeneity of infec-
tion rates. Furthermore, Smith et al. [114] suggest that the distribution of infection rates
in different populations may be varied as well, and Wang et al. [129] find that infection
rates with the log-normal distribution fit best the data of SARS in 2003 by applying their
model.

In this paper, we explore the effect of heterogeneous infection rates on the average
fraction y∞ of infected nodes in a systematic way. We propose a SIS model, in a network
with N nodes, with the homogeneous recovery rate δ but heterogeneous infection rates
βi j (= β j i , i = 1,2, ..., N , j = 1,2, ..., N and i 6= j ) between node i and node j . Similar
to the classic homogeneous SIS, our SIS model with heterogeneous infection rates is as
well a Markovian process where the time for an infected node i to infect each of its sus-
ceptible neighbors j is an independent exponential random variable with average β−1

i j .

The homogeneous SIS model has the same infection rate β for all node pairs whereas all
the infection rates in our heterogeneous SIS are independent and identically distributed
(i.i.d.) random variables. We study how the distribution of infection rates influences the
average fraction y∞ of infected nodes in the metastable state.

A few recent papers [23, 42, 96–98, 135] have taken into account either the hetero-
geneous infection or recovery rates. In [98], we explored the influence of degree-based
recovery rates on the average fraction of infected nodes in the metastable state. Preci-
ado et al. [96, 97] discussed how to choose the infection and recovery rates from given
discrete sets to let the virus die out. Fu et al. [42] studied the epidemic threshold when
the infection rates depend on the node degrees and Buono et al. [23] considered a spe-
cific distribution of infection rates and observed slow epidemic extinction phenomenon.
Yang and Zhou [135] gave an edge-based mean-field solution of the epidemic threshold
in regular networks (the degrees of all nodes are the same) with i.i.d. heterogeneous in-
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fection rates (following uniform or power-law distribution).
In this paper, we explore the influence of heterogeneous infection rates on the epi-

demic spreading. In practice, the number of new infections in a period of time can be
used to estimate the infection rate, for example, [103] counts the number of infected peo-
ple per time interval (daily, weekly, etc.) to indicate the infection rate; [32], illustrating a
strategy to estimate the time-varying transmission rates for the spread of infection, also
takes into account the daily distribution of new infections. Besides the number of new
infections, the interacting frequencies between two neighboring nodes have also been
employed to estimate the infection rate, for example, the infection rate has been consid-
ered to be proportional to the interacting frequency. The average infection rate obtained
in both scenarios has been used as the infection rate in the homogeneous epidemic
model. Our work points out how such assumption of homogeneous rates would dif-
fer from real-world heterogeneous infection rates with respect to their influence on the
fraction of infected population. We consider several representative distributions with
the same mean but higher moments tunable, since the influence of the mean1 has been
widely studied in the homogeneous SIS model [53, 72, 91, 92, 95]. To our best knowl-
edge, our work is the first to discuss the influence of higher moments of the infection
rate distribution in epidemic models.

5.2. SIS MODEL WITH HETEROGENEOUS INFECTION RATES
In this section, we introduce the classic SIS model, basic network models, the heteroge-
neous infection rates and the simulation settings of the SIS model with heterogeneous
infection rates on a network.

5.2.1. NETWORK CONSTRUCTION
In real-word networks, the exponent λ is usually in the range [2,3], thus we confine the
exponent λ = 2.5 in this chapter. We further employ the smallest degree dmin = 2, the
natural degree cutoff dmax = bN 1/(λ−1)c [30] , and the size N = 104. Hence, the average
degree is approximately 4. As the comparison, we consider the ER networks with the size
N = 104 and the average degree E [D] = 4.

5.2.2. INDEPENDENT AND IDENTICALLY DISTRIBUTED HETEROGENEOUS IN-
FECTION RATES

In this subsection, we introduce three distributions of the heterogeneous infection rates.
We aim to explore how the heterogeneous infection rates influence the spread of SIS epi-
demics, particularly we study the relationship between the variance2 (and even higher
moments) of the heterogeneous infection rates and the average fraction y∞ of infected
nodes. Hence, we would like to choose infection-rate distributions systematically such
that they cover a broad range of distributions including those observed in real-world
and importantly their higher order moments, at least the variances are tunable when
their means are fixed.

The nth moment mn of a distribution with the probability density function (PDF)

1The infection rate between any pair of nodes equals to the mean in the homogeneous SIS model.
2The variance of a random variable is the second central moment.
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fB (β) is mn =
+∞∫
−∞

βn fB (β)dβ. Thus, the first moment m1 is just the mean and the re-

lationship between the second moment m2 and variance V ar [B ] is V ar [B ] = m2 −m2
1,

where the random variable B is the infection rate of a link. To eliminate the influence of
the mean m1, we further define the nth normalized moment νn = mn

mn
1

, then ν1 = 1 and

the normalized variance v = ν2 −1.
We choose two asymmetric distributions: the log-normal and gamma distribution,

of which we can keep the means unchanged and tune the variances in a large range. The
log-normal distribution [123] B ∼ Log -N (β;µ,σ), of which the PDF is, for β> 0

fB (β;µ,σ) = 1

βσ
p

2π
exp

(
− (lnβ−µ)2

(2σ2)

)

and the nth normalized moment is νn = exp( (n2−n)σ2

2 ), has a power-law tail for a large
range of β provided σ is sufficiently large. The log-normal distribution has as well been
widely observed in real-world, where the interaction frequency between nodes is usu-
ally considered as the infection rate between those nodes. One example is the infection
rates of the co-author network, as illustrated in Fig. 5.8(b), Section 5. Moreover, Wang et
al. [129] find that by employing the log-normal distributed infection rates, their epidemic
model can accurately fit the infection data of 2003 SARS.

The gamma distribution B ∼ Γ(β;k,θ), of which the PDF is, for β> 0

fB (β;k,θ) = exp(−β
θ

)
βk−1

θkΓ(k)

(Γ(k) =
∞∫
0

t k−1e−t d t ) and the nth normalized moment is
n−1∏
i=0

(1+ i k−1), has a lighter tail

than the log-normal distribution. The Airline network, as demonstrated in Fig. 5.8(a),
has an exponentially distributed infection rates, which corresponds to the Gamma dis-
tribution when k = 1.

In order to take into account symmetrically distributed infection rates as well, we de-
sign a variance-tunable and symmetric distribution other than the two asymmetric dis-
tributions above. We call it the symmetric polynomial (SP) distribution B ∼ SP (β; a,b),
whose PDF is

fB (β; a,b) = b(a +1)

2
|β−1|a

where β ∈ [1− 1p
b

,1+ 1p
b

]) and, a = 1 and b ∈ [1,+∞) or b = 1 and a ∈ [1,+∞). The

mean of the distribution is 1, the variance is a+1
b(a+3) . Compared to the commonly-used

uniform distribution (also symmetric and variance-tunable) with the same mean, the SP
distribution can be tuned in a larger range of the variance.

5.2.3. THE SIMULATIONS
In order to study the effect of the variance of the heterogeneous infection rates on the
virus spread, we perform simulations to obtain the fraction y∞ of infected nodes as a
function of the normalized variance v of infection rates on both ER and SF networks.
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We find that, for commonly used 2-parameter distributions (such as the uniform distri-
bution, log-normal distribution, gamma distribution, etc.), the scaling on the mean of
infection rates can be eliminated by the same scaling on the recovery rate if we keep the
normalized variance v unchanged. This conclusion is also consistent with the fact that

only the effective infection rate β
δ matters for the epidemic spreading, but not the infec-

tion rate β in the homogeneous SIS model. Hence, without loss of generality, we set the
mean m1 of the infection rates to 1, thus all the normalized moments νn equal to the
unnormalized ones mn .

5.3. SMALL RECOVERY RATES
In this work, the average of the heterogeneous infection rates and the homogeneous
infect rate are the same. Since the recovery rate δ plays the key role in the epidemic
spreading, we discuss our results according to different ranges of the recovery rates. In
this section, we introduce our main results about how the heterogeneous infection rates
influence the contagion processes of epidemic, when the recovery rates are small such
that the epidemic spreads out in both homogeneous and heterogeneous cases. In the
next section, we focus on large recovery rates – the homogeneous effective infection rate
τ is close to the epidemic threshold τc in the classic model, where the epidemic with
homogeneous infection rates may die out.

5.3.1. THE OBSERVATIONS

We first show the simulation results when the variance of the infection rates is smaller
than 1, since the variance of a non-negative and symmetric distribution cannot be larger
than the square of its mean3, thus 1 in this paper.

In Fig. 5.1, we find that the average fraction y∞ of infected nodes decreases as the
variance v of the infection rates increases, no matter which distribution the infection
rates follow. Moreover, the comparison of the decay of the three curves in Fig. 5.1 also
suggests that, the smaller the third moment4 of the infection rate distribution is, the
faster y∞ decays as the variance increases.

When the variance v is larger than 1, the infection rates cannot be symmetrically
distributed. We thus discuss only the log-normal and gamma distributions which are
representative among the heavy-tailed distributions and widely used in the real-world
analysis.

In Fig. 5.2, we observe the same as in Fig. 5.1. Moreover, we find that the average
fraction y∞ of infected nodes decays much faster when infection rates follow gamma
distributions than log-normal distributions.

Here we only show the simulation results on ER random networks with 104 nodes and
average degree E [D] = 4, because simulation results on SF networks lead to the same ob-
servations. Moreover, though not shown in this paper, we have also done the simulations

3For any random variable B following a non-negative and symmetric distribution fB (β) with mean m1, the
smallest and largest value that B can reach is 0 and 2m1 respectively, so the largest variance, which equals to
m2

1 , can be reached when Pr [B = 0] = Pr [B = 2m1] = 0.5.
4The third moment of the log-normal, gamma and SP distribution is (v +1)3, (v +1)(2v +1) and 3v +1 respec-

tively.
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Figure 5.1: The average fraction y∞ of infected nodes as a function of the normalized variance v of infection
rates for log-normal (◦), gamma (ä), and SP ((O) infection-rate distributions respectively, and the recovery
rate δ = 2. We consider ER networks with average degree E [D] = 4 and network size N = 104. The results are
averaged over 1000 realizations.
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Figure 5.2: The average fraction y∞ of infected nodes as a function of the variance v of infection rates following
different distributions: log-normal (◦) and gamma (ä), and the recovery rate δ = 2. The simulations are on
ER networks with average degree E [D] = 4 and network size N = 104. The results are averaged over 1000
realizations, and the error bars are the standard deviations of the results in different realizations. The inset is
the same as the main graph, but in a linear-linear scale.

with various values of the recovery rate, such as δ = 0.1, 0.2, 1, etc., for both ER and SF
networks and the conclusions are consistent.
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5.3.2. THE INFLUENCE OF THE MOMENTS OF THE INFECTION RATES
To explain our observations, we consider a susceptible node and an infected node inter-
connected by a link. The probability ρ(T ) that the infected node infects the susceptible

neighbor in an arbitrary period T , is ρ(T ) =
+∞∫
0

fB (β)F (T ;β)dβ, where fB (β) is the PDF of

the infection rate, and F (T ;β) is the probability that infection occurs between the neigh-
boring infected and susceptible node pair within the time interval T when the infection
rate is β. Since the infection between any infected and susceptible node pair is an inde-
pendent Poisson process, the time for an infected node to infect a susceptible neighbor
is an exponential variable, i.e. F (T ;β) = 1− e−Tβ. We consider further the classic homo-
geneous SIS model, whose infection rate is equal to the average infection rate E [B ] in
our heterogeneous SIS model. The counterpart of ρ(T ) in the homogeneous SIS model
is, then, ρ∗(T ) = F (T ;E [B ]).

Theorem 1 If fB (β) is the probability density function of a non-negative continuous ran-
dom variable B, and F (T ;β) is the distribution function of an exponential random vari-
able with the rate parameter β, then for any T > 0, we have

∞∫
0

fB (β)F (T ;β)dβ≤ F (T ;E [B ])

Proof.
∞∫

0

fB (β)F (T ;β)dβ

=1−
∞∫

0

fB (β)e−Tβdβ

=1−E [e−T B ]

Since the exponential function is convex, Jensen’s inequality [123] tells us that

E [e−T B ] ≥ e−T E [B ]

Hence,
∞∫

0

fB (β)F (T ;β)dβ≤ 1−e−T E [B ] = F (T ;E [B ])

Theorem 1, that proves ρ(T ) ≤ ρ∗(T ), tells us that if the infection rate in the classic
homogeneous SIS model and the average infection rate in heterogeneous model are the
same, then in the same period of time an infection event is more likely to happen in the
classic SIS model.

We define χ(T ) = ρ∗(T )−ρ(T ) as the difference in infection probability within an
arbitrary time interval T between the SIS model with homogeneous and heterogeneous
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infection rates.

χ(T ) =E [e−T B ]−e−T E [B ]

=
∞∑

n=0

(−T )n (E [B n]− (E [B ])n)

n!

=
∞∑

n=0

(
mn −mn

1

)
(−T )n

n!

=
∞∑

n=0
(ν2n −1)

(Tm1)2n

(2n)!
−

∞∑
n=0

(ν2n+1 −1)
(Tm1)2n+1

(2n +1)!

(5.1)

Note that the first step in (5.1) is valid only if the sum
∑∞

n=0
(−T )n E [B n ]

n! converges. The
general log-normal distribution over an infinite range does not satisfy this condition.
However, the infection rates of real-world systems are finite. Theorem 2 states that any
realistic distribution of the infection rates within a finite range satisfies this convergence
condition.

Theorem 2 For any non-negative random variable B distributed in a finite range [0,b]
and any finite T , the sum

∞∑
n=0

(−T )nE [B n]

n!
≤ 2eT b

thus converges.

Proof.

E [B n] =
∫ b

0
βn fB (β)dβ

= βn
∫ β

0
fB (β)dβ

∣∣∣∣b

0
−

∫ b

0

∫ β

0
fB (β)dβdβn

= βnFB (β)
∣∣b
0 −

∫ b

0
FB (β)dβn

Since

FB (β) =
∫ β

0
fB (β)dβ≤ 1

we have

E [B n] ≤ bn +
∣∣∣∣∫ b

0
FB (β)dβn

∣∣∣∣≤ 2bn .

Hence, ∣∣∣∣ ∞∑
n=0

(−T )nE [B n]

n!

∣∣∣∣
≤

∞∑
n=0

|(−T )n ||E [B n]|
n!

≤2
∞∑

n=0

T nB n

n!

=2eT b
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which illustrates the convergence of
∑∞

n=0
(−T )n E [B n ]

n! for any T .

Theorem 1 and (5.1) explore only on the local effect: the epidemic spreads on aver-
age faster along a link in the heterogeneous case than the homogeneous case. However,
if the infection probabilities of all the nodes are similar and the state of the each node
(infected or not) is independent, each connected node pair would have a similar frac-
tion of time when one node is infected whereas the other is susceptible, i.e. the period
that allows epidemic to spread. In this case, the difference χ(T ), where 0 ≤ χ(T ) < 1,
in infection probability along a link within an arbitrary time T may indicate the differ-
ence in the fraction of infected nodes between the homogeneous and heterogeneous SIS
in the metastable state. Both the heterogeneous infection rates and the heterogeneous
network topology contribute to the heterogeneity in the infection probability of each
node. When the recovery rate is low or equivalently the epidemic prevalence is high,
however, the infection probabilities of the nodes tend to be similar. Hence, χ(T ) could
suggest the difference in the fraction of infected nodes between the heterogeneous and
homogeneous cases when the recovery rate is small. The larger the difference χ(T ) is,
the smaller the average fraction y∞ of infected nodes, in the metastable states of the het-
erogeneous SIS is. Equation (5.1), thus suggests that, the larger even-order moments of
the infection rates lead to a smaller average fraction of infected nodes y∞, but the odd-
order moments contribute in the opposite way. These theoretical results help us better
understand our two observations in Fig. 5.1 and 5.2, when the recovery rates are small:
(a) the average fraction y∞ of infected nodes decreases with the increased variance, and
(b) given the same variance, the average fraction y∞ of infected nodes is lower if the third
moment of the distribution is smaller.

5.3.3. THE LOG-NORMAL DISTRIBUTION VS. THE GAMMA DISTRIBUTION
To explore how fast y∞ decays, we perform simulations with different recovery rates δ
and fit the curves of y∞ vs. the variance v . We find that, as shown in Fig. 5.3, the rela-
tionship between the average fraction y∞(v) of infected nodes and the variance v can
be fitted by a double-exponential function y∞,L(v) = c1e−c2v + c3e−c4v and a quadratic
function y∞,Γ(v) = c1v2−c2v+c3, when the infection rates follow log-normal and gamma
distributions respectively. The coefficients c1, c2, c3, and c4, shown in Table 5.1, also sug-
gest that, approximately, y∞,L decreases exponentially with the variance v much slower
than the linear decrease of y∞,Γ when y∞,Γ is not close to 0.

Table 5.1: The coefficients of the fitting functions of y∞ vs. the variance v for different infection-rate distribu-
tions under different recovery rates.

Dist. δ c1 c2 c3 c4

Log −N
3 0.098 0.045 0.099 0.28
2 0.20 0.011 0.21 0.14

Γ
1 0.0011 0.055 0.67

N /A
0.5 0.00085 0.053 0.83

Besides the theoretical explanation as mentioned before, we explore further the phys-
ical interpretations of the difference in the fraction of infected nodes between the log-
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Figure 5.3: The average fraction y∞ of infected nodes as a function of the variance v of infection rates following
gamma distributions. The recovery rates δ are different: 1 (◦) and 0.5 (ä), and the dash lines are fitting curves.
The simulations are on ER networks with average degree 〈k〉 = 4 and network size N = 104. The results are
averaged over 1000 realizations. The inset contains the results about log-normal distributions.

normal and gamma distributed infection rates. We define r (β) as the ratio between the

PDF of the log-normal and gamma distribution, i.e. r (β) = fB (β;µ,σ)
fB (β;k,θ) . Thus lim

β→0
r (β) = 0

and lim
β→∞

r (β) = ∞. This reveals that if we set the same mean and variance (large) for

both distributions, the log-normal distribution tends to generate a few extremely large
values whereas the gamma distribution generates many extremely small values to pro-
duce the large variance.

Table 5.2: The percentiles of the log-normal and gamma distribution with the mean m1 = 1 and variance v = 16

Percentiles Log −N Γ

1st 0.00483 9.44×10−32

2.5th 0.00895 2.20×10−25

5th 0.0152 1.44×10−20

10th 0.0280 9.44×10−16

25th 0.0779 2.20×10−9

50th 0.243 1.44×10−4

In Table 5.2, we show the percentiles5 of the two distributions with a large variance
v = 16. In a group of random numbers generated by the gamma distribution, 25% of
them are even smaller than 2.2×10−9. The infection events driven by such small rates

5A percentile is a measure to indicate the value below which a given percentage of observations in a group of
observations fall.
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can hardly happen. However, in the infection rates generated by the log-normal distri-
bution, even the first 1% smallest values are large enough to make possible infections.
Hence, the gamma distribution effectively filters the network more than the log-normal
distribution, and reduce the spread of the epidemic more. This interpretation is also
consistent with the theoretical explanation of the influence of the third moment of a
distribution. The same large variance can be introduced by the log-normal distribu-
tion via the possibility of generating a large value and by the gamma distribution via the
high probability of generating extremely small values. However, the gamma distribution
leads to a smaller third moments compared to the log-normal distribution and the small
infection rates it generates effectively filter the network, reducing the epidemic spread.

