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Abstract

Distribution System Operators (DSOs) are responsible preventing grid congestion, while accounting for grow-
ing demand and the intermittent nature of renewable energy resources. Incentive-based demand response
programs promise real-time flexibility to relieve grid congestion. To include residential consumers in these
programs, aggregators can financially incentivize participants to reduce their energy demand and make ag-
gregated energy reduction available to DSOs. A key challenge for aggregators is to coordinate heterogeneous
preferences from multiple participants while preserving their privacy. This thesis proposes MARL-iDR: a
decentralized Multi-Agent Reinforcement Learning approach to an incentive-based demand response pro-
gram. The approach respects participants’ privacy and preferences and makes decisions in real-time when
deployed. The aggregator and each participant are controlled by Deep Reinforcement Learning agents that
learn to maximize their reward. The aggregator agent learns a policy that dispatches suitable incentives to
participants based on total energy demand and a target reduction, while minimizing financial costs. The
participant agent learns to respond to these incentives by reducing consumption to a fraction of the orig-
inal demand. The participant agents curtail or shift requested household appliances based on the selected
consumption reduction using a novel Disjunctively Constrained Knapsack Problem optimization, while min-
imizing residents’ dissatisfaction. A case study with real-world electricity data from 25 households demon-
strates the capability to induce demand-side flexibility. The approach is compared to the case without de-
mand response and to a centralized myopic baseline approach. A 9% reduction of the Peak-to-Average ratio
(PAR) was achieved compared to the original PAR (no demand response).
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Preface

Imagine a young boy learning to juggle or a newborn deer calf taking its first steps. Both undergo great ef-
forts in pursue of a rewarding goal. In real life, Reinforcement Learning is everywhere. Everywhere around us
we see the tedious, yet wonderful process of learning through experience. No wonder it inspired researchers
to explore a scientific approach to imitate this complex learning mechanism. Since the introduction of Re-
inforcement Learning in the world of computer science, studies have gained success after success on both
theoretical as well as practical fronts. However, the delicate process of trial and error is at the same time the
biggest power of the Reinforcement Learning paradigm and its biggest limitation. For example, it would cost
thousands of cars before computers learn to drive one without trashing it. Given the proper training in a suit-
able simulation, Reinforcement Learning has proved extremely successful and its application has provided
breakthroughs in healthcare, finance, manufacturing, robotics and, not to forget power systems.

In the 21 century, it is an enormous challenge to balance the supply and demand of electricity. To avoid over-
load and shortages, flexibility on the demand side has become an important resource. Demand Response is
an initiative whereby households reduce their electricity consumption in exchange for financial compensa-
tion. In my thesis, I investigate the potential of automating Demand Response programs by means of Rein-
forcement Learning. Think of computation of the correct financial incentive on the one hand, and automated
management of household appliances on the other. An approach beneficial to both grid operators and end
consumers. In the future, this approach may help utility companies supply us with our daily electricity needs.

I want to express my gratitude towards Dr. Luciano Cavalcante Siebert, my supervisor, who guided me
through this learning experience, and towards Dr. Jochen Cremer, whose thoughtful and critical inputs have
led to inspiring discussions.

Jasper van Tilburg
Delft, November 2021
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Nomenclature

Acronyms

AA Aggregator Agent

CBL Customer Baseline Load

DCKP Disjunctively Constrained Knapsack Problem

DQL Deep Q-Learning

DQN Deep Q-Network

DR Demand Response

DSO Distribution System Operator

HEMS Home Energy Management System

IBDR Incentive-Based Demand Response

MARL Multi-Agent Reinforcement Learning

MDP Markov Decision Process

PA Participant Agent

PBDR Price-Based Demand Response

RL Reinforcement Learning

Symbols

βi , j Dissatisfaction coefficient of appliance j of PA i

δ Decay rate of ε

ε Probability of taking a random action

γ Discount factor

NS Set of non-shiftable appliances

PC Set of power-curtailable appliances

TS Set of time-shiftable appliances

bt ,i CBL of PA i in time step t

ct ,i , j Dissatisfaction cost of appliance j of PA i in time step t

dt ,i Total demand of PA i in time step t

e+t Surplus consumption in time step t , i.e., power exceeding k

i /H Index/set of households/PAs

j /D Index/set of household appliances
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x Nomenclature

k Target reduction for the AA

m Amount of categorical levels of power curtailment

o A A
t Observation of the AA in time step t

oPA
t ,i Observation of PA i in time step t

pt Incentive set by the AA in time step t

q j Categorical level of power curtailment for appliance j

r A A
t Total reward for the AA in time step t

r PA
t ,i Total reward for PA i in time step t

st ,i , j State of appliance j of PA i in time step t

t/T Index/set of time steps

t I
i , j Time step in which appliance j of PA i is requested

ut ,i Financial reward of PA i in time step t
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1
Introduction

Historically, the demand side of the electricity market is considered inelastic and the generation side should
adapt to fully supply the demand. Grid operators were able to match the demand by throttling the production
rate of conventional power sources, like coal and oil plants [5]. However, firing up additional fossil fuel power
plants is expensive and takes some time to come up to full production. Moreover, in pursue of climate goals,
renewable energy sources are phasing out fossil fuels. Renewable energy sources are intermittent and can
be unreliable, e.g., wind and solar power generation depends on the weather [33]. The rise of renewable en-
ergy sources, together with increasing electricity demand, poses challenges to grid operators when matching
supply and demand, i.e., grid balancing. A particular challenge in grid balancing is congestion management.
The Distribution System Operator (DSO) is a utility company (utility in short) responsible for distributing
and managing electricity from substations to the end consumers while maintaining the capacity limits of the
grid. When these limits are exceeded we call it a grid congestion. Grid congestion can be costly or even cause
power outages.

Flexibility in the demand side has been recognized as an important resource to aid DSOs in congestion man-
agement [34]. Demand Response initiatives are promising to satisfy this need for flexibility. Demand Re-
sponse (DR) refers to a change in consumption patterns of electricity customers in response to financial in-
centives in times when the network reliability is at risk [15]. DR programs are divided into price-based DR
(PBDR) schemes, e.g., time-of-use pricing, critical-peak pricing and real-time pricing, and incentive-based
DR (IBDR) schemes, e.g., direct load control, interruptible service and demand bidding. DR programs can be
deployed in the industrial, commercial and residential sector. This thesis focuses on IBDR in the residential
sector. Details on existing DR schemes are presented in section 2.1.

1.1. Motivation for residential IBDR

Although some IBDR programs have penalties for not responding to DR requests, many programs are com-
pletely voluntary. Participants choose to receive incentives for their DR resources. PBDR programs on the
other hand, obligate consumers to reduce loads during peak hours or they face high electricity prices. There-
fore, IBDR programs are considered reward-wise programs, whereas PBDR programs are considered punishment-
wise programs. In general, the voluntary nature of reward-wise programs makes people more positive and
responsive in the long term, whereas the obligatory nature of punishment-wise programs makes people ner-
vous and responses are more transient [4].

