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ABSTRACT 

Radar rainfall nowcasting has mostly been applied to relatively large (often rural) 

domains (e.g., river basins), although rainfall nowcasting in small urban areas is expected to 

be more challenging. Here, we selected 80 events with high rainfall intensities (at least one 1-

km2 grid cell experiences precipitation > 15 mm h-1 for 1-h events or 30 mm d-1 for 24-h 

events) in five urban areas (Maastricht, Eindhoven, The Hague, Amsterdam, and Groningen) 

in the Netherlands. We evaluated the performance of 9,060 probabilistic nowcasts with 20 

ensemble members by applying the short-term ensemble prediction system (STEPS) from 

Pysteps to every 10-min issue time for the selected events. We found that nowcast errors 

increased with decreasing (urban) areas especially when below 100 km 2. In addition, at 30-

min lead time, the underestimation of nowcasts was 38% larger and the discrimination ability 

was 11% lower for 1-h events than for 24-h events. A set of gridded correction factors for the 

Netherlands, CARROTS (Climatology-based Adjustments for Radar Rainfall in an 

Operational Setting) could adjust the bias in real-time QPE and nowcasts by 70%. Yet, 

nowcasts were still found to underestimate rainfall more than 50% above 40-min lead time 

compared to the reference, which indicates that this error originates from the nowcasting 

model itself. Also, CARROTS did not adjust the rainfall spatial distribution in urban areas 

much. In summary, radar-based nowcasting for urban areas (between 67 and 213 km2) in the 

Netherlands exhibits a short skillful lead time of about 20 minutes, which can only be used 

for last-minute warning and preparation. 
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1. Introduction

The most recent IPCC report revealed a significant increase of extreme precipitation in

many regions in the world since the 1950s (Masson-Delmotte, et al., 2021). High-intensity 

rainfall is expected to increase flooding in Europe and around the globe (Field, et al., 2012; 

Madsen, et al., 2014; Ralph, et al., 2014; Tabari, 2020). Flooding can harm the environment, 

economic, and human life by destroying ecosystems, inundating infrastructures, and 

disrupting socioeconomic networks. (Merz, et al., 2010; Allaire, 2018; Kasmalkar, et al., 

2020). Therefore, accurate weather forecasts of high-intensity rainfall events are important 

for the environment and human society (Alfieri, et al., 2012). 

Currently, numerical weather prediction (NWP) models are widely used as operational 

weather forecasting algorithms around the world. However, due to its coarse spatial 

resolution and relatively low update frequency, NWP is currently unable to provide accurate 

and timely (within 6-h lead time) precipitation forecasts with high temporal-spatial resolution 

for high-intensity rainfall events (Davolio, et al., 2015; Silvestro, et al., 2016). Thus, its 

ability to forecast rapid rainfall-induced events like flash floods and pluvial floods is limited. 

This limitation is even more pronounced in areas with fast hydrological responses such as 

small urban areas. 

Due to their higher fraction of impervious surfaces, urban areas have faster hydrological 

responses and thus quicker runoff formation than rural areas (Berne, et al., 2004; Sharif, et 

al., 2006; Tingsanchali, 2012; Cristiano, et al., 2017). This leads to shorter anticipation times 

for flooding events. Besides, urban areas are usually characterized by more complex terrains 

than rural areas, which causes higher small-scale rainfall variability (Schellart, et al., 2014; 

Cristiano, et al., 2017; Maier, et al., 2020). Meanwhile, flooding in urban areas often leads to 

substantial economic loss and safety concerns (The Guardian, 2016; CNN, 2021; Koks, et al., 

2021). To enhance precipitation forecast accuracy in urban areas, previous studies found that 

increasing forecast lead time and spatial and temporal resolution is crucial (Kotroni & 

Lagouvardos, 2004; Rafieeinasab, et al., 2015; Ochoa-Rodriguez, et al., 2015; Cristiano, et 

al., 2017). 

Rainfall nowcasting, the process of (statistically) extrapolating the real-time quantitative 

precipitation estimates (QPEs) from (generally) weather radar(s), has the potential to provide 

skillful forecasts up to 3 hours in advance (Bowler, et al., 2006; Berenguer, et al., 2011; 

Olsson, et al., 2014; Jensen, et al., 2015; Shehu & Haberlandt, 2021), as such a form of 
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“very-short-range” rainfall forecasting (Golding, 1998; Sun, et al., 2014). Besides, current 

operational QPE products usually have high temporal (5 minutes) and spatial resolution (1 

km) (Zhang, et al., 2011; Winterrath, et al., 2018; Chang, et al., 2021; Overeem, et al., 2021). 

By using the QPE as input, the resulting nowcasts have the same high spatial and temporal 

resolution. However, QPE products are subject to error and uncertainty (Uijlenhoet & Berne, 

2008; Krajewski, et al., 2010; Hazenberg, et al., 2011; Van de Beek, et al., 2016), especially 

during high-intensity rainfall (Schleiss, et al., 2020) and far away from the weather radars 

(Imhoff, et al., 2021). Thus, verifying QPE products are critical for radar-based nowcasting 

techniques, especially when volumes matter, such as for hydrological purposes. To our 

knowledge, no previous research has attempted to distinguish the error in the forecasts caused 

by the rainfall product employed as a basis for the forecast (as compared to a reference) and 

those caused by the applied nowcasting method. 

Motivated by these considerations, extensive research focusing on nowcasting 

performance in urban areas has been conducted in recent years. However, most research 

focused only on a few events (e.g., Achleitner, et al., 2009; Berenguer, et al., 2011; Foresti, et 

al., 2016; Thorndahl, et al., 2016; Heuvelink, et al., 2020) or nowcasts for large, mostly rural, 

areas, notably at the country or continental scale(Berenguer, et al., 2011; Kato, et al., 2017; 

Mejsnar, et al., 2018; Ravuri, et al., 2021; Shehu & Haberlandt, 2021). Imhoff et al. (2020) 

conducted the first large-sample analysis of over 1,500 rainfall events to systematically verify 

nowcasts for twelve mostly rural catchments (from 6.5 to 957 km2) in the Netherlands.  They 

showed that nowcasting error is larger for smaller catchments, summer convective rainfall, 

and catchments located in the upwind direction. However, they focused on the catchment 

scale, so the results may not be directly applicable to urban areas, especially for the larger 

catchments considered. 

Urban topography, geometry, heat, and aerosols can modify rainfall development and 

evolution (e.g., Schmid & Niyogi, 2017; Liu & Niyogi, 2019; Lalonde, et al., 2023), which 

may impact nowcasting performance. In addition, remote sensing of precipitation over urban 

areas is more challenging due to (1) more obstacles and interference from other reflective 

sources compared to rural areas, and (2) most of the rain gauges used to bias correct the radar 

are outside of urban areas. Although radar-based rainfall nowcasts are increasingly being 

used as inputs for urban flood and sewer system modeling, the quality of the rainfall nowcasts 

remains an important source of uncertainty (van der Werf, et al., 2023), and thus has to be 
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verified by evaluating more events  (Liguori, et al., 2012). The aim of this research is to 

complement the analysis in Imhoff et al. (2020) by focusing on (smaller) urban areas instead 

of (larger) rural catchments. By focusing on urban areas, we significantly reduce  the spatial 

scale of the area of interest, which should affect the quality of nowcasting for the urban area 

and highlight focus points for future research. We do so by choosing five major urbanized 

municipalities in the Netherlands (Amsterdam, the Hague, Groningen, Maastricht, and 

Eindhoven). We selected 80 events from the municipalities and analyzed 9,060 probabilistic 

nowcasts for the events. These are fewer events than in the study by Imhoff et al. (2020), 

because here we focus on high-intensity rainfall events, we choose from fewer event 

durations, and we do not investigate the impacts of seasons, which were already studied 

extensively. In this study, we try to answer three research questions: (1) What is the 

performance (in terms of accuracy of forecast rainfall intensity, skillful lead time, and 

discrimination) of nowcasting during high-intensity rain over urban areas? (2) What are the 

main factors (e.g., precipitation intensity, event duration, and city size) that influence the 

nowcasting performance? (3) What is the effect of the quality of the employed QPE product 

on the nowcasting performance, in terms of forecast rainfall volumes and spatial 

correspondence? 

