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Unsupervised Tuning of Filter Parameters without
Ground-truth Applied to Aerial Robots

Shushuai Li, Christophe De Wagter, and Guido C.H.E. de Croon

Abstract—Autonomous robots heavily rely on well-tuned state
estimation filters for successful control. This paper presets a
novel automatic tuning strategy for learning filter parameters by
minimizing the innovation, i.e., the discrepancy betweenxpected
and received signals from all sensors. The optimization press
only requires the inputs and outputs of the filter without ground-
truth. Experiments were conducted with the Crazyflie quadrdor,

" [ data sets of raw sensor signals J:

Y,U Y,U
A Y

minimize the

and all parameters of the extended Kalman filter (EKF) are innovation | @ || EXFof
well tuned after one 10-second manual flight. The proposed | Crazyflie
method has multiple advantages, of which we demonstrate two (T filter

experimentally. First, the learned parameters are suitabé for
each individual drone, even if their particular sensors deiate
from the standard, e.g., by being noisier. Second, this marar
of self-tuning allows one to effortlessly expand filters whe new
sensors or better drone models become available. The leamhe Fig. 1. Overview of the unsupervised filter parameter turimethod. Left:
parameters result in a better state estimation performancehan  experimental setup where a small Crazyflie quadrotor is flowanually to
the standard Crazyflie parameters. get an onboard data set of observatidfisand control inputdJ, while the

. . . OptiTrack motion tracking system provides ground-truthviaidation. Right:
Index Terms—Aerial Systems: Perception and Autonomy, Lo-  the unsupervised tuning process where the filter operattsspaiameters,

calization, Sensor Fusion. while the estimated stateX are utilized by the optimization block until the
innovation based goal function is minimal.

. INTRODUCTION

ERCEPTION heavily relies on the difference betweefi? @lgebraic methods, such as correlation [4], Bayesian [5]
Ppredictions and sensory observations [1]. For robotgovariance matching [6], [7], and maximum likelihood [&].
perception is typically implemented in the form of a fiIterThe advqntage of these methods.|s that theor.etlcal guasante
that estimates the states based on an optimal combinaff@ Pe given, when the assumptions of the filter are correct.
of predictions and observations. For example, aerial wbdpitially, mathematical derivations were made for “simple
combine a model of their dynamics with gyroscope amystems, e.g., linear systems with a single output [10]].[11
accelerometer observations for attitude estimation [2f afy@t€r work extended these methods to more complex, non-
optical flow for motion estimation [3]. For the performande olinéar systems [12], even giving guarantees on upper bounds
state estimation filters such as the Kalman filter, it is etimien Of the covariance [13]. However, the above methods require
that the parameters representing the covariance of both th@articular filter formula that is amenable to mathematical
prediction and observation model are set correctly. The@grivation, in order to calculate the covariance or likeat
unknown parameters are mostly determined by the humisipction. This leads to a loss of generality to arbitraryefit
designer, with the help of expensive external measurem&htSyStems.
setups that give “ground-truth” measurements correspandi  To reduce the dependency on the mathematical structure of
to the observations. Determining a model's parameters tie filter, more recently tuning methods have been proposed
this manner is time-consuming, while the parameters diat can learn filter parameters based on input and output
in principle only valid for the single robot with which thedata of the filter, treating the filter as a black box. Many
measurements were made. This makes robotic perception lekthese methods require ground-truth measurements efstat
autonomous than animal and human perception. Automati®ich are not available to the robot itself. Examples inelud
tuning of filter parameters is an important challenge fd¢ deep learning method proposed for covariance estimation
achieving intelligent perception of robots. [14], and another filter tuning method represented by an

A less well-known use of the difference between predictigpptimization problem [15]. Other methods assume knowledge
and observation, termed “innovation” in the filtering lature, of some of the noise characteristics. For example, in [16], a
is to learn the filter's parameters. Adaptive filters haverbe@ptimization based EKF estimated process noise withoot pri
proposed to identify the noise covariance parameters bas@@wledge, while the measurement noise was assumed to be

known. Finally, there are methods that can function without
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any prior knowledge. In [18], several criteria for parametef this paper will only rely on inputs:, observationg,, and
learning of Kalman filter were proposed, and the selected oestimate states; from an arbitrary filter. As EKF is arguably
maximized the measurement likelihood. A tuning method fdhe most widely used estimator for the nonlinear systems, it
an unscented Kalman filter (UKF) was proposed based @nchosen for carrying out the filter parameter tuning in this
optimization method without ground-truth to maximize th@aper. The specific definition of the commonly used EKF can
likelihood of measurements [19]. Until now, these studiaseh be found in [15].
only considered the measurement likelihood rather than the
whole sensor likelihood meaning that the filter inputs aré N prgplem Formulation
considered for determining the process noise. And sincé mos
of these studies focus only on simulation, their accuraey fo
real robots still remains largely unknown. ¢