IBDR programs deployed in the U.S. contribute 93% of load reductions compared to PBDR programs [10].
The major share of these reductions come from the industrial and commercial sector. However, IBDR still
has untapped potential in the residential sector, which makes up the largest share of total energy demand
[36]. Moreover, residential loads can provide a more reliable, flexible and continuous response than large
industrial loads [3].

1



2 1. Introduction

Figure 1.1: The aggregator combines DR resources and makes them available to utilities.

Despite the aforementioned advantages, in practice, residential consumers hardly participate in IBDR pro-
grams. IBDR schemes are less suitable for residential consumers for several reasons. The following challenges
describe the complications of residential participation and how they can be addressed:

1. Residential loads are relatively small compared to industrial loads. In the case of interruptible service
programs it is not viable for utilities to establish contracts with residential consumers for minor reduc-
tions. Similarly, residential bids in demand bidding programs are too small for utilities to accept them.
Typically, utilities set minimum requirements for levels of active load which residential consumers of-
ten do not meet. To solve this issue, residential loads can be combined by an aggregator. Aggregators
are a key stakeholder in the electricity market acting as an intermediary between utilities and end con-
sumers [48]. By aggregating residential loads they meet the minimum requirements and aggregators
make residential DR resources available to utilities (Fig. 1.1).

2. Prediction of grid congestion is complicated and a DR requests are often submitted in short notice.
Effective response to these requests requires either direct control of residential appliances by the util-
ity or immediate action by residents, which is infeasible in practice. A Home Energy Management
System (HEMS) is a device installed in households to allow residents to efficiently manage energy con-
sumption. The HEMS is connected to smart meters and smart plugs in order to access consumption
measurements. Moreover, the HEMS is able to locally control connected smart appliances such as the
dishwasher and the washing machine. The HEMS enables automated response to DR requests in real
time without requiring explicit action from the residents.

3. For interruptible service programs utilities require detailed information on consumption behavior of
the participant to establish an agreement for predefined load reduction. Residential consumers have
higher privacy requirements than industrial consumers which may complicate this. To preserve the
privacy of residential consumers, no other parties should have access to preferences of the residents.
Similarly, direct load control may be invasive to participant privacy and affect their comfort.

Many studies have proposed approaches to automate residential DR programs. Centralized approaches re-
quire exhaustive information about individual participants, which may not be available or may cause privacy
issues [21][44]. In addition, these centralized approaches rely on conventional optimization methods like lin-
ear programming [16][31] or dynamic programming [46], which make real-time computation infeasible for
large number of participants in the program.

Reinforcement Learning (RL) is a promising approach for decision-making in IBDR programs for several rea-
sons. First, RL methods require no initial knowledge of the problem. RL agents learn through interaction
with the environment and therefore are independent of the organization of the program and do not require
information about other participants. Second, Multi-agent Reinforcement Learning (MARL) controls multi-
ple agents in a decentralized fashion, which allows scaling up the number of participants. Third, once trained,
RL agents can decide nearly instantly, facilitating future real-time control applications. RL problems are for-
mulated as a Markov Decision Process (MDP), a framework for sequential decision-making, where a decision
in one time step influences the next. Details on RL and MDPs are presented in Section 2.2.
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1.2. Related Work

Currently, a great deal of research is devoted to the application of RL to DR [38]. Some studies focus on
the industrial sector. [30] presents an approach to controlling a complex system of industrial production
resources, battery storage, electricity self-supply, and short-term market trading using multi-agent RL. [17]
present a deep RL-based industrial DR scheme for optimizing industrial energy management. To ensure
practical application, they designed an MDP framework for industrial DR and used an actor-critic RL algo-
rithm to determine the most efficient manufacturing schedule.

Prior works on RL for DR in the residential sector mainly focus on home energy management in a single
household. [41] present an RL-based approach to DR for a single residential household or a small commercial
building. They apply Q-learning with eligibility traces to reduce average energy costs by shifting the time of
operation of energy consuming devices either by delaying their operation or by anticipating their future use
and operating them at an optimal earlier time. The algorithm balances consumer dissatisfaction with energy
costs and learns consumer choices and preferences without prior knowledge about the model. [23] is a playful
approach to residential DR using deep RL for scheduling loads in a single household. The authors propose
an environment adapted from the Atari game Tetris where flexible blocks represent device loads. A Deep
Q-network based on convolutional networks learns to schedule the load blocks.

Others focus on DR on the scale of the wholesale electricity market. [47] propose a voluntary incentive-
based DR program targeting retail consumers with smart meters paying a flat electricity price. Load serving
entities provide consumers with coupon incentives in anticipation of intermittent generation, ramping and
price spikes. Retail consumers’ inherent flexibility is utilized while their base consumption is not exposed to
wholesale real-time price fluctuations. [44] propose an incentive-based DR model considering a hierarchical
electricity market including grid operators, service providers or aggregators, and small-load consumers. The
proposed trading framework enables system-level dispatch of DR resources by leveraging incentives between
interactors. A Stackelberg game is proposed to capture the interactions between market players.

However, the previous approaches rely on centralized algorithms instead of MARL. The following works pro-
pose decentralized MARL methods for load scheduling of appliances in a collection of households. [12] pro-
pose a framework for scheduling the consumption profile of appliances in multiple households modeled as
a non-cooperative stochastic game and apply RL to search for the Nash equilibrium. The authors empha-
size the proposed method can preserve household privacy. [45] apply a cooperative RL approach to schedule
controllable appliances of multiple households such that utility costs are minimized. The method performs
explicit collaboration to satisfy global grid constraints. Both approaches emphasize the ability to scale with
the number of participating households and to operate in real-time.

These approaches, however, are price-based. [20] proposes a real-time RL algorithm for incentive-based DR
programs that supports service providers (aggregators) to purchase energy flexibility as a DR resource from its
subscribed residential participants to balance energy fluctuations and enhance grid reliability. A single-agent
RL is adopted to compute the close-to optimal incentive rates for heterogeneous participants. The participant
profit and dissatisfaction are balanced in the objective of the service provider. [40] propose a similar method
that includes PV generation and [42] propose a similar method including historical incentives.

Research on applying RL for incentive-based residential DR is scarce and the works that address this overlap
propose single-agent RL focused on either the home energy management perspective or on the aggregator
perspective. To the best of the author’s knowledge, no approach has been proposed that applies MARL to
residential IBDR for the benefit of both aggregators and consumers. A comparative overview is given in Table
1.1.

1.3. Research Questions and Contributions

To address the identified research gap, this thesis aims to answer the following research question: How can
RL induce flexibility in residential demands to relieve grid congestion?

The research question is split up in two sub-questions:
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Residential IBDR MARL
[30][17] X X
[41][23] X
[47][44] X X
[12][45] X X

[20][40][42] X X

Table 1.1: Overview of related work and the aspects they consider.

1. How can a residential IBDR program be designed to relieve grid congestion?

2. How can RL automate a residential IBDR program while preserving privacy and considering heteroge-
neous preferences of residential consumers?