This paper is structured as follows. The study areas, radar rainfall products, and 

methods are detailed in Section 2. The nowcast results are analyzed in Section 3, discussed in 

Section 4 and our conclusions can be found in Section 5. 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-23-0194.1.
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2. Material and methods

a. Study area

We selected five urban municipalities with different sizes and locations spread over the

Netherlands, namely Maastricht, Eindhoven, The Hague, Amsterdam, and Groningen, as 

shown in FIG. 1. A detailed description of the cities is listed in Table 1. The municipal data 

and their boundaries were determined by the district and neighborhood map 2020 version 2 

(Statistics Netherlands, 2020). 

FIG. 1. Locations of the five urban areas (dark red polygons) and the operational C-band radars from 

KNMI (blue triangles) employed in this study. The radar at De Bilt was replaced by the radar at Herwijnen 

in 2017.  The QPE composites were based on the radar data from Den Helder and either De Bilt (before 

2017) or Herwijnen (after 2017). A range of 100 km around each radar station is shown. The x- and y-

values are the coordinates in the KNMI radar projection. 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-23-0194.1.
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Municipality Area as the 

number of 

grid cells (1 

km2 each) on 

the KNMI 

radar-

projection 

map (FIG. 1) 

Population 

(Statistics 

Netherlands, 

2021) 

Urban surface 

ratio 

(RIONED, 

2020) 

Maastricht 67 120,227 0.70 

Eindhoven 96 235,691 0.90 

The Hague 96 548,320 0.89 

Amsterdam 211 873,338 0.86 

Groningen 213 233,273 0.54 

Table 1. Details of the studied urban areas

b. Radar rainfall products

Three high-resolution radar rainfall datasets were used in this study. These rainfall

datasets represent quantitative precipitation estimates (QPEs). The QPEs are obtained from 

observed radar reflectivity by the two operational C-band weather radars of the Royal 

Netherlands Meteorological Institute (KNMI). The reflectivity is converted to rainfall rate 

using the standard Marshall-Palmer relationship (Marshall, et al., 1955):  

𝑍 = 200𝑅1.6 

( 1 ) 

Here, Z is the radar reflectivity in mm6 m-3 and R is the rainfall intensity in mm h-1. The 

obtained rainfall intensities range from 0.1 to 100 mm h-1. The dataset has a temporal 

resolution of 5 minutes and a spatial resolution of 1 kilometer. From 2008 to January 2017, 

the data came from two single-polarized C-band radars in De Bilt and Den Helder. From 

February 2017 onwards, the radar in De Bilt was replaced by the radar at Herwijnen and the 

radar in Den Helder was replaced by a new radar at the same location. Both new radars are 

dual-polarized C-band radars. The radars perform 3 azimuthal scans around a vertical axis to 
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construct pseudo constant-altitude plan position indicators (pseudo CAPPI), which are used 

for the QPE products. For more information about the radar rainfall products, readers are 

referred to Beekhuis & Holleman (2008), Overeem et al. (2011), and Beekhuis & Mathijssen 

(2018). 

(i) Climatological QPE

The first dataset consists of quality-controlled 5-min precipitation accumulations from the 

climatological gauge-adjusted QPE product (Overeem, et al., 2009a; Overeem et al., 2011; 

Royal Netherlands Meteorological Institute, 2022). Doppler and statistical filtering are 

applied and non‐ meteorological echoes are removed applying a satellite cloud mask. Radar 

reflectivities below 7 dBZ are discarded to avoid noise and reflectivity values over 55 dBZ 

are fixed at 55 dBZ to avoid the influences from hail and strong clutter. An hourly mean-field 

bias (MFB) adjustment using the ~32 automatic rain gauges from the operational KNMI 

automatic weather station network and a daily spatial adjustment using the ~320 manual rain 

gauges are performed. Because of the adjustment using quality-controlled manual rain gauge 

observations, the dataset is only updated monthly. Although attenuation, bright-band effect, 

and rainfall advection are not explicitly accounted for in the adjustment, the spatial 

adjustment corrects for most of the errors (Overeem, et al., 2009a). For a more complete 

description of the rainfall radar products and adjustment methods, readers are referred to 

Overeem et al. (2009a), Overeem et al. (2009b), and Overeem et al. (2011). The product is 

considered the best quantitative precipitation estimate product in the Netherlands before 

January 2023 (a better product is published from February 2023, see Royal Netherlands 

Meteorological Institute (2023)), so this dataset was used as “true” rainfall and is referred to 

as climatological QPE here. By using the climatological QPE product as reference, we avoid 

comparing nowcasts with the (unknown) ground truth, so it also implies that a good 

verification result in this study does not guarantee that the ground truth is forecast correctly.  

(ii) Real-time QPE

As the climatological QPE is not available in real-time, it cannot be used for nowcasting 

in practice. Instead, a second QPE product consisting of 5-min non-adjusted real-time 

precipitation accumulations (Royal Netherlands Meteorological Institute, 2022) was used. 

The dataset has the same temporal and spatial resolution as the previous dataset, but it is 

available in real-time. The dataset is referred to as real-time rainfall in this study. Its 

disadvantage are the errors and uncertainty with respect to the actual rainfall (Uijlenhoet & 
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Berne, 2008; Krajewski, et al., 2010; Hazenberg, et al., 2011; Van de Beek, et al., 2016; 

Schleiss, et al., 2020; Imhoff, et al., 2021). The three main causes of these errors are 

erroneous reflectivity measurements, wrong conversion of reflectivity to rainfall rate, and 

sampling errors (Ochoa‐ Rodriguez, et al., 2019) 

(iii) CARROTS QPE

To mitigate errors in real-time radar QPE, a set of correction factors, CARROTS 

(Climatology-based Adjustments for Radar Rainfall in an Operational Setting), was proposed 

by Imhoff et al. (2021). CARROTS was calculated based on a 10-year comparison between 

the real-time and climatological QPE.  It covers the entire Netherlands with correction factors 

(ranging from 0.7 to 4.6) for each grid cell and each day of the year. For a more complete 

description of CARROTS, readers are referred to Imhoff et al. (2021). The CARROTS-

adjusted real-time QPE is referred to as CARROTS QPE later.  

c. Methods

1) RAINFALL EVENT SELECTION AND CHARACTERISTICS

To evaluate the nowcasting performance in each urban area, high-intensity events were

selected for each municipality using RadarTools (RIONED, 2020). RadarTools can list the 

rainfall events based on the highest climatological rainfall accumulation at any grid cell 

within each municipality in the Netherlands, from 2008 until present. For the selection 

criteria, RadarTools sets different thresholds to select rainfall events of different periods. For 

example, the selection criteria for a 1-h period is that the precipitation sum in any grid cell is 

above 15 mm. For a 24-h period, the threshold is 30 mm. Rainfall is not necessarily 

continuous during the period. For a more detailed description of the event selection criteria 

on RadarTools, see (RIONED, 2020). 

Event durations of 1 hour and 24 hours were selected because nowcasting skills were 

found to depend on event durations (Turner, et al., 2004; Berenguer, et al., 2011; Liguori, et 

al., 2012; Olsson, et al., 2014; Mejsnar, et al., 2018; Imhoff, et al., 2020). Long durations are 

usually associated with stratiform rainfall (lower intensities and less variability), whereas 

short durations are typical for convective rainfall (higher intensities and more variability). We 

selected the eight highest 1-h and eight highest 24-h events in each municipality in between 

2008 and 2021. When selecting the 24-h events, the events that covered the period of the 

previously selected 1-h events were excluded per urban area to ensure the independence of 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-23-0194.1.
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the events. Thus, the events considered per city are independent, although the events in 

different cities may be caused by the same precipitation system. This selection procedure 

ultimately led to 5 (cities) × 2 (durations) × 8 (events) = 80 events in this study.  

