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Semi-autonomous Teleimpedance Based on Visual Detection of Object
Geometry and Material and its Relation to Environment

Georg Siegemund1,2, Alejandro Diaz Rosales1,3, Arne Glodde2, Franz Dietrich2, and Luka Peternel1

Abstract— This paper presents a method for semi-
autonomous teleimpedance where the control is shared between
the human operator and the robot. The human commands the
position of the teleoperated robotic arm end-effector while the
robot autonomously adjusts the impedance depending on the
object with which the end-effector interacts. We developed a
vision system that calculates the appropriate robot stiffness
based on the detected object geometry and material and object’s
relation to the environment. This system uses an RGB-D camera
near the robot’s end-effector to capture different perspectives
of the scene. To validate the proposed method, we conducted
experiments on a teleoperation system where a Force Dimension
Sigma7 haptic device was used to operate a KUKA LBR iiwa
robotics arm. At the same time, the Intel RealSense D455 depth
camera provided the visual input. We examined two practical
tasks: engaging with bolts on a plate and polishing a stripe.

I. INTRODUCTION

Due to their versatility and diverse capabilities, humanoid
robots are indispensable tools for performing complex and
hazardous tasks, such as disaster response [1]. In most cases,
we prefer the humanoid robot to autonomously execute their
tasks as much as possible. Nevertheless, human involvement
is often still desired or required due to the complexity of
the task and the lack of robot cogitative capabilities. A
key technology that enables human-in-the-loop robot control
and teaching is teleoperation [2]. An operator can control
a remote robot through interfaces and perform tasks in
unstructured and unpredictable environments.

For robotic manipulators, it is challenging to physically
interact in unstructured and unpredictable environments, as
they lack the human ability to analyze new objects and adapt
the interaction control. Humans are very good at estimating
objects by analyzing the structure and material of the object.
Based on that, they can then adapt their arm endpoint
stiffness to perform an effective physical interaction [3]. For
example, if interacting with a fragile part of an object, the
stiffness can be lowered to ensure it does not break. When
requiring more strength on a rigid part of the object, the
stiffness can be increased to be more forceful.

To enhance the classic teleoperation of a robotic manipu-
lator with impedance control, the concept of teleimpedance
was developed [4]. Teleimpedance enables the operator to
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Fig. 1. Experiment setup including KUKA LBR iiwa robotic arm controlled
by a human operator using Force Dimension Sigma.7 haptic device. Intel
RealSense D455 depth camera is mounted close to the robot end-effector,
and its information is used for autonomous adjustments of robot impedance.
The image shows an example of a task where a stripe needs to be polished.

control the impedance remotely with an additional command
channel [5]. To this end, various stiffness command inter-
faces have been developed, such as hand-grip-sensors [6],
electromyography (EMG) [7]–[12], visual muscle activity
estimation [13], buttons/sliders [14]–[16], and haptic inter-
face wiggling [17] and perturbations [18]. While stiffness
command interfaces enable direct human control over the
remote robot impedance, the trade-off is that they add extra
task load on the operator.

Many studies successfully investigated the possibilities of
autonomous impedance controllers. For example, machine
learning methods such as reinforcement learning [19] or
learning from demonstration [20], [21] enable the robot to
learn and reproduce impedance regulation skills. Neverthe-
less, these methods do not apply to real-time teleoperation
where human needs quick online adjustments. The limiting
factor of machine learning methods is that they rely on
the learned impedance trajectory, which may not adapt fast
enough when the operator changes the position trajectory
rapidly in real-time.

Alternatively, adaptive impedance controllers based on
haptic feedback can achieve trajectory-independent control.
The approach closely aligns with human behaviour, relying
on haptic senses to estimate the interaction and adjust
the impedance [22]–[24]. Nevertheless, physical interaction
between the robot and the environment before adjusting
impedance can be dangerous in situations where the envi-
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ronment is unknown, unstable, or fragile. The robot risks
damaging the object when the impedance is not adapted to
the object in time. In such instances, the impedance should
be adjusted to the given object before the initial contact.

