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Unsupervised Tuning of Filter Parameters without
Ground-truth Applied to Aerial Robots

Shushuai Li, Christophe De Wagter, and Guido C.H.E. de Croon

Abstract—Autonomous robots heavily rely on well-tuned state
estimation filters for successful control. This paper presents a
novel automatic tuning strategy for learning filter parameters by
minimizing the innovation, i.e., the discrepancy between expected
and received signals from all sensors. The optimization process
only requires the inputs and outputs of the filter without ground-
truth. Experiments were conducted with the Crazyflie quadrotor,
and all parameters of the extended Kalman filter (EKF) are
well tuned after one 10-second manual flight. The proposed
method has multiple advantages, of which we demonstrate two
experimentally. First, the learned parameters are suitable for
each individual drone, even if their particular sensors deviate
from the standard, e.g., by being noisier. Second, this manner
of self-tuning allows one to effortlessly expand filters when new
sensors or better drone models become available. The learned
parameters result in a better state estimation performancethan
the standard Crazyflie parameters.

Index Terms—Aerial Systems: Perception and Autonomy, Lo-
calization, Sensor Fusion.

I. INTRODUCTION

PERCEPTION heavily relies on the difference between
predictions and sensory observations [1]. For robots,

perception is typically implemented in the form of a filter
that estimates the states based on an optimal combination
of predictions and observations. For example, aerial robots
combine a model of their dynamics with gyroscope and
accelerometer observations for attitude estimation [2] and
optical flow for motion estimation [3]. For the performance of
state estimation filters such as the Kalman filter, it is essential
that the parameters representing the covariance of both the
prediction and observation model are set correctly. These
unknown parameters are mostly determined by the human
designer, with the help of expensive external measurement
setups that give “ground-truth” measurements corresponding
to the observations. Determining a model’s parameters in
this manner is time-consuming, while the parameters are
in principle only valid for the single robot with which the
measurements were made. This makes robotic perception less
autonomous than animal and human perception. Automatic
tuning of filter parameters is an important challenge for
achieving intelligent perception of robots.

A less well-known use of the difference between prediction
and observation, termed “innovation” in the filtering literature,
is to learn the filter’s parameters. Adaptive filters have been
proposed to identify the noise covariance parameters based
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Fig. 1. Overview of the unsupervised filter parameter tuningmethod.Left:
experimental setup where a small Crazyflie quadrotor is flownmanually to
get an onboard data set of observationsY and control inputsU , while the
OptiTrack motion tracking system provides ground-truth for validation.Right:
the unsupervised tuning process where the filter operates with parameterŝθ,
while the estimated stateŝX are utilized by the optimization block until the
innovation based goal function is minimal.

on algebraic methods, such as correlation [4], Bayesian [5],
covariance matching [6], [7], and maximum likelihood [8], [9].
The advantage of these methods is that theoretical guarantees
can be given, when the assumptions of the filter are correct.
Initially, mathematical derivations were made for “simple”
systems, e.g., linear systems with a single output [10], [11].
Later work extended these methods to more complex, non-
linear systems [12], even giving guarantees on upper bounds
of the covariance [13]. However, the above methods require
a particular filter formula that is amenable to mathematical
derivation, in order to calculate the covariance or likelihood
function. This leads to a loss of generality to arbitrary filters
or systems.

To reduce the dependency on the mathematical structure of
the filter, more recently tuning methods have been proposed
that can learn filter parameters based on input and output
data of the filter, treating the filter as a black box. Many
of these methods require ground-truth measurements of states
which are not available to the robot itself. Examples include
a deep learning method proposed for covariance estimation
[14], and another filter tuning method represented by an
optimization problem [15]. Other methods assume knowledge
of some of the noise characteristics. For example, in [16], an
optimization based EKF estimated process noise without prior
knowledge, while the measurement noise was assumed to be
known. Finally, there are methods that can function without
prior knowledge or ground-truth measurements. A self-tuning
mixture model was proposed in [17], which not only tuned the
distribution parameters but also estimated the states without
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any prior knowledge. In [18], several criteria for parameter
learning of Kalman filter were proposed, and the selected one
maximized the measurement likelihood. A tuning method for
an unscented Kalman filter (UKF) was proposed based on
optimization method without ground-truth to maximize the
likelihood of measurements [19]. Until now, these studies have
only considered the measurement likelihood rather than the
whole sensor likelihood meaning that the filter inputs are not
considered for determining the process noise. And since most
of these studies focus only on simulation, their accuracy for
real robots still remains largely unknown.