FIG. 2 shows the statistics of the selected events. The average rainfall intensity is 4.9 mm 

h-1 for the 1-h events and 0.7 mm h-1 (17.3 mm day-1) for the 24-h events, although the

highest grid-cell rainfall for each event is over 15 mm h-1 (1-h events) or 30 mm d-1 (24-h 

events). To compare with extreme rainfall statistics in the Netherlands, the rainfall intensity 

for a half-year return period rainfall event is 10 mm h-1 for a 1-h duration and 29 mm d-1 for a 

24-h duration within a radar area of approximately 100 km2 (Beersama et al, 2019). Note that

the return values in the five cities should be adjusted based on urban area sizes (67 to 213 

km2 in this study) and the chosen event durations (Beersama et al, 2019). 

FIG. 2. Rainfall characteristics averaged over the urban areas of all the 1-h and 24-h rainfall events in 

each urban area. The orange lines are the medians. Each of the box ranges from the first quartile to the 

third quartile of the data. The whiskers extend to the data that is within 1.5x inter-quartile range from the 

first and third quartiles. The circles are the outliers. 

For the 1-h events, panel (a) shows that Eindhoven and Maastricht experience higher 

rainfall rates than the other three urban areas, which is partly caused by their smaller domain 

sizes, which results in less spatially aggregated rainfall fields over the urban areas. For the 

24-h events, the area-mean rainfall rates in all urban areas become lower and more similar, as

shown in panel (b). For a more complete visualization, rainfall accumulation maps for all 

events are shown in FIG. S. 1. And FIG. S. 2. FIG. S. 1. show that 1-h rainfall events 

sometimes just cover small parts of the urban areas. On the other hand, 24-h events cover the 

whole urban areas, which are typical for stratiform rainfall.  

2) NOWCASTING MODEL

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-23-0194.1.
Brought to you by TU DELFT | Unauthenticated | Downloaded 04/09/24 03:02 PM UTC



11 

File generated with AMS Word template 2.0 

Pysteps (Pulkkinen, et al., 2019), an open-source Python nowcasting framework, was 

used in this study. Pysteps includes multiple nowcasting methods. In the study, we used the 

same setup as in Imhoff et al. (2020), which consisted of the STEPS (short-term ensemble 

prediction system) nowcasting method (Seed, 2003; Bowler, et al., 2006; Seed, et al., 2013) 

using a semi-Lagrangian advection method and the Lucas‐ Kanade optical flow method 

(using the QPE from time t-3 to t). An autoregressive model of order 2 was used and 8 

cascade levels were set to decompose the rainfall field with decreasing spatial scale. 

Nowcasts were run for a 4-h lead time. For each time, nowcasts were made with 20 ensemble 

members to capture the uncertainty related to growth and dissipation of rainfall, as this is not 

explicitly captured in the STEPS and most other nowcasting methods. 

3) VERIFICATION METRICS

Verification was only performed for the nowcasts within the rainfall duration and within

the borders of the urban areas. Besides, metrics were only computed for the time steps at 

which the observed area-averaged rainfall intensities of the input QPE products were higher 

than 0.1 mm h-1. We employed various metrics because there is no one-size-fit-all metric to 

quantify nowcast performance, and evaluating nowcast dependency on different factors 

require diverse metrics. 

(i) Continuous ranked probability score

To measure the accuracy of probabilistic nowcasts per grid cell, the continuous ranked 

probability score (CRPS) (Hersbach, 2000) was calculated using:  

𝐶𝑅𝑃𝑆 =
1

𝑁𝑓
∑ ∫ (𝑃𝐹𝑖

(𝑥) − 𝑃𝑂𝑖
(𝑥))

2

𝑑𝑥
∞

−∞

𝑁𝑓

𝑖=1
. 

( 2 ) 

Here, Nf is the number of forecasts per lead time, PFi is the non-exceedance probability of 

nowcast rainfall, and POi is counterpart for the observed rainfall. Although originally 

designed for probabilistic forecasts, Hersbach (2000) introduced a decomposition of the 

CRPS for finite ensembles, which is very widely used nowadays, e.g. by ECMWF 

(Leutbecher & Haiden, 2021) and others (Poletti, et al., 2019; Imhoff, et al., 2020; Ravuri, et 

al., 2021; Shehu & Haberlandt, 2022) to compare ensemble forecasts with observations. 

CRPS calculates the area between the cumulative distribution curves of the entire ensemble 

forecast and the observation. That is, CRPS verify all ensemble members, unlike most of the 
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other metrics outlined below which were only used to verify the mean of the ensembles. 

Small values of CRPS indicate that the difference between nowcast and observation is small. 

For Eulerian persistence (and any other deterministic forecast), the CRPS reduces to the mean 

absolute error (MAE). To compare CRPS across different regions, Reduction CRPS 

(RCRPS) is used (Trinh, et al., 2013). RCRPS is defined as CRPS divided by the standard 

deviation (σ) of observed rainfall intensity during the event: 

𝑅𝐶𝑅𝑃𝑆 =
𝐶𝑅𝑃𝑆

𝜎

( 3 ) 

RCRPS is independent of rainfall magnitude, which facilitates comparison of nowcast 

accuracy between events and between regions (Trinh, et al., 2013; Ye, et al., 2014).  

(ii) Relative bias

For (hydrological) applications using the forecast rainfall amount, the forecast volume 

generally matters. The relative bias metric is used to measure the accuracy of nowcast rainfall 

volume over the whole area, as:  

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 = (
𝐹𝑖

𝑂𝑖
− 1) × 100%

( 4 ) 

Here, Fi and Oi are forecast and observed 5-min rainfall sums over all areas. The closer 

the relative bias is to 0, the more accurate is the nowcast.  

Likewise, bias also exists between real-time QPEr and climatological QPEc as described 

in Section 2b. So, we also define a relative bias in QPE to measure the accuracy of real-time 

QPE: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠𝑄𝑃𝐸 = (
𝑄𝑃𝐸𝑟

𝑄𝑃𝐸𝑐
− 1) × 100%

( 5 ) 

(iii) Fraction skill score

Besides accuracy, skillful lead times were also estimated using the fraction skill score 

(FSS) within the urban areas. To compute the FSS, rainfall fields of both nowcast and 

observation need to be converted to binary fields according to a user-defined threshold. In the 

study it was set at 1 mm h-1 to exclude light rainfall (as the characterization used in van de 
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Beek et al. (2010) and Cristiano et al. (2017)) with the aim to analyze nowcast skills for high-

intensity rainfall. Subsequently, a square area surrounding the grid cell is created containing a 

number of grid cells that is defined by the length scale. Four length scales (corresponding to 

the areas used for verification) were tested in the study: 1, 5, 10, and 15 km because they 

represent sizes from an individual grid cell (1 km2) to the largest urban area in this study (213 

km2). The number of grid cells within the square area that exceed the thresholds are 

accumulated for the nowcast rainfall and the observed rainfall separately. Finally, the FSS is 

calculated as the mean squared error (MSE) between the two accumulated numbers. The 

skillful lead time of the nowcast is then derived as: 

𝐹𝑆𝑆𝑠𝑘𝑖𝑙𝑙𝑓𝑢𝑙 ≥  0.5 +  
𝑓0

2

( 6 ) 

Here, the right-hand side of Eq. (6) is the random forecast skill (FSSrandom) and 𝑓0 the 

fraction of grid cells in the observation that are higher than the threshold. For a more detailed 

description of the metric, readers are referred to Roberts & Lean (2008).  