To this end, a recent study in [25] introduced a semi-
autonomous teleimpedance method where the remote robot
can estimate the impedance on its own using computer
vision, which estimates the material of the object and,
depending on the material, sets an impedance for the robot
before the object is touched. Nevertheless, the key drawback
of that method is that object geometry and its relation to the
environment were neglected. For example, a thin metal can
be more fragile than a thick glass, even though glass as a
material tends to be more fragile in general. Furthermore,
when a robot needs to bend an object to a specific angle,
the required force depends not only on the material but also
on the overall shape and the point at which the force is
applied. Incorporating object geometry and its relation to the
environment for semi-autonomous teleimpedance remains an
important open research challenge.

The research in this paper aims to address this gap in
the current state of the art by proposing a new method to
efficiently estimate the appropriate robot’s impedance for
interacting with an object. This method takes into account
the object’s shape, material properties, and its interaction
with the rest of the environment. To validate the proposed
method, we conduct several experiments on a setup involving
Force Dimension Sigma.7 haptic device that controls the
motion of KUKA LBR iiwa remote robotic manipulator and
Intel RealSense D455 depth camera mounted on the robot to
estimate object properties for impedance regulation (see Fig.
1). We examine tasks such as bolt engagement and surface
polishing on different objects.

The method is shown in Fig. 2 and is composed of
two main parts: object-aware impedance control (Sec. II)
and computer vision algorithm (Sec. III). The impedance
estimation module (Sec. II-A) of the object-aware impedance
control part draws information about object geometry, ma-
terial, and its relation of object to the environment from
the computer vision algorithm using the camera mounted on
the robot end-effector. The geometry-aware stiffness strategy
enables adapting impedance calculation mode based on the
relation of the object to the environment (e.g., how it is
pivoted/mounted). The impedance command module (Sec.
II-B) of the object-aware impedance control part uses the
information about the object from the impedance estimation
module to adapt and command the stiffness to the remote
robot end-effector. The object detection modules (Sec. III)
of the computer vision part provide the objects/environment
information according to the camera input, where the object
geometry, its material, and its relation to the environment
are recognised. We estimate the object and its relation to
the environment before the robot enters into contact to be
proactive and not reactive.

HUMAN
OPERATOR

MATERIAL
RECOGNITION

OBJECT
RECOGNITION

OBJECT

IMPEDANCE
ESTIMATION

TASK &
MATERIAL

IMPEDANCE
COMMAND

ESTIMATED
STIFFNESS

TORQUE
COMMANDS

ROBOT

GEOMETRY
RECOGNITION

GEOMETRY &
ENVIRONMENT

REFERENCE
POSITION

RGB-D
CAMERA

OBJECT &
ENVIRONMENT

COMPUTER VISION

IMPEDANCE CONTROL

IMAGE

POINT
CLOUD

Fig. 2. Block scheme of the proposed method for semi-autonomous
teleimpedance, which is composed of two main parts: geometry-aware
impedance control (blue) and computer vision (red). The human operator
controls the position of the remote robot end-effector, while the autonomous
system controls its stiffness based on the detected object properties and its
relation to the environment.

II. OBJECT-AWARE IMPEDANCE CONTROL

The object-aware impedance control part covers two mod-
ules. The impedance estimation module estimates the ap-
propriate impedance of the robot for the interaction with
a specific object based on the data from computer vision.
The impedance command module ensures that the estimated
impedance is properly commanded to the remote robot in
real-time, while the operator commands the position.

A. Impedance Estimation Module

The robot estimates the impedance autonomously based on
the information about the object properties, which is obtained
from the computer vision part (Sec. III). The key part of
the regulated impedance is stiffness, while the damping is
adjusted to maintain the controller’s stability. To determine a
suitable robot stiffness in different possible robot positions,
we need to analyse the object geometry and material. Let
us examine the following scenario. We need to produce
a force on the surface of a rectangular object, such as a
plate. The robot end-effector needs to interact with the plate
perpendicularly to the object’s surface, thus stiffness needs to
be adjusted in that direction while maintaining high stiffness
in the other axes to ensure precise positioning. Examples of
such a scenario are common tasks such as polishing a plate
[26]–[28] or screwing bolts [14], [29].