To answer the research questions this thesis proposes a novel decentralized Multi-Agent Reinforcement Learn-
ing approach for Incentive-based DR (MARL-iDR). The proposed approach considers simultaneously a single
Aggregator Agent (AA) and multiple participant agents aiming to maximize their individual rewards. The ag-
gregator learns to deploy a suitable incentive based on total electricity demand and the target load reduction
set by the DSO and participants’ response to the incentive. The Participant Agent (PA) learns to respond to
incentives by limiting consumption, which is achieved by shifting or curtailing household appliances, e.g.,
electric vehicles, dishwasher and air conditioning, while minimizing dissatisfaction of the residents. The
optimal power assignment is achieved through the proposed internal optimization of a Disjunctively Con-
strained Knapsack Problem (DCKP) [6].

The main contributions of this thesis are:

1. An environment that formulates an IBDR program including an aggregator and multiple residential
participants as an MDP. The overall objective in the IBDR program is to maintain residential demands
below capacity limits determined by the DSO, providing it with flexibility to relieve grid congestion.
The environment model internally solves the DCKP to minimize participant dissatisfaction, taking the
participant demand as input and schedules household appliances as output. The environment model
aims to answer sub-question 1.

2. A MARL algorithm suitable for automating residential IBDR using Deep Q-Learning. The algorithm
makes real-time decisions in a decentralized fashion for the aggregator and its residential participants,
while preserving participants’ privacy and accounting for heterogeneous preferences. The MARL algo-
rithm aims to answer sub-question 2.

1.4. Thesis Outline

The rest of this thesis is organized as follows. Section 2 provides background information on DR and RL.
Section 3 presents the proposed MARL-iDR approach. In Section 3.1, an IBDR program is formulated as
an MDP and Section 3.2 describes the MARL algorithm. In Section 3.2, the proposed MARL-iDR algorithm is
described. In Section 4, the results of a case study are presented to evaluate the performance of the approach.
Finally, Section 5 concludes the thesis and presents recommendations for future research.



2
Theoretical Background

2.1. Demand Response

Demand Response (DR) is defined as a change in consumption patterns of electricity consumers in response
to financial incentives in times when the network reliability is at risk [15]. DR is beneficial to multiple stake-
holders in the electricity market, including the Transmission System Operator (TSO), DSO, and end con-
sumers [5]. The TSO is responsible for managing and transmitting high-voltage electricity from generation
sources to sub-stations. DR enables the TSO to improve the reliability of the high-voltage grid. Having flexible
demand at critical moments, e.g., failure of a generation source or a power line, reduces the risks of power
shortages and power outages. The DSO can use DR for maintaining capacity limits of the low-voltage grid at
distribution level. DR reduces the risk of congestion in power lines or sub-stations. End consumers benefit
from DR by having lower energy bills or financial rewards for participation.

An indirect method of DR is strategic conservation, where the overall load is reduced. Trivial approaches
to strategic conservation are improving energy efficiency (e.g., replacing traditional appliances with energy-
efficient appliances) and energy saving (e.g., turning off lights when leaving the room). A more direct method
of DR is load management. Load management distinguishes three categories: peak clipping, load shifting
and valley filling. Peak clipping is the reduction of the peak load to avoid exceeding the capacity of the system
(Fig. 2.1a). Reducing load is achieved by curtailing the power consumption of specific appliances, e.g., dim
lights or turn down the AC. Load shifting is moving demand from peak hours to off-peak hours (Fig. 2.1b).
This is achieved by scheduling operation of appliances with a specific run time to a later moment. Finally,
valley filling is the increase of load during times of oversupply for stability in the system (Fig. 2.1c). Appliances
are intentionally turned on to increase demand, typically without additional costs.

(a) Peak clipping (b) Load shifting (c) Valley filling

Figure 2.1: Categories of load management.

Generally, electricity consumers are classified into four sectors: industrial, commercial, residential and trans-
port (Fig. 2.2). Utilities offer DR programs in the former three. Existing DR programs can be categorized into
two approaches: price-based and incentive-based. In general, PBDR is suitable for the residential sector and
IBDR is suitable for the industrial and commercial sectors [19].

5



6 2. Theoretical Background

Figure 2.2: Share of consumption on the U.S. electricity market by sector in 2020 [36].

In price-based DR (PBDR), participants are offered varying electricity prices depending on the value and
cost of electricity in that period. When demand exceeds the supply, electricity prices will be high. On the
other hand, when more electricity is produced then consumed the prices will be low. The electricity price
encourages consumers to individually manage their consumption by reducing it during peak hours or by
shifting it to less congested hours. PBDR methods are mostly suitable for residential consumers [19]. PBDR
schemes include:

• Time of Use: Consumers are offered two price rates, a low price during off-peak hours and a high price
during on-peak hours. Usually, the prices and hours are predefined, e.g., a day tariff of 15 cents per
kilowatt hour between 7:00 and 0:00 and a night tariff of 6 cents per kilowatt hour between 0:00 and
7:00. Time of Use is a common pricing scheme and is offered in countries worldwide [18].

• Critical Peak Pricing: During short periods with a critical peak, the price goes up according to the peak.
Utilities can announce the critical peak in fixed periods or in variable periods based on predefined
criteria. Several major utilities in the US offer this pricing scheme.

• Real Time Pricing: Electricity prices are adapted to demand and production costs during the whole
day, typically in hourly intervals. There are two main challenges to the application of this scheme.
Firstly, it relies on continuous real-time data exchange, which is not favorable for consumers. Secondly,
the large-scale data processing increases the complexity of the whole system. Several experimental
Real Time Pricing schemes in the US show significant reductions of peak demand and flattening of
consumption [37].

In incentive-based DR (IBDR), utilities submit a DR request to encourage participants to lower or shift con-
sumption at critical moments in return for financial incentives. When participants respond to a request, the
load reduction is considered a DR resource and participants receive payment. In IBDR programs, typically a
contractual agreement between the utility and participant is established [19]. IBDR schemes include:

• Direct load control: According to a detailed agreement between consumer and utilities, utilities can
remotely control some consumer loads. Notices for operation are announced a short time ahead. Par-
ticipants require remote control equipment, allowing utilities to turn on, turn off, reschedule, or curtail
electrical appliances [29].

• Interruptible service: At risk of grid congestion, participants are requested to reduce loads to an agreed
level. Failing to respond leads to penalties. The frequency and the duration of DR requests are limited
[1].



2.2. Reinforcement Learning 7

• Demand bidding: Utilities announce the total amount of electricity that must be curtailed. Consumers
can bid for the amount on the basis of their own situation and the wholesale market. The announce-
ment is normally released one day ahead [2].