In this work, an unsupervised tuning method (illustrated in
Fig. 1) is proposed for determining filter parameters. It only
requires the information available to the robot, without a need
for ground-truth measurements. The method is independent
of a filter’s structure such that it allows for different filters
and different sensor arrangements. The use of control inputs
can make process noise identification more accurate since
acceleration sometimes is modelled as a control input to the
filter. The contributions of this work consist of: 1) automatic
filter parameter tuning without relying on ground-truth; 2)
novel intuitive optimization with generality to any filter;3)
scalability to more sensor inputs and measurements, and the
inclusion of control inputs; and 4) experimental results show-
ing that the approach can improve upon the state estimation
of a commercial flying robot.

The rest of this paper is organized as follows. Section 2
introduces the model preliminaries and the tuning problem.In
Section 3 the optimization-based unsupervised tuning method
is presented. Section 4 illustrates the effectiveness of the
proposed filter tuning method using several tests. Section 5
presents our conclusions.

II. PRELIMINARIES

To introduce the tuning problem of filter parameters, a
generalized nonlinear model of robots will be given in this
section. This model shows the prediction and measurement
process of state estimation, followed by a specific EKF filter
implemented on a quadrotor as a study case, with its unknown
noise covariance parameters.

A. Nonlinear Stochastic Modeling

Consider a robot with a nonlinear discrete model described
by following equations:

xk = f(xk−1,uk−1) + q ,

yk = h(xk) + r
(1)

where x ∈ R
n, u ∈ R

m, q ∈ R
n, y ∈ R

p and r ∈
R

p denote states, inputs, process noise, measurements and
measurement noise, respectively.f(·) andh(·) are transition
function from time stepk − 1 to k and observation function.
Assume Gaussian distributions with zero means for the process
and measurement noise and corresponding covariance matrix
Q ∈ R

n×n andR ∈ R
p×p, such thatyk ∼ N (h(xk),R) and

xk ∼ N (f(xk−1,uk−1),Q).
Based on the above assumptions, various filters are designed

to estimate robot states represented byx̂k. The tuning method

of this paper will only rely on inputsuk, observationsyk and
estimate stateŝxk from an arbitrary filter. As EKF is arguably
the most widely used estimator for the nonlinear systems, it
is chosen for carrying out the filter parameter tuning in this
paper. The specific definition of the commonly used EKF can
be found in [15].

B. Problem Formulation

The model and EKF filter for state estimation of a Crazyflie
commercial quadrotor, are in line with the general model Eq.
(1) and the normal EKF in [15]. As the specific equations are
given in [20], this paper will not repeat them except for some
necessary variables.

In the EKF of Crazyflie, the state vector isx = [ξ,ρ, δ],
whereξ = [x, y, z] ∈ R

3 denotes the three dimensional posi-
tion of the quadrotor in earth coordinate,ρ = [vx, vy, vz] ∈
R

3 is the 3-axis velocity in body coordinates, andδ ∈ R
3

represents the attitude error vector which is used to update
the three attitude angles of pitchφ, roll θ and yawψ. For
simplicity, following analysis will considerδ as attitude.

Unlike theoretical physical models, most practical aerial
robots utilize sensor signals ascontrol inputs into the filter.
For example, the accelerometer readings are inserted into the
filter as controlled accelerations, while the gyro readingsare
represented as controlled rotation rates. Therefore, the process
noise stems mainly from these sensors rather than from the
uncertainty in the controlled motions. Suppose all elements
of noise are stochastically uncorrelated. Then the unknown
noise covariance parametersQ andR can be formulated as
diagonal matrices represented byQ = diag[q1 q2 ... qn] and
R = diag[r1 r2 ... rp].

The unknown process noise covariance in the Crazyflie EKF
is composed of 9 elements, in whichq1 = q2 = σaxyt

2/2,
q3 = σazt

2/2, q4 = q5 = σaxyt, q6 = σazt, q7 = q8 =
σgxyt andq9 = σgzt, whereσaxy andσaz denote the standard
deviation of horizontal and vertical acceleration noise (m/s2)
in body coordinates.σgxy andσgz are standard deviation of
gyroscope noise (rad/s) aroundx, y, andz axis shown in Fig.
1, respectively .

