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Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft,
The Netherlands (E-mail: m.gutierrez@lr.tudelft.nl)

Received 9 August 2005; accepted in revised form 6 September 2005

Abstract. The direct differentiation method is applied to the estimation of statistical size effect behav-
iour in quasi-brittle solids. The scale factor is included in the finite element model and the autocorre-
lation function. Particular attention is paid to the proper differentiation of the Nataf transformation,
which has been chosen to convert the basic random variables into a set of uncorrelated, standard
normal variables. The predictive possibilities of the presented algorithm provide a valuable insight in
the actual mechanisms responsible for failure. It can be evaluated to what extent the scale factor sen-
sitivity of the failure probability is influenced by the phenomena related to the material disorder or
the deterministic size effect.
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1. Introduction

Quasi-brittle solids exhibit a strong dependence of the peak load on a characteris-
tic dimension of the considered body. On one hand the average peak load decreases
as the size of the body increases. On the other hand the peak load exhibits a larger
spread for small bodies. This behaviour is commonly referred to as size effect and is
a matter of structural performance vs. a scale factor (Bažant and Planas, 1998). It
therefore provides a preferential environment for the application of design sensitivity
algorithms.

The concept of sensitivity is open to several interpretations in a context of reliabil-
ity analysis (Ditlevsen and Madsen, 1996). On the one hand the sensitivity of (esti-
mates of) the probability of failure with respect to selected design parameters can
be evaluated. On the other hand, several techniques for estimation of the probability
of failure are gradient-based optimisation algorithms, which require evaluation of
the sensitivity with respect to the basic random variables. Among the techniques to
evaluate the sensitivity with respect to design parameters, only the direct differen-
tiation method (DDM) (Kleiber et al., 1997) seems to be adequate for solids with
material non-linearities. The DDM is essentially based on the application of the
implicit function theorem to the non-linear algebraic equations which result from
the finite element discretisation. When advanced material models are used the depen-
dence of internal parameters on the design parameters must also be considered. This
is of special importance when local loading/unloading conditions depend on global
variables, as in gradient-enhanced models.
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This paper is focused on the direct evaluation of the sensitivity of the probability
of failure of quasi-brittle solids with respect to a scale factor. The probability of fail-
ure is first approximated by means of the finite element reliability method for a solid
with a random strength field (Gutiérrez and De Borst, 1999, 2000). The scaling fac-
tor is then incorporated into the mechanical and probabilistic transformation which
govern the mapping between the response of the solid, the random strength and an
uncorrelated standard normal space of basic variables. The sensitivity of the β-index
with respect to the scale factor is then evaluated by means of the DDM.

2. Size effect in gradient-enhanced quasi-brittle solids

2.1. Deterministic model

A reference solid � in plane stress conditions is considered. A scaled solid �(s) is
introduced by means of a factor s ∈R,

�(s) ={y ∈R
2|y = sx with x ∈�}. (1)

This notation implies that

�(1) =�. (2)

The behaviour of the scaled solid is, in absence of body forces, governed by the
boundary value problem

∇ ·σ =0 in �(s),

u = s τūr on ∂�
(s)

1 ,

σ ·n = τσ̄ on ∂�
(s)

2 ,

(3)

at each instant τ , where σ is the stress tensor, u is the displacement field, ∂�
(s)

1 ∪∂�
(s)

2 =
∂�(s), n is the outward normal vector to ∂�, τūr are the prescribed boundary displace-
ments in the reference solid and τσ̄ is the prescribed boundary loading. In a context
of quasi-static loading, τ is a parameter that merely orders the succession of events.
If a linear elastic stress–strain relation is considered, together with a linear kinematic
relation between the strain and displacement fields, it can easily be demonstrated that
the stress field that provides a solution to Equation (3) does not depend on the scaling.
In other words, the field

σ : �(s) −→R
2 ⊗R

2 (4)

does not depend on s, i.e.,

∂σ

∂s
=0. (5)

Additionally, it can be demonstrated that the displacement field

u : �(s) −→R
2 (6)

satisfies the relation

u = sur , (7)
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where ur is the displacement field corresponding to the solution of Equation (3) in
the reference solid �.