In this work, an unsupervised tuning method (illustrated
Fig. 1) is proposed for determining filter parameters. Ityon .
requires the information available to the robot, withoutegah necessary variables. . .
for ground-truth measurements. The method is independer}ftn the EKF of Crazyilie, the state vector_ms: [)_E,p, 8}, .

) . . . = R3 denotes the three dimensional posi-

of a filter's structure such that it allows for different fie €76 = [2,,2] € R . P
and different sensor arrangements. The use of controls‘snpt'gn.Of the qua_drotor n egrth coordmat,e_,: [z, vy, v2] %
can make process noise identification more accurate si Is the 3-axis yelocny in body coord.mat.es, adde R
acceleration sometimes is modelled as a control input to teeoresents the attitude error \(ector which is used to update
filter. The contributions of this work consist of: 1) automat € thr_ee attltud_e angles .Of p_|tczh roI_I 0 and y?"w- For
filter parameter tuning without relying on ground-truth; 2§|mpI|p|ty, fOIIOW'.ng analys_|s will consided as att|tU(_je. .
novel intuitive optimization with generality to any filte) Unlike theoretical physical models, most practical aerial

scalability to more sensor inputs and measurements, and rogroéiaurghfee f::zcércz;groaﬁeﬁn:g dligpzt;g]ti?\stgriezlait'o t
inclusion of control inputs; and 4) experimental resultevsh p'e, 9

: . . filter as controlled accelerations, while the gyro readiags
ing that the approach can improve upon the state estimation .
of a commercial flying robot. represented as controlled rotation rates. Therefore,iheeps

The rest of this paper is organized as follows. Section rg.)ise s?ems_ mainly from these SEnsors rather than from the
introduces the model preliminaries and the tuning problem. uncertainty in the controlied motions. Suppose all element

Section 3 the optimization-based unsupervised tuning mbthOf Noise are stochastically uncorrelated. Then the unknown
oise covariance parametdil and R can be formulated as

is presented. Section 4 illustrates the effectiveness ef tﬁ. onal matrices represented Bv— di and
proposed filter tuning method using several tests. Section 9 diag] ]p Q= diaglg g2 - a]
= dl T1L T2 ... Tpl.

presents our conclusions. The unknown process noise covariance in the Crazyflie EKF
. . . A
Il. PRELIMINARIES is compOSQed of 9 elements, in whigh = ¢2 = 04ayt°/2,
. . . 43 = Oazl /2: q4 = QG5 = Uazytu g6 = Oazt, g7 = @3 =
To introduce the tuning problem of filter parameters, 8,.,t andgy = 0,.t, whereo,,, ando,. denote the standard
generalized nonlinear model of robots will be given in thigeviation of horizontal and vertical acceleration noise/ §2)
section. This model shows the prediction and measuremgityody coordinatess,,, ando,. are standard deviation of

process of state estimation, followed by a specific EKF filtejfyroscope noisertud/s) aroundz, y, andz axis shown in Fig.
implemented on a quadrotor as a study case, with its unknownrespectively .

The model and EKF filter for state estimation of a Crazyflie
ommercial quadrotor, are in line with the general model Eq.
iﬁL) and the normal EKF in [15]. As the specific equations are
Igiven in [20], this paper will not repeat them except for some

noise covariance parameters. The measurement noise covariance matrix is defined by
R = diag[oyy 012], in which oy, and o;, represents the
A. Nonlinear Stochastic Modeling standard deviation of the 2-axis optical flow noise in pixels

Consider a robot with a nonlinear discrete model describ@4d in Whicho,. represents the range noise)(from a tiny

by following equations: laser pointing to ground. Therefore, fthe final filter parssret
of quadrotor to be determined are given as follows:
xp = f(xp—1,ur—1) +q, ) 0 N )
Y = h(iL‘k) +r = [Uamy Oaz Ogxy Ogz O fxy Olz va]a ( )

wherez € R", u € R™, g € R", y € R? andr ¢ wherek,, is an auxiliary parameter to calculate acceleration