5.4. LARGE RECOVERY RATES
We have shown that when the recovery rates are small, the i.i.d. heterogeneous infection
rates retards the epidemic spreading and the larger variance of infection rates leads to a
smaller average fraction of infected nodes. Moreover, we further explained the influence
of the higher moments of the infection rate on epidemic spreading. In this section, we
discuss how the heterogeneous infection rates influence the epidemic spreading when
the recovery rate is large, thus, the epidemic is close to die out. As an example, we show
the simulation results of the SF networks with the log-normal distributed infection rates.
We find that, the heterogeneous infection rates may increase the probability that the epi-
demic spreads out when the recovery rate is large, though if the epidemic can spread out,
the larger variance of infection rates still leads to a smaller average fraction of infected
nodes in the metastable state.

We first employ the log-normal distribution for the heterogeneous infection rates
and set the recovery rate δ= 20. As shown in Fig. 5.4, though the average fraction y∞ of
infected nodes is close to 0 (due to the large recovery rate), we can observe that the larger
variance may lead to a slightly larger average fraction y∞ of infected nodes. However, the
error bars (the standard deviation of the simulation results from different realizations)
are large as compared to the average fraction of infected nodes. This is due to the fact
that when the epidemic is close to die out on average, i.e. when δ = 20, the epidemic
dies out in some iterations of the simulations but spreads out with a nonzero fraction of
infected nodes in the metastable state in the others.

Fig. 5.5 shows the percentage p∗ (∈ [0,1]) of the spread-out realizations in all realiza-
tions and the average fraction y∗∞ of infected nodes in these nonzero-infection realiza-
tions as a function of the variance of the infection rates. Here the the simulations are on
SF networks with the size N = 104 and the exponent λ= 2.5. Clearly, the average fraction
of infected nodes obtained by averaging that in all realizations is y∞ = p∗y∗∞. We find
that, in all nonzero-infection realizations, the average fraction y∗∞ of infected nodes still
decreases as the variance of the infection rates increases. The average fraction y∞ of in-
fected nodes obtained from all realizations may increase as the variance of the infection
rates increases, because the percentage p∗ of nonzero-infection realizations increases
when the variance of the infection rates is small and increases. Hence, the heteroge-
neous infection rates may enhance the probability that the epidemic spreads out. This
can be explained as follows: the heterogeneous infection rates and the hubs in scale-free
networks enable those links with a large infection rate to form a connected subgraph,
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Figure 5.4: The average fraction y∞ of infected nodes as a function of the variance v of infection rates follow-
ing the log-normal distribution, and the recovery rate δ = 20. The simulations are on SF networks with the
exponent λ= 2.5 and the network size N = 104. The results are averaged over 1000 realizations, and the error
bars are the standard deviations of the results in different realizations.

allowing the epidemic to spread out. However, when the variance v is large and further
increases, as shown in Fig. 5.5, the fraction of non-zero infection realizations decreases.
This is because, a large variance v of the infection rates produces fewer large infection
rates, prohibiting the formation of a connected subgraph with high infection rates that
allows the epidemic to spread. However, the average fraction of infected nodes of the
nonzero-infection realizations tend to decrease with the variance or heterogeneity of
the infection rates.

If we increase the recovery rate to ensure that the epidemic dies out in the homo-
geneous case, i.e. the effective infection rate is below the epidemic threshold τc in the
classic SIS model, we obtain the same conclusions: the average fraction y∗∞ of infected
nodes in nonzero-infection realizations (if exist) always decreases as the variance of the
infection rates increases, and the heterogeneous infection rates may increase the prob-
ability that the epidemic spreads out.

We further compare the simulation results between the log-normal and gamma dis-
tributions. As shown in Fig. 5.6(a), the average fraction y∗∞ of infected nodes in nonzero-
infection realizations is larger when the infection rates follow the log-normal distribu-
tion than the gamma distribution. This observation is consistent with our previous ob-
servations and conclusions as illustrated in Section 5.3, when the variances of the infec-
tion rates are the same, the larger third moments of the infection rates lead to the more
severe infection. However, as shown in Fig. 5.6(b), when the variance of the infection
rates is small, the percentage p∗

Γ of the nonzero-infection realizations is larger in the
case of the gamma distributed infection rates than the percentage p∗

L of the nonzero-
infection realizations in the case of the log-normal distributed infection rates. More-



5.4. LARGE RECOVERY RATES

5

55

22x10
-3

20

18

16

14

12

10

y
*

12080400
v

0.5

0.4

0.3

0.2

0.1

p
*

8

 y
*

 p
*

8

Figure 5.5: The average fraction y∗∞ (◦) of infected nodes in the nonzero-infection realizations and the percent-
age p∗ (ä) of the nonzero-infection realizations as a function of the variance v of infection rates. The infection
rates follow the log-normal distribution and the recovery rate δ= 20. The simulations are on SF networks with
the exponent λ = 2.5 and the network size N = 104. The results are averaged over 1000 realizations, and the
error bars are the standard deviations of the results in different realizations.

over, as the variance of the infection rates is relatively large (for example, around 30 in
Fig. 5.6(b)) and increases, p∗

Γ decreases faster than p∗
L , and p∗

Γ could be smaller than p∗
L

if the variance is large enough. Given a network and a large recovery rate, more large in-
fection rates lead to a higher probability that the epidemic can spread out. As in Section
5.3.3, we can explain the observations in Fig. 5.6(b) by exploring the percentiles of the
log-normal and gamma distributions with the mean 1 in Table 5.3, where two values (16
and 128) of the variance are employed as examples. When the variance is 16, there are
more large values in a group of random numbers generated by the gamma distribution
than the log-normal distribution; however, when the variance increases to 128, though
the first 1% largest values of the gamma distribution are still larger than those of the log-
normal distribution, there are more large values in the group of the log-normal random
numbers. Hence, with the same small variance, the gamma distributed infection rates
contribute more to the survival of the epidemic than the log-normal distributed infec-
tion rates, whereas with the same large variance, the log-normal distributed infection
rates may lead to a higher probability that the epidemic spreads out.

We observe the same in ER networks though not shown here. Moreover, the links
with i.i.d. large infection rates are more likely to form a subgraph in SF networks than
in ER networks, because of the existence of the nodes with large degrees in SF networks.
Hence, with the similar value of the average fraction y∗∞ of infected nodes in the nonzero-
infection realizations, we find that the percentage p∗ of the nonzero-infection realiza-
tions is much smaller in ER networks than SF networks.

We further consider an extreme case of SF networks – the star network: one central
node n0 connects with all the other m (m À 1) side nodes ni (i = 1,2, ...,m), and there
is no link between any pair of the side nodes. By designing a specific distribution of the
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Figure 5.6: (a) The average fraction y∗∞ of infected nodes in the nonzero-infection realizations and (b) The
percentage p∗ of the nonzero-infection realizations in all realizations as a function of the variance v of the
infection rates which follow the gamma (◦) and log-normal (ä) distribution.

Table 5.3: The percentiles of the log-normal and gamma distributions with the mean m1 = 1 and variance
v = 16 and 128

Log−N Γ Log−N Γ

v = 16 v = 16 v = 128 v = 128

99th 12.1936 19.9409 15.1178 24.2306

98th 7.7225 12.9981 8.2133 5.7424

97th 5.7697 9.3923 5.6176 1.5509

96th 4.6209 7.1783 4.2063 0.4140

95th 3.8751 5.6325 3.3260 0.1507
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heterogeneous infection rates, we can always give a value of the recovery rate δ so that
the epidemic spreads out with the heterogeneous infection rates but dies out with the
corresponding homogeneous infection rates in a finite-size star network. In the classic

model, the epidemic threshold of a star network is τc = β
δ = 1p

m
[121]. If we set the

homogeneous infection rate β= 1 and the recovery rate δ=p
m+ε, where ε is a positive

but small constant number, then the epidemic dies out. With the same recovery rate, we
set the heterogeneous infection rate with the distribution Pr [B = 2− ε1] = Pr [B = ε1] =
0.5, where ε1 is again a small and positive constant number, thus the average infection
rate E [B ] = 1. We now look at the subgraph which is composed of the central node and
approximately m

2 side nodes connected to the central node with infection rate βsub =
2− ε1. The effective infection rate is τsub = βsub

δ = 2−ε1p
m+ε1

≈ 2p
m

> 1p
m/2

≈ τc,sub , where

τc,sub is the epidemic threshold of the subgraph. Hence, with the same recovery rate and
the same average infection rates, the epidemic dies out in the homogeneous case but
spreads out in the aforementioned heterogeneous case.

5.5. REAL-WORLD NETWORKS
As mentioned in Section 5.2.2, the interaction frequency between two nodes in a real-
world network has been considered as the infection rate between the pair of nodes. In
this section, we choose two real-world networks as examples to illustrate how their het-
erogeneous infection rates affect the spread of SIS epidemics on these networks. The
heterogeneous infection rates from the datasets are normalized by the average so that
the average is 1. We compare the average fraction of infected nodes in the metastable
state of the two networks in the 3 scenarios: 1) each network is equipped with its nor-
malized original heterogeneous infection rates (hetero-β) as given in the dataset; 2) each
network is equipped with the infection rates in the normalized original dataset but ran-
domly shuffled (shuffled-β); 3) each network is equipped with a constant infection rate
(homo-β) which equals to the average infection rate of the normalized original infec-
tion rates as given in the datasets. The heterogeneous infection rates in each network
described in Scenario 1 are possibly correlated. For example, the infection rate of a link
may depend on the degrees of the two ending nodes of this link. The shuffling in Sce-
nario 2 effectively removes the correlation if it exists, and the infection rates in Scenario
3 are homogeneous as in the classic SIS model. Our objective is to explore the relation
between the infection rates and average fraction of infection in these 3 scenarios for both
networks to verify our previous findings.

The first network is the airline network where the nodes are the airports, the link
between two nodes indicates that there’s at least one flight between these two airports,
and the infection rate along a link is the number of flights between the two airports.
We construct this network and its infection rates from the dataset of openFlights6. The
other one is the co-author network, where the nodes are the authors of papers, the link
represents that the two corresponding authors have at least one collaborated paper, and
the infection rate is the collaboration frequency[87].

Besides the infection rates, the network topology may as well influence the spread of

6http://openflights.org/data.html
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SIS epidemics. We explore the most fundamental network feature of the two networks:
the degree distributions which are shown in Fig. 5.7. We can see that the degree distri-
butions of the airline network and co-author network approximately follow a power law
with the slope λ = 1.5 and 2.5 respectively. Hence, the degree distributions of the two
networks influence the spread of epidemics in a similar way. More details of the two net-
works are listed in Table 5.4. Note that we normalized the infection rates of each network
by its mean so that the average rate is 1.
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Figure 5.7: The degree distributions of the airline (■) and co-author network(•) can be approximately fitted by
the power law distribution with a slope λ= 1.5 and 2.5 respectively.

Table 5.4: The number of nodes, number of links, variance of infection rates and range of infection rates in the
two networks.

Name Nodes Links Variance Range

Airline 3071 15358 0.5560 [0.2383,11.0626]

Co-author 39577 175692 3.0566 [0.0678,90.4625]

The distributions of the infection rates from the two networks are shown in Fig. 5.8(a)
and 5.8(b). We find that, approximately the infection rates of the airline network are
exponentially distributed, whereas those of the co-author network follow a log-normal
distribution. Both of the two datasets support our previous choices of the infection-rate
distribution.

5.5.1. SMALL RECOVERY RATES
We first consider the small recovery rates, with which the epidemic does not die out in
any realizations. In this chapter, we assume that the infection rates are i.i.d. which cor-
responds to Scenario 2. As shown in Fig. 5.9(a) and 5.9(b), the average fraction y∞ of in-
fected nodes in Scenario homo-β is always larger than that in Scenario shuffled-β, which
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Figure 5.8: The distribution of the infection rates from real-world networks: (a) airline network and (b) co-
author network. In each figure, the distribution (◦) and fitting curve (dash line) are shown. The fitting curves
are exponential and log-normal distributions in (a) and (b) respectively.

confirms our conclusion that the heterogeneity of infection rates on average retards the
contagion processes of epidemics, when recovery rates are not very large. Moreover,
we find that the reduction y∞,homo-β − y∞,shuffled-β is larger in the co-author network,
which has a larger variance of infection rates, than that in the airline network7. This
observation verifies our conclusion that, the larger the variance of the infection rates is,
the smaller y∞ is. Compared to the independent infection rates in the case shuffled-
β, the possibly correlated infection rates in the case hetero-β can further decrease (in
e.g. the airline network) or increase (in e.g. the co-author network) the average fraction
of infected nodes. This observation points out a new challenging question: what is the
influence of such correlated heterogeneous infection rates on the SIS epidemics.

5.5.2. LARGE RECOVERY RATES

As shown in Fig. 5.10, when the recovery rate increases and the effective infection rate
is close to the epidemic threshold, the average fraction y∞ of infected nodes in the Sce-
nario hetero-β becomes mostly larger than that in the other two scenarios. Besides that,
it is still consistent with our previous conclusion that if y∞,homo-β 6= 0, then y∞,homo-β >
y∞,shuffled-β. Moreover, in the co-author network, we observe that when the recovery rate
δ= 40, y∞,shuffled-β > y∞,homo-β = 0. However, in the airline network, we cannot observe
that y∞,shuffled-β > y∞,homo-β with any selected recovery rate, and this may be because
of the small variance of the infection rates. Hence, the observations verify our conclu-
sions that if the epidemic spreads out with the homogeneous infection rates, then the
overall infection is always more severe than that with the heterogeneous infection rates
(i.i.d. and with the same mean as the homogeneous infection rate); however, the hetero-
geneous infection rate may contribute to the survival of the epidemic.

7We assume that the two networks have a similar topology, since they have a similar degree distribution as
shown in Fig. 5.7
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Figure 5.9: The average fraction y∞ of infected nodes as a function of the recovery rate δ. The networks are
from real-world: (a) airline network and (b) co-author network. In each figure, the SIS model with homoge-
neous (◦), original heterogeneous (ä) and shuffled heterogeneous (O) infection rates are compared.
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Figure 5.10: The average fraction y∞ of infected nodes as a function of the recovery rate δ. The recovery rate
is very large so that the effective infection rate is close to the epidemic threshold. The networks are from real-
world: (a) airline network and (b) co-author network. In each figure, the SIS model with homogeneous (◦),
original heterogeneous (ä) and shuffled heterogeneous (O) infection rates are compared.



5.6. DISCUSSIONS

5

61

5.6. DISCUSSIONS
In summary, we illustrate with simulations, theoretical analysis and physical interpreta-
tions that, when the recovery rate is small, the heterogeneity of infection rates on aver-
age retards the virus spread and whereas the larger even-order moments of the infection
rates tend to lead to a smaller y∞, the odd-order moments contribute in the other way
around; when the recovery rate is large so that the epidemic may die out, the hetero-
geneous infection rates may enhance the probability that the epidemic spread out. We
also verify the influence of the heterogeneity of infection rates on virus spread in real-
world networks. Our work reveals that the higher moments, especially the variance, of
the infection rates may evidently affect the epidemic spread, even far more seriously
than intuitively expected. Our finding implies that real-world heterogeneous epidemic
spread may not be as severe as the classic homogeneous SIS model predicts, but the het-
erogeneous epidemic may not be as easy as the homogeneous SIS model indicates to die
out.

In this chapter, we have focused on the Markovian SIS where the time for an infected
node i to infect a susceptible neighbor j is an exponential random variable with rate
βi j . Theorem 1 can be extended to Non-Markovian SIS models with heterogeneous in-
fection rates where the infection time between a neighboring infected susceptible node
pair (i , j ) with average 1/βi j follows a distribution other than the exponential distribu-
tion. Such extension to Non-Markovian SIS models is possible if 1−F (τ;β) the proba-
bility that the infection time is larger than τ when the average infection time is 1/β is a
convex function of β.

The time for an infected node to infect a susceptible neighbor is more in depth and
detailed information. Infection time measurement becomes possible though in general
is still challenging. For example, in the experiments of the epidemic in the plant pop-
ulation, the infection time can be measured. As more such datasets become available,
it would be interesting to tackle a new direction: what is the influence of the heteroge-
neous infection time on viral spreading?





6
EPIDEMIC SPREADING WITH

DEGREE-CORRELATED

HETEROGENEOUS INFECTION

RATES

The infection rate between a pair of nodes, which may depend on e.g. their interaction fre-
quency, is usually heterogeneous and even correlated with their nodal degrees in the con-
tact network. In this chapter, we aim to understand how such correlated heterogeneous
infection rates influence the epidemic spreading on different network topologies. Moti-
vated by real-world datasets, we propose a correlated heterogeneous Susceptible-Infected-
Susceptible (CSIS) model which assumes that the infection rate βi j (= β j i ) between node
i and j is correlated with the degree of the two end nodes: βi j = c(di d j )α, where α indi-
cates the strength of the correlation between the infection rates and nodal degrees, and c
is selected so that the average infection rate is 1 in this work. In order to understand the
effect of such correlation on epidemic spreading, we consider as well the corresponding un-
corrected but still heterogeneous infection rate scenario as a reference, where the original
correlated infection rates in our CSIS model are shuffled and reallocated to the links of the
same network topology. We compare these two scenarios in the average fraction of infected
nodes in the metastable state on ER and SF networks with a similar average degree. We
find that, when the recovery rate is small, the negative correlation is more likely to help the
epidemic spread and the positive correlation prohibit the spreading; as the recovery rate
increases to be larger than a critical value, the positive but not negative correlation tends
to help the spreading. Our findings are further analytically proved in a wheel network
(one central node connects with each of the nodes in a ring) and validated on real-world
networks with correlated heterogeneous interaction frequencies.

This chapter have been published as: B. Qu and H. Wang, SIS Epidemic Spreading with Correlated Heteroge-
neous Infection Rates, Physica A Statistical Mechanics & Its Applications, 2017, 472(23–24):4543-4548.
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6.1. INTRODUCTION

B IOLOGICAL, social and communication systems can be represented as networks by
considering the system components or individuals as nodes and the interactions or

relations in between nodes as links. Viral spreading models have been used to model
processes e.g. the propagation of information and epidemics on such networks or com-
plex systems [33, 91, 92, 95]. The Susceptible-Infected-Susceptible (SIS) model is one of
the most studied models. In the SIS model, at any time t , the state of a node is a Bernoulli
random variable, where Xi (t ) = 0 represents that node i is susceptible and Xi (t ) = 1 if it
is infected. Each infected node infects each of its susceptible neighbors with an infection
rate β. The infected node can be recovered to be susceptible again with a recovery rate
δ. Both infection and recovery processes are independent Poisson processes. The ratio
τ, β/δ is called effective infection rate. When τ is larger than the epidemic threshold
τc , the epidemic spreads out with a nonzero fraction of infected nodes in the metastable
state. The average fraction of infected nodes y∞ in the metastable state, ranging in [0,1],
indicates how severe the influence of the virus is: the larger the fraction y∞ is, the more
severely the network is infected.