In quasi-brittle materials the stress–strain relation is not linear. If a damage model
is considered, this is expressed as

σ = (1−ω)Dε, (8)

where D is the elastic constitutive tensor and ω ∈ [0,1] is a damage parameter that
is a function of a history parameter κ representing the maximum value reached by a
spatially averaged, equivalent measure ε̄eq of the deformation tensor. This is forma-
lised by a damage loading function

f = ε̄eq −κ, (9)

which thus compares ε̄eq and κ and the Kuhn–Tucker conditions

κ̇ �0, f (ε̄eq, κ)�0, κ̇f (ε̄eq, κ)=0. (10)

Following Peerlings et al. (1996), the averaged equivalent strain satisfies the boundary
value problem

ε̄eq − 1
2 l2

s ∇2ε̄eq = εeq in �(s),

∇ ε̄eq ·n =0 on ∂�(s),
(11)

where the source term εeq is obtained through any suitable invariant measure of the
strain field. The parameter ls in Equation (11) is referred to as internal length-scale
and quantifies the width of the zone in which damage is localised. Since this param-
eter can be viewed as a material property, it is not scaled by factor s. Consequently,
the simultaneous solution of Equations (3) and (8)–(11) will not exhibit the similarity
expressed by Equations (4)–(7). This lack of similarity is referred to as size effect.

This study is restricted to the case of proportional loading, i.e.,

τu = τλsûr on ∂�
(s)

1 ,
τσ = τλσ̂ on ∂�

(s)

2 ,
(12)

where ûr and σ̂ are fixed patterns of prescribed displacements and stresses respec-
tively and τλ is a scale factor. Solution of Equations (3) and (8)–(11) is equivalent
to finding the processes τu and τλ. The peak load parameter is then defined as

λp =max
τ>0

τ

λ. (13)

2.2. Random strength distribution

In damage models it is usual to express the strength as a threshold value κ0 of the
history parameter κ introduced in Equation (9). In heterogeneous solids, this variable
is considered to be a random field with a known pointwise probability distribution
PK0 and an autocorrelation function ρ that quantifies the decay of the correlation
coefficient as the distance between two considered points increases. In this study an
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exponential autocorrelation function is considered. Making use of the notation intro-
duced in the previous section, the autocorrelation function of the scaled solid reads

ρ(s)(xi ,xj )= exp
(

−s‖xi −xj‖
lc

)
, (14)

where lc is referred to as correlation length. Equation (14) also means that the auto-
correlation coefficient between any two points of the scaled solid can be found in the
reference solid by applying the scaling

ρ(s) =ρs, (15)

where ρ represents the autocorrelation function in the reference body. Notice that lc
can be viewed as a material parameter and it remains the same in both the reference
and the scaled domains. The actual value of lc can be estimated from micromechan-
ical considerations (Baxter and Graham, 2000). Equation (15) introduces a scaling
in the statistical behaviour of the body. The probability distribution of any prop-
erty of the solution to Equations (3) and (8)–(11) and, in particular, the peak load
parameter (13) will consequently depend on this scaling. The purpose of this study
is to estimate the sensitivity of this probability distribution with respect to the scale
factor.