The adjustments of stiffness in a perpendicular direction
depend on the geometry and properties of the object. If
the plate is thin or made of a fragile material, the stiffness
should ideally be lower to ensure we do not bend it too
much. If it is pivoted on one side and free on the other,
the stiffness should be ideally adjusted based on the lever
arm, as the sections farther from the pivot can bend more
easily. Consequently, the geometry and material inherently
shape the stiffness calculation by guiding the direction in
which adjustments are required, along with determining the
minimum and maximum stiffness.

To assess the appropriate stiffness, we created a function
that depends on the combination of object geometry and its
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A B C 

dmax.x

dmax.y

Fig. 3. Heatmap depicting stiffness values on the surface of an object (e.g., plate) during force production tasks, depending on the configuration of
environment support: supported on all four edges (A), supported on left and right edges (B) and supported on top and bottom edges (C). Red color
indicates high stiffness, while blue color indicates low stiffness.

material information obtained from computer vision. This
function is defined by the maximum distance to the weakest
spot of the object, as well as the maximum and minimum
stiffness. Depending on the object’s geometry and its rela-
tion to the environment (i.e., configuration of environment
support), the point of minimal stiffness is located differently.
Returning to the scenario of force production on a rectangular
object (e.g., a plate) and assuming the environment support
is situated beneath the plate’s borders, the minimum stiffness
is essentially at the centre of the plate.

The stiffness function depends on the object’s geometry
and changes based on the location and the amount of support
the environment provides in different positions. Fig. 3 shows
examples where the environment supports a plate differently.
Image A shows a case when support is on all four sides of
the object. Image B shows a case where the environment
supports the object on the left and right ends, while image
C shows a case where support is provided on the top and
bottom ends. The red color indicates higher object stiffness
closer to the supports since the lever arm is smaller and
an external force does not easily bend the object. The
blue color indicates lower object stiffness farther from the
support since the lever arm becomes larger and the object
can more easily bend. Higher stiffness is indicated near the
plate borders, corresponding to the object’s proximity to the
support, whereas lower stiffness is desired at the centre of
the plate.

For the case where the environment on both sides supports
the object, the stiffness can be calculated as translational
and rotational elements of each principal axis i of the object
frame as

Ko
ii =

Kmax.i

dmax.i
· di > Kmin.i. (1)

When the support is only on one side, the stiffness can be
calculated as

Ko
ii =

Kmax.i

dmax.i
· (dmax.i − di) > Kmin.i, (2)

where Ko
ii are the diagonal elements of the stiffness matrix

Ko ∈ R3×3 calculated for the object and superscript o

indicates that it is in the object frame. Kmin and Kmax

are the maximum and minimum stiffness parameters, respec-
tively, while dmax ∈ R3 is the maximum distance parameter
depending on object geometry. When the object (e.g., plate)
is supported by the environment on both ends, dmax is the
distance from the centre point to the borders. When it is

clamped on one side only, dmax is the distance between
the clamped position and the endpoint of the object on the
other side. Lastly, d marks the current distance of the robot
position from the weakest point, e.g., centre point for two-
sided support or from the clamp for one-side support.

The detected object material determines the maximum
and minimum stiffness parameters. For example, for stiffer
materials, these are higher than for softer ones. Note that in
(1) and (2), we assume the material stiffness is uniform, and
thus the relationship is linear. If the material exhibits a non-
linear relationship, the non-linear function can be employed
instead.

B. Impedance Command Module

The derived object geometry-dependent stiffness from (1)
or (2) is then used to command the stiffness of the robot
end-effector that interacts with it at different positions. Thus,
the stiffness has to be adapted when the robot moves with
respect to the object’s position. To ensure a smooth transition
in the commanded stiffness, we use the following first-order
integration function:

Kii(t+ dt) =
Ko
min.i, if Kii(t) < Ko

min.i

Ko
max.i, if Kii(t) > Ko

max.i

Ko
ii + e−g(Kii(t)−Ko

ii), if otherwise
(3)

where Ko
ii is the ii-the element of the desired calculated stiff-

ness matrix from (1) or (2), Kii(t) the currently commanded
stiffness of the robot, and Kii(t+dt) the updated commanded
stiffness in the next sample time. Note that depending on
the relative difference between Ko

ii and Kii(t), the function
transforms in either falling (Ko

ii < Kii(t)) or raising (Ko
ii >

Kii(t)). Parameter g controls the adaption rate and can be
tuned depending on the task and conditions. The following
considerations should be taken into account when setting g.
For example, rapid continuous changes in robot stiffness may
be too quick for the operator to adapt to when commanding
the end-effector position. On the other hand, substantial step
changes can induce instability or dangerous situations when
force might increase suddenly.