(iv) Pearson correlation

Pearson correlation provides another method to measure skillful lead time. It is calculated 

per lead time:  

𝜌 =
1

𝑁
∑

(𝐹𝑖 − 𝜇𝐹)(𝑂𝑖 − 𝜇𝑜)

𝜎𝐹𝜎𝑜

𝑁

𝑖=1

( 7 ) 

Here, Fi and Oi denote the ensemble-mean nowcast and observed rainfall at a given grid 

cell. 𝜇 is the mean rainfall, and 𝜎 is the standard deviation at a given time over the area. N is 

the number of grid cells in the area, so the Pearson correlation derived is the average for the 

area. The e-folding time, 1 𝑒⁄ (≅ 0.37), was used to determine the decorrelation time 

between nowcast and observed rainfall. Once the average Pearson’s correlation coefficient 

drops below 0.37, the forecast is not considered skillful anymore (Mejsnar, et al., 2018; 

Imhoff, et al., 2020; Choi & Kim, 2022). We used the Pearson correlation coefficient 

including subtraction of the mean, because Imhoff et al. (2020) concluded that without 

subtracting the mean, as was introduced by Germann & Zawadzki, (2002), the results bias 

toward (too) long skillful lead times in the Netherlands (Imhoff, et al., 2020).  
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(v) Receiver operating characteristic (ROC) curves 

We assessed nowcast discrimination power by using the receiver operating characteristic 

(ROC). A ROC curve plots the hit rate against the false alarm rate. The hit rate (HR) and 

false alarm rate (FAR) were calculated for three thresholds (0.1, 1, and 5 mm h-1), as: 
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𝐻𝑅 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃

( 8 ) 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

( 9 ) 

Here, FN (false negative), TP (true positive), FP (false positive forecasts), and TN (true 

negative forecasts) were calculated per grid cell. The choice of the three thresholds was to 

assess the nowcasts on their ability to forecast different rainfall intensities. A higher ratio 

between HR and FAR means higher discrimination power. If the ratio between HR and FAR 

is below 1, the nowcast is considered to have no skill. 
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4) EXPERIMENTAL SETUP

To evaluate nowcast quality with lead time, nowcasts were constructed with Pysteps and

issued for every 10 min instead of 5 min from 4 hours before the start of the event up until 10 

minutes prior to the end of the selected event. In this way, we saved computational time and 

storage, and our nowcasts have the same frequency of issue time as nowcasts operationally 

produced by the Dutch water authorities. The nowcasts had a temporal resolution of 5 

minutes, and a forecast horizon of 4 hours. The experimental setup for a 1-h event is 

illustrated in FIG. 3. Only the forecast lead times of the nowcasts that fall within the event 

duration are verified. Eulerian persistence was used as a baseline to evaluate the additional 

value of nowcasting compared to a “poor man’s forecast”. Eulerian persistence uses the most 

recent QPE as forecast for future time steps. For instance, the Eulerian persistence issued at 

13:50 uses the most recent QPE at 13:45 as the rainfall forecast for the next 4 hours until 

17:50.  

The nowcasts were computed on the supercomputer at the Delft University of 

Technology, Delft Blue (Delft High Performance Computing Centre (DHPC), 2022). One 

probabilistic nowcast (20 ensemble members) of 48 timesteps took about 2.5 minutes to run 

on one core on an Intel Xeon Gold 6248R processor.  

FIG. 3. Illustration of the issue time and forecast horizon for the 1-h event starting at 17:50. The blue 

bars show forecast horizon of 4 hours with 5-min resolution at different issue times. The red bar shows the 

event duration. Only the nowcasts that fall within the event duration are verified with observation. 
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In this study, the real-time QPE was used for nowcast generation and verification in 

Section 3b and 3c, so the evaluation of nowcasting performance is not affected by QPE 

errors. Climatological and CARROTS QPEs were employed for selected events and analyzed 

in Section 3a and Section 3e to verify the “true” accuracy of nowcasts in an operational 

setting as compared to the reference (the climatological QPE). Note that only the 1-h events 

before 2020 (23 events) were run with climatological and CARROTS QPE because the 

format of the climatological radar products changed at the end of 2019 that made the 

comparison difficult.  

To comprehensively verify nowcast performance in the urban areas, we used all five 

metrics. Because rainfall intensity and volume are different for events of different durations, 

we used relative bias to analyze the underestimation of nowcast rainfall volumes and 

compare the results for 1-h and 24-h events. To analyze nowcast accuracy for urban areas of 

various sizes, RCRPS was used because it is calculated at a higher spatial resolution (namely 

for every grid cell) than relative bias (for the entire area considered). FSS and Pearson 

correlation were used to measure the skillful lead time of nowcasts. Finally, we used ROC to 

compare the discrimination ability of nowcasts. 

Previous studies found that the skillful lead time of nowcasts depends on the size of the 

region of interest (Pulkkinen, et al., 2019; Heuvelink, et al., 2020; Imhoff, et al., 2020). To 

further analyze the effect of city size on nowcasting performance, six stationary and 

concentric square subareas of 900, 400, 100, 64, 16, and 4 km2 were defined for all urban 

areas (See FIG. 4). Nowcasting results averaged over these square areas were compared to 

determine nowcasting dependence on area size.   
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FIG. 4. Map of the six concentric square subareas from 900 to 4 km2 for each urban area. The gray 

areas are radar projections of the five municipal areas from Statistics Netherlands (2020). The x- and y-

values are the coordinates in the KNMI radar projection (See FIG. 1). 

3. Results

We start by analyzing one rainfall event as an example to demonstrate the performance

and challenges of nowcasting in Section 3a. Following that, all nowcasts are analyzed 

concerning three main aspects. First, the nowcast model performance for the five urban areas 

is compared in Section 3b. Second, the dependency of nowcast model performance on 

rainfall duration and area sizes are assessed in Section 3c. Finally, different approaches to 

radar QPE and their corresponding nowcasts are compared in Section 3d. 

a. Case study

In FIG. 5, we illustrate a 1-h event that started in the Hague at 01:55 UTC 23 June 2016

to demonstrate the difference in the QPE products and challenges of nowcasting. The 

climatological, CARROTS, and real-time QPE and nowcasts (using the real-time QPE as 

inputs) at 30-, 60-, and 90-min lead times are shown in the upper 2 rows in FIG. 5. First, we 

compare the three radar rainfall products. In the Hague, the rainfall accumulation using real-

time QPE is only 31% of the corresponding value from the climatological QPE. The 

CARROTS adjustments improve the ratio to 55%. Although underestimation still exists, 

CARROTS QPE shows better agreement with the climatological QPE.  
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FIG. 5. Climatological, CARROTS-adjusted, and real-time radar QPE and nowcasts with 30-, 60-, and 

90-min lead time for the rainfall event in the Hague from 0155 UTC 23 June 2016 to 0255 UTC 2016.

Upper 2 rows: rainfall intensity. The shown rainfall intensity is the average intensity during the 1-h event. 

Nowcast rainfall intensity is averaged from the nowcasts with the indicated lead times prior to the 

observation. Nowcasts in the first row use individual ensemble member number 1. The second row shows 

the nowcasts as ensemble mean. Bottom 2 rows: rainfall exceedance probability for thresholds of 1.0 and 

5.0 mm day-1, respectively, using the full ensemble. The black borders indicate the Hague and the gray 

boarders show the Dutch coastline. 

Second, we compare nowcasts at the three lead times. Both the first ensemble member 

and ensemble mean correctly identify the areas of high rainfall intensity (the center-left area). 

However, underestimation increases as the lead time increases. Moreover, nowcasting 

performance strongly depends on the location and size of the target area, for example, rainfall 

is largely missed when zooming in to the urban area of the Hague.  