The measurement noise covariance matrix is defined by
R = diag[σfxy σlz ], in which σfxy and σlz represents the
standard deviation of the 2-axis optical flow noise in pixels
and in whichσlz represents the range noise (m) from a tiny
laser pointing to ground. Therefore, the final filter parameters
of quadrotor to be determined are given as follows:

θ = [σaxy σaz σgxy σgz σfxy σlz kva], (2)

wherekva is an auxiliary parameter to calculate acceleration
with velocity, of which the role will be discussed later. Obvi-
ously, the parameters inθ play an important role in estimation
performance of EKF. In the next section, an optimization
method will be designed to calculate the unknown parameters
θ in Eq. (2).

III. METHOD

This section will approach the filter parameter tuning as
an optimization problem. First, a novel scalar goal function
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g(·) is proposed to evaluate the filter performance. Then the
tuning process would consist in iterations of minimizing the
scalar goal function, realized by a stochastic gradient descent
method.

A. Goal Function

The literature on adaptive Kalman filtering typically sets the
goal function with innovation to maximize the likelihood of
measurements as follows.

argmin
θ

1

N

N∑

i=1

‖h(x̂i)− yi‖2. (3)

This function represents the average of measurement error
norm.

This paper extends this traditional measurement based goal
function in (3) by also maximizing the likelihood of input
signals, such as in this caseu = [ax ay az gx gy gz]
including 3-axis acceleration and 3-axis gyroscope, whichare
not directly represented by states. To this end, we use the
physical relationship between the filter states and inputs,i.e.,
in this case the approximated linear relation between velocity
and drag acceleration denoted by[ax ay] = −kva[vx vy]
in wind still conditions. Thus, one can obtainu = F(x) =
[−kvavx − kvavy v̇x φ̇ θ̇ ψ̇]. Incorporating this ”input
innovation” into the goal function Eq. (3), the overall goal
function is given by

g(U ,Y , X̂(θ)) =
1

N

N∑

i=1

(‖h(x̂i)− yi‖1 + ‖F(x̂i)− ui‖1)

(4)

θ̂best = argmin
θ

g(U ,Y , X̂(θ)) (5)

Where data setsY , U and X̂ are lengthN sequences
of observationsy, control inputsu and estimated stateŝx,
respectively. Here, we select the L1 loss function as it doesnot
overpenalize large but unlikely errors, and is therefore more
robust to non-Gaussian distributions with outliers [21], which
are typical for many real-world sensors.

In real implementation, expectationsh(x̂i) andF(x̂i) tend
to be smooth witĥθbest. Therefore, noisy signals are smoothed
generally to keep the goal function more relevant to filter
results. Also, since the laser measurement is considerably
precise and it is coupled with the optical flow innovation, the
laser cost function is weighted as50|hlz(x̂i)− ylz| in Eq. (4),
in which we have left out the weights for brevity.

B. Tuning Process

The entire unsupervised tuning process is shown in Fig. 1.
It starts with an initial parametersθ0 in which all elements
are set to zero. The filter runs once with the initial parameter
and outputs the sequence of estimated statesX̂. Then the
optimization block utilizesX̂ to infer all sensor data, and
minimizes the difference between inferred and real sensor
signals for tuninĝθ. This tuning step iterates until a minimal
value of the goal function is obtained.

Given the goal function, this paper deploys stochastic gra-
dient descent as the optimization method. Since our proposed
method regards the goal function as a black box problem, it
would be possible to use any other metaheuristic optimization
method.

The incorporated random process can help jump out of local
minima to some extent. Because after one gradient descent,
the method will select a fixed number of random parameter
initalizations for comparison to see if there exists a parameter
set that has a smaller goal value. A more systematic description
of this tuning method is given in the following algorithm.
θlb, θub, Ns, fm(), and random() denote the lower bound,
upper bound, number of searches that improve the current
estimation result, fmincon() function and random() function
in matlab, respectively.

Algorithm 1 Unsupervised tuning of EKF
1: procedure fopti(θ0, θlb, θub, Ns) ⊲ Tuning function
2: θ̂opti ← fm(g(u,y, x̂(θ)), θ0, θlb, θub) ⊲ gradient

descent function e.g. fmincon in matlab
3: gopti ← g(u,y, x̂(θ̂opti))
4: nloop ← 0
5: while nloop < Ns do
6: θ̂new ← θub × random(length(θ), 1)
7: if g(u,y, x̂(θ̂new)) ≤ gopti then
8: θ̂opti ← fm(g(u,y, x̂(θ)), θnew, θlb, θub)
9: gopti ← g(u,y, x̂(θ̂opti))

10: nloop ← 0
11: else
12: nloop ← nloop + 1

13: θ̂best ← θ̂opti ⊲ return the best parameter

C. Hardware Setup

To validate the effectiveness of the proposed tuning method
for EKF, experiments are conducted on the commercial
quadrotor Crazyflie 2. It uses a MPU-9250 IMU consisting
of a 3-axis gyroscope and a 3-axis accelerometer. These are
considered as inputs of the onboard EKF. Also, VL53L0x and
PMW3901MB sensors provide the range to ground and optical
flow measurements, respectively. These sensors are fused by
the onboard EKF with preset parameters from the factory.