2.2. Reinforcement Learning

Reinforcement Learning (RL) is a field of research in machine learning that has gained much interest over
the years. Inspired by neuroscience and human psychology, RL is a computational approach to goal-directed
learning from interaction with the natural environment [35]. A learning agent learns a mapping from situa-
tions, i.e., states of its environment, to actions in order to maximize its reward. The learner does not know
which actions to take, but must instead discover which actions yield the most reward by trying them. It should
be able to find a balance between exploiting actions that have been rewarding in the past and exploring undis-
covered actions. In some cases, rewards are not received immediately, but require a sequence of decisions
that may be individually unprofitable. Therefore, an ideal learner does not only consider immediate rewards,
but also rewards in the future.

2.2.1. Markov Decision Process

The RL learning problem is typically formulated as a Markov Decision Process (MDP), which is a framework
for sequential decision-making. The MDP is characterized by the Markov property, i.e., the state transitions
depend solely on the current state of the environment and the current action taken (not on previous states).
In an MDP, the agent and the environment interact in discrete time steps t = 0,1,2, . . . . The agent observes
the state of the environment, decides upon an action, receives a reward and transit to the next time step with
corresponding state as shown in Fig. 2.3. In the case of an finite horizon MDP, the number of time steps T is
finite and the sequence of all steps 0 to T is called an episode.

Figure 2.3: Interaction between the agent and the environment.

An MDP is formally defined as a tuple 〈S,A, p,r 〉

• S is the set of possible states of the environment called the state space.

• A is the set of valid actions called the action space.

• p is the transition probability function, i.e., probability that the environment will transit to the next
state s′ given the current state s and an action a.

• r is the reward function, i.e., the numerical reward after taking action a in state s and transitioning to
state s′.

The task of the agent is to maximize the accumulated reward in the long term rather than maximize the
immediate reward. More formally, the objective of the agent is to find a policy π that maximizes the expected
discounted return G over finite time horizon T in each time step t :

Gt = E

{ T∑
k=0

γk rt+k+1

}
(2.1)
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where γ ∈ [0,1] is the discount rate that determines the value of future rewards relative to immediate rewards.
The finite-horizon MDP assumes there always is a finite state, possibly after a fixed number of steps.

Most RL approaches involve estimating the optimal state-action value functions. The optimal value of a state-
action pair satisfies the Bellman optimality equation:

V ∗(s, a) = ∑
s′∈S

p(s, a, s′)
[

r (s, a, s′)+γmax
u′ V ∗(x ′,u′)

]
(2.2)

If the optimal value of each state-action pair is available, the optimal policy is computed by selecting for state
each s the action that has the largest value:

π∗(s) = ar g max
a

V ∗(s, a) (2.3)

2.2.2. Q-learning

A widely used RL algorithm is Q-learning [39]. Q-learning is an approach to approximate the values of state-
action pairs. Q-learning turns Eq. 2.2 into an iterative approximation procedure:

Qt+1(st , at ) =Qt (st , at )+η

[
rt+1 +γmax

a′ Qt (st+1, a′)−Qt (st , at )

]
(2.4)

A Q-learning agent initializes a Q-table with all valid state-action pairs with arbitrary Q-values. In each time
step t the agent observes the transition to time step t +1 and the corresponding reward (st , at , st+1,rt+1) and
uses Eq. (2.4) to update its Q-values. The term between the square brackets is the temporal difference, i.e.,
the difference between the current estimate of the state-action value and the updated estimate in the next
time step. Learning rate η controls the size of the update step.

2.2.3. Action Selection

The agent should be able to find a balance between exploration, i.e., discovering new, potentially profitable
actions and exploitation, i.e., selecting the best action known so far. The most used action selection strategy
is called ε-greedy. The agent selects a random action with probability ε ∈ [0,1] and the greedy action (best
action) with probability (1− ε). In the variant of ε-greedy with decay, ε decreases over time with decay rate
δ ∈ [0,1] with a minimum of εmi n :

εt = mi n (εmax , εt−1 ·δ) (2.5)

With this strategy, the agent benefits from extensive exploration early in training and refinement of the policy
in later stages [9].

2.2.4. Deep Q-Learning

The Q-learning algorithm described in Section 2.2.2 is very effective and is a popular choice for developers
of RL algorithms because of its simplicity. However, if the amount of state-action pairs is significantly large
or continuous, Q-learning becomes infeasible for two reasons: (1) the memory required to store Q-values in
the Q-table increases directly with the amount of state-action pairs and (2) the time required to explore every
state-action pair grows rapidly.

Deep Reinforcement Learning (DRL) combines the field of Deep Learning with RL. The idea of DRL algo-
rithms is to incorporate deep learning approaches in RL algorithms, typically by representing the policy as a
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neural network. Deep Q-Learning (DQL) is a DRL variant of Q-learning [25]. The concept of DQL is to replace
the Q-table with a neural network, i.e., a Deep Q-Network (DQN) or policy network. Instead of directly storing
state-action pairs in a Q-table, the Q-values are approximated by the DQN that takes a state as input and the
Q-values of the actions in response to that state as output.

However, there is a challenge when we compare DQL to conventional deep learning. In deep learning, neural
networks are trained given an input and a target that matches the input. With DQL, that target is repre-
sented by the temporal difference from Eq. (2.4): rt+1 +γmax

a′ Qt (st+1, a′). The issue is that this target is

non-stationary, i.e., the target is constantly changing, making training of the network unstable. To fixate the
target a second DQN can be used to predict the target. This so called target network θT is not trained, hence
target predictions are stable. Instead, the parameters of the target network are replaced every N t time steps.
A second challenge is that neural networks are usually trained on batches of training data to stabilize training.
In RL however, agents only observe the current state and reward. To solve this issue, Experience Replay is ap-
plied. Every experience (st , at , st+1,rt+1) is stored in a Replay Buffer B. The policy network can now be trained
on a batch of experiences sampled from B. The main reason for training on random batches is to break cor-
relations between consecutive samples which make training inefficient. The procedure for RL training with
DQNs is presented in Algorithm 1.

Algorithm 1 DQN training procedure

1: Initialize policy network θ with arbitrary parameters
2: Initialize target network θT = θ

3: Initialize replay buffer B,
4: Initialize ε0 ← 1.0
5: Initialize buffer size N b , sample batch size N s and target replace interval N t

6: for all episodes do
7: Update εt = εt−1 ·δ
8: for all time steps t do
9: x ← random number ∈ [0,1]

10: if x ≤ ε then
11: Select random action at ∈ A
12: else
13: at ← ar g max

a
Q(st , a |θ)

14: end if
15: Execute action at and observe reward rt and state st+1

16: Store experience st , at ,rt , st+1 in B
17: if |B | ≥ N b then
18: Remove oldest experience tuple from B
19: end if
20: Sample batch of N s experiences from B
21: for all experiences (st , at ,rt , st+1) do
22: y = rt +γmax

a′ Q(st+1, a′ |θT )

23: Perform gradient descent step on θ with loss || y −Q(st , at |θ) ||2
24: end for
25: if time step t equals interval N t then
26: Replace parameters of θT with parameters of θ
27: end if
28: end for
29: end for

2.2.5. Multi-Agent Reinforcement Learning

MDPs can be generalized to the multi-agent case, called a stochastic game. A stochastic game is formulated
as a tuple 〈S,A1, . . . ,Anp,r1, . . . ,rn〉 where n is the number of agents. The state space S and the transition
probability function p are the same as in the single-agent case, but each agent i has its own set of valid
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actions Ai and its own reward function ri . The rewards depend on the combination of actions by all agents.
In the case that the reward function is equal for all agents (r1 = ·· · = rn), the problem is fully cooperative and
in the case that the reward functions oppose each other (in the two-agent case R1 =−R2), the problem is fully
competitive. Reward functions may be different for some or all agents, in which case the stochastic game is
considered a mixed game [8].