In the classic SIS model, both the infection and recovery rates are assumed homoge-
neous, i.e. the infection rates are the same for all infected-susceptible node pairs and the
recovery rates are the same for all infected nodes. However, the infection rates which can
be reflected from, for example, the interaction frequencies, between nodes in real-world
networks are usually heterogeneous and even dependent on the properties of the nodes.
For examples, the number of flights between different pairs of airports in a month are
different in the airline transportation network, and the number of collaborated papers
between different pairs of authors in a year vary in a co-author network [11, 77]. The in-
teraction freqeuncy is found to be correlated with the nodal degrees in e.g. airline trans-
portation network and metabolic network [11, 77, 81]. Hence, we aim to understand the
effect of correlated infection rate on the viral spreading in this work. We propose a cor-
related heterogeneous SIS (CSIS) model, in which the recovery rates are homogeneous
but the infection rate βi j (=β j i ) between node i and j is correlated with their degrees di

and d j in the way:
βi j = c(di d j )α (6.1)

where α indicates the strength of the correlation and c is a constant to control the aver-
age infection rate to 1. The correlation strength α≈ 0.5 in the network of airports (both
in US [11, 81] and China [77]) and α≈ 0.8 in the metabolic network [81].

This paper aims to understand the effect of correlation between the infection rates
and nodal degrees on viral spreading. Motivated by real-world networks, we consider the
generic case where the heterogeneous infection rates are correlated with nodal degrees
as described by (6.1) and the network topology is as well heterogeneous. We consider
also the corresponding uncorrelated heterogeneous infection rates scenario, where the
correlated infection rates are shuffled and randomly assigned to all the links as a refer-
ence scenario. For the heterogeneity of the network topology, we consider the differ-
ent broadness of the degree distribution, i.e. Erdös-Rényi (ER) and scale-free (SF) net-
works. We explore how the positive or negative correlation between the infection rates
and nodal degrees influences the epidemic spread on the networks with different het-
erogeneities of the topology.
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A few recent papers have taken into account the heterogeneous infection rates in the
SIS model. We studied the SIS model with identically and independently distributed
(i.i.d.) infection rates and found that independent of the underlying network topol-
ogy, though the heterogeneous infection rates may increase the probability that the epi-
demic spreads out when the recovery rate is large, the overall infection decreases as the
variance of infection rates increases if the epidemic spreads out[100]. Buono et al. [23]
considered a specific distribution of infection rates and observed slow epidemic extinc-
tion phenomenon. Preciado et al. [97] discussed how to choose the infection and recov-
ery rates from given discrete sets to let the virus die out. Yang and Zhou [135] gave an
edge-based mean-field solution of the epidemic threshold in regular networks (the de-
grees of all nodes are the same) with i.i.d. heterogeneous infection rates following a uni-
form or power-law distribution. Fu et al. [42] analytically studied the epidemic threshold
when the infection rates are as a piecewise linear function of degrees by their mean-field
method. Van Mieghem and Omic [124] developed the N-intertwined mean field approx-
imation (NIMFA) [121] for heterogeneous SIS model, and discussed the bounds of epi-
demic threshold and the convexity of the steady-state infection probability of each node
as function of the recovery rate. Heterogeneous infection rates have also been consid-
ered in interconnected networks, allowing component networks and their interconnec-
tions to have a different but constant infection rate [105, 128]. In this paper, we employ
the continuous-time simulation of the exact SIS model instead of the mean-field meth-
ods and introduce a general correlation between the nodal degree and the infection rate
which is motivated by real-world datasets to study the influence of the correlation on the
epidemic spreading.

6.2. PRELIMINARY

In this section, we first introduce the construction of network models and the heteroge-
neous infection rates which are considered in our CSIS model. We then introduce the
continuous-time simulation which is the main approach in this work. Finally, we intro-
duce the mean-field approximation of the SIS and CSIS model which will be further used
in our theoretical analysis of the CSIS model on the wheel network in Section 6.4.

6.2.1. THE INFECTION RATES

Given the network topology, we build two heterogeneous infection-rate scenarios: 1)
the correlated infection rates and 2) the uncorrelated or shuffled infection rates. In the
scenario of correlated infection rates, we assume that βi j = c

(
di d j

)α where α indicates
the correlation strength. We selected the constant c such that the average infection rate
is 1, whereas we consider different values of homogeneous recovery rates. In this case,
the infection rate of each link is determined by the given network topology and α. In the
scenario of uncorrelated infection rates, we shuffle the infection rates from all the links
as generated in the first scenario and redistribute them randomly to all the links. In this
way, we keep the distribution of infection rates but effectively remove the correlation
between the infection rates and nodal degrees. The homogeneous infection rate is a
special case of our heterogeneous infection rate construction where α = 0. Clearly, in
a homogeneous network where all the nodes have the same number of neighbors, the
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infection rates are homogeneous in both scenarios for any α.

As examples, we show the distribution of the heterogeneous infection rates when
α = 0.5 (the positive correlation) and α = −0.5 (the negative correlation) for both ER
and SF networks in Fig. 6.1. We find that the positive correlation between the infection
rates and the nodal degrees leads to a heavy-tailed distribution of the infection rate in SF
networks. However, the negative correlation in SF networks and both kinds of correlation
in ER networks only generate the infection rates distributed in a small range.

A positive α > 0 (or negative α < 0), suggests a positive (or negative) correlation be-
tween the infection rates and nodal degrees. Too large or too small values of α could not
be realistic. For example, [11, 77, 81] suggest that α is around 0.5 or 0.8 in their datasets,
and we also find α ≈ 0.14 and −0.12 respectively in two real-world dataset as described
in Section 5. Hence, we focus mainly on the range ofα ∈ [−1,1] in this paper, and discuss
the extreme case when the absolute value of α is large in Section 6.3.2.

6.2.2. THE SIMULATIONS

In this chapter, we perform the continuous-time simulations of the CSIS model on both
ER networks and SF networks (the heterogeneity of the network topology is thus taken
into account) with N = 10000 nodes. Given a network topology, a recovery rate δ and a
value of α, we carry out 100 iterations. In each iteration, we generate the heterogeneous
infection rates as described in (6.1) for the scenario of the correlated infection rates and
shuffle them for the scenario of uncorrelated infection rates. Initially, 10% of the nodes
are randomly infected. Then the infection and recovery processes of SIS model are sim-
ulated until the system reaches the metastable state where the fraction of infected nodes
is unchanged for a long time. The average fraction y∞ of infected nodes is obtained
over 100 iterations for both scenarios of the correlated and uncorrelated infection rates.
Moreover, for simplicity, we use y∞,c and y∞,u to denote the average fraction of infected
nodes in the scenarios of correlated and uncorrelated infection rates respectively.

6.3. EFFECT ON THE AVERAGE FRACTION y∞ OF INFECTED NODES
As mentioned, the average fraction y∞ of infected nodes in the metastable state indi-
cates how severe the network is infected. In this section, we explore how the average
fraction y∞ of the infected nodes depends on the parameterα in both of the two scenar-
ios: correlated and uncorrelated infection rates. We mainly consider the influence of the
correlation between the infection rates and nodal degrees on epidemic spreading when
the recovery rate varies and the absolute value of α is in the range [−1,1]. The difference
of the influence between ER and SF networks is also discussed. Then we briefly describe
the influence of the correlation in an extreme case when the absolute value of α is much
larger. In this case, the influence of the correlation is independent from the value of the
recovery rate.

6.3.1. REALISTIC CASES: α ∈ [−1,1]
In this subsection, we first intuitively explain that how the correlation influences the
epidemic spreading as the recovery rate δ and the parameter α vary. To support our
explanations, we then define an intermediate quantity and illustrate the effect of the
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Figure 6.1: The distribution of the heterogeneous infection rates for (a) SF networks and (b) ER networks, where
the parameter α= 0.5 in the main figures and α=−0.5 in the insets.
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correlation when the recovery rate is small and large respectively.

The average fraction y∞ of infected nodes as a function of the scale parameter α
in both ER and SF networks are shown in Fig. 6.2. We employ different values of the
recovery rate δ to illustrate the influence of the correlation on the epidemic spreading
over different range of recovery rates, i.e. different prevalence of the epidemic.

Our previous work [100] explored the SIS model with i.i.d. heterogeneous infection
rates and showed that the average fraction y∞ of infected nodes tends to decrease as the
variance of the i.i.d. infection rates increases. In this chapter, the uncorrelated infection
rates can be considered as being independent. In this case, our previous results can be
applied to derive the relationship between the average fraction y∞ of infected nodes and
the parameter α as shown in Fig. 6.2: as α increases when α> 0 or as α decreases when
α < 0, the variance of the infection rates increases, hence y∞ decreases in the scenario
of uncorrelated infection rates. In the scenario of correlated infection rates, though the
peaks of y∞ are not at α= 0 for both types of networks, y∞ roughly decreases as the ab-
solute value of α increases. This is because, as the absolute value of α increases, large
infection rates are assigned to a small number of links, limiting the spread of the epi-
demic.

From Fig. 6.2, we find that 1) the negative correlation (α < 0) between the infection
rates and the degrees tends to enhance the epidemic spreading compared to the uncor-
related infection-rate scenario (y∞,c > y∞,u) when the recovery is small, but prohibit the
spreading (y∞,c < y∞,u) when the recovery rate is large; 2) the positive correlation (α> 0)
tends to enhance the epidemic spreading (y∞,c > y∞,u) when the recovery is large, but
prohibit the spreading (y∞,c < y∞,u) when the recovery rate is small.

In the scenario of uncorrelated infection rates, the parameter α determines only the
distribution of the i.i.d. infection rates in a network, and the infection rate between any
pair of nodes is independent from their degrees. Compared to the scenario of uncor-
related infection rates, a positive correlation between the infection rates and nodal de-
grees ensures that the infection rates between nodes with larger degrees are also larger,
whereas a negative correlation suggests the other way around. Intuitively, we may think
that if the nodes with larger degrees can be infected by larger infection rates, the infec-
tion probability of those nodes are higher and those nodes can more effectively infect
their neighbors as well. Hence, the positive correlation between the infection rates and
nodal degrees seems to contribute to the epidemic spreading. This is indeed the case
when the recovery rate δ is large, i.e. the prevalence of the epidemic is low.

In contrast to this intuition, we observe that the positive correlation actually tends
to prohibit the epidemic spreading when the recovery rate δ is small. This can be ex-
plained as follows: when the recovery rate δ is small, i.e. the prevalence is high, the infec-
tion probabilities of the large-degree nodes are already high, then the increment of the
infection rates between the large-degree nodes may not significantly increase the infec-
tion probabilities of these nodes, and thus the infection probabilities of their neighbors
may not be significantly increased. However, the negative correlation between the infec-
tion rates and nodal degrees leads to the higher infection rates between the small-degree
nodes and effectively enhances the probabilities of the small-degree nodes compared to
the scenario of the uncorrelated infection rates. Though the infection probabilities of
large-degree nodes decrease in this case, the large amount of small-degree nodes en-
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Figure 6.2: The average fraction y∞ as a function of α for (a) SF networks with the recovery rate δ= 0.5, (b) ER
networks with the recovery rate δ= 0.5, (c) SF networks with the recovery rate δ= 2, (d) ER networks with the
recovery rate δ= 1, (e) SF networks with the recovery rate δ= 5 and (f) ER networks with the recovery rate δ= 2
in both scenarios of correlated (◦) and uncorrelated (ä) infection rates.
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sures that the overall infection is on average enhanced.
To support our explanations, we define y (d)∞ as the average infection probability of

the nodes with degree d , and y (d)
∞,c and y (d)

∞,u as that for the scenario of correlated infec-

tion rates and uncorrelated infection rates respectively. We show y (d)∞ as a function of the
degree d when the recovery rate is small, δ= 0.5, and the correlation parameterα=−0.6
in Fig. 6.3 (the main figures). We find that such a negative correlation (α = −0.6) be-
tween the infection rates and nodal degrees indeed decreases the infection probabilities
of large-degree nodes, but the infection probabilities of the small-degree nodes are also
significantly lifted. Furthermore, the number of small-degree nodes is much larger than
that of large-degree nodes in SF networks, and those are similar in ER networks. To illus-
trate the combined effect above of the two aspects, we define η(d) as (6.2), the product
of the probability that a node has the degree d and the difference between the average
infection probability of the nodes with the degree d in the scenarios of correlated and
uncorrelated infection rates:

η(d) = (y (d)
∞,c − y (d)

∞,u)Pr[D = d ] (6.2)

and y∞,c − y∞,u = ∑d=N−1
d=1 η(d). Note that a positive η(d) always indicates that y∞,c >

y∞,u , i.e. the correlation lifts the infection probability of nodes with the degree d com-
pared to the scenario of the uncorrelated infection rates. As in the insets of Fig. 6.3, we
plot η(d) as a function of the degree d for both ER and SF networks. More plots1 of η
as a function of the degree d are shown in Fig. 6.4 where the cases with small degrees
are shown in the main figures and those with relatively large degrees are shown in the
insets. We find that in both networks the value of η is significantly large for the small-
degree nodes and contributes more to a higher prevalence of the epidemic when the
recovery rate is small and the correlation is negative as shown in Fig. 6.3, Fig. 6.4(c) and
Fig. 6.4(d). The observation is consistent with our explanation about why the negative
correlation tends to help the epidemic spreading when the recovery rate is small. In con-
trast, the observation, shown in Fig. 6.4(a) and Fig. 6.4(b), that the positive correlation
does increase the infection probabilities of large-degree nodes but decreases those of
small-degree nodes more when the recovery rate is small, also supports our explanation
about how the positive correlation prohibits the spreading when recovery rate is small.

As the recovery rate becomes large thus the prevalence is low, the positive but not
negative correlation, between the infection rates and nodal degrees may effectively en-
hance the infection probabilities of the large degree nodes comparing to the uncorre-
lated infection rates. When the recovery rate δ is large, for example, δ= 5 for SF networks
and δ= 2 for ER networks in this chapter, the positive correlation leads to the increment
of the infection probabilities of large-degree nodes and could further lift the probabilities
of their small-degree neighbors which are large in number. The infection probabilities of
small-degree nodes are reduced, but the infection probabilities are already low and the
small-degree nodes have few neighbor to infect. Hence, the overall infection increases
on average. The explanations are supported by Fig. 6.4(a) and Fig. 6.4(b). The infection

1We still select α = −0.6 as the example of the negative correlation and α = 0.6 as the comparison for ER
network, but we select α = −0.2 as the example of the negative correlation (and α = 0.2 as the comparison)
for SF networks since when δ = 5 and α = −0.6 the epidemic already dies out in the scenario of correlated
infection rates.
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Figure 6.3: In the main figures: the average infection probability y (d)∞ of the nodes with degree d as a function
of the degree d for (a) SF networks and (b) ER networks with the recovery rate δ = 2 and α = −0.6 for both
scenarios of the correlated and uncorrelated infection rates. In the insets: η as a function of d with the same
setting as the main figure.

probabilities of the large-degree nodes increases for different recovery rates when α is
positive, and the increment of the infection probabilities of large-degree nodes is also
larger as the recovery rate increases. Thought the infection probabilities of the small-
degree nodes may decrease when the correlation is negative, the increment of the in-
fection probabilities of the large-degree nodes also lifts the infection probabilities of the
small-degree nodes. As a result, the infection probabilities of majority nodes are on av-
erage lifted when the recovery rate δ= 5 and δ= 2 for SF and ER networks respectively.

For both ER and SF networks, the positive correlation between the nodal degrees
and the infection rates tends to enhance the spreading when the recovery rate is small,
whereas the negative correlation tends to help when the recovery rate is large. As the
recovery rate δ increases from 0 and if the absolute value of α is small, we expect that
there is a critical value δc : when δ < δc the negative correlation tends to enhance the
spreading, otherwise (δ > δc ) the positive correlation is likely to help the spreading. By
the comparing Fig. 6.2(c) and Fig. 6.2(f), we can observe that δc is larger in SF networks
than ER networks. This difference is mainly caused by that the prevalence in SF networks
tends to be higher than that in ER networks when the recovery rate and the parameter α
are the same and the positive correlation tends to enhance the epidemic spreading when
the prevalence is low as we discussed.

6.3.2. EXTREME CASES

We then discuss the influence of the correlation between the infection rates and the
nodal degrees when the correlation is strong, i.e. the absolute value of α is large.

When the absolute value of α is large, the variance of the infection rates is large as
well. In this case, most links possess a small infection rate and few have a large infection
rate. A large proportion of the links have such a small infection rate that the infection
processes driven by the small infection rate will hardly happen. The networks are actu-
ally filtered by the small infection rates. The other small proportion of the large infection
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Figure 6.4: The plot of η as a function ofα for (a) SF networks and (b) ER networks with different recovery rates.



6.4. THE WHEEL NETWORK

6

73

rates then mainly determine the overall infection. In the scenario of the uncorrelated
infection rates, the few large infection rates are randomly distributed, thus cannot form
a connected cluster. Compared to the scenario of the uncorrelated infection rates, the
positive correlation ensures that the large infection rates are distributed between the
large-degree nodes which are more likely to connect with each other, forming a sub-
graph. A connected subgraph tends to help the spread of an epidemic. In the other way
around, the negative correlation will almost surely stop the epidemic spreading since the
few large infection rates distributed between the small-degree nodes could hardly form
such a connected cluster. In summary, the positive correlation enhances the epidemic
spreading whereas the negative one prohibits when the absolute value of α is large.

6.4. THE WHEEL NETWORK

In this section, we further consider a special topology – the wheel network. We are go-
ing to prove that, compared to the uncorrelated heterogeneous infection rate, the nega-
tive correlation between the infection rates and the degrees tends to help the epidemic
spreading in a large wheel network when the recovery rate is small, whereas the positive
correlation tends to contribute to the epidemic spreading when the recovery rate is large.

In a wheel network, m side nodes compose a ring, i.e. node i connects with node
i + 1 (i = 1,2,3, ...,m − 1) and node m connects with node 1, and all the m side nodes
connect with one central node – node 0. In this section, we consider a large enough
wheel network, and without loss of the generality, we still set both the homogeneous
infection rate and the average of heterogeneous infection rates to be 1, and tune the
recovery rate.