The tuning method relies on one manual flight of this
vehicle. Maneuvering the drone in all dimensions is key to
collecting a suitable sensor data set. Data will be stored on
a SD card, which is further used by an offline computer
to calculate all required filter parameters. This process takes
several minutes for laptop with i7-6600U CPU at 3.40 GHz. In
principle, a slower version of this optimization process could
take place onboard the Crazyflie when not in flight.

To validate filter performance, a motion capture system
OptiTrack is used for providing external measured ground-
truth of 3-axis attitude and 3-axis position.

IV. EXPERIMENTAL RESULTS

The performance of the proposed unsupervised tuning
method is illustrated by several experimental scenarios shown



4

in this section, in order to validate its tuning results, estimation
performance, robustness to extra noise and efficiency for
expanding filters. The data setsY and U for tuning are
collected from 20 manual flights of the quadrotor operated
in all dimensions, whereas half data sets are used for tuning
and the other half are used for testing. The duration of these
data sets ranges from 5 to 15 seconds with 1000Hz sampled
frequency.

A. Results of unsupervised tuning

m
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Fig. 2. Distribution of filter parameters tuned based on 10 training data sets,
in which corresponding units areσaxy(m/s2), σaz(m/s2), σgxy(rad/s),
σgz(rad/s), σfxy(pixel), andσlz(m).
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Fig. 3. Expected (magenta) and received (green) sensor datafor all sensors
including acceleration ofax, ay andaz, gyroscope ofgx, gy andgz, flow
of fx andfy, and altitude rangez, based on a training data set.

By implementing Algorithm 1 on sensor data collected from
a real Crazyflie quadrotor, all related noise parameters are
calculated and given aŝθbest. Table I gives insight into the
optimized parameter values, by showing the median values
over the 10 different data sets. The distribution ofθ̂best tuned
from 10 training data sets is shown in Fig. 2 with 25th and
75th percentiles as the boundaries and the few outliers can be
neglected.σaxy tends to be far from the preset value in the
Crazyflie simply because horizontal acceleration only works
for the onboard EKF when the quadrotor is in freefall or
carried.

At the same time, expected and real sensor data are shown
in Fig. 3 to show the effectiveness of the goal function on
a training data set. From the figure, we can see that all
dimensional raw sensor data are well inferred by utilizing this
tuning method.

B. Filter results with tuned parameters

In this subsection, we compare the performance of the
tuned parameter set with that of the onboard EKF with preset
parameters. Estimation performance on position, velocityand
attitude using the filter withθ̂best is shown in the Fig. 4.
Instead of taking a specific parameter set, we here take the
median values as shown in Table I for the tuned filter.

Fig. 4 indicates that both the EKF with tuned parameters and
onboard EKF with original parameters have accurate position
estimation. The tuned EKF tends to be closer to the ground-
truth at various times. We can also see the tuned filter has
less attitude estimation error than that with original parameters
within some time. Filters with both sets of parameters can
estimate the velocity with similar precision as seen from Fig. 4.
Traditional tuning only with measurement likelihood has larger
error than our method, especially at x, y and yaw axes due
to the lack of the input likelihood. The corresponding tuned
parameter̂θnoInput in Table I also shows its wrong estimation
of the yaw covariance and the drag coefficient.

Fig. 5 summarizes the comparison between the automati-
cally tuned filter parameters and the preset parameters, show-
ing the error distribution of all estimated states on 10 testdata
sets. Root mean square error (RMSE) is used in this figure.
The state estimates of the automatically tuned filter attaina
lower RMSE for all states.

C. Tuning results with extra noise and expanded model

This section continues analyzing the effectiveness of the
method with regards to extra noise and expanded filter struc-
ture on a training data set.