R? denote states, inputs, process noise, measurements Yiig velocity, of which the role will be discussed later. Gbv
measurement noise, respectivefy:) and h(-) are transition ously, the parameters g play an important role in estimation

function from time stept — 1 to £ and observation function. performance of EKF. In the next section, an optimization

Assume Gaussian distributions with zero means for the pmcén_ethOd will be designed to calculate the unknown parameters
and measurement noise and corresponding covariance mdfril Ea- (2).
Q € R™"™ and R € RP*?, such thaty, ~ N'(h(zy), R) and
i ~ N(f(@p1,ur 1), Q). 1. METHOD

Based on the above assumptions, various filters are designed@his section will approach the filter parameter tuning as
to estimate robot states representedehy The tuning method an optimization problem. First, a novel scalar goal funttio
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g(-) is proposed to evaluate the filter performance. Then theGiven the goal function, this paper deploys stochastic gra-
tuning process would consist in iterations of minimizing thdient descent as the optimization method. Since our prapose
scalar goal function, realized by a stochastic gradientef@s method regards the goal function as a black box problem, it

method. would be possible to use any other metaheuristic optintnati
method.
A Goal Function The incorporated random process can help jump out of local

) ) o ) minima to some extent. Because after one gradient descent,
The literature on adaptive Kalman filtering typically séte t (he method will select a fixed number of random parameter
goal function with innovation to maximize the likelihood ofiyiializations for comparison to see if there exists a par@m
measurements as follows. set that has a smaller goal value. A more systematic deseript
1 X of this tuning method is given in the following algorithm.
Argmin — Z”h(ii‘i) —Y;ll2- Q) 61,0, Ny, fm(), and random() denote the lower bound,
o i=1 upper bound, number of searches that improve the current
This function represents the average of measurement estimation result, fmincon() function and random() fuonti
norm. in matlab, respectively.
This paper extends this traditional measurement based goal — _ _
function in (3) by also maximizing the likelihood of inputAlgorithm 1 Unsupervised tuning of EKF
signals, such as in this case = [az ay az gz gy gz] 1 Procedure fou:i(6o, O, Oun, Ns) > Tuning function
including 3-axis acceleration and 3-axis gyroscope, whiegh 21 Oopti < fm(g(u,y, 2(0)), 00,61, 0,,) > gradient
not directly represented by states. To this end, we use the descent function e.g. fmincon in matlab
physical relationship between the filter states and indugs, 3 Gopti < g(u, Y, Z(Oopti))
in this case the approximated linear relation between itgloc 4 Nioop < 0

and drag acceleration denoted byr ay] = —kyo[ve vy] 5 While nige, < N do
in wind still conditions. Thus, one can obtain= F(x) = 6 Onew <= Oup X random(length(6),1)
[—kpqvz — kyqvy vz ¢ 6 ). Incorporating this "input 7 if g(w,y, Z(Onew)) < gopti then
innovation” into the goal function Eq. (3), the overall goal 8 Oopti < fm(g(u,y, 2(0)), Onew, O, Oun)
function is given by 9: Jopti < 9(u, Y, £(Oopti))
) N 10: Nloop < 0
U,Y,X 0 _ h Ai _ ) + .7: Ai —uy 11: 8|Se
9( (6)) N;(” (@) — yilli + [|F (@) — will1) o Mooy Mooy + 1
(4 13 Bpest «— Oopsi > return the best parameter
ébest = a'rgming(Ua Y7 X(O)) (5)
0

C. Hardware Setup

To validate the effectiveness of the proposed tuning method
for EKF, experiments are conducted on the commercial
guadrotor Crazyflie 2. It uses a MPU-9250 IMU consisting
of a 3-axis gyroscope and a 3-axis accelerometer. These are
considered as inputs of the onboard EKF. Also, VL53L0x and
PMW3901MB sensors provide the range to ground and optical
&c‘)w measurements, respectively. These sensors are fused by

Where data sets’, U and X are length N sequences
of observationgy, control inputsu and estimated states,
respectively. Here, we select the L1 loss function as it dmes
overpenalize large but unlikely errors, and is thereforgamo
robust to non-Gaussian distributions with outliers [21hiet
are typical for many real-world sensors.