3. Approximation of the peak-load statistics

3.1. Reliability method

The distribution of the peak load is approximated by means of the reliability method.
For this purpose a limit state function Z is defined as

Z =
p −λ0, (16)

where 
p is a random variable representing the peak load parameter and λ0 repre-
sents a threshold such that the body is in a failure state when it is not reached. The
probability of failure is then

Pf =Pr(Z <0)

=
∫

z<0
pZ(θ)dθ,

(17)

where pZ is the probability density function of Z. The statistical information is how-
ever, only available for the strength field through the probability distribution PK0

and the autocorrelation function (14). In order to evaluate integral (17), the strength
field must be discretised into a set of n random variables V characterised by their
marginal probability distribution PVi

and their correlation structure (Gutiérrez and
Krenk, 2004). The set V can be converted for algorithmic convenience into a set
of uncorrelated standard normal variables W through a mapping T. This mapping
is conveniently realised by means of Nataf’s transformation (Ditlevsen and Madsen,
1996; Liu and Der Kiureghian, 1986). The variables V are first converted into a set
of correlated standard normal variables C through

Ci =�−1(PVi
(Vi)), (18)
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where � is the standard normal cumulative distribution function. Then, the variables
C are converted into the uncorrelated set W through a linear transformation

W =HC, (19)

where H is a matrix related to the correlation of C. Since this correlation is related
to the scale factor s, c.f. Equation (14), the mapping T, given by Equations (18) and
(19) depends explicitly on this scale factor as well. It can then formally be stated that

W =T(V, s). (20)

The probability of failure (17) is, after this transformation, recast as

Pf = Pr(Z <0)

=
∫

z(w)<0
ϕn(ω)dω.

(21)

The symbol ϕn in Equation (21) represents the n-variate uncorrelated standard nor-
mal probability density function. This integral can be accurately computed by means
of Monte Carlo techniques. In the particular case of non-linear material models this
could become very time consuming. Alternatively, the surface z(w)=0 can be approx-
imated by low-order surfaces at selected critical points. The procedure is referred to
as first- or second-order reliability method depending on the kind of surfaces (hy-
perplanes or hyperparaboloids) used for approximation (Ditlevsen and Madsen, 1996;
Gutiérrez and Krenk, 2004).

When first-order approximations are used the surface z(w)=0 is approximated by
the hyperplane

z̄(w)=αTw +β =0, (22)

where ‖α‖=1 and β is the distance from the hyperplane to the origin. The approxi-
mation point is chosen as the closest point of z(w)=0 to the origin. This point, with
coordinates −βα is referred to as design point or β-point and represents a maximum
of the probability density function of W on z(w)= 0. The β index is referred to as
reliability index and the probability of failure is approximated by

Pf =�(−β). (23)

The β-point can conveniently be computed by means of an optimisation algorithm
(Liu and Der Kiureghian, 1991) based on the gradient of the limit-state function (16)
and consequently of the peak load parameter λp with respect to the basic variables w.

3.2. Estimation of size sensitivity

The probability of failure is approximated by the β index, according to Equation
(23). The sensitivity of this probability with respect to any design parameter and, in
particular, to the scale factor s can then be estimated by means of the sensitivity of
the β-index. According to Ditlevsen and Madsen (1996) this sensitivity is written as

dβ

ds
= 1∥∥ ∂z

∂w

∥∥
∂z

∂s
, (24)
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where it is reminded that z and w represent the limit-state function and the basic
variables, respectively. The term ∂z/∂w in Equation (24) is elaborated as

∂z

∂w
= ∂λp

∂v
∂v
∂w

. (25)

This term is available from the computation of the β-point with a suitable
gradient-based algorithm, as mentioned in Section 3.1, and reflects the dependence
of the peak load parameter on the discretised strength v and that of v on the stan-
dard normal variables w through the Nataf transformation (20). The term ∂z/∂s is
developed by keeping in mind that λp depends on s in both a deterministic sense, c.f.
Equations (3) and (8)–(13), as well as a probabilistic sense through the Nataf trans-
formation (20). Making use of the chain rule one obtains

∂z

∂s
= ∂λp

∂v
∂v
∂s

+ ∂λp

∂s
. (26)

The term ∂λp/∂v has already been used in Equation (25) and is available from
Gutiérrez and De Borst (1999). The term ∂λp/∂s is evaluated with the technique pre-
sented in Gutiérrez and De Borst (2003). The elaboration of ∂v/∂s, which is required
to evaluate the dependence of λp on the scaling factor s in a probabilistic sense, fol-
lows from the differentiation of the Nataf transformation and will be described next.