Stiffness elements from (1) and (2) adapted through (3)
then form the commanded stiffness matrixKo ∈ R3×3 in the
object frame. Note that if the object frame and the robot base
frame are not aligned, we must transform the object stiffness
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matrix Ko into the robot base frame where the controller is
operating as Kb = RKoRT , where Kb ∈ R6×6 is the
stiffness matrix in the robot base frame and R ∈ R3×3 is
the rotation matrix between the object frame and the robot
base frame, which can be derived using information from
the camera. While Ko is typically diagonal when the object
frame is defined along the principal axes of the object, the
stiffness matrix Kb becomes a non-diagonal matrix.

The autonomous stiffness adaption and the operator-
commanded reference position are used to control the re-
mote robot’s physical interactive behaviour according to the
impedance control law [30] as

f =Kb(xr − x) +D(ẋr − ẋ), (4)

where f ∈ R6 is the end-effector force/torque of the robot
engaging the environment, xr ∈ R6 and x ∈ R6 the
reference and actual robot end-effector position, respectively,
while Kb ∈ R6×6 and D ∈ R6×6 the Cartesian Stiffness
and damping matrix, respectively. All these variables are
expressed in the robot base frame. The damping matrix is
dependent on the current stiffness matrix according to a
double diagonalisation design [31] as

D = 2 ·QDξ ·
√
K0 ·QT , (5)

where Q ∈ R6×6 and Σ ∈ R6×6 are the eigenvectors
and eigenvalues of the eigendecomposition of the stiffness
matrix with K = QΣQT , while Dξ ∈ R6×6 contains the
damping ratios set to 0.7. Finally, the commanded torque was
calculated as τ = J(q)Tf , where J ∈ R6×7 is the robot
Jacobian matrix and q ∈ R7 is joint configuration vector.

III. COMPUTER VISION FOR OBJECT ESTIMATION

To properly determine the stiffness of the object and
adjust the robot to interact with it, we must estimate the
object’s properties. To do so, we utilize computer vision
techniques. An overview of this part is shown in Fig. 2,
which involves three key modules: 1) recognition of the
object related to the task (object recognition), 2) the detection
of the material of the object (material detection), and 3)
the recognition of its shape and relation to the environment
(geometry recognition). The input information needed for
these modules is the RGB-D images from a camera mounted
on the robot. The setup with a camera mounted close to
the robot end-effector (Fig. 1) enables the robot to change
the point of view to observe the object and the scene from
different perspectives.

A. Object recognition module

The object recognition module takes the RGB images of
the camera and processes them using YOLOv8 (You Only
Look Once) [32], where the model was trained with the
expected objects. In the first step, we acquired various images
to be used as a dataset by placing and recording objects in
various locations in the environment. The images were taken
with the same camera used later in the experiments under
different lighting conditions to ensure the model robustness
to such variations. The collected images for the training

dataset were then labeled based on the object classes, e.g.,
plates, stripes, etc. For labeling, we used Roboflow [33]. Ad-
ditionally, annotations were applied to increase the number
of images and make the model more robust. The created
dataset was split into a training subset (80% of the dataset),
a testing subset (10% of the dataset), and a validation subset
(10% of the dataset). We then used the dataset for the model
training.

B. Material recognition module

The material recognition module takes the mask provided
by the object detector and analyzes the segmented object,
adding the identified material of such object. A neural
network trained on Materials in Context Database (MINC)
[34] created a model to recognize the material. The material
database provides images for 25 categories with pixel-wise
annotations for each image. The goal of the model is to
distinguish common materials such as wood and metal.

In the first step, the dataset’s images were sorted depend-
ing on the label. To facilitate the classification task, the
image requires adaptation to reveal the labeled material of
interest exclusively. For this reason, we prepared a dataset
by cropping the image with 40x40 px window for each
annotated pixel in the image, with the annotated pixel as a
centre point. The generated dataset included 135,000 images
of crops showing wood and 150,000 showing metal. The
prepared images were loaded and connected to the corre-
sponding label.