The probability of exceedance is plotted by using the 20 ensemble members of the 

nowcasts. The bottom 2 rows in FIG. 5 show the rainfall exceedance probability maps 

according to thresholds of 1 and 5 mm h-1 respectively. In the observed QPE maps, areas 

where rainfall is higher than the threshold are given a probability of 1 while the other regions 

are given 0. Similar to previous results, exceedance probability is underestimated as lead time 

increases for the nowcasts. In addition, the probability of rainfall over 5 mm h-1 is 

underestimated more than the probability of lower-intensity rainfall. This suggests that it is 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-23-0194.1.
Brought to you by TU DELFT | Unauthenticated | Downloaded 04/09/24 03:02 PM UTC



20 

File generated with AMS Word template 2.0 

more difficult to nowcast high rainfall intensities correctly, as also noted by e.g., Liguori et 

al. (2011), Foresti et al. (2016), and Imhoff et al. (2020).  

b. Investigating nowcast model performance in the urban areas

We proceed to the analysis of all 80 events. In this section, nowcast accuracy and skill for

different urban areas are compared and related to the area sizes and rainfall characteristics. 

We use real-time QPE as the input and reference for assessing strictly the performance of the 

nowcast model itself, regardless of the accuracy of the QPE products, which will be 

investigated in Section 3.d.  

1) NOWCAST MODEL ACCURACY

We start with comparing the nowcast accuracy for the urban areas. The average RCRPS

of the eight 1-h events in each urban area is shown in FIG. 6 (a). Lower forecast accuracy for 

both 1-h and 24-h events is found in Maastricht and Eindhoven, probably due to their smaller 

sizes. This dependence is later supported by the strong correlation between RCRPS and area 

sizes, as shown in FIG. 12. Although rainfall intensity is higher in Maastricht and Eindhoven, 

which increases their CRPS (FIG. 7 (a)), a comparison of nowcast performance across 

regions was made possible by employing RCRPS, which does not correlate with rainfall 

magnitude (FIG. 7 (b)). 

For 1-h events, the average RCRPS increases strongly between the lead times from 0 to 

30 minutes ahead. The RCRPS levels off at around 30-min lead time, and the nowcasts show 

similar skill as Eulerian persistence when the lead time is beyond 60 minutes. Yet, nowcasts 

for the 24-h events almost always show better skill than Eulerian persistence throughout all 

lead times from 0 to 4 hours. This indicates that nowcasting is more accurate and skillful for a 

longer time for more persistent events (similar to the findings in e.g., Imhoff et al, 2020). 
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FIG. 6. Average RCRPS for each urban area for the 1-h events (a) and 24-h events (b). The RCRPS is 

resampled to 10 minutes. The black lines show the average RCRPS for all nowcasts in all urban areas. The 

dashed lines show the average MAE of Eulerian persistence in all urban areas. 

FIG. 7. ECRPS and RCRPS (average between 5- to 30-min lead time) against mean rainfall intensity 

and rainfall spatial standard deviation in the five urban areas during the 1-h events. Each dot is the result 

from one rainfall event. 

2) THE SKILLFUL LEAD TIME OF THE NOWCASTS

FIG. 6 shows that nowcast accuracy deteriorates quickly with increasing lead time,

especially for 1-h events. Following this finding, we further used FSS to compare skillful lead 

times in the urban areas. The results are shown in FIG. 8. 

FIG. 8 shows that the FSS is larger when the length scale is longer, as expected because 

rainfall statistics over larger areas are less sensitive to displacement errors in the forecast. 

Notably, the increase in FSS is higher from 1 to 5 km than from 5 to 10 km. A length scale of 

10 km already leads to a spatial scale of 100 km2, which is larger than Maastricht, the Hague, 

and Eindhoven. Further upscaling to 15 km does not enhance FSS much because a spatial 

resolution of 225 km2 is larger than all the urban areas selected (Table 1).  
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The skillful lead times in the urban areas at all length scales vary between 12 (1-km 

length scale in Amsterdam) and 26 minutes (15-km length scale in Eindhoven). However, the 

difference in skillful lead times between the urban areas is marginal when using the same 

length scale. Thus, no urban area shows particularly longer skillful lead times. The FSS at a 

length scale of 5 km is averaged for each urban area and plotted in the bottom-right figure. It 

shows that the average skillful lead time from FSS is just around 18 minutes, although 

nowcasts can show better skills than Eulerian persistence up to a lead time of more than one 

hour (FIG. 6 (a)). Changing the threshold of FSS calculation to 0.1 mm hr-1 does not extend 

the skillful lead time much (FIG. S. 3), probably because FSSrandom increases when a lower 

threshold is used.   

FIG. 8. Fraction skill score for the 1-h events in each urban area. The bottom-right figure shows the 

average FSS of all five urban areas at a length scale of 5 km (black line). The horizontal gray dashed line 

shows the random fraction skill score in each urban area (Eq. (6)). Values of FSS lower than the gray 

horizontal lines imply that nowcasts are not skillful anymore. 

3) NOWCAST DISCRIMINATION ABILITY

After measuring the accuracy and skillful lead time of nowcasts, we continue to quantify

the discrimination ability. The ROC curve of each urban area for the 1-h and 24-h events is 
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shown in FIG. 9. We chose to analyze the ROC curve at 30-min lead time because this lead 

time is a challenge for nowcasting high-intensity rainfall and/or for nowcasting in urban areas 

(Olsson, et al., 2014; Foresti, et al., 2016; Mejsnar, et al., 2018; Imhoff, et al., 2020; Shehu & 

Haberlandt, 2021)). We noticed that AUC sometimes tends to be higher when the observed 

rainfall (and nowcast) covers larger areas (relative to the size of the urban areas), probably by 

reducing the False Positive rate (Eq. (9)) to very close to zero. Thus, smaller cities like 

Eindhoven and Maastricht have higher AUC for some rainfall events (FIG. S. 4) and on 

average higher AUC than the other cities (FIG. 9). For Amsterdam and Groningen, parts of 

the urban areas are not covered by some of the rainfall events (as shown in FIG. S. 1), so 

wrong forecast rainfall in those areas reduces AUC.   

Besides, the AUC is smaller for shorter events or when the threshold is higher, indicating 

nowcasts have poorer discrimination under such conditions. The is discussed in more detail in 

Section 3c.1.  

FIG. 9. ROC curve of the 1-h (a-c) and 24-h (d-f) events for each urban area at three thresholds (0.1, 1, 

and 5 mm h-1). Hit rate and false alarm rates are averaged from nowcasts at 30-min lead time. The black 

lines are the averages of the five urban areas. AUC is the area under the black curve. The gray line means 

hit rate equals false alarm rate, below which nowcasts are not skillful.  Higher above the line means better 

discrimination skill. There are nine dots on each line indicating the forecast probability of exceeding the 

threshold from 0.1 (rightmost) to 0.9 (leftmost). 
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To summarize nowcast performance in the five urban areas, first, urban areas with higher 

rainfall intensity and spatial variation have lower nowcast accuracy. Second, discrimination 

for forecasting low rainfall (0.1 to 1 mm h-1) is generally higher in Eindhoven and Maastricht 

probably because their higher rainfall spatial coverage causes higher hit rates and reduces 

false alarm rates. Finally, although differences are discovered in nowcast accuracy and 

discrimination ability, FSS-based skillful lead times are similar in the urban areas (about 20 

minutes).  

c. Factors that affect the nowcast model accuracy

Section 3b shows that nowcast model accuracy and skills vary between the urban areas.

Here, we continue with the analysis to test some rainfall and environmental characteristics 

that could explain the differences between the urban areas. 