The first scenario is adding extra noise to some dimensions
of the data sets. For example, a white Gaussian noise with
5dB is added to the normally accurate altitude measurement,
which is created by AWGN function in MATLAB. Fig. 6
shows that the EKF with previous tuned parameter has a
larger vertical velocity and position estimation error dueto
the extra noise. After retuning the filter with the extra noise,
the new parameters enable the filter to largely reduce the
estimation error. This can also be seen from Table I; the
standard deviation of the laser measurement increases with
a factor 10 due to the extra noise. Moreover,σaz slightly
decreases so that the vertical velocity relies more on the
accelerometer readings. Also, Fig. 7 illustrates that the retuned
EKF has less estimation error in all states compared to that
with unchanged parameters.

Another test is constructed for an expanded filter model,
which uses thrust from command rather than from accelerom-
eter to predict velocity. Because the latter one is sometimes
noisy due to mechanical vibrations. The thrust command
is smooth but mapping it to thrust requires knowledge of
mass which varies significantly between drones. In fact, the
Crazyflie filter has a term for the thrust, but this is commented
out in the code mentioning this mass variability problem.
The proposed self-tuning method can simply learn the thrust
function for the specific drone by adding a mapping coefficient
kTa into θ̂. After training, the unsupervised tuning method
gives an exactkTa = 1.4654 that maps thrust command to
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Fig. 4. The 3-dimensional position, attitude and velocity estimated by EKF with tuned parameters (blue), EKF with Crazyflie parameters (red), tuned EKF
without the input innovation term (yellow), as well as ground-truth from OptiTrack (black), respectively, based on a test data set.

Fig. 5. Comparison between the self-tuned filter and the standard Crazyflie filter based on 10 test data sets.

TABLE I
EFK PARAMETERS FROMCRAZYFLIE , MEDIAN OF 10 TUNED TESTS, TUNING WITHOUT INPUT INNOVATION , TUNING WITHOUT EXTRA NOISE, TUNING

WITH EXTRA NOISE, TUNING WITH THRUST MODEL, RESPECTIVELY.

θ σaxy σaz σgxy σgz σfxy σlz kva kTa

θCF 0.5000 1.0000 0.1000 0.1000 0.2500 0.0025
θ̂median 4.9839 0.7048 0.0079 0.0261 1.2720 0.0048 0.3621
θ̂noInput 3.4744 2.5060 0.0723 1.8408 0.8837 0.0013 2.4981
θ̂noNoise 4.9832 0.7513 0.0056 0.0500 2.5656 0.0095 0.3193
θ̂noise 4.1874 0.4380 0.0069 0.0461 2.6429 0.0926 0.3514
θ̂thrust 4.5725 0.7404 0.0157 0.0897 3.7352 0.0300 0.3233 1.4654
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acceleration asaz = kTa ∗ Tcmd/65536 shown in Fig. 8. We
use this thrust model only when it is flying because the ground
also provides a force to the robot when it is not flying between
0s-2s in Fig. 8. Also, this figure shows that even if the input is
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replaced by the thrust model, the vertical position estimation
error is still comparable.
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D. Tuning of a UKF on the EuroC MAV dataset

The method is further tested on the commonly used UKF
formulated in [19] for attitude estimation, and the IMU data
is from the public EuroC MAV dataset. The unknown 3-
axis gyroscope covarianceQ and 2-axis accelerometer co-
varianceR are tuned from initial [1,1,1,1,1] to [5.8e-8,2.8e-
7,0.6443,2.1987,2.5532]. Results from the Fig. 9 show that
the tuned UKF can estimate the attitude accurately, which
validates the efficacy of the proposed method on different
filters and data sets.
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Fig. 9. Attitude estimation of UKF with initial parameters,tuned parameters,
and ground-truth on the public EuroC MAV dataset.

V. CONCLUSIONS

We have proposed an unsupervised parameter tuning
method for arbitrary filters by minimizing the difference
between predictions and observations. The effectiveness of the
proposed method has been validated using real-world data ofa
tiny Crazyflie quadrotor. The results show that the filter with
self-tuned parameters has more precise estimation than the
filter with preset parameters. Moreover, we have shown that
this tuning method can reject extra noise, by adding noise to
the sensor data, and it can also easily extend to an expanded
filter model, identifying new unknown parameters. Finally,the
method is validated to work on other filters like a UKF.

However, there are some limitations of this method. For
example, in the current article we have based the input inno-
vation term on our knowledge of the physical system. Future
work could focus on learning the relation between states and
control inputs if this relationship is unknown. Of course, if
there is no inherent relationship between the state and the
control inputs, then the innovation term will not be beneficial.
Furthermore, the performance may degrade if some sensors
have a covariance that changes heavily over time. Future work

could address issues such as largely varied covariance and
automatic selection of the innovation weight for the laser.
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