4. Differentiation of the Nataf transformation

The dependence of V on s is implicitly stated by Equation (20). For the purpose of
the evaluation of ∂v/∂s the inverse of Equation (20) is considered,

V =T−1(W, s). (27)

The components of V are related to those of C by the inverse of Equation (18),

Vi =P −1
Vi

(�(Ci)) (28)

while C is related to W by

C=H−1W. (29)

The dependence on s is found in the matrix H. Since C and W are correlated and
uncorrelated standard normal variables respectively, matrix H−1 must fulfill the con-
dition

H−1H−T =R0, (30)

where R0 is the correlation matrix of C. Matrix R0 is related to the correlation matrix
R of V through the expression

R0ij = ξRij , (31)

where ξ is a parameter depending on Rij and the marginal distribution parameters
of V. If a midpoint discretisation (Gutiérrez and Krenk, 2004) of the random field
is considered, the coefficient Rij is given by expressions (14) and (15) as

Rij = (
ρ(‖xi −xj‖)

)s =ρs
ij . (32)
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This introduces the scaling factor s in R0 through

R0ij = ξ(ρs
ij )ρ

s
ij . (33)

Substituting terms in Equation (30) and differentiating leads to[
∂

∂s
(H−1H−T)

]
ij

=
[

∂

∂s
H−1H−T +H−1 ∂

∂s
H−T

]
ij

=
(

∂ξ

∂ρ
+ ξ

)
sρs−1

ij . (34)

There are several choices possible for matrix H. If it is chosen as the square root of
R−1

0 , then H is symmetric and the formulation is simplified. Indeed,

∂

∂s
H−1H−T +H−1 ∂

∂s
H−T =2H−1 ∂

∂s
H−1. (35)

The components of ∂H−1/∂s are then given by[
∂

∂s
H−1

]
ij

= 1
2

(
∂ξ

∂ρ
+ ξ

)
sHikρ

s−1
kj , (36)

where repeated indices denote summation. The derivatives ∂v/∂s are finally computed
from

∂v
∂s

= ∂v
∂c

∂c
∂s

= ∂v
∂c

∂H−1

∂s
w, (37)

where the term ∂v/∂c results from direct differentiation of Equation (28).

5. Numerical simulations

The proposed technique is illustrated by means of the single-edge-notched concrete
specimen represented in Figure 1. The specimen is subjected to an axial, tensile load-
ing which is applied through rigid, free-rotating platens. The size of the specimen is
governed by the measure d. The Young’s modulus has been taken E = 18 000 MPa
and ν =0.2. The damage parameter is related to the history parameter κ through the
expression

ω(κ, κ0)=
{

1− κ0
κ

[(1−a)+a exp(−b(κ −κ0))], if κ >κ0,

0, otherwise,
(38)

where the threshold for damage initiation κ0 is a random field with a pointwise three-
parameter Weibull distribution according to the parameters

κmin
0 =1.5×10−4,

u =2.1×10−4,

k =2,

(39)

and an exponential autocorrelation function, c.f. Equation (14), with three different
values for the correlation length, lc =15, 30 and 60 mm. The parameters a =0.96 and
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Figure 1. Single-edge-notched specimen: generic geometry and loading conditions.

b=350 represent the relative reduction of the stress as κ →∞ and the rate at which
damage grows respectively. This law has been proposed in Peerlings et al. (1998). The
equivalent strain εeq is defined as in De Vree et al. (1996),

εeq = η−1
2η(1−2ν)

I1 + 1
2η

√
(η−1)2

(1−2ν)2
I 2

1 + 2η

(1+ν)2
J2. (40)