Multi-agent Reinforcement Learning (MARL) decentralizes the problem by dividing tasks to different agents.
If many different decisions need to be made in each time step, single-agent RL may become infeasible be-
cause of the huge joint action space. However, due to this decentralization non-stationarity arises since the
agents train simultaneously. Instead of only interacting with the stationary environment, i.e., the response of
the environment (reward) remains the same during training, the agent also interacts with other agents. Since
agents continuously update their policies, the rewards change during training even though the state and the
action of the agent is the same. In other words, the optimal policy for an agent changes as the other agents
change their policy. Although developers of MARL algorithms often include some form of coordination be-
tween agents, fully independent training has also proven effective.



3
Proposed Approach: MARL-iDR

In this section, the proposed approach, MARL-iDR, is described in detail. MARL-iDR is a Multi-agent RL
method for automating responses in an incentive-based DR program. The approach consists of an environ-
ment model of an IBDR program, described in Section 3.1 and a MARL algorithm, described in Section 3.2,
applied to the environment model.

3.1. Environment Model

This section formulates an IBDR program as the environment of a multi-agent MDP. The architecture for the
program is shown in Fig. 3.1 and its components are described in detail throughout this section. The overall
model considers multiple agents: one for the aggregator (AA) and one for each participant (PAs). The AA
distributes incentives to the different PAs where each represents a residential household.

3.1.1. Assumptions for IBDR Program and Environment Model

An assumption is that the DSO and the aggregator arrange a contractual agreement where the aggregator pro-
vides a continuous aggregated reduction in power consumption below a specified target in exchange for an
agreed payment similar to the interruptible service program in [26]. The aggregator incentivizes its enlisted
participants to realize the target reduction through peak clipping and load shifting, i.e., lowering and delaying
consumption of household appliances respectively. Valley filling is not considered in the program.

In IBDR programs, demand reductions are measured against a reference demand, called the Customer Base-
line Load (CBL). The exact demand of participants in future time steps is unknown, hence, aggregators have
to estimate the demand of their participants. The estimated demand is then used as the CBL. Since residential
participants show regular patterns in energy consumption throughout the day, the most prominent approach
to demand estimation in the residential sector is based on historical consumption data. In the approach to
demand estimation, the current day is matched with ten previous similar days and the average consumption
is computed considering changes in weather conditions. Details for computation of the CBL are found in
[32].

3.1.2. Participant Agent

Each PA represents a household in the IBDR program. The set of all PAs is H . Each PA i ∈ H can control
a set of appliances Di . In practice, the PA would be integrated in the HEMS connected to smart meters and
smart plugs to access the consumption measurements of household appliances. The objective of the PA is to
approach the optimal balance between maximizing financial earnings and minimizing user dissatisfaction
caused by curtailing or shifting appliances. The environment model for each household is defined by its

11
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Figure 3.1: Architecture of the environment

state, actions, rewards and the scheduler.

State The appliances Di are divided into three subsets: time-shiftable appliances TS, power-curtailable
appliances PC and non-shiftable appliances NS such that Di = TSi ∪PCi ∪NSi . The residents may submit an
initial request to turn on appliance j ∈Di at time step t I

i , j .

• Time-shiftable appliances are either on or off. It is assumed that they consume a constant amount of
power. Time-shiftable appliances can be interruptible (e.g., EVs, where the charging can continue later)
or non-interruptible (e.g., washing machines and dishwashers that need to complete their washing
programs without interruption). Time-shiftable appliances are useful for load management in the form
of load shifting (Fig. 2.1b). Their state is determined by the difference between the current time step t
and the initial request time step t I

j , i.e., the current delay t − t I
j .

• Power-curtailable appliances allow to lower power consumption, but do not allow delay of usage (e.g.,
changing the setpoint of an AC, dimming lighting). Power-curtailable appliances are useful for load
management in the form of peak clipping (Fig. 2.1a). Their state is the variable power demand in
kilowatts d PC

j .

• Non-shiftable appliances must run at all times without delay or curtailment. These appliance share a
single state defined as the total non-shiftable power demand in kilowatts d NS

j

The state st ,i of a household i at time step t combines the states of all appliances j ∈Di .

In addition, the PA observes the incentive rate pt passed from the AA and its own projected CBL bt ,i . The
incentive rate determines the amount of money received in cents per kilowatt reduction, where the reduction
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is measured against the CBL. For example, if the incentive is 5 cents per kilowatt reduction, the CBL is 3
kilowatt and the consumption is 1 kilowatt, the PA will receive 10 cents in that time slot.

Finally, the observation of PA i in time step t is oPA
t ,i = {st ,i ,bt ,i , pt }. For the remainder of Section 3.1.2 and

Section 3.1.3, the subscripts t and i are dropped as all equations apply to time step t and household i .

Action This thesis proposes an action space of discrete power rates combined with an appliance schedul-
ing optimization to ensure scalability in the number of appliances. The problem is that when appliances
are controlled directly by RL the action space for time-shiftable appliances increases exponentially with the
number of appliances, i.e., the binary combination of time-shiftable appliances (either on or off) is O (2|TSi |).
This problem of scalability is even more pressing for power-curtailable appliances where discretization in a
set of m levels of power consumption results in a combination growing with O (m|PCi |).

To address this issue, a fixed action space is proposed that consists of discrete power rates a ∈ APA , which is a
fraction of the total demand. Subsequently, the scheduler described in Section 3.1.3 matches the appliances
to the limit l = a ·d where d is the total demand of time-shiftable and power-curtailable appliances. The
resulting total power consumption e may be lower than the limit: e ≤ l .

Reward The reward for the PA consists of two components (1) the financial reward for receiving incentives
(2) the dissatisfaction cost for shifting and curtailing appliances. First, as the AA offers the PA incentive rate p
to reduce demand, the PA receives a financial reward when the total consumption e is smaller than the CBL
b. Here, b and e are in kilowatts and p in cents per kilowatt. The financial reward u paid from AA to PA is

u = p ·max(0, b −e), (3.1)

As the DR program is incentive-based (reward-wise), not price-based (punishment-wise), participants are
not punished for consuming more than CBL b, i.e., they can only earn money, not loose anything.