In the scenario of the uncorrelated infection rates, the infection rates are actually
i.i.d. In our previous work, we found that, compared to the homogeneous infection
rate, the i.i.d. heterogeneous infection rates always reduce the overall infection if the
epidemic can spread out. That is to say, the average fraction of infected nodes reaches
the maximum when the infection rates are homogeneous, i.e. α = 0 in the scenario of
the uncorrelated infection rates. If the average fraction of infected nodes in the scenario
of the correlated infection rates is larger than that when the infection rates are homoge-
neous, then the correlation enhances the epidemic spreading compared to the uncorre-
lated case.

We first consider the homogeneous infection rate in a wheel network, where the in-
fection rates are homogeneous thus the same for all links. The infection probability v0∞
of the central node is

v0∞ = 1− 1

1+mτvi∞
= 1− δ

δ+mvi∞
(6.3)

where vi∞ is the infection probability of a side node, which is the same for all the side
nodes. The infection probability of the side node is

vi∞ = 1− 1

1+2τvi∞+τv0∞
= 1− δ

δ+2vi∞+ v0∞
(6.4)
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By solving (6.3) and (6.4), we obtain the positive solution

v0∞ = m −δ2 +2δ+ δ
(
(δ−1)m+2δ+

p
(δ2−2δ+9)m2−(4δ2+12δ)m+4δ2

)
2m

δ+m
(6.5)

and

vi∞ = (1−δ)m −2δ+
√

(δ2 −2δ+9)m2 − (4δ2 +12δ)m +4δ2

4m
(6.6)

We consider a large m and a constant δ. In this case, v0∞ ≈ 1 and

vi∞ ≈ 1−δ+
p
δ2 −2δ+9

4
(6.7)

The fraction of infected nodes is then

y∞ = mvi∞+ v0∞
m +1

≈ vi∞

Now we consider the wheel network where the infection rates are correlated as de-
fined before in (6.1). There are two kinds of infection rates in a wheel network: 1) the
infection rate β0 between the central node and a side node, i.e. β0 ∼ (3m)α; 2) the infec-
tion rate β1 between a pair of connected side nodes, i.e. β1 ∼ (3∗3)α. Since we consider
a large m, we find β0 À β1 if α > 0, whereas β0 ¿ β1 if α < 0. When the correlation be-
tween the infection rates and the degree is positive, the infection rates β0 ≈ 2 and β1 ≈ 0
and the network becomes a star network. In contrast, when the correlation is negative,
the infection rates β1 ≈ 2 and β0 ≈ 0 and the network becomes a ring. By NIMFA, we can
compute the average fraction of infected nodes2 when α> 0

y∞ ≈ vi∞ = 2

2+δ (6.8)

When α< 0, the average fraction of infected nodes3

y∞ = vi∞ = 1− δ

4
(6.9)

The parameter α = 0 in the scenario of the correlated infection rates indicates the ho-
mogeneous infection rate which is the same as α= 0 in the scenario of the uncorrelated
infection rates. We have shown that the average fraction of infected nodes reaches the
maximum when α = 0 in the scenario of the uncorrelated infection rates, so we further
compare the average fraction of infected nodes as shown in (6.7) when the infection rates
are homogeneous i.e. α = 0 with that as shown in (6.9) when α < 0 or that as shown in
(6.8) when α > 0 to explore the influence of the correlation on the epidemic spreading.
By comparing (6.7) and (6.9), we find that when the recovery rate δ< 2, the average frac-
tion y∞ of infected nodes is higher if α< 0 than if α= 0. Hence, the negative correlation
between the infection rates and nodal degrees helps the epidemic spreading if the recov-
ery rate is small, i.e. δ< 2. Similarly, if we compare (6.7) and (6.8), we find that when the

2Equation (6.8) can be similarly derived by solving the NIMFA equations.
3Equation (6.9) can be derived by applying the Laurent series.
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recovery rate δ> 2 the average fraction of infected nodes is higher if α> 0 than if α= 0,
and conclude that the positive correlation between the infection rates and nodal degrees
contributes to the epidemic spreading if the recovery rate is large. The theoretical results
are consistent with our previous conclusions: when the recovery rate is small, the nega-
tive correlation tends to help the epidemic spreading, and as the recovery rate increases
to be larger than a critical value, i.e. 2 in this case, the positive correlation enhances the
spreading.

6.5. REAL-WORLD NETWORKS
As mentioned, the interaction frequency βi j between node i and node j in a real-world
network can be considered as the infection rate between them and it has been found
that βi j ∼ (di d j )α in many networks. In this section, we choose two real-world networks
as examples to illustrate how their heterogeneous infection rates affect the spread of SIS
epidemics on these networks. We compare the average fraction y∞ of infected nodes
in the metastable state of the two networks in the two scenario: 1) the scenario of cor-
related infection rates, where each network is equipped with its original heterogeneous
infection rates (but normalized so that the average infection rate is 1) as given in the
dataset; 2) the scenario of uncorrelated infection rates, where each network is equipped
with the infection rates (normalized as well) in the original dataset but the infection rates
are shuffled and reassigned to each link. Our objective is to explore the relation between
the infection rates and average fraction of infected nodes in these 2 scenarios for both
networks to verify our previous findings.

The first network is the airline network (with 3071 nodes and 15358 links) where the
nodes are the airports and the infection rate along a link is the number of flights between
the two airports. We construct this network and its infection rates from the dataset of
openFlights4. The other one is the co-author network (with 39577 nodes and 175692
links) where the nodes are the authors of papers, and the infection rate is the collabo-
ration frequency depending on the number of collaborated papers and the number of
authors in those papers[87].

As shown in Fig. 6.5(a), the degree distributions of the airline network and co-author
network approximately follow a power law with the slope λ = 1.5 and 2.5 respectively.
Moreover, we plot the average infection rates 〈βi j 〉 as a function of the product of the
two nodal degrees di d j in Fig. 6.5(b) and 6.5(c) for the airline and co-author networks
respectively. We find that, roughly βi j ∼ (di d j )α with α = 0.14 and α = −0.12 for the
airline and co-author networks respectively.

We first discuss the case when the recovery rate is small, i.e. δ ∈ [0.5,8] (as shown in
Fig. 6.6), and then the case when δ is large, i.e. δ ≥ 15 (as shown in Fig. 5.10), since for
both networks the recovery rate δ ∈ [0.5,8] enables the high prevalence of the epidemic
and δ ≥ 15 leads to the low prevalence. The average fraction y∞ of infected nodes as a
function of the recovery rate δ for both infection-rate scenarios is shown in in Fig. 6.6
when the recovery rate δ is small. We find that the positive correlation (α = 0.14) be-
tween the infection rates and nodal degrees in the airline network retards the spread of
epidemics, whereas the negative correlation (α = −0.12) in the co-author network con-

4http://openflights.org/data.html
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Figure 6.5: (a) The degree distributions of two real-world networks: the airline and co-author networks. (b) The
interaction frequency βi j as a function of the nodal degrees di d j for the airline network. (c) The interaction
frequency βi j as a function of the nodal degrees di d j for the co-author network.
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tributes in the other way around. The observations are consistent with our previous
conclusions that the positive correlation between the infection rates and nodal degrees
probably retards the spread of epidemics whereas a negative correlation may help the
spread when the recovery rate is small. The average fraction y∞ of infected nodes as
a function of the recovery rate δ when the recovery rate is large is shown in Fig. 6.7. We
find that the positive correlationα= 0.14 in the airline network (Fig. 6.7(a)) helps the epi-
demic spreading when the recovery rate is larger than 15, and the negative correlation
α = −0.12 in the co-author network suppresses the epidemic spreading only when the
recovery rate is large, i.e. δ≤ 35, that the overall infection is close to 0. The observations
also agree with our conclusion that the positive correlation between the infection rates
and nodal degrees tends to help the epidemic spreading but not the negative correlation
when the recovery rate is large. Hence, the simulation results of the CSIS model on the
real-world networks for both the small and large recovery rates agree with our previous
conclusions.

6.6. CONCLUSION
In this chapter, we study how the correlation between the infection rates and nodal de-
grees influences the epidemic spreading, compared to the uncorrelated case. By continuous-
time simulations of our CSIS model in different infection-rate scenarios and networks
with different topology heterogeneities, we find that, when the recovery rate is small, i.e.
the prevalence of the epidemic is high, the negative correlation between the nodal de-
gree and the infection rates tends to help the epidemic spreading. However, when the
prevalence is high, the positive correlation is more likely to enhance the spreading. The
validation on two real-world networks and the proof in the large wheel network agree
with our conclusions.

Our results shed light on that how the epidemic spreads in the real-world could be far
away from the simple classic models. Not only the heterogeneity of infection rates but
also the correlation between the heterogeneity of infection rates and network topologies
could be various and complicated. Though we have shown two real-world examples, of
which the heterogeneous infection rates obey the assumption in this chapter, i.e., the
infection rates are correlated with end-node degrees, there are indeed various types of
heterogeneous infection rates. For example, Buono et al. [23] considered a specific dis-
tribution of infection rates from the contact frequency between two persons in a real
face-to-face experiment. Our work is the first step to study the correlated heterogeneous
SIS model in heterogeneous networks.
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7
THE ACCURACY OF MEAN-FIELD

APPROXIMATION

The epidemic spreading over a network has been studied for years by applying the mean-
field approach in both homogeneous case, where each node may get infected by an in-
fected neighbor with the same rate, and heterogeneous case, where the infection rates be-
tween different pairs of nodes are also different. Researchers have discussed whether the
mean-field approaches could accurately describe the epidemic spreading for the homoge-
neous cases but not for the heterogeneous cases. In this chapter, we explore if and under
what conditions the mean-field approach could perform well when the infection rates are
heterogeneous. In particular, we employ the Susceptible-Infected-Susceptible (SIS) model
and compare the average fraction of infected nodes in the metastable state obtained by
the continuous-time simulation and the mean-field approximation. We concentrate on
the N-intertwined Mean Field Approximation (NIMFA), which is an advanced approach
considered the underlying network topology. Moreover, for the heterogeneity of the infec-
tion rates, we consider not only the independent and identically distributed (i.i.d.) infec-
tion rate but also the infection rate correlated with the degree of the two end nodes. We
conclude that NIMFA is generally more accurate when the prevalence of the epidemic is
higher. Given the same effective infection rate, NIMFA is less accurate when the variance
of the i.i.d. infection rate or the correlation between the infection rate and the nodal degree
leads to a lower prevalence. Given the same actual prevalence, NIMFA performs better in
the cases: 1) when the variance of the i.i.d. infection rates is smaller (while the average is
unchanged); 2) when the correlation between the infection rate and the nodal degree is
positive. Our work suggests the conditions when the mean-field approach, in particular
NIMFA, is more accurate in the approximation of the SIS epidemic with heterogeneous
infection rates.

This chapter have been published as: B. Qu and H. Wang, The Accuracy of Mean-Field Approximation for
Susceptible-Infected-Susceptible Epidemic Spreading, Complex Networks 2016.
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7.1. INTRODUCTION

B Y considering the system components or individuals as nodes and the interactions
or relations in between nodes as links, networks have been used to describe the bio-

logical, social and communication systems. On such networks or complex systems, viral
spreading models have been used to describe processes e.g. epidemic spreading and in-
formation propagation [33, 73, 79, 92, 128]. The Susceptible-Infected-Susceptible (SIS)
model is one of the most studied models. In the SIS model, at any time t , the state of a
node is a Bernoulli random variable, where Xi (t ) = 0 represents that node i is susceptible
and Xi (t ) = 1 if it is infected. Each infected node infects each of its susceptible neighbors
with an infection rate β. The infected node can be recovered with a recovery rate δ. Both
infection and recovery processes are independent Poisson processes. The ratio τ, β/δ
is called effective infection rate, and when τ is larger than the epidemic threshold τc , the
epidemic spreads out with a nonzero fraction of infected nodes in the metastable state.
The average fraction of infected nodes y∞ in the metastable state, ranging in [0,1], in-
dicates how severe the influence of the virus is: the larger the fraction y∞ is, the more
severely the network is infected.

In this chapter, we concentrate on deriving the average fraction y∞ of infected nodes
in the metastable state. Although the continuous-time Markov theory can be used to
obtain the exact value of y∞, the number of states is too large to be solved in a large
network [91]. Hence, the derivation of the average fraction y∞ of infected nodes in the
metastable state mostly relies on different kinds of mean-field theoretical approaches.
The first approach to study the SIS model in complex networks is a degree-based mean-
field (DBMF) theory, also called heterogeneous mean-field (HMF) approximation, pro-
posed by Pastor-Satorras et al. [93], which assumes that all nodes with the same degree
are statistically equivalent, i.e. the infection probabilities of those nodes are the same. An
individual-based mean-field (IBMF) approximations, called the N-Intertwined Mean-
Field Approximation (NIMFA), of the SIS model is then introduced [125] with the only
assumption that the state of neighboring nodes is statistically independent. A few exten-
sions of the above DBMF and IBMF theories are also developed [16, 36, 48, 84]. NIMFA,
taking the network topology into account, turns out to be more precise on different types
of networks for the classic SIS model with the homogeneous infection rates[69] while
comparing to the DBMF approximation. However, as discussed in [23, 42, 100, 135], the
infection rates could be heterogeneous, i.e. the infection rates between different pairs
of nodes could also be different. The accuracy of NIMFA, when the infection rates are
heterogeneous, has not yet been discussed.

In this chapter, we explore the influence of the heterogeneous infection rates on the
precision of NIMFA. In particular, we compare the average fraction y∞ of infected nodes
as a function of the effective infection rate τ computed by NIMFA to that obtained by the
continuous-time simulations of the exact SIS model when the infection rates are hetero-
geneous but the recovery rate is the same for all nodes. In fact, the effective infection
rate τ refers to the average infection rate divided by the recovery rate in the SIS model
with heterogeneous infection rates. We set the average infection rate to 1 and tune the
recovery rate δ to control the effective infection rate τ. We consider both the indepen-
dent and identically distributed (i.i.d.) and the correlated heterogeneous infection rates
in different network topologies. For the case of i.i.d. infection rates, we employ the log-
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normal distribution to generate the infection rates as in [100]. In this case, we tune the
variance of the infection rates and explore when NIMFA performs better, i.e. the average
fraction of infected nodes obtained by NIMFA is closer to that by the continuous-time
simulations. For the case of correlated infection rates, we assume that the infection rate
βi j (=β j i ) between node i and j is correlated with their degrees di and d j in the way:

βi j ∼ (di d j )α (7.1)

and α indicates the strength of the correlation. As discussed in [101], such a correlation
between the infection rate and the nodal degree is motivated by the real-world datasets.
Moreover, the correlation strength α≈ 0.5 in the network of airports (both in US [11, 81]
and China [77]) and α ≈ 0.8 in the metabolic network [81]. Given a network, when we
generate the heterogeneous infection rates as (6.1), the distribution of infection rates ac-
tually changes with the parameterα, although the average infection rate is kept to be the
constant 1. In the case of correlated infection rates, we consider as well the correspond-
ing uncorrelated heterogeneous infection rates scenario, where the correlated infection
rates are shuffled and randomly assigned to all the links as a reference scenario, so that
we can explore how the correlation between the infection rate and the nodal degree in-
fluence the accuracy of NIMFA.

7.2. PRELIMINARY
In this section, we introduce the foundation of this chapter, including the i.i.d. heteroge-
neous infection rates, the correlated heterogeneous infection rates and the continuous-
time simulation set up.

7.2.1. THE EXTENSION OF NIMFA
The governing equation can be extended to the heterogeneous case:

dvi (t )

dt
=−δvi (t )+ (1− vi (t ))

N∑
j=1

βi j ai j v j (t ) (7.2)

where βi j =β j i is the infection rate between node i and j . The matrix equation is

(
1

δ
diag(1− vi∞)B A− I )V∞ = 0 (7.3)

where B is the infection rate matrix with the element βi j .

7.2.2. THE I.I.D. HETEROGENEOUS INFECTION RATES
In this chapter, we keep the average infection rate to 1 and tune the recovery rate δ to
control the effective infection rate τ. In the case of the i.i.d. heterogeneous infection
rates, we aim to explore how the heterogeneous infection rates influence the accuracy of
NIMFA when the variance of the infection rate varies. Particularly, we compare the av-
erage fraction y∞ of infected nodes obtained by NIMFA and the simulations for a given
effective infection rate τ. In this subsection, we introduce the distribution of the hetero-
geneous infection rates that will be considered in this work. We choose the infection-
rate distribution that is frequently observed in real-world and importantly the variance
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is tunable with a fixed mean so that we can systematically explore how the accuracy of
NIMFA changes with the broadness of the i.i.d. infection rate.

We consider the log-normal distribution, of which we can keep the mean unchanged
and tune the variance in a large range. The log-normal distribution [123] B ∼ Log -N (β;µ,σ),
of which the probability density function (PDF) is, for β> 0

fB (β;µ,σ) = 1

βσ
p

2π
exp

(
− (lnβ−µ)2

(2σ2)

)
(7.4)

has a power-law tail for a large range of β providedσ is sufficiently large. The log-normal
distribution has as well been widely observed in real-world, where the interaction fre-
quency between nodes is usually considered as the infection rate between those nodes.
For example Wang et al. [129] find that by employing the log-normal distributed infec-
tion rates, their epidemic model can accurately fit the infection data of 2003 SARS; we
also find that the infection rates in an airline network follow the log-normal distribution
[100].

In [100], we find that, if the epidemic does not die out, the larger the variance of the
i.i.d. infection rate is, the smaller the average fraction y∞ of infected nodes is. We will
show that this conclusion can actually explain the observation about how the accuracy of
NIMFA changes with the variance of the i.i.d. infection rates at a given effective infection
rate τ in this chapter.

7.2.3. THE CORRELATED HETEROGENEOUS INFECTION RATES AND THE RANGE

OF α
In the case of the correlated heterogeneous infection rates, we build a correlated infection-
rate scenario and a reference scenario. In the scenario of correlated infection rates, we
assume that βi j = c

(
di d j

)α where c is selected so that the average infection rate is 1 and
α indicates the correlation strength. In this case, the infection rate of each link is deter-
mined by the given network topology and α. For the reference scenario, we shuffle the
infection rates from all the links as generated in the first scenario and redistribute them
randomly to all the links. In this way, we keep the distribution of infection rates but
effectively remove the correlation between the infection rates and nodal degrees. For
simplicity, we name this reference scenario as the uncorrelated infection-rate scenario.
Though the i.i.d. infection rates are also uncorrelated, we can tune the variance of the in-
fection rate in the case of the i.i.d. infection rates while keeping the distribution and the
mean of the infection rates. However, in the scenario of uncorrelated infection rates in
this chapter, the distribution of the infection rate changes with the parameter α, hence
the variance of the heterogeneous infection rates cannot be systematically tuned.