1) RAINFALL DURATION

The average relative biases between nowcast rainfall and real-time QPE are shown in

FIG. 10 (a). For the 1-h events, relative biases of area-mean rainfall drop below -50% within 

30-min lead time. Nowcasts reduce the overestimation of Eulerian persistence within 30-min

lead time. Eulerian persistence often leads to overestimating rainfall in some grid cells, which 

can increase the relative bias significantly if the grid cells are within the verification area (Fig 

S.3). Despite this improvement at short lead times, nowcasts show similar relative bias as

Eulerian persistence at lead times beyond 50 minutes. 

Unlike the large underestimation of the 1-h events, nowcasts show a better estimation of 

rainfall volume for the 24-h events. FIG. 10 (b) shows that nowcasts can estimate the total 

rainfall volume accurately (relative bias between 20%) with a lead time up to 2.5 hours for 

the 24-h events. Such performance also surpasses Eulerian persistence, which constantly 

overestimates rainfall intensity.  
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FIG. 10. Average relative bias of nowcasts for all 40 1-h events (a) and all 40 24-h events (b). The 

relative bias is resampled to 10 minutes. The solid line and the dashed line are the average relative bias of 

nowcasts and Eulerian persistence, respectively. 

FIG. 8 shows that the FSS-based skillful lead time of nowcasts for 1-h events at a length 

scale of 5 km is about 18 minutes. Here, we apply Pearson correlation to compare skillful 

lead time of nowcasts for different urban areas and event durations.  The average Pearson 

correlation coefficient between nowcast and observed rainfall in each urban area is shown in 

FIG. 11. The urban areas have similar skillful lead times for both event durations. The 

average skillful lead times for both event durations are very close: 20 minutes (1-h events) 

and 24 minutes (24-h events). Therefore, nowcast skillful lead times appear to be quite 

independent of the tested event durations. Although the skillful lead time seems limited, it is 

two times the skillful lead time given by Eulerian persistence. The skillful lead time is 

compared with other previous research in Section 4a, and its application is discussed in 

Section 4b. 
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FIG. 11. Pearson correlation coefficient averaged by the eight 1-h or 24-h events for each urban area. 

The horizontal gray dashed line marks a correlation of 0.37 (1/e) below which nowcasts are considered as 

not skillful. The solid black line and the gray dashed line are the average Pearson correlation of nowcasts 

and Eulerian persistence, respectively. 

Following the result in Section 3b.3 that nowcast discrimination ability varies per city, we 

further compare the discrimination for events of different durations. FIG. 9 shows that the 

ROC curves for the 24-h events display better discrimination than the 1-h events for all three 

thresholds. The reason is that more persistent events tend to have higher autocorrelations, so a 

nowcasting model can forecast rainfall more correctly from previous time steps. At low 

threshold (0.1 mm), the difference between their areas under the ROC curves is larger (15 %), 

whereas the difference is smaller at high thresholds (10% at 1 mm and 7% at 5 mm). In fact, 

for both event durations, the AUC drops to values close to the random forecast skill for a 

threshold above 5 mm hr-1. This finding agrees with the poor prediction of high-intensity 

rainfall shown in FIG. 5. 

Concluding, we found that nowcasts improve the underestimation of total rainfall volume 

for 24-h events compared to Eulerian persistence, whereas the improvement is not apparent 

for the 1-h events. In addition, the discrimination ability of nowcasts is higher for 24-h 

events. Despite these differences, skillful lead times do not differ much between 1-h and 24-h 

event durations for the urban areas considered.  

2) URBAN SIZES

After analyzing the nowcast for different rainfall durations, we analyze its dependency on

the area size by using the square subareas defined in Section 2c. FIG. 12 indicates that 

smaller areas tend to have a higher RCRPS, meaning a larger nowcast error. In all urban areas 

considered, the RCRPS increases nonlinearly as the area reduces from 900 km2 to 4 km2. 
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Especially when the size reduces to under 100 km2, the error increases significantly. The 

enlarging error with reducing areas shows the difficulty of accurately nowcasting rainfall in 

small urban areas. Note that, although area-mean rainfall generally reduces as the square 

subareas increase, RCRPS is independent of rainfall magnitude. Skillful lead time also 

slightly prolongs when area size increases. Pearson correlation of nowcasts over the 6 

subareas around Groningen along with lead time is shown as an example (FIG. S. 5). 

In summary, nowcasts show lower RCRPS and higher spatial correlation to the observed 

rainfall with increasing (urban) area size. In other words, rainfall at coarser scales (or bigger 

areas) is nowcasted better than at finer scales. This is probably because larger areas are less 

prone to rainfall misplacement error, large-scale precipitation features are more persistent 

(Surcel, et al., 2015), and their predictability is higher than small-scale rainfall events (Grecu 

& Krajewski, 2000).  

FIG. 12. Average RCRPS (averaged over nowcasts between 5- and 30-min lead times) of the eight 1-h 

events in each urban area against verification areas from 4 to 900 km2  

d. Dependency of nowcast skills on radar QPE products

As explained in Section 2b, the real-time radar QPE can deviate strongly from actual

rainfall under certain circumstances, which can result in an additional error source when radar 

QPE and QPF are used in for instance hydrological applications. Here, we assess the 

accuracy of the real-time QPE products by using the climatological QPE as “true” rainfall. 

Second, we evaluate the nowcasts produced from the three different radar rainfall products by 

comparing them with the climatological QPE as reference.  
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1) COMPARING THE QPE PRODUCTS

The area-mean rainfall from the three QPE products and the average relative QPE bias

during the events before 2020 in each urban area is shown in FIG. 13. It shows that real-time 

rainfall volumes in all urban areas are lower than in the climatological QPE. The largest 

underestimation exists in Maastricht (-69 %), which is the furthest from the weather radars 

(FIG. 1). This result is similar to the finding in Imhoff et al. (2021). Note that the 24-h events 

have larger relative QPE bias in all cities because the rainfall rate is lower so the relative 

difference between real-time and climatological QPE becomes larger, although the actual 

underestimation is larger for the 1-h events (4 mm hr-1 on average) than for the 24-h events (1 

mm hr-1on average).  

FIG. 13 (c) and (d) show that CARROTS improves the real-time QPE in terms of rainfall 

volume. The relative bias of real-time QPE improves from -69% to within -36% in the five 

urban areas after adjusting with CARROTS.  Overall, CARROTS QPE is on average 77% (1-

h events) and 92% (24-h events) higher than the real-time QPE. Hence, Using CARROTS 

QPE to run nowcasts should yield higher rainfall, which is closer to the true rainfall amount, 

than using unadjusted real-time QPE.  
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FIG. 13. Average rainfall intensity over the urban areas for 1-h events (a) and 24-h events (b). Average 

relative bias between climatological and real-time radar QPE with and without adjustment by the 

CARROTS factors for 1-h events (c) and 24-h events (d). Only the 23 1-h events happening before 2020 

are considered.  

2) EFFECT OF THE QPE PRODUCTS ON THE RESULTING NOWCASTS

The difference in QPE products results in different nowcast outputs. FIG. 14 shows the

relative bias of area-mean rainfall between nowcasts using the three QPE products and the 

reference product. It shows that nowcasts using real-time QPE give the largest 

underestimation in all the urban areas. CARROTS increases the nowcast rainfall volume by 

70% on average compared to nowcasts using the real-time QPE.  

CARROTS adjusts the nowcast rainfall by correcting the observed rainfall, but it cannot 

adjust the error caused by the nowcast model. Thus, FIG. 14 shows that nowcasts 

underestimate rainfall more than 50% above 1-h lead time no matter which radar product is 

used. Another error is that CARROTS nowcasts sometimes overestimate the rainfall, 
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particularly in Eindhoven and Maastricht within 30-min lead time. This implies that the 

CARROTS factors are slightly too high in these areas (as also seen in FIG. 13 (c) and (d)). 

Averaging over the five urban areas (FIG. 14 (f)), it may seem like CARROTS QPE is the 

best input product to use, but this is because the overestimation of the CARROTS QPE 

(particularly in Eindhoven and Maastricht) compensates for the underestimation resulting 

from the nowcast model (i.e., better results for the wrong reasons). 