Second, shifting or curtailing requested appliances causes dissatisfaction to the residents. In the case of time-
shiftable appliance j ∈ TS, dissatisfaction cost cTS

j is a convex function of the delay:

cTS
j =β j

(
t +1− t I

j

)2 ∀ j ∈ TS, (3.2)

Shifting appliance j to time step t +1 instead of turning it on in time step t means a delay of t +1− t I
j . This

function assumes the residents get increasingly dissatisfied when waiting longer for the appliance to run [43].
In the case of power-curtailable appliance j ∈ PC, the dissatisfaction cost is a convex function of the power
curtailment.

cPC
j =β j

( 1

m
·q j ·d j

)2 ∀ j ∈ PC, (3.3)

where q j ∈ {0,1, . . . ,m} is a categorical variable corresponding to the power curtailment level. This function
assumes residents get increasingly dissatisfied with increased curtailment [14]. β j is an appliance specific
dissatisfaction coefficient describing the tolerance of the residents for delay or power curtailment. In practice,
this coefficient is a parameter that the residents can update in the HEMS according to their preference or that
can be learned through feedback of the residents.

The total reward function combines financial reward u and dissatisfaction cost c as follows

r PA = u − ∑
j∈D

c j (3.4)

3.1.3. Scheduler

The scheduler is a part of household i and would be integrated in the HEMS in practice. The scheduler deter-
mines the optimal assignment of power to appliances in TS and PC based on demand limit l . The scheduler
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is a combinatorial optimization formulated as a DCKP [6]:

minimize
∑

j∈PC
cPC

j + ∑
j∈TS

(1−x j ) · cTS
j (3.5)

subject to
∑

j∈PC

1

m
·q j ·d j +

∑
j∈TS

x j ·d j ≤ l (3.6)

x ∈ {0,1}, q ∈ {0,1, . . . ,m} (3.7)

where x j is a binary variable for each time-shiftable appliance j ∈ TS corresponding to switching the appli-
ance off (x j = 0) or on (x j = 1). The optimization minimizes the total dissatisfaction from all appliances. The
dissatisfaction costs from time-shiftable appliances cTS

j and power-curtailable appliances cPC
j are parameters

computed with Eq. (3.2) and Eq. (3.3). After solving the DCKP, the overall power demand is

e = ∑
j∈PC

1

m
·q j ·d j +

∑
j∈TS

x j ·d j (3.8)

3.1.4. Aggregator Agent

The objective of the aggregator is to reduce the aggregated power consumption below a certain limit in kilo-
watts as per agreement with the DSO with a minimal amount of incentive paid to the participants.

State The observation of the AA in time step t is o A A
t = {dt ,k}, where dt is the aggregated demand of all

households i ∈H in kilowatt and k is the target reduction set by the DSO in kilowatt.

Action In each time step, the AA selects an incentive rate pt to realize demand reduction by the PAs. The
AA selects pt out of an action space of discrete incentives A A A in cents per kilowatt reduction.

Reward The reward of the AA is
r A A

t =−
(
ρ ·e+t + (1−ρ) · ∑

i∈H

ut ,i

)
, (3.9)

where the first term defines a penalty for exceeding target k as e+t = max(0,et −k). The second term is the
total incentive payed to the PAs as defined in Eq. 3.1. The trade-off between the two terms is determined
by weighting factor ρ. Note that the AA is not rewarded for aggregated consumption below the target as it
aims to reduce consumption to contribute to the DSO’s capacity constraints, but not further reduce energy
consumption.

3.2. MARL Algorithm

The proposed MARL method is a multi-agent DQL algorithm where the AA and PA have indirectly opposing
reward functions, i.e., actions in favor of the AA may have negative influence on the reward of the PA and
vice versa. All agents are trained simultaneously, hence, the agents deal with a moving target where the opti-
mal policy changes as opposing agents change their policies. Simultaneous learning leads to non-stationary
problems which invalidate most theoretical guarantees of single-agent RL, e.g., the guarantee of convergence
[8]. Despite these limitations, simultaneous learning has found numerous applications because of its sim-
plicity [13][22].

MARL-iDR effectively trades-off the exploration with exploitation. MARL-iDR uses the action selection strat-
egy of ε-greedy with decay, i.e., with probability ε the agent selects a random action where ε decreases over
time with decay rate δ [9]. With this strategy, MARL-iDR benefits from extensive exploration early in training
and refinement of the policy in later stages.

The training procedure for MARL-iDR is presented in Algorithm 2. At the start of the procedure a policy
network and target network are initialized for each individual agent. Then, all agents train the networks for
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a number of episodes where each episode corresponds to a single day. Each episode has a sequence of T
time steps. In each time step t , first the AA selects an action. Next, each individual PA i selects an action and
immediately receives their reward. Finally, after all PAs decided their response to the AA, the reward for the
AA can be calculated. The training procedure takes a significant amount of time to learn policies for each
agent. However, once trained, the RL agent can be deployed in real-time using policy π:

π(s) = ar g max
a

Q(s, a |θ) (3.10)

Algorithm 2 MARL-iDR training procedure

1: Initialize θA A ,θT,A A ,B A A

2: Initialize θPA
i ,θT,PA

i ,B PA
i ∀i ∈H

3: Initialize ε0 ← 1.0
4: Initialize δ, 0 < δ< 1
5: for all episodes do
6: Initialize target reduction k
7: Initialize rewards r A A

0 ,r PA
0 ← 0

8: εt = εt−1 ·δ
9: for all time steps t do

10: Observe demand dt and calculate CBLs bt

11: o A A
t ←〈dt ,k〉

12: Add 〈o A A
t−1, pt−1,r A A

t−1,o A A
t 〉 to B

13: Train θA A given B
14: Select pt using ε-greedy given θA A

15: for all PAs i ∈H do
16: Observe state of appliances st ,i , CBL bt ,i and incentive rate pt

17: Compute dissatisfaction costs ct ,i given st ,i

18: oPA
t ,i ←〈st ,i ,bt ,i , pt 〉

19: Add 〈oPA
t−1,i , at−1,i ,r PA

t−1,i ,oPA
t 〉 to B

20: Train θPA
i given B

21: Select at ,i using ε-greedy given θPA
i

22: Obtain xt ,i and qt ,i by solving DCKP with input: dt ,i ,ct ,i , at ,i

23: Update st+1,i according to xt ,i and qt ,i

24: Calculate PA reward r PA
t ,i

25: end for
26: Calculate AA reward r A A

t
27: end for
28: end for





4
Case Study

A case study is performed to test the effectiveness of the environment model and the MARL algorithm. The
case is a small neighborhood in Austin, Texas, US, during the summer months when air conditioning con-
sumes significant amounts of power due to warm weather conditions. All households have an HEMS installed
that has access to power consumption measurements of smart appliances and can manage them automati-
cally. The MARL-iDR approach is evaluated taking five aspects into consideration: 1. Convergence of training
curves 2. Policies learned by the agents 3. Information exchange and privacy preservation 4. Computational
efficiency and 5. Economics for the aggregator considering a varying weighting factor ρ. The approach is
compared to the original demand, i.e., when no demand response is performed, and to a centralized baseline
approach that computes the optimal myopic actions.