A positive α > 0 (or negative α < 0), suggests a positive (or negative) correlation be-
tween the infection rates and nodal degrees. Too large or too small values of α could not
be realistic. For example, [11, 77, 81] suggest that α is around 0.5 or 0.8 in their datasets.
Hence, we select α = −0.25,−0.5,−1 for the negative correlation and α = 0.25,0.5,1 for
the positive correlation. Different values of α also offer the possibility to explore how
NIMFA performs when the correlation strength is different.

In [101], we find that, comparing to the scenario of uncorrelated infection rate, 1) the
positive correlation between the infection rate and the nodal degree tends to increase
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(or decrease) the average fraction of infected nodes when the effective infection rate τ
is small (or large); 2) the negative correlation tends to decrease (or increase) the average
fraction y∞ of infected nodes when τ is small (or large). In this chapter, we aim to under-
stand how the correlation influences the accuracy of NIMFA by comparing the average
fraction y∞ of infected nodes obtained by NIMFA and the simulations of the exact SIS
model. As in the case of the i.i.d. infection rates, we will show that the influence of the
correlation between the infection rate and the nodal degree on the average fraction y∞
of infected nodes can also be used to partially explain the conclusions in this chapter.

7.2.4. THE SIMULATIONS
We perform the continuous-time simulations of the SIS model on both ER networks and
SF networks in this chapter. Given a network topology, a recovery rate δ, we carry out
100 iterations. In each iteration, we generate the i.i.d. heterogeneous infection rates fol-
lowing the log-normal distribution or the correlated heterogeneous infection rates as
described in (7.1) for the scenario of the correlated infection rates and shuffle them for
the scenario of uncorrelated infection rates. Initially, 10% of the nodes are randomly in-
fected. Then the infection and recovery processes of SIS model are simulated until the
system reaches the metastable state where the fraction of infected nodes is nonzero and
unchanged for a long time if the epidemic spreads out, or the fraction is zero if the epi-
demic dies out. The average fraction y∞ of infected nodes is obtained over 100 iterations.

7.3. EFFECT OF THE HETEROGENEOUS INFECTION RATES
In this section, we first explore the accuracy of NIMFA when the heterogeneous infection
rates are i.i.d., and particularly how NIMFA performs when the variance Var[B ] of the
infection rate B varies. Then we explore the influence of the correlated infection rates
on NIMFA.

7.3.1. THE I.I.D. INFECTION RATES
We aim to understand the precision of NIMFA under different effective infection rates,
different variances of infection rates and different network topologies: we set the average
infection rate to 1 and tune the recovery rate δ to control the effective infection rate τ;
we change the variance of infection rates which follow the log-normal distribution; we
consider both ER and SF networks to represent different topologies. For each value of
the variance of the infection rate, we obtain the average fraction y∞ of infected nodes
as a function of the effective infection rate τ for NIMFA by numerically solving (7.3) and
compare with that by the continuous-time simulations. As shown in Fig. 7.1, no matter
what the variance of the infection rate is, the curve of y∞ vs. τ obtained by NIMFA is close
to that obtained by simulations when the actual prevalence of the epidemic is high, i.e.
the effective infection rate τ is large.

In order to quantify the difference between the two curves obtained by NIMFA and
simulations, we define the variable ζ:

ζ(τ) = |y∞,N (τ)− y∞,S (τ)|
y∞,S (τ)

(7.5)

where y∞,N (τ) > 0 and y∞,S (τ) > 0 denote the average fraction of infected nodes ob-
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Figure 7.1: The average fraction y∞ as a function of the effective infection rate τ for (a) ER networks and (b) SF
networks. The variances of the infection rates are 1 and 4 in the main figure and the inset respectively.

tained by NIMFA and simulations respectively. The larger the value of ζ(τ) is, the less
accurate NIMFA is at the corresponding τ.

In Fig. 7.2, the plots of ζ vs. τ are shown for both ER and SF networks. We find that, for
a given effective infection rate τ, NIMFA becomes less accurate when the variance of the
i.i.d. heterogeneous infection rates increases. This observation can be to a large extent
explained by: 1) our finding in Fig. 7.1 that NIMFA is more accurate when the prevalence
is higher; 2) that given an effective infection rate τ a smaller variance of the i.i.d. infection
rates leads to a higher prevalence [100].
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Figure 7.2: The plot of ζ as a function of the effective infection rate τ for (a) ER networks and (b) SF networks.

We further explore how the variance of the infection rates influences the accuracy of
NIMFA if the actual prevalence y∞,S (τ) of epidemic is similar. We plot the variable ζ in
(7.5) as a function of the actual average fraction of infected nodes obtained by simula-
tions in Fig. 7.3. We find that though it is less evident for ER networks in Fig. 7.3(a), the
difference ζ in (7.5) is actually larger if the variance of the infection rate is larger as shown
in Fig. 7.3(b) for SF networks when the prevalence is the same. Hence, the higher hetero-
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geneity, i.e. the larger variance, of the i.i.d. infection rates tends to lower down more the
accuracy of NIMFA. Overall, we conclude that the prevalence of the epidemic mainly af-
fects the accuracy of NIMFA, i.e. the higher the prevalence is, the more accurate NIMFA
tends to be, and given the same prevalence, a larger variance of the i.i.d. infection rates
tends to lower down the accuracy of NIMFA.
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Figure 7.3: The plot of ζ as a function of the average fraction y∞ obtained by simulations for (a) ER networks
and (b) SF networks.

7.3.2. THE CORRELATED INFECTION RATE

In this subsection, we aim to understand how the correlation between the infection rate
and the nodal degree as shown in (7.1) influences the accuracy of NIMFA. We first em-
ploy ER networks as an example and discuss the case when the correlation is positive.
Afterwards we explore the influence of the negative correlation.

As mentioned in Section 7.2.3, we build the scenario of uncorrelated infection rates
as a reference to study the influence of the correlation between the infection rate and
the nodal degree by shuffling the infection rates from all the links as generated in the
scenario of correlated infection rates and redistributing them randomly to all the links.
As shown in Fig. 7.4(a), we compare the difference ζ between NIMFA and simulations in
the scenario of uncorrelated and correlated infection rates for both α = 0.25 and α = 1,
and find that ζ is smaller in the scenario of correlated infection rates, i.e. NIMFA is more
accurate at a given a given effective infection rate τ when the correlation between the
infection rate and the nodal degree is positive comparing to the scenario of uncorrelated
infection rates. The observations are also consistent with our conclusion that NIMFA is
more accurate when the prevalence is higher: the positive correlation tends to increase
the average fraction of infected nodes [101], and thus the accuracy of NIMFA, when the
effective infection rate τ is small; however, when the effective infection rate τ is large,
though the positive correlate may lower down a bit the average fraction y∞ of infected
nodes, the prevalence in both scenarios is high, i.e. NIMFA is relatively accurate, and the
difference of the accuracy of NIMFA in the two scenarios is not obvious. As the correla-
tion strength α increases in Fig. 7.4(b), the difference ζ decreases at a given τ. That is to
say, NIMFA tends to be more accurate when the positive correlation becomes stronger.
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We further consider the influence of the positive correlation on the accuracy of NIMFA
when the prevalence is the same. The plots of the difference ζ as a function of the av-
erage fraction y∞ of infected nodes are shown in Fig. 7.4(c) and Fig. 7.4(d). Given the
prevalence of epidemic, the positive correlation is more likely to increase the precision
of NIMFA and the stronger the correlation is the more accurate NIMFA is. We observe
the same on SF networks which is though not shown here.
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Figure 7.4: (a) The plot of ζ as a function of the effective infection rate τ in the scenarios of uncorrelated and
correlated infection rates for α = 0.25 (the main figure) and α = 1 (the inset). (b) The plot of ζ as a function
of the effective infection rate τ in the scenario of correlated infection rates where different values of α are
considered. (c) The plot of ζ as a function of the average fraction y∞ of infected nodes obtained by simulations
in the scenarios of uncorrelated and correlated infection rates for α = 0.25 (the main figure) and α = 1 (the
inset). (d) The plot of ζ as a function of the effective infection rate in the scenario of correlated infection rates
where different values of α are considered. All the plots are on ER networks.

Regarding to the influence of the negative correlation between the infection rate and
the nodal degree on the accuracy of NIMFA, we compare the variable ζ in the scenario
of correlated and uncorrelated infection-rate scenario with α = −1 for both ER and SF
networks as shown in Fig. 7.5(a). We find that, in general, the negative correlation sig-
nificantly decreases the accuracy of NIMFA when the effective infection rate τ is small
but may slightly increase that when τ is large. Moreover, NIMFA becomes less accurate
when the negative correlation is stronger as shown in Fig. 7.5(b). As mentioned in Sec-
tion 7.2.3, the negative correlation tends to decrease the prevalence when the effective
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Figure 7.5: (a) The plot of ζ as a function of the effective infection rate τ in the scenarios of uncorrelated and
correlated infection rates for α = −1. (b) The plot of ζ as a function of the effective infection rate τ in the
scenario of correlated infection rates where different values of α are considered. (c) The plot of ζ as a function
of the average fraction y∞ of infected nodes obtained by simulations in the scenarios of uncorrelated and
correlated infection rates for α = −1. (d) The plot of ζ as a function of the average fraction y∞ of infected
nodes obtained by simulations in the scenario of correlated infection rates where different values of α are
considered.

infection rate τ is small while increase the prevalence when τ is large. Hence, the in-
fluence of prevalence on the precision of NIMFA could largely explain our observations
here.

When the prevalence of epidemic is the same, the influence of the negative correla-
tion on NIMFA’s accuracy is shown in Fig. 7.5(c) and Fig. 7.5(d). We find that, in general,
1) NIMFA is less accurate with the negative correlation comparing to the uncorrelated
scenario especially when the prevalence is low as shown in Fig. 7.5(c); 2) NIMFA becomes
even less accurate if the negative correlation becomes stronger as shown in Fig. 7.5(d).

7.4. REAL-WORLD NETWORK

The interaction frequency between two nodes in a real-world network has been consid-
ered as the infection rate between the pair of nodes [100]. In this section, we choose the
airline network from the real world as an example to illustrate how its heterogeneous
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infection rates affect the accuracy of NIMFA of SIS epidemics on the network.
In the airline network, the nodes are the airports, the link between two nodes indi-

cates that there’s at least one flight between these two airports, and the infection rate
along a link is the number of flights between the two airports. We construct this network
and its infection rates from the dataset of openFlights1. As shown in [101], the airline
network possess roughly a power-law degree distribution. The heterogeneous infection
rates from the dataset are normalized by the average so that the average is 1. We com-
pare the difference ζ between NIMFA and the simulations of the exact SIS model in three
scenarios: 1) the network is equipped with its normalized original heterogeneous infec-
tion rates (correlated) as given in the dataset; 2) the network is equipped with the in-
fection rates in the normalized original dataset but randomly shuffled (uncorrelated); 3)
the network is equipped with a constant infection rate (homogeneous) which equals to
1. The original heterogeneous infection rate between a pair of nodes are approximately
correlated with the degrees of the two nodes as the relationship (7.1), and the parameter
α≈ 0.14 indicates a positive correlation [101].

We show the difference ζ as a function of the effective infection rate τ in Fig. 7.6(a)
for the 3 scenarios defined as above. We find that NIMFA is generally more accurate
when the effective infection rate τ is larger, i.e. the prevalence of epidemic is high. The
variable ζ is smaller in the scenario of homogeneous infection rates than uncorrelated
infection rates with any effective infection rate. This is because the i.i.d. infection rates
with a non-zero variance tends to decrease the prevalence, and thus lower down the ac-
curacy of NIMFA at a given effective infection rate τ. NIMFA is more accurate with the
positive correlation by comparing the difference ζ in the scenario of correlated infec-
tion rates and uncorrelated infection rates. Furthermore, Fig. 7.6(b) shows that, given
the same actual prevalence, i.e. the average fraction y∞ of infected nodes obtained by
simulations, NIFMA is more accurate: 1) in the homogeneous scenario than in the un-
correlated scenario; 2) in the correlated scenario than in the uncorrelated scenario. All
the observations agree with our previous observations and explanations about how the
heterogeneous infection rate influences the accuracy of NIMFA in network models.

7.5. CONCLUSION
In this chapter, we study how the heterogeneous infection rates affect the accuracy of
NIMFA – an advanced mean-field approximation of SIS model that takes the underly
network topology into account. By comparing NIMFA with the continuous-time simula-
tions of the exact SIS model at a give effective infection rate τ, we find that the prevalence
of epidemic could largely characterize the accuracy of NIMFA which is reflected in two
aspects: 1) NIFMA is generally more accurate when the τ is larger, i.e. the prevalence of
epidemic is higher; 2) when the variance of the i.i.d. infection rates or the correlation
between the infection rate and the nodal degree decreases the prevalence at a given τ,
NIMFA tends to become less accurate as well. Moreover, we also explore the influence
of the heterogeneous infection rates on the accuracy of NIMFA at a given prevalence,
i.e. when the average fraction y∞ of infected nodes obtained by simulations is given.
Regarding to the i.i.d. heterogeneous infection rates, the accuracy of NIMFA tends to de-

1http://openflights.org/data.html
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Figure 7.6: The plot of ζ as a function of (a) the effective infection rate τ and (b) the average fraction y∞ of
infected nodes obtained by simulations in the airline network with different scenarios of infection rates.

crease as the variance of infection rates increases. In the scenario of correlated infection
rates, the positive correlation between the nodal degree and the infection rate is more
likely to increase the accuracy of NIMFA whereas the negative correlation tends to lower
down the accuracy especially when the effective infection rateτ is small. Our work sheds
light on the conditions when we the mean-field approximation of the SIS model with
heterogeneous infection rates is accurate.





8
THE NODAL RANKING OF

INFECTION PROBABILITY

In this chapter, we explore the vulnerability (infection probability) of each node in the
metastable state with a given effective infection rate τ. Specifically, we investigate the
ranking of the nodal vulnerability subject to a susceptible-infected-susceptible epidemic,
motivated by the fact that the ranking can be crucial for a network operator to assess which
nodes are more vulnerable. Via both theoretical and numerical approaches, we unveil that
the ranking of nodal vulnerability tends to change more significantly as τ varies when τ is
smaller or in Barabási-Albert than Erdős-Rényi random graphs.

This chapter have been accepted by Scientific Report as: B. Qu C. Li, P. Van Mieghem and H. Wang, The nodal
infection probability in SIS epidemic spreading.
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8.1. INTRODUCTION
The continuous outbreaks of epidemic diseases in a population and viruses in computer
networks [3, 45, 46, 60] motivate the study of the epidemic or virus spreading on a net-
work. The Susceptible-infected-susceptible (SIS) epidemic process [15, 28, 33, 69, 73,
111, 121, 128] is widely studied to model the virus spread on a network. In the SIS model,
a node is either infected or susceptible at any time t . Each infected node infects each
of its susceptible neighbors with an infection rate β. Each infected node recovers with
a recovery rate δ. Both infection and recovery processes are independent Poisson pro-
cesses and the ratio τ=β/δ is the effective infection rate. There is an epidemic threshold
τc and a nonzero fraction of nodes is infected in the metastable state when the effective
infection rate is above the threshold τ> τc . The infection probability vk∞(τ) of a node k
in the metastable state at a given effective infection rate τ indicates the vulnerability of
node k to the virus, and the average fraction y∞(τ) of infected nodes reflects the global
vulnerability of the network.

Researchers have mainly concentrated on the average fraction y∞ of infected nodes
in the metastable state to estimate the vulnerability of a network against a certain epi-
demic or virus. Great effort has been devoted to understand how the network topology
influences the vulnerability and the epidemic threshold [72, 91, 121, 135]. The nodal
vulnerability or equivalently the infection probability of each node in the metastable
state, however, has been seldom studied, except for special cases, i.e. when the effec-
tive infection rate is just above the epidemic threshold [123, p. 469]. In this case, it is
found that the metastable-state infection probability vector V∞ = [v1∞v2∞ · · · vN∞]T ,
where vk∞ is the infection probability of node k in the metastable state) obtained by the
N-Intertwined Mean-Field Approximation (NIMFA) of SIS model is proportional to the
principal eigenvector x1 of the adjacency matrix A. In this chapter, we aim to explore
the nodal infection probability in a systematic way, in different network topologies and
when the effective infection rate varies. As a starting point, we investigate the ranking
of nodal infection probabilities, which crucially informs a network operator regarding to
which nodes are more vulnerable or require protection. Interestingly, we find that the
ranking of the nodal infection probability changes as the effective infection rate τ varies.
The observation points out that we cannot find a topological feature of a node to repre-
sent the vulnerability of a node to an SIS epidemic, because the rankings in vulnerability
of nodes in a network may be different when the effective infection rate τ varies, whereas
a topological feature of a node remains the same. Our observation explains the finding
of Hebert-Dufresne et al. [55] that different nodal features (such as degree, betweenness,
etc.) should be used to select the nodes to immunize in different scenarios (based on
different infection rates, link densities, etc.), i.e. different nodes should be immunized
at different infection rates. In this paper, we explore two questions: (i) which network
topology changes the ranking of nodal infection probabilities more significantly and (ii)
in which effective infection rate range, the increment of the effective infection rate leads
to a more significant change in the ranking for a given network topology?

We first assume that, for an arbitrary pair of nodes, the trajectory vk∞(τ) and vm∞(τ)
cross at most once in any interval (τ0,τ1). We call this assumption the one-crossing as-
sumption and the discussion in Appendix A.2 shows that the assumption is reasonably
good. Then The rankings of the vulnerabilities vk∞ (τ) and vm∞ (τ) change or equiva-
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lently the trajectories vk∞ (τ) and vm∞ (τ) cross when the effective infection rate τ changes
from τ0 to τ1 if (vk∞ (τ0)− vm∞ (τ0))(vk∞ (τ1)− vm∞ (τ1)) < 0. To estimate the maximal
change in the ranking of nodal infection probabilities of a network, we consider the to-
tal number of crossings between the trajectories of the infection probabilities of all the
nodes in a network, when the effective infection rate τ changes from just above the epi-
demic threshold to a large value, above which the ranking remains the same. The total
number of crossings is a simple and straightforward measure of the changes in the rank-
ing of nodal infection probabilities. (We also briefly discuss how the correlation of the
ranking of nodal infection probabilities changes as the effective infection rate increases
in Appendix A.8.) A higher total number of crossings may lead to a more complicated
protection policy for a network operator. Given a network, we find a lower bound of
the total number of crossings, which can be computed from the topology properties, in
particular, from the degree vector and the principal eigenvector of the adjacency matrix.
The lower bound is roughly proportional to, thus an accurate indicator of, the total num-
ber of crossings for an arbitrary network. Hence, these two topological features could
indeed characterize to what extend the ranking of nodal vulnerabilities would change
on a network. Since the lower bound is computationally simple, it can be used to com-
pare the total number of crossings for different network topologies. Naturally, this result
explains why the total number of crossings tends to be larger in networks with a smaller
average degree if the degree distribution is given or with a larger degree variance if the
average degree is given. Regarding to question (ii), we analytically derive the number of
crossings when the effective infection rate increases with a small value ε from a given
value τ0 if the infection probability vector V∞(τ0) at the effective infection rate τ0 is also
known. This theoretical result, validated by numerical results, explains the observation
that the crossings are more likely to occur when the effective infection rate τ is smaller.