After preparing the dataset, we transformed the images
into tensors and performed the training with PyTorch.
Therefore, the Vision Transformer (ViT) image processor
was used. Additionally, before the transformation to the
tensor, the images were transformed to RGB images and
normalized. With the resulting prepared dataset, the actual
training process started. For each used material we conducted
preliminary experiments to estimate how much force could
be applied without bending the object beyond an acceptable
margin. Afterwards, the model identified the object material
from the given image and got its Young’s modulus. With the
bending margin and Young’s module, we then determined the
minimum and maximum allowable stiffness values (Kmin.i

and Kmax.i) for interacting with the object.

C. Geometry recognition module

To determine the object shape the RGBD image is trans-
formed into a 3D Point Cloud and sent to the the geometry
recognition module. This module extracts the object position
and the width, length, and height (dmax).

In the subsequent step, the point cloud was processed
using distance-based filtration. In this step, it was assumed
that the object of interest is centred in the camera’s field
of view. Note that the camera was mounted close to the
robot end-effector and the robot was able to move it and
adjust the field of view. With this assumption, the average
distance of all points to the camera can be calculated. The
derived average, augmented by a threshold margin, was
the limit for points in the vertical z-direction. All points
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Fig. 4. Example of detecting a wooden plate and its geometry using a
point cloud. The left column shows the detected point clouds of the plate
and its surroundings from different perspectives. The right column shows
cropped versions focusing on the object itself to measure its geometrical
properties.

within this distance remained and formed a point cloud with
distinct objects (Fig. 4, left). To extract the object of interest
(Fig. 4, right) from the environment objects (i.e., the table
upon which it is positioned) in the residual point cloud,
the DBSCAN clustering algorithm was applied to identify
distinct clusters [35].

The object of interest point cloud was then separated from
the rest of the scenario and went through a noise filter to
improve the efficiency of the following steps. RANSAC and
the PCL library [36] were then used to segment the largest
plane in the cloud. The extracted point cloud provides all the
necessary information about the object geometry. Since the
extracted point cloud of the object is in the camera frame,
we have to transform it into the robot base frame to be able
to use it for the robot stiffness calculation.

The relation of the object to the environment is determined
by the configuration of environment support. If the object
is lying on the environment, e.g., a plate resting on the
edge of the environment as in Fig. 1), support is detected
visually as the edge between the object and the environment.
The identified support configuration in combination with the
detected object geometry determines the stiffness map as
shown in Fig. 3. We estimate object geometry and its relation
to the environment before the robot enters into contact to
be proactive and not reactive. However, these can also be
monitored during the contact and updated online if there are
changes in the environment.

IV. EXPERIMENTS

To validate the efficacy of the developed semi-autonomous
teleimpedance control method in real-world applications,
a series of proof-of-concept experiments were undertaken.
The teleoperation setup, illustrated in Fig. 1, featured a
KUKA LBR iiwa as the remote robotic manipulator, a
Force Dimension Sigma.7 as a haptic device, and an Intel
Realsense D455 serving as an RGB-D camera. Since the
workspace of the Sigma.7 haptic device is smaller than that
of the LBR iiwa robot arm, we implemented a workspace
re-indexing technique, which allowed the operator to shift

the commanded position offset when Sigma.7 workspace
limit was reached. The developed controller dynamically
adjusted the impedance based on the robot’s position relative
to the object, considering factors such as material, shape,
and mounting. We performed two tasks where impedance
adaptation with respect to object geometry and material is
important: engaging with bolts on a plate (500x300mm)
supported on its two shorter sides and polishing a stripe
(200x50mm) clamped on one side.

Before conducting the experiments, it was necessary to de-
termine the maximum and minimum allowable stiffness. To
achieve this, the setup was used to perform each task with a
preset stiffness, and the bending of the object was measured.
A maximum allowable bending was defined, and the stiffness
was continuously increased while handling the object until
the set limit was exceeded. Similarly, the minimum allowable
stiffness was determined by gradually lowering the stiffness
until the task could no longer be performed effectively.