The strain tensor invariants are given by

I1 = ε1 + ε2 + ε3,

J2 = (ε1 − ε2)
2 + (ε2 − ε3)

2 + (ε3 − ε1)
2,

(41)

and the parameter η controls the sensitivity to compression relative to that in tension
and is taken η=10. This definition of the equivalent strain has been used in Peerlings
et al. (1998) to describe concrete structures with a gradient-enhanced damage model.
The internal length scale in Equation (11) is ls =4 mm

The specimen, that has a thickness of 50 mm, is discretised into eight-noded,
plane-stress finite elements with a 2 × 2 Gauss–Legendre integration quadrature.
The usual servo-control of the loading by the extensometric gauges represented in
Figure 1 is simulated with the path-following technique proposed in De Borst (1987).
Different sizes have been considered by setting

d = sdr with s =1,1.25,1.5,1.75,2, (42)

where dr =100 mm corresponds to the reference solid. A reference load of 5500 N has
been considered for s =1.
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Size effect laws usually relate the size parameter and a normalised nominal stress.
With the formulation adopted in this work, the size parameter is directly given by
s. The peak loading factor λ defined in Equation (13) can also be viewed as a nor-
malised nominal stress measure. The β-indices computed for each size also take this
scaling into account.

The numerical results for β and dβ/ds are represented in Figure 2. This fig-
ure is of a purely illustrative character. Figures 3 and 4 represent the evolution of
the contribution of the terms (∂λp/∂v)(∂v/∂s) and (∂λp/∂s), both scaled by ∂z/∂w
according to Equation (24), which account for the probabilistic and the determinis-
tic dependence of λp on s, respectively.

It is readily observed that the probabilistic contribution to the size sensitivity of
β is positive while the deterministic contribution is negative. A more relevant obser-
vation is, however, that the absolute value of the deterministic contribution is much
larger than that of the probabilistic contribution, with a factor up to 250 for the cor-
relation length lc = 60 mm and the scaling factor s = 1. This suggests that the sensi-
tivity of the β-index to size variations is essentially introduced by the deterministic
size effect for the size range considered.

The conclusion stated above is valid for single β-points. When considering
larger or unnotched specimens it can be expected that multiple failure modes will
be observed and accordingly several β-points will be present. In that case, the
probabilistic contribution to the size sensitivity can be expected to become dominant,
in accordance with Weibull law. The evaluation of this sensitivity requires knowledge
of that of the correlation coefficient between different failure modes. The latter is
based on the second derivatives of the limit-state function with respect to the basic
variables (Ditlevsen and Madsen, 1996), which are beyond the scope of this work.
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Scale factor s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

β
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lc = 60 mm

Figure 2. Representation of the numerical results for β and dβ/ds.
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Figure 3. Representation of the numerical results for the probabilistic contribution (∂λp/∂v)(∂v/∂s)

scaled by ∂z/∂w vs. the scale factor. From top to bottom: lc =15, 30 and 60 mm.
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Figure 4. Representation of the numerical results for the deterministic contribution (∂λp/∂s) scaled by
∂z/∂w vs. the scale factor. From top to bottom: lc =15, 30 and 60 mm.
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6. Conclusions

A method has been presented for direct evaluation of the size sensitivity of the reli-
ability index β. This provides an estimation of the statistical size effect behaviour and
of the relative contribution of the involved probabilistic and deterministic phenomena
to it. This provides a valuable insight into the actual mechanisms responsible for fail-
ure. Indeed, it makes possible to evaluate to which extent the scale factor sensitivity
of the failure probability is influenced by phenomena related to the material disorder
or the deterministic size effect. This becomes especially relevant when small sizes are
considered, because slight absolute size variations manifest themselves as large scale
factor variations and because the size sensitivity of the reliability index is larger in
such a case. The method is not applicable to large sizes at this stage, because it does
not take multiplicity of failure modes into account.
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