8.2. RESULTS

We first introduce in detail how to count or quantify the changes of the nodal ranking of
the infection probability. Afterwards, we investigate the ranking changes (i) in different
topologies when the effective infection rate τ increases from just above the epidemic
threshold to a large value, above which the ranking remains the same, and (ii) when the
effective infection rate varies in different ranges.

8.2.1. THE COUNTING OF THE NODAL RAKING CHANGES

To explore the changes of the nodal ranking of the infection probability, we investigate
in a given network how many crossings, denoted by χ, between the trajectory vk∞(τ)
and vm∞(τ) for all pairs of nodes can occur in the effective infection rate interval (τ0,τ1),
where τ0 > τ(1)

c . (τ(1)
c is the NIMFA threshold epidemic threshold: the epidemic dies out

if the effective infection rate τ< τ(1)
c . ) In Fig. 8.1, we illustrate the trajectories vk∞(τ) of

10 nodes, randomly selected from a real-world network called Roget (N = 994 nodes, av-
erage degree E [D] = 7.32 and detailed in Appendix A.6). For example, the vulnerability of
the node corresponding to the red dash line changes dramatically from the medium vul-
nerable when τ= 0.12 to the most vulnerable when τ= 0.24. Network operators should
be alert to such a change of nodal vulnerabilities. The trajectories vk∞(τ) of other groups
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of nodes in Roget are shown and discussed in the first section of the supplementary in-
formation.
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Figure 8.1: The meta-stable infection probability vk∞ as a function of the effective infection rate τ for 10 ran-
dom nodes in a real-world network called Roget.

For a graph with N nodes, the maximum number of crossings is N (N−1)
2 with the one-

crossing assumption. To count the crossings in the interval (τ0,τ1), we define an N ×N
matrix F with elements fi j :

fi j (V∞(τ0),V∞(τ1)) = (vi∞(τ0)− v j∞(τ0))(vi∞(τ1)− v j∞(τ1))

Since fi i = 0, the matrix F has a zero diagonal just as the adjacency matrix A. A negative
matrix element fi j < 0 means that there is a crossing between the trajectory vi∞(τ) and
v j∞(τ) in the interval (τ0,τ1). The number of crossings in the interval (τ0,τ1) of the
effective infection rate then equals to

χ(τ0,τ1) =
N∑

i=1

i−1∑
j=1

1 fi j (V∞(τ0),V∞(τ1))<0 (8.1)

where 1{x} is the indicator function: 1{x} = 1 if the event or condition {x} is true, else
1{x} = 0. Specifically, if all nodal degrees are the same in a random graph, the nodal
ranking in any intervals of τ does not change, since the infection probability of every
node [121] equals to the average fraction of infected nodes for any effective infection
rate τ. In this work, we focus on the nodal infection probability in the meta-stable state,
where the initial conditions (such as which and how many nodes are initially infected)
has no influence on the meta-state prevalence.

We can compute the SIS metastable viral infection probability vk∞ of any node k
both by NIMFA [121, 125] and by simulations[69], of the exact SIS continuous-time Markov
process. We then further compare the number of crossings χ as a function of the incre-
ment of the effective infection rate τ over different ranges, obtained by NIMFA and the
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continuous-time simulations of the SIS model. As shown in Appendix A.7, the number
of crossings obtained from NIMFA is relatively close to that from the continuous-time
simulations, so we compute the number χ of crossings mainly by NIMFA due to its com-
putational efficiency. However, NIMFA may be not accurate when the effective infection
rate is close to the epidemic threshold [69]. Hence, the number of crossings obtained
by NIMFA and simulations may be quite different from each other when the effective
infection rate is close to the epidemic threshold as shown in Appendix A.7.

8.2.2. THE TOTAL NUMBER OF CROSSINGS IN DIFFERENT TOPOLOGIES

We explore the total number of crossings in different graph topologiesχ(τ(1)
c +ε,τu) when

the effective infection rate τ changes from just above the epidemic threshold, i.e. τ(1)
c +ε,

to a large value τu , above which the ranking of the nodal infection probability hardly
changes. In Appendix A.5, we prove that there exists a value of τ, and the ranking of
nodal infection probabilities does not change if the effective infection rate is above this
value. We derive a lower bound of the total number of crossings and show that the lower
bound is actually an accurate indicator of the total number of crossings in different types
of graphs.

As shown in Appendix A.3, we derive a lower bound of the total number of crossings
in a given graph:

χl =
N∑

i=1

i−1∑
j=1

1 fi j (x1,d)<0 ≤χ(τ(1)
c +ε,τu) (8.2)

where x1 is the principal eigenvector of the adjacency matrix A, belonging to the largest
eigenvalue λ1 and d is the degree vector of the given graph.

With the one-crossing assumption, we can compute χ(τ(1)
c +ε,τu) from the infection

probability vector V∞(τ(1)
c + ε) and V∞(τu). However, we have to select a proper value

of τu which is large enough and practical. We set the value of τu as the minimum in-
fection rate such that the average fraction of infected nodes y∞(τu) ≥ 0.9, since we find
that for most ER, BA random graphs and the aforementioned real-world network, the
rankings of the nodal degree and the infection probability are almost the same when the
average fraction of infected nodes y∞ ≥ 0.9. We discuss how we select the value of τu in
Appendix A.5. The scatter plot of the lower bound χl vs χ(τ(1)

c +ε,τu) is shown in Fig. 8.2
for different graphs including ER random graphs, BA random graphs and six graphs con-
structed from real-world datasets (as described in Appendix A.6), and the dash line is
logχl = logχ(τ(1)

c +ε,τu)+ log0.88, equivalently

χl = 0.88χ(τ(1)
c +ε,τu) (8.3)

We employ the average degree E [D] = 8,10,12,14,16,18,20,40,60,80 for ER random graphs
and E [D] = 4,6,8,10,12,14,16,18,20 for BA random graphs. Both ER and BA random
graphs are with the same size N = 1000. We confine ourselves to the connected graphs
in this work. Hence, we employ the link density p = E[D]

N−1 of ER random graphs, which

is larger than the critical link density pc = ln N
N ≈ 0.007 (equivalently the average degree

E[D] > 7), to ensure the connectivity. Fig. 8.2 and (8.3) show that the lower bound χl is
indeed always smaller than and approximately proportional to χ(τ(1)

c +ε,τu). Hence, the
lower bound χl is a computationally simple indication of the total ranking changes of
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the metastable state infection probability in a graph. Moreover, we find that for graphs
generated by the same random graph model (ER or BA model), a graph with a small
average degree tends to have a large number of crossings; given the average degree, a
graph with a large degree variance tends to have more crossings. We can understand
this observation as follows. The principal eigenvector component of any node i obeys
the eigenvalue equation (x1)i = ∑N

j=1 ai j (x1) j . The principal eigenvector is positively
correlated with the degree vector [68]. Such correlation weakens if the principal eigen-
vector has a large variance, leading to a large χl . When the degree variance is large, the
variance of the principal eigenvector tends to be as well large, contributing to a large χl .
As more links are added to a network, the network becomes more homogeneous and the
variance of the principal eigenvector decreases, resulting in a smaller χl , or equivalently
less crossings.
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Figure 8.2: The lower bound χl vs. the total number of crossings χ(τ(1)
c +ε,τu ) for ER random graphs (N), BA

random graphs (■) and real-world networks (•)

.

8.2.3. THE NUMBER OF CROSSINGS IN DIFFERENT INTERVALS OF τ

As shown in (8.1), we can compute the number χ(τ0,τ1) of crossings in the given inter-
val (τ0,τ1) with the knowledge of the infection probability vectors V∞(τ0) and V∞(τ1).
Here, we show that we can theoretically derive the number of crossings in a small in-
terval (τ0,τ0 +∆τ) with the only knowledge of V∞(τ0). Afterwards, we will validate this
theory by numerical results, and illustrate in which ranges of the effective infection rate
the number of crossings tends to be larger.
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THE CROSSINGS CLOSE TO A GIVEN τ

For sufficiently small ε = ∆τ > 0, the Taylor expansion of the steady-state NIMFA infec-
tion probability vk∞ for any node k is

vk∞ (τ+ε) =
∞∑

m=0

εm

m!

∂m vk∞ (τ)

∂τm = vk∞ (τ)+ε∂vk∞ (τ)

∂τ
+ ε2

2

∂2vk∞ (τ)

∂τ2 +O
(
ε3) (8.4)

explicit up to order 2. In Appendix A.4, we show the procedure to determine the m-th
order derivative vi∞ (τ) with respect to the effective infection rate τ for any node k.

If vk∞ (τ)−vm∞ (τ) > 0 and ∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ > 0, then vk∞ (τ+ε)−vm∞ (τ+ε) > 0 for
sufficiently small ε> 0 and the ranking at τ+ε and at τ is unchanged. On the other hand,
if vk∞ (τ+ε)− vm∞ (τ+ε) = 0, which implies, for sufficiently small ε> 0 (so that we can
ignore the higher order terms in εm for m > 1 in (8.4)), that

vk∞ (τ)− vm∞ (τ) =−ε
(
∂vk∞ (τ)

∂τ
− ∂vm∞ (τ)

∂τ

)
In other words, given vk∞ (τ) of all nodes at τ, then there can be a zero or crossing at
τ+εkm , where

εkm =−vk∞ (τ)− vm∞ (τ)
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

(8.5)

when εkm is small compared to τ. This approach is actually known as the Newton-
Raphson method and corresponds with the first term in the Lagrange series for the in-
verse function (see [120] in Page 304). A second order approximation, by ignoring terms
of order O

(
ε3

)
in (8.4), equating vk∞ (τ+ε)− vm∞ (τ+ε) = 0 and solving for ε , yields

εkm =
−

(
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

)
±

√(
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

)2 −2
(
∂2vk∞(τ)

∂τ2 − ∂2vm∞(τ)
∂τ2

)
(vk∞ (τ)− vm∞ (τ))(

∂2vk∞(τ)
∂τ2 − ∂2vm∞(τ)

∂τ2

)
(8.6)

which is expected to be more accurate, in spite of the higher computational complexity
since now also the set of second order derivatives needs to be solved. We rewrite (8.6) as

εkm =−
 ∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

∂2vk∞(τ)
∂τ2 − ∂2vm∞(τ)

∂τ2


1±

√√√√√1−2

 ∂2vk∞(τ)
∂τ2 − ∂2vm∞(τ)

∂τ2

∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ

(
vk∞ (τ)− vm∞ (τ)
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

)
Using the generalized binomial expansion (1+x)κ =∑∞

k=0

(κ
k

)
zk , valid for any |z| < 1, up

to first order yields

εkm '−
 ∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

∂2vk∞(τ)
∂τ2 − ∂2vm∞(τ)

∂τ2

1±
1−

 ∂2vk∞(τ)
∂τ2 − ∂2vm∞(τ)

∂τ2

∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ

(
vk∞ (τ)− vm∞ (τ)
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

)
After only retaining the root with the minus sign, we arrive again at (8.5), illustrating that
(8.5) is accurate when (8.5) is as small as possible (so that higher order evaluations are not
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needed). The discriminant must be positive in order to obtain feasible εkm . A positive
discriminant is a condition for the existence of crossing in the interval (τ,τ+ε). Hence,
given an effective infection rate τ0 and the corresponding infection probability vector
V∞(τ0), there is a crossing close to τ0 between the trajectory vk∞(τ) and the trajectory
vm∞(τ) at τ0 +εkm if εkm computed by (8.5) is positive and small enough.

NUMERICAL RESULTS

In the following of this chapter, we propose to normalize the effective infection rate by
the NIMFA epidemic threshold: κ = τ

τ(1)
c

≥ 1, so that we can compare the number χ

of crossings in different intervals of κ in the same range (1,κmax) for different network
topologies, i.e. different average degrees and different degree distributions. We explore
the crossings of the infection probability trajectories when the effective infection rate
varies over the range (1,κmax ). We divide the range (1,κmax) into intervals (κ j−1,κ j )
where j = 1,2, ...,n is the index and κn = κmax .

We aim to explore in which interval of the normalized effective infection rate κ the
crossings are more likely to appear. Hence, instead of directly exploring the number of
crossings between the trajectory of every node in the whole interval (1,κmax) of the effec-
tive infection rate κ, we investigate the number χ(κ j−1,κ j ) of crossings in (8.1) in each
small interval (κ j−1,κ j ). We denote κ0 = 1 (since the effective infection rate below the
epidemic threshold corresponds to the all-healthy state), κn = κmax and κ j = κ0 + j∆κ,
where ∆κ= (κmax −1)/n is the length of each interval. We will study how the number of
crossings changes at different regions of the effective infection rate τ or scaled κ. The in-
fection probability vk∞(κ) at any given value of the normalized effective infection rate κ
is computed by solving the NIMFA equation (2.3). On one hand, we can further compute
the number χ(κ j−1,κ j ) of crossings between all node pairs within any interval (κ j−1,κ j )
by employing our theoretical results (8.5). On the other hand, we can also numerically
compute the number χ(κ j−1,κ j ) by (8.1). We compare the theoretical (8.5) and numeri-
cal (8.1) results from the validation point of view. We first compare (8.5) and (8.1) when
the normalized effective infection rate κ is not close to 1, i.e. when the effective infec-
tion rate τ is not close to the epidemic threshold τc ; specifically, we start from κ0 = 2
and κ j = κ0 + j∆κ, where ∆κ = 1. Figure 8.3 demonstrates that, for both ER and BA
graphs, our theoretical result (8.5) agrees well with the numerical result (8.1) except for
BA graphs in the interval (2,3). The less accuracy of our theoretical result for small κ can
be explained as follows. Compared to τ j−1 = κ j−1τ

(1)
c , a small value of (κ j −κ j−1)τ(1)

c is
required for the accuracy of the theoretical results (8.5), since ε in (8.5) is required to be
small with respect to the given effective infection rate τ. Hence, when κ j is smaller, a

smaller value of (κ j −κ j−1)τ(1)
c is needed for (8.5) to be accurate.

We further plot the numberχ(κ j−1,κ j ) of crossings in the interval (κ j−1,κ j ) as a func-
tion of κ j , when the normalized effective infection rate κ is close to 1 and the interval
length is reduced to∆κ= 0.1. When the interval length, i.e.∆κ, is smaller, the theoretical
(8.5) results are more consistent with the numerical (8.1) results for BA random graphs
in the range of κ ∈ (2,3) in Fig. 8.4(b) than in Fig. 8.3(b). For both ER and BA graphs, the
two methods agree with each other well when the intervals of κ are small, even when the
normalized effective infection rate κ is close to 1 as shown in Fig. 8.4.
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Figure 8.3: The number χ(κ j−1,κ j ) of crossings as a function of the normalized effective infection rate κ j .
For ER graphs, we employ the link density p = 2pc , thus the average degree E[D]=14, the size N = 1000 and

the NIMFA epidemic threshold τ(1)
c ≈ 0.0673. For BA graphs, we employ the number of newly added links in

each step m = 2, thus the average degree E[D] = 4, the size N = 1000, and the NIMFA epidemic threshold

τ(1)
c ≈ 0.0902. The results are averaged over 10 realizations.

3500

3000

2500

2000

1500

1000

χ
(κ

j-
1
,κ

j)

2.01.81.61.41.2

κj

 ER, N=1000, p=2pc

 Theoretical

 Numerical

(a)

7000

6000

5000

4000

χ
(κ

j-
1
,κ

j)

3.02.52.01.5

κj

 BA, N=1000, m=2

 Theoretical

 Numerical

(b)

Figure 8.4: The number χ(κ j−1,κ j ) of crossings as a function of the normalized effective infection rate κ j .
For ER graphs, we employ the link density p = 2pc , thus the average degree E[D]=14, the size N = 1000 and

the NIMFA epidemic threshold τ(1)
c ≈ 0.0673. For BA graphs, we employ the number of newly added links in

each step m = 2, thus the average degree E[D] = 4, the size N = 1000, and the NIMFA epidemic threshold

τ(1)
c ≈ 0.0902. The results are averaged over 10 realizations.
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THE NUMBER OF CROSSINGS IN DIFFERENT τ INTERVALS

Both Fig. 8.3 and Fig. 8.4 show that more crossings appear when the effective infection
rate is smaller. In this section, we give physical explanations of such observations.

At an effective infection rate τ or a normalized effective infection rate κ, Equation
(A.1) shows that the comparison of the infection probabilities vk∞(κ) and vm∞(κ) is ac-
tually equivalent to the comparison of the sum of the infection probabilities of their
neighbors, i.e.

∑N
j=1 ak j v j∞(κ) and

∑N
j=1 am j v j∞(κ). Without loss of the generality, we

assume that the degree dk of node k is larger than the degree dm of node m, i.e. dk > dm .
As discussed in Appendix A.3, the infection probability vk∞(κ) > vm∞(κ) when the effec-
tive infection rate is large enough. If there exists a value of the scaled effective infection
rate κ1 with which

∑N
j=1 ak j v j∞(κ1) < ∑N

j=1 am j v j∞(κ1) while dk > dm , there must be a
crossing between vk∞(κ) and vm∞(κ) in the interval (κ1,∞). If the infection probability
v j∞(κ) of a node may vary in a larger range with respect to the average infection prob-
ability 1

N

∑N
j=1 v j∞, i.e. the average fraction y∞ of infected nodes, there may be a higher

probability that
∑N

j=1 ak j v j∞(κ) <∑N
j=1 am j v j∞(κ) and thus more crossings could be ex-

pected when the effective infection rate increases from κ1. Such a hypothesis further
motivates us to study the normalized standard deviation of the nodal infection proba-
bility:

σ∗(κ) =
√∑N

i=1(vi∞(κ)− y∞(κ))2/N

y∞(κ)
(8.7)

(where we define σ∗(κ= 1) = limκ↓1σ
∗(κ)) and explore whether a larger difference

|σ∗(κ j−1)−σ∗(κ j )| of σ∗ would imply more crossings in the interval (κ j−1,κ j ).

The number χ(κ j−1,κ j ) of crossings as a function of the difference σ∗(κ j−1)−σ∗(κ j )
is shown in Fig. 8.5(a) for ER random graphs and in Fig. 8.5(b) for BA random graphs.
For both ER and BA random graphs, the number χ(κ j−1,κ j ) of crossings are positively
correlated with the differenceσ∗(κ j−1)−σ∗(κ j ) in the interval (κ j−1,κ j ). We observe the
same in ER and BA graphs with various average degrees though not shown here. The
numerical results support that more crossings tend to appear in an interval where the
variable σ∗ changes more.