4.1. Simulation Data and Test Setup

4.1.1. Dataset Processing

This case study uses appliance requests generated from electricity data from a PecanStreet dataset [27]. The
dataset is a 15-minute interval time series for 25 real households in Austin, Texas, US. The dataset is loaded
using Pandas [24]. Each entry in the data frame contains the timestamp, the household ID and average real
power consumption in kilowatts over the 15-minute interval for several household appliances and groups of
power outlets. For the case study, 5 major appliances are selected based on two criteria. First, the appliance
must have a large power consumption such that rescheduling or curtailing has a significant effect on the de-
mand. Second, the appliance must be owned and used by most of the households. The EV, washing machine,
dryer, dishwasher and AC fit these criteria. All other appliances in the dataset are considered non-shiftable
appliances.

An important assumption in the environment model is that the power consumption of time-shiftable appli-
ances is constant while running its program. In practice, however, power consumption of most appliances
fluctuates. Time-shiftable appliances are considered running when the real average power consumption ex-
ceeds 0.1 kilowatts. The average power consumption for each time-shiftable appliance is taken from [28].

Data for several timestamps and households is missing or unreliable. For missing entries, the real average
power consumption is assumed 0 kilowatts. The unreliable entries are negative values and unrealistically
large values. Therefore, values of real average power consumption of power-curtailable appliances and non-
shiftable appliances are clipped between 0 kilowatts and a maximum amount of kilowatts.

Households have diverse preferences regarding management of their appliances. For example, some house-
holds prefer the washing machine to finish its program before the dishwasher, while others prefer the oppo-
site. To introduce heterogeneous preferences, the dissatisfaction coefficients β for the appliances are sam-

17
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Appliance Type
Demand
(kW)

Dissatisfaction
coefficient,
mean / std

Dryer TS, NI 2.0 0.2 0.2
Washing machine (WM) TS, NI 1.0 0.1 0.1
Dishwasher (DW) TS, NI 2.0 0.06 0.05
EV TS, I 4.0 0.04 0.05
AC PC 0 - 4.0 3.0 1.0
Non-shiftable NS 0 - 5.0 - -

Table 4.1: Household appliances and their parameters, e.g, non-interruptible (NI) and interruptible (I).

pled from a normal distribution. The type, demand and dissatisfaction coefficients of the appliances selected
for the simulations are in Table 4.1. The exact coefficients of this case study and the impact of the coefficients
on management of the appliances are presented in Appendix A.3.

After processing the PecanStreet data, the load curves are obtained. The load curve is the total continuous
electricity demand of a household over time in kilowatt. Fig. 4.1 presents the load curve of each individ-
ual household between 12:00 PM and 0.00 AM on July 1. The load curves are extremely diverse due to the
heterogeneous usage of household appliances. The load curves provide complex and realistic inputs for the
environment model.

Figure 4.1: Load curves of the individual households.

4.1.2. Implementation Details

The AA and the PAs each have an individual DQN implemented with Keras [11]. Each DQN is a feedfor-
ward neural network. The network for the AA consists of one input layer of 2 input neurons corresponding
to its observation space, two hidden layers of 32 neurons and one output layer of 11 output neurons corre-
sponding to its action space. Similarly, the network for each PA consists of one input layer of 8 input neurons
corresponding to its observation space, two hidden layers of 32 hidden neurons and one output layer of 11
output neurons corresponding to its action space. The outputs of each layer are activated with a ReLU acti-
vation function. Finally, the weights are initialized by sampling from a normal distribution and the biases are
initialized as 0.

The MARL-iDR algorithm is trained for 5000 episodes, discretized in T = 96 time steps of 15 minutes and ran-
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domly sampled from the training period April 1, 2018, to October 31, 2018 (excluding the validation period
July 1, 2018 to July 31, 2018). The action space for the PAs and the AAs is defined as APA = {0.0,0.1, ...,1.0}
and A A A = {0,1, ...,10} respectively. The scheduler selected from m = 10 curtailment levels The learning rate
η = 0.001, the discount rate γ = 0.9 and ε-decay rate δ = 0.999. Weighting factor ρ is 0.5. Finally, the tar-
get reduction k is defined at 80% of the peak demand. The algorithm is validated on each day in July. The
simulations were conducted on a 2.20 GHz, Intel 6-core i7-8750 CPU with 16 GB RAM, running Windows 10.

4.1.3. Myopic Baseline

A baseline is used to compare the performance of the proposed MARL algorithm. The baseline considered
the optimal myopic action per time step (i.e., not considering future rewards). In other words, PAs selected
the best action such that a∗

i = ar g max {r PA
i |p}, and the AA selected the optimal incentive defined by p∗ =

ar g max {r A A |a∗
i , ∀i ∈ H }. Algorithm 3 presents the procedure for calculating the optimal responses for both

the AA and all PAs. The procedure is called every time step. Since the optimal response of the AA depends on
the response of the PAs, first the optimal response of each PA is calculated (line 3) and saved for each incentive
rate in optimal power rate matrix M . Subsequently, the optimal response of the AA is calculated given M (line
16) and saved as p∗. Unlike RL methodology, this myopic baseline requires full knowledge about the model,
e.g., the reward function, and is only able to consider immediate rewards (short-sighted).

Algorithm 3 Myopic Baseline

1: Initialize optimal power rate matrix M
2: Initialize optimal incentive rate p∗
3: for all incentives p ∈ A A A do
4: for all PA i ∈H do
5: Initialize optimal reward r∗
6: for all power rate a ∈ APA do
7: Calculate PA reward r given p and choosing a
8: if r > r∗ then
9: r∗ ← r

10: Mp,i ← a
11: end if
12: end for
13: end for
14: end for
15: Initialize optimal reward r∗
16: for all incentives p ∈ A A A do
17: Calculate PA reward r given optimal responses Mp

18: if r > r∗ then
19: r∗ ← r
20: p∗ ← p
21: end if
22: end for
23: Return AA action p∗ and PA action vector Mp∗

4.2. Results

In this section, results of the case study are presented and discussed. Some results are explained through
illustration on a single day and for a single household. It should be mentioned that this day and household
are selected to best illustrate a pattern in the results, although all days and households contribute to the
overall performance of the approach.
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4.2.1. Training Curves

Fig. 4.2 and Fig. 4.3 present the training curves of four arbitrary PAs and the AA respectively. The y-axis shows
the cumulative reward over the course of a single episode. The dark-blue line shows the exponential weighted
average with a window size of 100 to show how the average total reward converges over time. For all training
curves, it can be observed that the rewards spread over a wide range, even at later stages of training, due to
the diverse nature of each episode, i.e., each training day has different potential for reward. Nevertheless,
the training curves for both the AA and the PAs are converging to a stable policy. The other PAs show similar
training curves and converge as well.

Regarding the training curve of PA 1 and PA 2, the cumulative reward grows quickly up to episode 500, after
which it starts to decrease. For PA 3 and PA 4, the training curves are decreasing from the first episode. This
can be explained due to the fact that the AA is constantly changing its policy as well, causing the PA to earn
less incentive in later stages.