A. Bolt-Engagement Task

In the bolt-engagement task, the primary objective was
to use the robot to apply the necessary force to push bolts
into a plate without causing damage. The robot’s compliance
was crucial to avoid plate damage due to excessive force. Si-
multaneously, insufficient impedance could result in position
errors or inadequate force applied to the bolts.

To validate the proposed impedance control method, ex-
periments were conducted on wood and metal plates. The
robot end-effector position was controlled by a human op-
erator in the Cartesian x-, y-, and z-axes. As the robot
approached a predefined safety margin around the object
(set to 10 cm), the impedance automatically adapted to
its position relative to the detected object properties. The
controller autonomously adjusted the stiffness as the operator
performed the bolt-engagement task, resulting in dynamic
impedance changes.

The results are shown in Fig. 5 and demonstrate the adap-
tive impedance adjustments based on the object properties.
The operator started near the centre of the plate in the x-
y position (first graph on top), which is its weakest point.
This triggers an immediate drop in impedance to nearly the
minimum allowable level (bottom graph). As the operator
navigated the robot end-effector x-y position towards the first
bolt, which was positioned farther from the plate’s centre, the
impedance progressively increased. While the first bolt was
pressed on, the robot maintained the desired stiffness in the
z-axis to facilitate the required force for task execution.

When the operator transitioned the robot end-effector x-y
position the second bolt closer to the plate’s centre (second
graph on top), the stiffness was once again reduced by the
robot (bottom graph). The stiffness reached the minimum
allowable level as the operator transitioned the robot end-
effector x-y position to the third bolt, as the centre of the
plate was approached. Eventually, the stiffness subsequently
increased as the operator moved the robot end-effector
toward the fourth bolt (third graph on top) and the fifth
bolt (fourth graph on top) since they were closer to the
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Fig. 5. Results of the bolt-engagement task for impedance adaption based on the material. The top graphs show the progression of the commanded
position (blue and gray lines) relative to the plate (red outline). The plate was supported by the environment on two sides at x = −0.2 m and x = 0.3
m (scenario B in Fig. 3). The grey-shaded area represents the environment that supports the plate, while the red dot highlights the center of the plate,
indicating its weakest point. The lower graph illustrates the robot’s stiffness along the z-axis, perpendicular to the plate surface, showing how bolts were
pressed into both wooden and metal plates. The dashed vertical lines denote the transitions between phases related to different bolt positions.

support. This dynamic modulation of stiffness aligns with the
changing requirements of the task, showcasing the system’s
adaptability in response to the robot’s movements.

B. Polishing Task

The objective of the polishing task was to demonstrate the
algorithm’s proficiency in handling impedance adaptations
across multiple axes. Unlike the bolt-engagement task, where
the robot primarily interacted from above the stripe, this
experiment required the robot to engage with the object
in all three axes, contingent on its position relative to the
object. A notable distinction was the one-sided mounting of
the object, necessitating lower stiffness at the open end due
to its vulnerability to applied forces. Excessive force could
potentially lead to over-bending and permanent damage to
the object. Consequently, a more delicate approach was
imperative on the open side compared to the clamped side.
The experiment showcased object property and material
detection using two distinct objects representing metal and
wood, both sharing the same dimensions of 200x50x4 mm.
For metal detection, the maximum permissible stiffness for
interacting with the stripe was set at 700 N/m, while for wood
it was set at 500 N/m. The minimum required stiffness for
both materials was standardised at 150 N/m.

Figure 6 presents the results of the experiment conducted
with the metal stripe. The graph depicts the robot’s move-
ment overlaid with the stiffness in the x-, y-, and z-axes.
The initial step involved polishing the stripe from the top
perpendicularly (first graph on top), with the mounting point

illustrated by the red dot on the graph. At the onset, the
operator positioned the robot end-effector at the end of the
stripe, prompting an immediate drop in the z-axis stiffness
to nearly the minimum allowed (bottom graph). As the robot
moved toward the mounting location, the z-axis stiffness
gradually increased to the maximum permitted until the robot
shifted away from the stripe in the x-direction.