We then further explore how the value of the variable σ∗(κ) changes with the nor-
malized effective infection rate κ. We plot the variable σ∗ as a function of the normal-
ized effective infection rate κ in Fig. 8.6(a) for ER random graphs and in Fig. 8.6(b) for BA
random graphs with N = 1000 and various average degrees, and find that for both types
of random graphs the curves can be fitted by a power law function, i.e.σ∗ is proportional
to κ−γ, especially when the average degree is not small. We find that the power law ex-
ponent γ of the fitting curves is close to 1 as the average degree E[D] increases for ER
random graphs, and that is always approximately 1 for BA random graphs even though
the average degree E[D] is small. Furthermore, the relationship between the variable σ∗
and the normalized effective infection rate κ follows a power law when the normalized
effective infection rate κ is much larger as shown in Appendix A.7.

When κ is large, we can theoretically prove the power-law relationship between the
variable σ∗ and the normalized effective infection rate κ. By (A.9) and assuming a large
enough effective infection rate, we obtain vi∞ (τ) = 1− 1

τdi
+O(τ−2) for node i and con-
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Figure 8.5: The number χ(κ j−1,κ j ) of crossings as a function of the difference σ∗(κ j−1) −σ∗(κ j ) of the
normalized standard deviation of the metastable infection probability. For ER graphs, we employ the link
density p = 2pc , thus the average degree E[D] = 14, and the size N = 1000 (the NIMFA epidemic threshold

τ(1)
c ≈ 0.0673). For BA graphs, we employ the minimum degree m = 2, thus the average degree E[D] = 4, and

the size N = 1000 (the NIMFA epidemic threshold τ(1)
c ≈ 0.0902).
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Figure 8.6: The normalized standard deviation σ∗ of infection probabilities of all nodes as a function of κ in
(a) ER and (b) BA random graphs. The dash line is a power-law curve with the exponent γ=−1. The sizes of all
random graphs are 1000 and the average degree E [D] is shown in the figures. The NIMFA epidemic threshold
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E[D] = 8,9,10,20,40,60 and 80 respectively, and τ(1)
c ≈ 0.0902,0.0698,0.0479,0.0416,0.0368,0.0329,0.0300 and

0.0274 for BA random graphs with the average degree E[D] = 4,6,10,12,15,16,18 and 20 respectively. The
results are averaged over 10 realizations.
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sequently y∞(τ) = 1− 1
τE[ 1

D ]+O(τ−2). By (8.7),

σ∗ =
√

Var[ 1
D ]

τ−E[ 1
D ]

+O(τ−2) (8.8)

In a finite graph, Var[ 1
D ] and E[ 1

D ] are finite, hence σ∗ is proportional to τ−1. The NIMFA

epidemic threshold τ(1)
c is a constant for a given graph, and with κ−1 = τ−1τ(1)

c , we obtain
that σ∗ is proportional to κ−1. Although the power-law relationship between σ∗ and
κ can be clearly observed in Fig. 8.6, the effective infection rate τ corresponding to the
variableκ in this figure may be smaller than 1 and the theoretical proof is only valid when
the effective infection rate τÀ 1. Our result (8.8) is based on connected graphs, because
the terms E[ 1

D ] and Var[ 1
D ] are undefined in unconnected graphs with isolated nodes.

The power-law decay of the variable σ∗ with the effective infection rate τ explains
why there are more crossings when the effective infection rate is smaller by σ∗.

VALIDATION ON A REAL-WORLD NETWORK

Finally, we validate our previous findings on the real-world network – Roget, detailed in
Appendix A.6. As shown in Fig. 8.7(a), the number χ(κ j−1,κ j ) of crossings at normal-
ized effective infection rate κ interval obtained by theoretical and numerical methods
are consistent with each other. The number of crossings decreases fast as κ increases,
similar to ER and BA models. The main figure of Fig. 8.7(b) shows that the number
χ(κ j−1,κ j ) of crossings increases with the difference σ∗(κ j−1)−σ∗(κ j ) in the interval
(κ j−1,κ j ). In the inset of Fig. 8.7(b), we observe the power-law relationship between the
variable σ∗ and the normalized effective infection rate κ. All these findings are well in
line with previous results on ER and BA random graphs.

8.3. DISCUSSION
In the SIS model, the infection probability trajectory vk∞(τ) of node k and the infection
probability trajectory vm∞(τ) of node m may cross: there exist effective infection rates
τ0 and τ1 and (vk∞(τ0)−vm∞(τ0)(vk∞(τ1)−vm∞(τ1) < 0, as the effective infection rate τ
varies from τ0 to τ1. The number of crossings of all node pairs within an interval (τ0,τ1)
of the effective infection rate measures the change in the ranking of the nodal vulnera-
bilities when the effective infection rate changes from τ0 to τ1. We explore in what types
of network topologies and in what ranges of the effective infection rates the crossings are
more likely to appear. Theoretically, we find a lower bound χl in (8.2) of the total number
of crossings in a graph. The lower bound χl only depends on topological features, i.e. the
degree vector and principal eigenvector of the adjacency matrix, and is shown to reflect
the total number of crossings for a given graph. This allows us to estimate how likely the
ranking of the nodal vulnerabilities could change in a given network. Moreover, we an-
alytically predict the crossings close to an effective infection rate τ0, given the infection
probabilities of all nodes at the effective infection rate τ0. This theory can be used to
estimate the changes of the ranking of the nodal vulnerabilities if the effective infection
rate τ slightly increases from its current value τ0. We find that more crossings tend to ap-
pear when the current effective infection rate, that is subject to changes, is smaller. Our
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Figure 8.7: (a) The number χ(κ j−1,κ j ) of crossings as a function of the normalized effective infection rate
κ j . (b) Main figure: the number χ(κ j−1,κ j ) of crossings as a function of the difference σ∗(κ j−1)−σ∗(κ j )
of the normalized standard deviation of the metastable infection probability; Inset: the normalized standard
deviation σ∗ of infection probabilities of all nodes as a function of κ.
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findings may help network operators to estimate how significant the ranking of nodal
vulnerabilities may change for a given change of the effective infection rate on a given
network.

This chapter inspires interesting further questions. For example, the change of the
node infection probabilities can be quantified beyond the number of crossings, depend-
ing on the targeting application; the change in the value of infection probabilities can be
further taken into account; can we use nodal infection probabilities to more effectively
select the nodes to immunize?





9
REFLECTIONS AND

RECOMMENDATIONS

Through the work reported in this thesis we explored the role of the heterogeneity in dy-
namic processes on complex networks. For the heterogeneity in network topology we
considered the case of heterogeneous directed networks. For the heterogeneity in dy-
namic processes we studies two dynamic process models, the NCO model and the SIS
spreading model, and we considered the heterogeneous infection or recovery rates. The
main question we addressed is how these types of heterogeneity influence the preva-
lence of an opinion, epidemic or information in general. In this chapter, the main con-
tributions are summarized and the possible future research directions are proposed.

9.1. MAIN CONTRIBUTIONS
In addition to networks with heterogeneous degrees, we considered directed networks
as an extra heterogeneity dimension of network topology. We characterized a generic di-
rected network with heterogeneous degrees by the following key features: the percentage
of unidirectional links, the in and out degree distribution and the correlation between
the indegree and outdegree of a node. Correspondingly, we proposed a system of algo-
rithms to generate directed networks with the given or desirable aforementioned three
properties. This allowed us to systematically investigate how each property of a directed
network may influence the dynamic process on it.

In Chapter 3, we investigated how each of the three directed network features affects
the NCO model, especially the critical threshold, i.e., the minimal initial fraction of pop-
ulation for a given opinion such that this opinion survives (forms a giant cluster) in the
steady state. We find that networks with more (less) unidirectional (bidirectional) links
and a higher indegree and outdegree correlation tend to have a higher critical thresh-
old. In such networks, an opinion needs a larger initial population in order to survive in
the steady state. Chapter 3 sheds light on which types of social interactions/network we
could stimulate so that different opinions may co-exist.

107
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In Chapter 4, we investigated the SIS epidemic model on directed networks, where
we also applied heterogeneous recovery rates. Our objective was to explore how to re-
duce the epidemic prevalence via allocating the recovery rates heterogeneously, whereas
the total recovery rates (the recovery resources) are limited. We developed a strategy
that assigns each node a recovery rate that is dependent on the in- and outdegree of that
node. Our strategy evidently outperformed the classic homogeneous allocation of recov-
ery resources in general, especially when the given recovery resources are sufficient. Our
work illustrates the potential to more effectively suppress (or to accelerate) the spread of
epidemics (information) via heterogeneous allocation of recovery rates.

In Chapter 5 and Chapter 6, we explored how heterogeneous infection rates influ-
ence the epidemic spreading. In Chapter 5, we modeled the infection rate along each link
as an independently and identically distributed (i.i.d.) random variable. The infection
rate between two nodes depends largely on e.g. the contact or collaboration frequency
of the node pair, which has been recorded in real-world datasets. Motivated by our ob-
servations in real-world datasets, we employed the log-normal and gamma distributions
and a newly designed symmetric distribution as the distributions of the infection rate.
The average and variance of these infection rate distributions can be controlled, which
allowed us to systematically investigate how the average, variance, and possibly higher
moments influence the prevalence of an epidemic. We compared the heterogeneous
SIS epidemic model with the proposed i.i.d. heterogeneous infection rates and the SIS
model with the homogeneous infection rate, when both models have the same average
infection rate. We found that the variance (and other higher moments) of the infection
rates may evidently affect the epidemic spreading. When the prevalence is relatively
high, a larger variance of the infection rates reduces the prevalence more, i.e., hetero-
geneous infection rates suppress the spread of epidemics. However, the heterogeneous
infection rates may facilitate the epidemic spread when the prevalence is relatively low.
Our findings point out the opposite effects of the i.i.d. heterogeneous infection rates on
epidemic spreading at different prevalence levels.

It is possible that the infection rates in real networks are not i.i.d. We found in real-
world datasets that the infection rate of a link may actually be correlated with the degree
of the two end nodes. Hence, we took this correlation into our model of the heteroge-
neous infection rates in Chapter 6. We found that the negative correlation between the
infection rate of a link and the degrees of the two end nodes tends to help the epidemic
spreading, when the prevalence of the epidemic is relatively high. When the prevalence
is low, however, the positive correlation is likely to enhance the spreading. At different
prevalence levels, the correlation between infection rates and nodal degrees also affects,
in opposite ways, the prevalence of an epidemic.

Our findings unravel the complex influence of heterogeneity on the prevalence of
epidemic spreading, ranging from the distribution of the infection rates, the correlation
between infection rates and network topology to the heterogeneous degrees. The influ-
ence, moreover, tends to differ at different prevalence levels. This understanding may
inspire the development of optimization strategies to suppress or facilitate the spread of
epidemics/information via incentivizing the formation of desirable network topologies
and contact frequencies etc.

From the perspective of methodologies, our studies of the heterogeneous SIS model
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on heterogeneous networks are based on continuous-time simulations and mean-field
approximations and our results have also been validated using real-world datasets. In
Chapter 7, we evaluated the accuracy of the mean-field approximations. In general,
mean-field approximations are more accurate when the prevalence of an epidemic is
higher. Since the larger variance of the i.i.d. infection rates and the stronger correlation
between the infection rate and the nodal degree lead to a lower prevalence at a given
effective infection rate, NIMFA is also less accurate in such cases. Our work provides the
basic guidelines for researchers regarding to conditions under which mean-field approx-
imations can be applied to study heterogeneous spreading process on heterogeneous
networks.

Beyond the heterogeneous infection/recovery rates and network topologies, we ex-
plored in Chapter 8 the heterogeneous performance of the nodes, i.e. , the infection
probability of each node, subject to SIS epidemic spreading. This is in great contrast to
previous work, where the average infection probability, or equivalently, the prevalence
has been studied. The infection probability of a node suggests the vulnerability of the
node. The heterogeneity of the nodal infection probabilities, especially their ranking
can be crucial for a network operator to assess which nodes are more vulnerable. Sur-
prisingly, we found that the ranking of nodal vulnerability may change when the effective
infection rate varies. Via both theoretical and numerical approaches, we unveil in which
type of networks and which range of the effect infection rate the ranking of the nodal
vulnerability is more likely to change. The ranking tends to change more dramatically
in sparse networks with heterogeneous degrees and when the effective infection rate is
small, thus, likely for realistic epidemics propagating on real-world networks. Our find-
ings imply that as the effective infection rate varies, the ranking of nodal vulnerabilities
may change, thus the corresponding network risks and protection strategies may also
have to be updated.

9.2. FUTURE WORK
Though we have thoroughly studied the influence of various types of heterogeneity on
dynamic processes, the heterogeneity in real-world is way more complicated. We would
like to raise the following promising but challenging research directions.

The modeling of heterogeneous dynamic processes. Take the epidemic spreading
process as an example. We modeled the heterogeneous infection rates firstly as i.i.d.
random variables that follow distribution as observed in real-world and, furthermore,
as functions of nodal degrees. We took into account the correlation between the infec-
tion rate of a link and the degrees of the two end nodes. However, the heterogeneous
infection rates in real-world could be more complex. For example, the infection rate of
a link could be correlated with other topological features of the two end nodes, or even
of a local community. Moreover, the infection rates could be dependent on time. For
example, an individual that is infected by a disease or possesses a piece of information
may have different infection rates when (s)he is just infected and when (s)he has been
infected for a long time. Challenging questions are how to model such time-dependent
infection rates and how they would influence the epidemic spreading.

Mean-field approximations of SIS model. We evaluated the precision of the mean-
field approximation of SIS model with heterogeneous infection rates. Moreover, we iden-
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tified under which conditions the mean-field approximation is more accurate. However,
a foundational explanation is till lacking. Significant effort is needed to improve the
mean-field approaches for generic heterogeneous dynamic processes on heterogeneous
networks.

The era of data. We used a few datasets to motivate our study and verify our results.
Various kinds of data at individual level, in contrast to aggregated level, have become
available. Examples are user interactions, features and activities in general over time,
across physical and online world. Such datasets could further enrich our models, rang-
ing from network topologies, dynamic processes to the interaction between systems.
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A
THE NODAL RANKING OF

INFECTION PROBABILITY

A.1. THE CROSSING BEHAVIOR OF THE TRAJECTORIES vk∞
In this section, we use a real-world network as an example to illustrate the crossing be-
havior by plotting the infection probability vk∞ as a function of the effective infection
rate τ for a small number e.g. 10 nodes. The real-world network is called Roget (detailed
in Section Real-world graphs), with 994 nodes and the average degree E[D] = 7.32. If we
plot all values of the infection probability vk∞ as a function of the effective infection rate
τ for a network with hundreds of nodes, it would be difficult to tell which two curves ac-
tually cross. Hence, we sample 10 nodes, but according to different strategies to illustrate
the crossing behavior. In Fig. A.1(a), A.1(b), A.1(c) and A.1(d), 10 nodes are randomly se-
lected from all nodes; in Fig. A.1(e), A.1(f) and A.1(g), 10 nodes are random selected from
the nodes with degree d = 4, 5 and 6 respectively; Thus, the 10 nodes selected have the
same degree in each of these three figures; in Fig. SA.1(h), the top 10 nodes with largest
degrees are selected. We find that the crossing of a pair of nodes is indeed significant
with respect to the value of their infection probabilities, when the nodes have quite dif-
ferent degrees, as shown in Fig. SA.1(a), SA.1(b) and SA.1(c) where the nodes are selected
randomly. The crossing is less significant when the nodes have similar degrees as shown
in Fig. SA.1(e), SA.1(f), SA.1(g) and SA.1(h). Since most real-world networks have a heavy
tail degree distribution, significant crossing/change in infection probability for pairs of
nodes is expected when the infection probability varies.

A.2. DISCUSSION ABOUT THE ONE-CROSSING ASSUMPTION
We assume that the two trajectories vk∞(κ) and vm∞(κ) crosses at most once as the ef-
fective infection rateκ changes. Although our theoretical result about the lower bound of
the total number of crossings does not depend on this assumption, our method to com-
pute the number of crossings does depend on such an assumption. Hence, we discuss
whether the assumption is reasonably good.

123
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Figure A.1: vk∞ as a function of τ for a real-world network.
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Our simulation results so far show that more than one crossing seldom happen. For
example, in a real-world network – Roget, only three pairs of nodes have two crossings
in their infection probability trajectories in the infection-rate intervals we observed.

When we count numerically the number of crossings between two infection proba-
bility curves when κ is changed from 1 to any large value κmax , we divide the interval
(1,κmax ) into a number of m bins. If m = 1, we could find maximally one crossing by
comparing the infection probability of the two nodes at κ = 1 and at κ = κmax respec-
tively. As the number of bins increases, we may have the possibility to discover the multi-
ple crossings if they exist. Hence, we explore further whether we observe few node pairs
whose infection probability curves cross twice is due to the the fact that the bin size we
chose is not small enough. Would it be possible that actually two crossings exist within
the same bin which would not be observable if we don’t split the bin into smaller ones.
Hence, we gradually increase the number of bins to explore whether we could find more
crossings. As shown in Fig. A.2, we employ ER and BA random graphs with the average
degree E[D] = 14 as the examples to show how the number of crossings change when the
interval is divided into small ones. We plot the number χ(1,κ) of crossings as a function
of the normalized effective infection rate κ. We do not observe evident increase of the
number of crossings (taking all node pairs into account) as the number of bins increases.

Finally, the bin size should not be too small either. As the bin size becomes small,
the change of infection probability for each node when the infection rate is changed
from κ to κ+ ε is small. In this case, the precision of the numerical solution to compute
the infection probability of each node using NIMFA may not be able to distinguish the
ranking change of two nodes if their infection probabilities are close. The seemingly two
crossings of a node pair may be due to the limited precision of our numerical solution
when the bin size is too small.

A.3. THE DERIVATION OF THE LOWER BOUND χl

As shown in [123, p. 469] when the effective infection rate τ = τ(1)
c + ε is just above the

NIMFA epidemic threshold τ(1)
c = 1

λ1
, the vector V∞ with the NIMFA metastable-state

infection probabilities is proportional to the principal eigenvector x1 of the adjacency
matrix A. In particular, vk∞ = ε (x1)k , where ε> 0 and (x1)k is the k-th component corre-
sponding to node k of the principal eigenvector x1 of the adjacency matrix A, belonging
to the largest eigenvalue λ1. The Perron-Frobenius Theorem [120] states that all vec-
tor components of x1 are non-negative, and even positive if the graph G is connected.
Hence, when the effective infection rate is just above the epidemic threshold, the rank-
ing of the infection probability vi∞(τ(1)

c +ε) is the same as the ranking of the component
of the principal eigenvector (x1)i , i.e. fkm(V∞(τ(1)

c +ε), x1) = 0 for any k and m.