In real implementation, expectation$s;) and 7 (;) tend
to be smooth witl9,,..;. Therefore, noisy signals are smoothe ’
generally to keep the goal function ymo?e relevant to filterc onboard EKF with preset parameters from the factory.

results. Also, since the laser measurement is considera\t/)(le\zir::?etul\;g'r?eur\n/gihnc’d trzzhzfor?g ignae” Z]%q:r?;iélﬁh?so;ethltz
precise and it is coupled with the optical flow innovatiorg th - . 9 : y

. : . : collecting a suitable sensor data set. Data will be stored on
laser cost function is weighted &8|h;.(&;) — yi.| in Eq. (4),

: . : . a SD card, which is further used by an offline computer
in which we have left out the weights for brevity. . ) :

to calculate all required filter parameters. This procekeda
several minutes for laptop with i7-6600U CPU at 3.40 GHz. In
B. Tuning Process principle, a slower version of this optimization processiido

The entire unsupervised tuning process is shown in Fig.take place onboard the Crazyflie when not in flight.

It starts with an initial parametem®, in which all elements  To validate filter performance, a motion capture system
are set to zero. The filter runs once with the initial paramet@ptiTrack is used for providing external measured ground-
and outputs the sequence of estimated stéesThen the truth of 3-axis attitude and 3-axis position.
optimization block utilizesX to infer all sensor data, and
minimizes the difference between inferred and real sensor IV. EXPERIMENTAL RESULTS
signals for tuningd. This tuning step iterates until a minimal The performance of the proposed unsupervised tuning
value of the goal function is obtained. method is illustrated by several experimental scenariog/gh



in this section, in order to validate its tuning resultsireation B. Filter results with tuned parameters
performance, robustness to extra noise and efficiency for, this subsection. we compare the performance of the

expanding filters. The data se¥ and U for tuning are ,neqd parameter set with that of the onboard EKF with preset

collected from 20 manual flights of the quadrotor Operat%rameters. Estimation performance on position, velcaity
in all dimensions, whereas half data sets are used for tuniggi,de using the filter Withdy, ... is shown in the Fig. 4.

and the other half are used for testing. The duration of theggtead of taking a specific parameter set, we here take the
data sets ranges from 5 to 15 seconds with 1000Hz sampigdgian values as shown in Table | for the tuned filter.
frequency. Fig. 4 indicates that both the EKF with tuned parameters and
onboard EKF with original parameters have accurate positio
estimation. The tuned EKF tends to be closer to the ground-
truth at various times. We can also see the tuned filter has
- less attitude estimation error than that with original paeters

Q within some time. Filters with both sets of parameters can
Bl s

A. Results of unsupervised tuning

0.06

1 T
i 2 : ‘
0.04
1 1.5 i Q
1
i
0.5 T

estimate the velocity with similar precision as seen from Bi
Traditional tuning only with measurement likelihood hagkx
error than our method, especially at x, y and yaw axes due
to the lack of the input likelihood. The corresponding tuned
paramete@nolnput in Table | also shows its wrong estimation

magnitude
EJ_
=}
(538

~
©

+ =

Oax Oaz Ofxy Kva Ogxy Ogz  Olz . . .
. ym fy . g(; © mltn . of the yaw covariance and the drag coefficient.
Fig. 2. Distribution of filter parameters tuned based on athing data sets, : . . .
in which corresponding Units atuay (m/s2), Gas (m/52), Ggay(rad/s), Fig. 5 summarizes the comparison between the automati
09z (rad/s), o pu, (pizel), andoy, (m). cally tuned filter parameters and the preset parameterg;-sho

ing the error distribution of all estimated states on 10 tieda
sets. Root mean square error (RMSE) is used in this figure.
w The state estimates of the automatically tuned filter at#ain

s % P T lower RMSE for all states.

o

ax (m/ s?)
=
Loom

ay (m/ s?)
o
g o v
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e2] B
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C. Tuning results with extra noise and expanded model

This section continues analyzing the effectiveness of the
A method with regards to extra noise and expanded filter struc-
ture on a training data set.

The first scenario is adding extra noise to some dimensions
of the data sets. For example, a white Gaussian noise with

gy (rad/s)
LS o
hUow
gz (rad/s)
56 o
rNVo N
—

fx (pixel)
fy (pixel)

ob .~ . = v B, FO 5dB is added to the normally accurate altitude measurement,
1_2*—4 expected sensor data which is created by AWGN function in MATLAB. Fig. 6