FIG. 14. Relative bias of the nowcasts run with climatological, CARROTS, and real-time radar rainfall 

from the 23 1-h events before 2020. The relative bias is resampled to 10 minutes. The relative bias is 

calculated between the nowcasts and the reference product (the climatological QPE). 

CARROTS only corrects the rainfall volumes and not the rainfall spatial distribution. 

From an analysis of nowcast skill using Pearson correlation (see FIG. S. 6 in the 

supplemental material), we see that the correlation does not change for the three tested 

products. This indicates that the shape and location of the rainfall fields is hardly altered by 

the three different QPE products, while the volume is.  

In summary, using CARROTS increases the real-time QPE and nowcast rainfall volume 

by more than 70%, showing better correspondence to climatological QPE. Yet, 

underestimation of nowcast is still larger than 50% above 40-min lead time. In addition, 

CARROTS does not improve the spatial correlation of nowcasts with climatological 

observations.  
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4. Discussion

In this study, we systematically verified nowcasts of high-intensity rainfall for different

urban areas, rainfall characteristics, area sizes, and QPE inputs. In Section 4a, we compare 

the results in the study to previous research. Then, we explain the application of the results 

for operational radar rainfall nowcasting in Section 4b. Finally, we summarize future 

improvement possibilities in Section 4c. 

a. Relation to previous work

We found that the skillful lead time for 1-h high-intensity events over urban areas is on

average about 20 minutes (Section 3c.1), which is similar to previous studies at both urban 

and rural catchment scales. For instance, skillful lead times are shorter than 20 minutes at a 

catchment scale in Germany (Shehu & Haberlandt, 2022). The 20-min skillful lead time we 

found is nearly the same as the 25-min skillful lead time for 384 1-h events in 12 catchments 

in the Netherlands (Imhoff, et al., 2020). Therefore, radar-based nowcasts have limited 

skillful lead time to forecast short high-intensity events, for both urban and rural catchment 

areas. However, it should be noted that different methods to derive the decorrelation time, 

particularly the choice whether or not to subtract the mean when calculating the Pearson 

correlation coefficient (Eq. (7)), can lead to divergence in the resultant skillful lead time 

(Mejsnar, et al., 2018).  

We also showed that nowcast discrimination ability reduces as rainfall duration shortens 

or the threshold of interest rises (Section 3b.3). Our result is similar to several previous 

studies. For instance, a study in Belgium showed that nowcast discrimination ability is higher 

for a threshold of 0.5 mm h-1 than for 5 mm h-1 (Foresti, et al., 2016). Since nowcast 

discrimination power is generally poorer for more intensive rainfall, nowcasts should be 

judged meticulously before applying to e.g., issuing flood early warning.  

Unlike previous studies showing that skillful lead time prolongs with rainfall duration, 

e.g., 116 minutes for 24-h events (derived with the same equation as Eq. (7)) (Imhoff, et al.,

2020), the skillful lead time barely changes in this study. The skillful lead time for 24-h 

events averaged across the 5 urban areas is only 24 minutes. There are three main reasons 

causing the skillful lead time for 24-h events to be almost the same for 1-h events. First, the 

urban areas in the study are small (67 to 213 km2). As shown in Section 3a and Section 3c, 

verification of nowcasts in smaller areas is more sensitive to displacement errors of forecast 
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rainfall, so their Pearson correlation becomes lower. Second, this study considers events only 

based on the highest rainfall accumulation in any grid cell. So, the events in this study have 

high spatial variability because parts of the areas do not experience rainfall during the events 

(as shown in FIG. S. 1.). Third, most events in this study are from summers (70 out of 80 

events are between May and September), so they are generally more convective than the 

rainfall events chosen by Imhoff et al. (2020), which reduces the skillful lead time of 

nowcasts. 

b. Operational radar rainfall nowcasting for urban areas

In an operational setting, nowcasts can provide effective early warning insights for

(small) urban areas even if their skillful lead time is only around 20 minutes. The short lead 

time might be too late to evacuate people, but it can inform people to adopt better shelter-in-

place strategy to reduce casualty (Haynes, et al., 2009). It can identify areas of hazardous 

rainfall intensity and warn the community by disseminating real-time warning information on 

webpages, mobile applications, and social media (Acosta-Coll, et al., 2018). Also, warning 

messages can be sent to local authorities (for instance the fire brigade) to better prepare for 

emergency actions. In addition, urban discharge takes time to respond to rainfall (e.g., 

Cristiano (2017) reviews the literature on hydrological response times and Berne et al. (2004) 

found the response times range between 11.5 and 57 minutes for 6 French urban catchments 

of 0.38 to 104 km2), which extends the skillful lead time of nowcasts for flow estimation 

(Sharif, et al., 2006; Van der Werf, et al., 2023). Therefore, nowcasting can still be a timely 

and useful early warning tool for urban applications.  

There are two sources causing underestimation of nowcast rainfall and the resulting short 

skillful lead time. The first source is the underestimation in the real-time QPE products, as 

shown in Section 3d. Previous studies show that further increasing the resolution of QPE 

(e.g., to 1 min in time and 200 m in space) enhances the accuracy of the QPE product 

(Nielsen, et al., 2014; Thorndahl, et al., 2016), and so the corresponding nowcasts for urban 

hydrological applications (Thorndahl, et al., 2016). Alternative sources such as the QPE 

converted from signal level data of commercial microwave links outperformed real-time QPE 

as inputs for nowcasts for high rainfall rates (Imhoff, et al., 2020). In this study, we used a 

climatology-based adjustment of the QPE and showed that it reduces the QPE error in 

operational radar rainfall nowcasting (Section 3d). However, although correcting the rainfall 

volumes, these adjustments do not change the spatial distribution of the forecast rainfall fields 
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much. The average CARROTS factor in the considered urban areas during the 1-h events 

before 2020 was 1.73 [-], but their average spatial standard deviation within the urban areas 

was only 0.04 [-] (about 2% of the average CARROTS factor). Thus, although the 

CARROTS factors are provided at a high resolution of 1 km2, they are basically the same for 

the whole (small) urban area. As a result, the rainfall spatial structure and Pearson correlation 

remain mostly unchanged, so skillful lead time is not improved (Section 3d), only the total 

rainfall volumes are.  

The second source is the nowcasting model itself. From Section 3a to Section 3d, we 

identified the challenging rainfall characteristics for the STEPS model: intensive and/or 

short-lived events occurring over small areas. Similar limitations of operational rainfall 

nowcasting are also found in other regions in the world. The nowcast model developed by the 

Czech Hydrometeorological Institute, COTREC (Novák, et al., 2009),  show skillful lead 

time shorter than 25 minutes for local convective storms (Mejsnar, et al., 2018). In the 

Netherlands, NWP can outperform nowcasts after a lead time of 1-2 hours for high-intensity 

convective rainfall events (Imhoff et al., 2023). Likewise, the nowcasting system in Hong 

Kong (SWIRLS) was also found to have trouble forecasting the growth and decay of rainfall 

at longer lead times well (Woo & Wong, 2017). PIAF, the nowcasting system in France 

(Moisselin, et al., 2019), shows that the quality of nowcasts in France deteriorates quickly 

and becomes lower than NWP within a lead time of 75 to 90 minutes for the same reason 

(Lovat, et al., 2022). Comparing nowcast performance with NWP as a function of lead time 

for rainfall in urban areas would be of interest for future work, because most previous studies 

focused on national or catchment scales (e.g., Kober et al., 2012. Poletti et al., 2019). 