When the operator transitioned the robot end-effector po-
sition to polish perpendicularly on the x-axis (second graph
on top), the z-axis stiffness increased to the default setting,
while the x-axis stiffness decreased to the level suitable for
the current position. Upon the robot’s return to the end of
the stripe (third graph on top), the x-axis stiffness decreased
to the minimum allowed before progressing to the y-axis
(fourth graph on top). This transition led to an increase
in the x-axis stiffness to the default setting, coupled with
adaptive adjustments in the y-direction. Given the relatively
small lever in the y-axis with respect to the mounting point
compared to the other axes, changes in stiffness in the y-axis
were comparatively moderate. The nuanced adaptation illus-
trated the algorithm’s ability to dynamically tailor stiffness
based on the robot’s position and task requirements during
the polishing operation.

Here we compare our method to the method from the state-
of-the-art [25], where there was only material recognition
but no geometry. In our experiment, we used a metal plate
with dimensions of 200x50x5 mm. Our method adapts the
stiffness based on the geometry, ranging from a maximum
of 700 N/m to a minimum of 150 N/m as the robot end-
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Fig. 6. Results of the metal stripe polishing task. The top graphs show the progression of the commanded position (blue and gray lines) relative to
the stripe (red outline) and its mounting location (red dot). The bottom graph shows the robot stiffness in the x-, y-, and z-axis, with maximum stiffness
applied only in the axis currently engaged in the task with the plate. The interaction along a specific axis is visualized with a colored background.

effector moves from the unsupported side of the plate to
the supported one. On the other hand, using the average of
our parameters, the method in [25] would then command a
uniform stiffness of 425 N/m since it does not account for
geometry dependence. We examine the bending of the object
at two critical points: the end of the plate (y = 0.55 m) and
the center point (y = 0.70 mm).

When the operator commands the reference position 20
mm below the plate, the corresponding force at both points
for the method in [25] is 85 N. In contrast, for our method,
the force is 30 N at the endpoint and 73 N at the center
point. The resulting bending of the object is as follows.
At the center of the plate, where there is still considerable
structural strength, the bending with the method in [25] and
our method is not that different (0.67 mm compared to 0.78
mm). However, at the unsupported side at the end of the
plate where the object is the weakest, the method in [25]
bends 6.12 mm, while our method bends only 2.20 mm.
Thus, the proposed geometry-adaptive approach is safer since
the previous approach poses a danger of damaging the plate
by over-bending at weaker points.

V. DISCUSSION

We developed a novel method for semi-autonomous
teleimpedance using a vision-based algorithm to detect ob-
jects and their properties. The conducted experiments showed
the applicability of the developed method in practical tasks
such as polishing a stripe and engaging with bolts on a
plate. The robot could autonomously adapt the impedance
based on the object geometry and material while the human
operator commanded the end-effector position in real-time.

The experiments proved that the developed algorithm can
adapt the impedance in different axes based on the detected
objects, which highlights that the combination of object
recognition, material detection, and shape clustering is an
effective approach to impedance adaptation.

The trained models exhibited satisfactory precision in
recognizing both objects and materials. In all of the per-
formed experiments, the model could detect the object and
material with a higher precision than 80%. Additionally, the
clustering process yielded precise measurements, enabling
accurate stiffness calculations. Consequently, the algorithm
could adapt the desired impedance for the current position,
and the transitions were smooth to not disturb the operator’s
movement control.

Practical implications of the proposed method may be in
helping the human operators not to be overwhelmed during
the teleoperation since it delegates the impedance control
task to the robot. The human operator can dedicate more at-
tention to the positioning task while the robot autonomously
estimates and adapts the end-effector impedance. Moreover,
it can help in situations where the operator may have limited
visual feedback.

The MINC database has proven to be effective in recogniz-
ing materials. However, it may face difficulties when dealing
with objects that are made of more than one material or have
been painted or coated. This is because the current approach
is primarily designed to identify materials in their “normal”
colors. As a result, recognising painted or coated materials
may be a challenge. In such cases, more precise material
recognition methods will be essential, potentially requiring
further development or utilisation of existing methodologies.
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Furthermore, the development of the proposed method fo-
cused on low computational cost, primarily driven by real-
time applicability. Increasing the low computational cost may
improve estimations at the expense of real-time applicability.

Future development could explore non-linear impedance
estimation and the integration of the current impedance
estimation method with imitation learning approaches. While
more complex imitation learning approaches might introduce
challenges in stability, they also offer the potential to handle
more complex objects.
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