%gé shows that the EKF with previous tuned parameter has a
2 -~ larger vertical velocity and position estimation error dioe
Time (sec) the extra noise. After retuning the filter with the extra ®eois

the new parameters enable the filter to largely reduce the
Fig. 3. Expected (magenta) and received (green) sensorfatadl sensors  estimation error. This can also be seen from Table I; the
'(;‘fcyf 'gﬁd?;’efr:gtggtfgg ’rgggirjdbcg{;gygﬂsgotfaein?f; v and9= oV standard deviation of the laser measurement increases with
a factor 10 due to the extra noise. Moreover, slightly
By implementing Algorithm 1 on sensor data collected frordecreases so that the vertical velocity relies more on the
a real Crazyflie quadrotor, all related noise parameters aecelerometer readings. Also, Fig. 7 illustrates that ¢tened
calculated and given aBy,..;. Table | gives insight into the EKF has less estimation error in all states compared to that
optimized parameter values, by showing the median valuegh unchanged parameters.
over the 10 different data sets. The distributiordgf.; tuned Another test is constructed for an expanded filter model,
from 10 training data sets is shown in Fig. 2 with 25th andhich uses thrust from command rather than from accelerom-
75th percentiles as the boundaries and the few outliers eandber to predict velocity. Because the latter one is someatime
neglectedos,,, tends to be far from the preset value in th@oisy due to mechanical vibrations. The thrust command
Crazyflie simply because horizontal acceleration only works smooth but mapping it to thrust requires knowledge of
for the onboard EKF when the quadrotor is in freefall omass which varies significantly between drones. In fact, the
carried. Crazyflie filter has a term for the thrust, but this is commdnte
At the same time, expected and real sensor data are shawt in the code mentioning this mass variability problem.
in Fig. 3 to show the effectiveness of the goal function omhe proposed self-tuning method can simply learn the thrust
a training data set. From the figure, we can see that &linction for the specific drone by adding a mapping coefficien
dimensional raw sensor data are well inferred by utilizinigt k1, into 8. After training, the unsupervised tuning method

tuning method. gives an exackr, = 1.4654 that maps thrust command to
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Fig. 4. The 3-dimensional position, attitude and velocisfireated by EKF with tuned parameters (blue), EKF with Cfigzyparameters (red), tuned EKF
without the input innovation term (yellow), as well as grdumuth from OptiTrack (black), respectively, based on & tata set.
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Fig. 5. Comparison between the self-tuned filter and thedst@hCrazyflie filter based on 10 test data sets.

TABLE |

EFK PARAMETERS FROMCRAZYFLIE, MEDIAN OF 10 TUNED TESTS TUNING WITHOUT INPUT INNOVATION, TUNING WITHOUT EXTRA NOISE, TUNING
WITH EXTRA NOISE, TUNING WITH THRUST MODEL, RESPECTIVELY

0 Tazy Oaz Ogzxy Ogz Ofxy Oz kva kTa
Ocr 0.5000 || 1.0000 || 0.1000 || 0.1000 || 0.2500 || 0.0025
O median 4.9839 || 0.7048 || 0.0079 || 0.0261 || 1.2720 || 0.0048 || 0.3621
Bnolnput 3.4744 || 2.5060 || 0.0723 || 1.8408 || 0.8837 || 0.0013 || 2.4981
0 hoNoise 4.9832 || 0.7513 || 0.0056 || 0.0500 || 2.5656 || 0.0095 || 0.3193
Onoise 4.1874 || 0.4380 || 0.0069 || 0.0461 || 2.6429 || 0.0926 || 0.3514
O thrust 4.5725 || 0.7404 || 0.0157 || 0.0897 || 3.7352 || 0.0300 || 0.3233 || 1.4654
= 15 0.2 03
E O‘z ' 5 = @
Sos ! § 1 £ oo Eo2
s 1 \\ 5 2 s
T L tuned EKF without extra noise = g 01 E
0.3—] tuned EKF with extra noise © 05 5 201
T o2t — — —retuned EKF with extra noise 4 g -‘g‘, 0.05 g
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Fig. 7. Estimation error on all states of the EKF with tunedapaeter without

noise (blue), previous tuned parameter with noise (red) ratuned parameter
Fig. 6. Altitude and corresponding velocity estimationoerwith respect to with noise (yellow), respectively, on a training data set.
extra noise on laser range measurement on a training data set

acceleration agz = krq * Tema/65536 shown in Fig. 8. We

use this thrust model only when it is flying because the ground
also provides a force to the robot when it is not flying betweerplaced by the thrust model, the vertical position esiiomat
0s-2s in Fig. 8. Also, this figure shows that even if the ingut error is still comparable.



could address issues such as largely varied covariance and

3 = T TN TY W B L . . . . .
g’ “M ' automatic selection of the innovation weight for the laser.
2 05k /,,/ az from accelerometer i
@ ~ —— az from thrust model
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