Furthermore, identifying the dominant type of error (i.e., false alarms, misplacement of 

rainfall, underestimation/overestimation of rainfall volume) based on event type, duration, 

intensity and urban area would be an insightful aspect for future work. One main reason for 

underestimating intensive events is that localized convective rainfall can develop in tens of 

minutes (Germann, et al., 2006; Mejsnar, et al., 2018). Most radar-based nowcasts do not take 

the growth of new rainfall into account (Bowler, et al., 2006; James, et al., 2018; Pulkkinen, 

et al., 2019; Shehu & Haberlandt, 2021) because they do not consider information on 

atmospheric stability, such as convective available potential energy (CAPE) and moisture 

convergence, which can lead to convective rainfall (Steinheimer & Haiden, 2007; Sun, et al., 

2014). Thus, small-area and short-lived rainfall that is not represented in the original QPE 
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cannot be forecast by current radar-based nowcasting models and, as a result, underestimation 

of rainfall in the forecast is unavoidable.  

c. Future perspectives

Some innovative nowcasting procedures outlined below have been proposed to tackle the

mentioned current limits of operational rainfall nowcasting. However, it is still not clear 

whether they will lead to dramatic improvements during strong and convective events which 

are intrinsically chaotic. Finally, more analysis that can supplement this research is proposed. 

1) RECENT DEVELOPMENT IN NOWCASTING TECHNIQUES

Due to the difficulty to parameterize the non-linear growth and decay of extreme rainfall,

recent research has started to integrate machine learning techniques into precipitation 

nowcasting (Marrocu & Massidda, 2020; Li, et al., 2021; Ravuri, et al., 2021; Ehsani, et al., 

2022). They show that nowcasting models based on machine learning outperform traditional 

optical-flow methods from certain perspectives. Machine learning models forecast rainfall 

evolution by training on previous events and avoid the heavy reliance on the advection 

equations used in optical flow methods. Thus, they have potential to forecast convective 

growth which is not considered by deterministic nowcasting models that assume a constant 

rainfall rate. With the above literature, machine learning methods are proven to be valuable 

tools in extreme rainfall nowcasting and should be considered in future work on enhancing 

nowcasting skills for urban areas. 

Blending numerical weather prediction (NWP) with nowcasting models is also shown to 

improve nowcasting skills. NWP numerically solves atmospheric processes, so blending 

NWP with radar-based nowcasts can improve the forecast on rainfall evolution that cannot be 

achieved solely by radar-based nowcasting models (Kober, et al., 2012; Kato, et al., 2017; 

Poletti, et al., 2019; Sideris, et al., 2020; Imhoff, et al., 2023). With the significantly 

improved efficiency in computation and resolution of NWP in the last decade, blending NWP 

in the nowcasting process has a lot of potential to advance nowcast skills (Sun, et al., 2014; 

Poletti, et al., 2019). Thus, using the STEPS procedure that blends QPE extrapolation and 

NWP might be a potential next step for advancing nowcasting skill (Bowler, et al., 2006; 

Seed, et al., 2013).  

Another potential method to better simulate rainfall growth is 3-dimensional nowcasting. 

3-D scanned temperature, humidity, and wind data can be used to indicate convective
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stability to complement radar-based nowcasting results (Steinheimer & Haiden, 2007). Using 

3-D reflectivity, it is possible to nowcast extreme convective events like thunderstorms even

with a lifetime below 60 minutes (Yoshikawa, et al., 2012; Ushio, et al., 2015). In essence, 

extrapolating 3-D radar reflectivity outperforms 2-D nowcasting because it better recognizes 

the vertical motion of rainfall convection (Otsuka, et al., 2016; Sun, et al., 2022). 

Furthermore, combining a convolutional neural network with 3-D radar reflectivity may 

further improve nowcast quality(Kim, et al., 2021).  
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2) EFFECTS OF URBAN FEATURES ON NOWCASTING ACCURACY

This study discusses nowcasting accuracy in different urban areas, by focusing on rainfall

characteristics as well as sizes and locations of the urban areas. However, other urban 

features may change nowcast accuracy as well. For instance, the five urban areas considered 

have different land use and building structures, which might impose additional uncertainty to 

nowcasts. Urban roughness can create flow anomalies by changing the intensity and position 

of moisture convergence (Yang, et al., 2021). Also, urban heat and aerosols can modify 

rainfall in and around the cities (Shepherd, 2005; Schmid & Niyogi, 2017; Sarangi, et al., 

2018), with precipitation amounts that can be 16% higher above a city (Liu & Niyogi, 2019).  

Furthermore, city shapes are also found to have notable influences on rainfall accumulation 

(Zhang, et al., 2022). Such phenomena may add higher difficulty to precipitation nowcasting 

around urban areas than in rural regions. Therefore, future analysis could systematically 

compare nowcast performance for urban and rural areas while controlling other variables like 

domain sizes and distances to the nearest weather radar. 
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5. Conclusion

With this study, we aim to provide insight into the potential of radar nowcasting for

rainfall warnings in small urban areas. We analyzed the quality of ensemble radar rainfall 

nowcasting at the urban scale using the short-term ensemble prediction system (STEPS) from 

Pysteps. We chose 80 high-intensity rainfall events in five urban areas in the Netherlands.  

We analyzed the corresponding 9,060 nowcasts (with a lead time of 4 hours and 20 ensemble 

members) and focused on nowcast performance regarding different urban areas, the factors 

that affect nowcast performance, and the effects of using different QPE products. 

Overall, the nowcast accuracy varied in the five urban areas mainly due to different area 

sizes. We found nowcast RCRPS increases nonlinearly when (urban) area size decreases 

from 900 to 4 km2, because smaller areas are more sensitive to misplaced rainfall in the 

forecast. Due to the non-linear relationship, nowcast errors increase more strongly for areas 

below 100 km2. These findings imply the limitation on spatial accuracy for the employed 

STEPS method and radar resolution (1 km and 5 minutes).  

Nowcasting performance also depended on the rainfall duration. The rainfall 

underestimation of the nowcasts was more severe for 1-h events than for 24-h events. 

Nowcasts estimated the total rainfall volume accurately (error within 20%) with a lead time 

up to 2.5 hours for the 24-h events, but the error was larger than 50% within 30-min lead time 

for the 1-h events.  The discrimination skill of nowcasts at 30-min lead time was also higher 

for 24-h events than for 1-h events by 11% (threshold = 0.1 mm). For both event durations, 

AUC reduced as the threshold of interest increased. 

To also distinguish the nowcasts error from the QPE errors in an operational setting, 

different quantitative precipitation estimates (QPEs) in the Netherlands were compared and 

run with STEPS. We found that real-time QPE underestimates the climatological QPE (best 

reference in the Netherlands) by 17 to 69% depending on the regions and rainfall duration. 

Climatology-based Adjustments for Radar Rainfall in an Operational Setting (CARROTS) 

reduced the error in real-time QPE to within 36%. Accordingly, using CARROTS-adjusted 

QPE to run nowcasts also reduced the rainfall underestimation of real-time nowcasts by 70%, 

compared to the real-time QPE product, during the 4-hour lead time tested. Yet, 

underestimation of rainfall is still above 50% when lead times are longer than 40 minutes, 

which can be attributed to the error in the forecast from the nowcasting model. Besides, the 

average skillful lead time found for the 1-h events was limited to 20 minutes regardless of the 
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QPE product used. The reason is that CARROTS adjusts the rainfall volume but does not 

alter the spatial distribution of the rainfall fields much in small areas. 

This study shows that radar-based nowcasting techniques based on optical flow methods 

can provide skillful forecasts for very short lead times of up to 24 minutes in urban areas, 

which can be precious for emergency responses. Such a lead time is a common obstacle that 

many operational nowcasting models are challenged with when forecasting high-intensity 

rainfall in urban areas. To advance nowcasting skills, it is recommended to use higher-quality 

QPE products (e.g., via real-time adjustments or higher resolution) and employ machine 

learning, 3-D nowcasting, or blending nowcasts with numerical weather prediction (NWP) to 

better model the growth and dissipation of rainfall.  
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