On the other hand, the NIMFA steady-state infection probability for node k is given
by [125],[123, p. 464] and expressed as

vk∞(τ) = 1− 1

1+τ∑N
j=1 ak j v j∞(τ)

(A.1)
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Figure A.2: The number χ(1,κ) of crossings as a function of the normalized effective infection rate κ for (a) ER
random graphs and (b) BA random graphs with the same average degree E [D] = 14.
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from which we obtain

vk∞(τ)− vm∞(τ) = τ (1− vk∞(τ)) (1− vm∞(τ))
N∑

j=1

(
ak j −am j

)
v j∞(τ)

The sign of vk∞(τ)−vm∞(τ) thus equals to the sign of
∑N

j=1

(
ak j −am j

)
v j∞(τ). Note that

common neighbors of node m and k do not play a role in the sign change of vk∞(τ)−
vm∞(τ). (The common neighbors of node m and k are the set of nodes

{
j ∈N : am j = ak j

}
.)

Moreover, if the number of non-common neighbors is 1 (or 0), then there is no change
in the sign of vk∞(τ)− vm∞(τ) while the effective infection rate τ varies. Since the mini-
mum infection probability vmin(τ) > 0 for τ> τ(1)

c as shown in [123, Lemma 17.4.2 on p.
464], the following bounds apply

dk vmin(τ)−dm vmax(τ) ≤
N∑

j=1

(
ak j −am j

)
v j∞(τ) ≤ dk vmax(τ)−dm vmin(τ)

where vmax(τ) and vmin(τ) are the maximum and minimum infection probability re-
spectively and dk is the degree of node k, so that the condition vk∞(τ) − vm∞(τ) > 0
at τ is surely satisfied if dk −dm

vmax(τ)
vmin(τ)

> 0. Using vmax(τ) ≤ 1− 1
1+τdmax

and vmin(τ) ≥
1 − 1

τdmin
in [123, p. 464-465], we arrive at the conservative bound for the condition

vk∞(τ)− vm∞(τ) > 0 at τ,

dk > dm
τ2(

τ− 1
dmin

)(
τ+ 1

dmax

)
Hence, for large τ, the comparison between vk∞(τ) and vm∞(τ) reduces to a compari-
son in the nodal degree: if dk > dm , then vk∞(τ) > vm∞(τ). This conclusion implies that
there exists an effective infection rate τu , above which the ranking of the metastable-
state infection probability is the same as the ranking of the nodal degree, i.e. fkm(V∞(τ),d) =
0 for any k and m (where d is the degree vector), if τ≥ τu .

The above discussion suggests that the number χ(τ(1)
c +ε,τu) of crossings in the in-

terval (τ(1)
c +ε,τu) is the total number of crossings which a graph can possess. With the

one-crossing assumption, we have

χ(τ(1)
c +ε,τu) =

N∑
i=1

i−1∑
j=1

1 fi j (V∞(τ(1)
c +ε),V∞(τu ))<0 ≥

N∑
i=1

i−1∑
j=1

1 fi j (x1,d)<0 (A.2)

Since only the crossings between two nodes with different degrees are considered in∑N
i=1

∑i−1
j=1 1 fi j (x1,d)<0, we obtain a lower bound of the total number χ(τ(1)

c +ε,τu) of cross-
ings. In order to simplify the notation, we denote the lower bound of the total number of
crossings by χl =

∑N
i=1

∑i−1
j=1 1 fi j (x1,d)<0.

A.4. DERIVATIVES OF vi∞ WITH RESPECT TO τ
Only for vectors, we use the notation in which a function of a vector is equal to that func-
tion applied to the vector components; thus f (R) = (

f (r1) , f (r2) , . . . , f (rN )
)
. Obviously,

this convention does not apply to matrices, where the matrix f (A) is different than the
matrix with elements f

(
ai j

)
.
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Theorem 3 Let V∞ be the N ×1 vector with k-th component vk∞, which obeys the NIMFA

steady-state equation (A.1). Then, all higher order derivative vectors ∂mV∞
∂τm obey the linear

equation

Q

(
1

τ (1− vi∞)2

)
∂mV∞
∂τm = Rm (A.3)

where Q
(
qi

) = diag
(
qi

)− A is the generalized Laplacian and where the right-hand side

vector Rm depends on the previously computed vectors
(
V∞, ∂V∞

∂τ , . . . , ∂
m−1V∞
∂τm−1

)
. In addition,

the generalized Laplacian matrix Q
(

1
τ(1−vi∞)2

)
and its inverse are positive definite matri-

ces.

Proof: Following the approach in [123], the i -th component of the governing steady-
state equation [123, (17.45) on p.466]

1

τ
diag

(
1

1− vi∞

)
V∞ = AV∞ (A.4)

written as a generalized Laplacian Q
(
qi

)= diag
(
qi

)− A,

Q

(
1

τ (1− vi∞)

)
V∞ = 0

is
vi∞

1− vi∞
= τ

N∑
j=1

ai j v j∞

With vi∞
1−vi∞ = 1

1−vi∞ − 1 and
∑N

j=1 ak j v j∞ = vk∞
τ(1−vk∞) , differentiation with respect to τ

yields
1

(1− vk∞)2

∂vk∞ (τ)

∂τ
−τ

N∑
j=1

ak j
∂v j∞ (τ)

∂τ
=

N∑
j=1

ak j v j∞ = vk∞
τ (1− vk∞)

(A.5)

In matrix form, with the definition [123, p. 472] of the generalized Laplacian Q
(
qi

) =
diag

(
qi

)− A, the vector with the derivatives obeys1

Q

(
1

τ (1− vi∞)2

)
∂V∞
∂τ

= 1

τ2 diag

(
1

1− vi∞

)
V∞ = 1

τ2

V∞
1−V∞

(A.6)

Hence, given the knowledge of the vector V∞ at the effective infection rate τ, the solution
of a linear set returns the components of the vector ∂V∞

∂τ .

1In [124], we have shown that Q

(
1

τ(1−vi∞)2

)
is positive definite (as well as its inverse),

∂V∞
∂τ

= 1

τ2
Q−1

(
1

τ
(
1− vi∞

)2

)
diag

(
1

1− vi∞

)
V∞

from which
∂vk∞ (τ)

∂τ
= 1

τ2

N∑
j=1

(
Q−1

(
1

τ
(
1− vi∞

)2

))
k j

v j∞
1− v j∞

≥ 0
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After a second differentiation with respect to τ of (A.5) and some manipulations, we
have

1

τ (1− vk∞)2

∂2vk∞ (τ)

∂τ2 −
N∑

j=1
ak j

∂2v j∞ (τ)

∂τ2 = 2

τ

N∑
j=1

ak j
∂v j∞ (τ)

∂τ
− 2

τ (1− vk∞)3

(
∂vk∞ (τ)

∂τ

)2

In matrix form, we obtain

Q

(
1

τ (1− vi∞)2

)
∂2V∞
∂τ2 = 2

τ
A
∂V∞
∂τ

− 2

τ
diag

(
1

(1− vk∞)3

)(
∂Vk∞ (τ)

∂τ

)2

We can avoid the matrix computation A ∂V∞
∂τ , because (A.6) supplies us with

A
∂V∞
∂τ

= diag

(
1

τ (1− vi∞)2

)
∂V∞
∂τ

− 1

τ2 diag

(
1

1− vi∞

)
V∞

=
∂V∞
∂τ

τ (1−V∞)2 − 1

τ2

V∞
1−V∞

while the NIMFA matrix equation (A.4) shows that

A
∂V∞
∂τ

= d

dτ

1

τ

V∞
1−V∞

= d

dτ

1

τ

(
1

1−V∞
−u

)
where u = (1,1, . . . ,1) is the all-one vector. Hence,

Q

(
1

τ (1− vi∞)2

)
∂2V∞
∂τ2 = R2 (A.7)

with

R2 = 2

τ2 diag

(
1

(1− vi∞)2

)
∂V∞
∂τ

− 2

τ
diag

(
1

(1− vk∞)3

)(
∂V∞ (τ)

∂τ

)2

− 2

τ3 diag

(
1

1− vi∞

)
V∞

or

R2 = 2

τ

 d

dτ

1

τ

(
1

1−V∞
−u

)
−

(
∂V∞(τ)
∂τ

)2

(1−V∞)3


which is a same matrix equation as in (A.6), but a different right-hand side vector, which
can only be determined, after solving (A.6).

A next differentiation with respect to τ of

1

(1− vk∞)2

∂2vk∞ (τ)

∂τ2 −τ
N∑

j=1
ak j

∂2v j∞ (τ)

∂τ2 = 2
N∑

j=1
ak j

∂v j∞ (τ)

∂τ
− 2

(1− vk∞)3

(
∂vk∞ (τ)

∂τ

)2

shows that the left-hand side L and the right-hand side R derivatives are

L = 1

(1− vk∞)2

∂3vk∞ (τ)

∂τ3 + 2

(1− vk∞)3

∂2vk∞ (τ)

∂τ2

∂v j∞ (τ)

∂τ
−

N∑
j=1

ak j
∂2v j∞ (τ)

∂τ2 −τ
N∑

j=1
ak j

∂3v j∞ (τ)

∂τ3

R = 2
N∑

j=1
ak j

∂2v j∞ (τ)

∂τ2 − 3!

(1− vk∞)4

(
∂vk∞ (τ)

∂τ

)3

− 4

(1− vk∞)3

∂2vk∞ (τ)

∂τ2

∂vk∞ (τ)

∂τ
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Again rewritten as

1

τ (1− vk∞)2

∂3vk∞ (τ)

∂τ3 −
N∑

j=1
ak j

∂3v j∞ (τ)

∂τ3 = 3

τ

N∑
j=1

ak j
∂2v j∞ (τ)

∂τ2 − 3!

τ (1− vk∞)4

(
∂vk∞ (τ)

∂τ

)3

− 6

τ (1− vk∞)3

∂2vk∞ (τ)

∂τ2

∂vk∞ (τ)

∂τ

leads to the matrix form

Q

(
1

τ (1− vi∞)2

)
∂3V∞
∂τ3 = 3

τ
A
∂2V∞
∂τ2 − 6

τ
diag

(
1

(1− vk∞)4

)(
∂Vk∞ (τ)

∂τ

)3

− 6

τ
diag

(
1

(1− vk∞)3

)
∂2Vk∞ (τ)

∂τ2

∂Vk∞ (τ)

∂τ

Introducing A ∂2V∞
∂τ2 from (A.7) as

A
∂2V∞
∂τ2 = diag

(
1

τ (1− vi∞)2

)
∂2V∞
∂τ2 − 2

τ2 diag

(
1

(1− vi∞)2

)
∂V∞
∂τ

+

2

τ
diag

(
1

(1− vk∞)3

)(
∂Vk∞ (τ)

∂τ

)2

+ 2

τ3 diag

(
1

1− vi∞

)
V∞

yields

Q

(
1

τ (1− vi∞)2

)
∂2V∞
∂τ2 = R3

where

R3 = 6

τ4

V∞
1−V∞

− 6

τ3

∂V∞
∂τ

(1−V∞)2 + 3

τ2

∂2V∞
∂τ2

(1−V∞)2 + 6

τ2

(
∂V∞(τ)
∂τ

)2

(1−V∞)3

− 6

τ

(
∂V∞(τ)
∂τ

)3

(1−V∞)4 − 6

τ

∂2Vk∞(τ)
∂τ2

∂Vk∞(τ)
∂τ

(1−V∞)3

The computation illustrates the general structure (A.3) and demonstrates the Theo-
rem. ä

From a numerical point of view, the non-linear NIMFA steady-state matrix equation
(A.4) only needs be solved once for a particular value of τ so that the vector V∞ (τ) is

known, as well as the generalized Laplacian Q
(

1
τ(1−vi∞)2

)
. The Taylor expansion

V∞ (τ+∆τ) =
∞∑

m=0

(∆τ)m

m!

∂mV∞ (τ)

∂τm (A.8)

specifies the NIMFA infection probability vector V∞ (τ+∆τ) at another effective infec-
tion rate τ+∆τ, provided that the Taylor series converges at τ+∆τ. As mentioned earlier
in [122], unfortunately, the convergence radius of the series in (A.8) is difficult to deter-

mine in general. The left-hand side positive definite matrix Q
(

1
τ(1−vi∞)2

)
in (A.3) is the

same for all orders m ≥ 1 and can be inverted if a high precision and many terms in the
Taylor series (A.8) are required.
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A.5. THE VALUE OF τu
We define χD (τ) =∑N

i=1

∑i−1
j=1 1 fi j (V (τ),D)<0, then the larger χD is the higher the difference

between the rankings of the infection probability at τ and the nodal degree is. As shown
in A.3, we plot χD (τ) as a function of the average fraction y∞ of infected nodes for ER
and BA random graphs with the average degree E [D] = 14 as an example. We find that
for both graphs χD ≈ 0 when the average fraction y∞ of infected nodes is above 0.9,
which suggests that we can employ the value of τu so that y∞(τu) = 0.9. We have also
done such tests on all the other networks in this paper and obtain the same conclusion.
Hence, we employ the value τu , leading to y∞(τu) = 0.9, for all networks in this paper.

This choice of 0.9, though not necessarily optimal, is supported by the following
aspects. Practically, we would like to choose y∞(τu) as large as possible so that real-
world prevalence levels are covered. Since real-world prevalence seldom reaches 0.9,
y∞(τu) = 0.9 is large enough. Also, we would like to choose y∞(τu) as large as possi-
ble so that χ(τ(1)

c + ε,τu) well counts the total number of crossings. Moreover, y∞(τu)
should not be too large because the infection probability of the nodes are very close
to each other when the prevalence is high, and the precision of numerical solution to
compute the infection probability per node is not sufficient to distinguish nor to rank
the nodes according to their infection probabilities. Furthermore, we observed that the
crossing seldom happens when y∞(τ) > 0.9 in all the networks generated by the two net-
work models as well as in real-world networks. This is due to the fact that the number of
crossings decreases as τ increases, as observed and discussed in the paper.

To compute the value of τu which leads to a high prevalence (0.9), we can employ the
Laurent series of the steady-state infection probability [122, 123]:

vi∞ (τ) = 1+
∞∑

m=1
ηm (i )τ−m (A.9)

where the coefficient η1 (i ) =− 1
di

and

η2 (i ) = 1

d 2
i

(
1−

N∑
j=1

ai j

d j

)
(A.10)

and for m ≥ 2, the coefficients obey the recursion

ηm+1 (i ) =− 1

di
ηm (i )

(
1−

N∑
j=1

ai j

d j

)
− 1

di

m∑
k=2

ηm+1−k (i )
N∑

j=1
ai jηk

(
j
)

Considering a large value of τu

vi∞ = 1− 1

τudi
+O(τ−2)

and

y∞ = 1− 1

τu
E[

1

D
]+O(τ−2)

then, ignoring the second order condition O(τ−2),

τu ≈ 1− y∞
E[ 1

D ]
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Figure A.3: The plot of χD as a function of the average fraction of infected nodes. The results are averaged over
10 realizations

.

A.6. REAL-WORLD GRAPHS
We use 6 connected and undirected graphs from real-world datasets. Some graphs are
originally directed and may not be connected. We use the largest component of the
unconnected graphs and change the directed graphs to undirected. The description of
the 6 graphs are as follows:

1. GRQC: Arxiv GR-QC (General Relativity and Quantum Cosmology) collaboration
network is from the e-print arXiv and covers scientific collaborations between au-
thors papers submitted to General Relativity and Quantum Cosmology category.
If an author i coauthored a paper with author j , there is link between i and j . The
data covers papers in the period from January 1993 to April 2003.

2. NetSci: A coauthorship network of scientists working on network theory and ex-
periment. The network was compiled from the bibliographies of two review arti-
cles on networks.

3. ODLIS: The network is based on the ODLIS: Online Dictionary of Library and In-
formation Science (December 2000). The nodes are the terms in ODLIS and there
is link between two terms if one is used to describe another one.

4. Roget2: The network contains cross-references in Roget’s Thesaurus, 1879. Each
node of the graph corresponds to one of the categories in the 1879 edition of Peter
Mark Roget’s Thesaurus of English Words and Phrases. There is a link between two
categories if one is the reference of the other.

2See http://vlado.fmf.uni-lj.si/pub/networks/data/dic/roget/Roget.htm
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5. Power: The network represents the topology of the Western States Power Grid of
the United States.

6. Yeast: The protein-protein interaction network in budding yeast. There is link be-
tween protein i and protein j if they have the interaction.

In Table A.1, we list the size N , the average degree E [D], the degree variance V ar [D] and
the normalized degree variance V ar∗[D] of the 6 graphs. A larger size N always indicates
a larger value of χl in Fig. 8.2.

Table A.1: The real-world graph used in this paper.

GRQC NetSci ODLIS Roget Power Yeast

N 4158 379 2898 994 4941 2224

E [D] 6.46 4.82 11.30 7.32 2.67 5.94

V ar [D] 74.42 15.46 679.61 23.66 3.21 63.70
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A.7. THE COMPARISON BETWEEN NIFMA AND THE CONTINUOUS-
TIME SIMULATION

We compare the number of crossings obtained by NIMFA and the simulations of the ex-
act SIS model. We show two examples of the comparison in Fig. A.4. Because the NIMFA
epidemic threshold τ(1)

c is actually the lower bound of the real epidemic threshold, i.e.
τ(1)

c < τc , and to determine the value of κc = τc

τ(1)
c

> 1 for different topology is difficult, we

start the comparison from κ= 2 (attempting to exclude the crossings near the epidemic
threshold). Fig. A.4 shows that the results of the simulation and NIMFA agree with each
other quite well for both networks when κ is not large. When κ is large, i.e. the infection
probability of each node is high and close to each other, there might be some crossings
caused by the limited precision of the numerical NIMFA solution or the simulations. Be-
cause the precision of the numerical solution is higher than that of the simulation of the
exact SIS model, the number χ of crossings obtained from the simulation tends to be
larger than that from NIMFA if the effective infection rate κ is large.
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Figure A.4: The comparison of the number χ of crossings between NIMFA and the simulation of the exact SIS
model for (a) an ER random graph with N = 1000 and E [D] = 8; (b) a BA random graph with N = 1000 and
E [D] = 4. The linear sampling is employed with the step ∆κ= 0.5.
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A.8. σ∗ AS A FUNCTION OF τ
Here we show the relationship between σ∗ and τ when τÀ 1.
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Figure A.5: σ∗ as a function of τ for (a) ER random graphs with the size N = 1000 and (b) BA random graphs
with the size N = 1000.
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A.9. THE SPEARMAN RANK CORRELATION ρ AS A FUNCTION OF

κ
In Fig. A.6, we choose two graphs, an ER random graph with E[D] = 8 and a BA ran-
dom graph with E[D] = 4, as the example. We plot Spearman Rank Correlation between
V∞(τ(1)

c + ε) and V∞(κτ(1)
c ). We find that the rank correlation decreases fast when the ef-

fective infection rate is small. Moreover, there tend to be a few nodes drastically changing
ranks in BA random graphs but not in ER graphs.
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Figure A.6: The Spearman rank correlation between V∞(τ(1)
c + ε) and V∞(κτ(1)

c ) as a function of κ for (a) ER
random graphs with the size N = 1000 and the average degree E[D] = 8 and (b) BA random graphs with the size
N = 1000 and the average degree E[D] = 4.
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