(a) PA 1 (b) PA 2

(c) PA 3 (d) PA 4

Figure 4.2: Learning curves for four PAs.

Figure 4.3: Learning curve for the AA.

4.2.2. Load Reductions and Incentive Rates

MARL-iDR reduces loads during peak hours. The results are presented in Table 4.2. The peak load and peak-
to-average ratio (PAR) are significantly lower for MARL-iDR compared to the original load, i.e the case without
DR. However, the myopic baseline reduces the peak load and PAR even further, slightly exceeding the target
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No DR MARL-IDR
Myopic
baseline

Peak load (kW) 86.25 74.39 69.23
Mean load (kW) 47.80 45.37 46.23
PAR 1.80 1.64 1.50
Surplus consumption (kWh) 35.79 3.93 0.49
Total incentive (¢) 0.0 2122 1917
Average dissatisfaction cost 0.0 17.36 12.26
Average incentive income (¢) 0.0 84.88 76.68

Table 4.2: Results averaged per day in July.

reduction with a total of 0.49kWh, whereas this “surplus consumption” for MARL-iDR is 3.93kWh. MARL-
iDR sometimes results in a second peak that exceeds the target reduction k. This unwanted effect of load
shifting to a second peak is known as rebound effect [7]. Fig. 4.4 illustrates this behavior, showing the im-
pact of MARL-iDR on the load curve on July 1st. The aggregated load (Fig. 4.4b) is unchanged before 14:30.
During hours where the original load exceeds the target reduction, i.e., peak hours, both MARL-iDR and the
myopic baseline maintained the total load mostly below the target, by offering varying incentive rates. How-
ever, around 19:00 a second peak arises when using MARL-iDR. This second peak (90.7kW) is lower than the
first, original peak (102.7kW), but higher than the target. MARL-iDR does not offer incentives after the orig-
inal peak, hence the loads increase above the target (rebound effect). In comparison, the myopic baseline
does not suffer from the rebound effect and reduces below the target. A similar pattern can be observed in
individual households, see Fig. 4.4c for the load curve of a selected household. Similar to the aggregated case,
consumption is reduced significantly during peak hours, but spikes right after 19:00. The error of the CBL is
analyzed in Appendix A.1.

4.2.3. Dissatisfaction Costs and Appliance Scheduling

The appliance schedule of the household from Fig. 4.4c is presented in Fig. 4.5. Fig. 4.5a shows for each
appliance the originally requested time step and the actual scheduled time step. The washing machine and
the EV delay for as long as incentives are offered. As soon as the incentive rate drops to 0, shortly after 19:00,
the agent schedules the washing machine and the EV. The incentive also influences the AC. Between 16:30
and 19:00, the AC consumption is nearly halved. Fig. 4.5b shows the trade-off between incentives gained and
dissatisfaction caused by rescheduling appliances. The dissatisfaction from delaying the EV and the washing
machine is increasing until scheduled at 19.15. A detailed analysis of the appliance scheduling optimization
is presented in Appendix A.2.

4.2.4. Preserving Privacy

The proposed MARL-iDR preserves privacy which is legally required. MARL-iDR outperforms any central-
ized scheduler at the AA (e.g., myopic baseline) as they require exact information about the reward function
to calculate the best responses. In practice, this means the aggregator must know participants’ preferences
and the state of their appliances to predict their response. With MARL-iDR, the aggregator receives no in-
formation regarding the participant at all, only a single variable of information is exchanged: the incentive
rate. In addition, no information is exchanged between participants, hence ensuring participant-participant
privacy.

4.2.5. Economic Analysis

MARL-iDR trains local agents balancing the economics between the aggregator and all participants. The key
metric in this balance is the incentive rate. The incentive rates selected by the AA are shown in Fig. 4.4a. The
shape of this rate curve matches the original aggregated demand curve in Fig. 4.4b. MARL-iDR stops offering
incentives after 19.00 and the myopic baseline stops after 20.00. The myopic baseline offers less or equal
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(a) Incentive rates selected by the AA

(b) Aggregated load curve.

(c) Load curve of an individual household

Figure 4.4: Load reductions and incentive rates for MARL-iDR compared to the myopic baseline and the case without DR.

incentives optimizing the target reduction between 14.45 and 18.15 which results in lower financial rewards
for the PAs.

The design of the program is important for its success toward a fair balance in financial costs and gains for
all parties. The design (and the balance) is controlled at the AA through selecting the weighting factor ρ
in Eq. (3.9). The selection of ρ ultimately determines the trade-off between financial costs and violation
of the target reduction. A study on this parameter ρ is in Fig. 4.6. The larger ρ, the larger the penalty on
surplus consumption and the smaller the incentive cost. For small values ρ, there is a significant amount of
consumption exceeding the target while only a little incentive is paid to participants. On the other hand, when
ρ is large, the aggregator tries to push the surplus consumption down to 0 by offering increasing amounts of
incentive.

4.2.6. Computational Efficiency

This study analyzes the computational times for MARL-iDR training and real-time deployment. The com-
putation time during real-time deployment is an important criterion for residential IBDR. The computation
times of scheduling appliances of a single household in a single time step are compared with the baseline.
The myopic baseline is a centralized approach computing all possibilities before the PA can decide the op-
timal scheduling, resulting in a computational complexity of O

(|A A A ||H ||APA |). The used implementation
took on average 1.86s, and for a large number of households, centralized optimization-based approaches are
highly unsuitable as research shows. However, as MARL-iDR is decentralized and the PAs can schedule ap-
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(a) Household schedule with requests (light blocks) and assignments by PA (dark blocks). The block height is the curtailed
AC level q j .

(b) Trading-off the two reward components of the PA, the financial reward u minus the accumulated dissatisfaction c.

Figure 4.5: Appliance scheduling and dissatisfaction.

Figure 4.6: The aggregator balances financial cost and surplus consumption with ρ.

pliances independently, the actual schedule can be computed in 2 ms. As scheduling of appliances should be
done in near real-time, MARL-iDR is very suitable as a real-time decision-making algorithm for real-time DR
programs, and the key advantage is that almost unlimited many PAs can be considered at the same time. The
time of training MARL-iDR with one AA and 25 PAs for 5000 episodes is ∼ 12h which only has to be done once
before deployment.

4.3. Discussion

The proposed decentralized MARL-iDR approach is very promising for future real-time DR programs as it
scales to very large numbers of residents, making DR decisions in milliseconds while preserving privacy, and
balancing financially gains among participants in a fair way. However, MARL-iDR has limitations. As the AA
makes decisions based on the current state of the environment and can not know if the current time step is
before or after the peak due to the nature of MDPs, incentives were not placed to reduce the second peak.
Hence, the myopic baseline outperformed MARL-iDR in reducing load. One way of solving this limitation
could be including the accumulated load reduction in the observation, which requires further investigation.
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Another limitation is that the scheduler only considers requests for appliances at time step t , hence non-
interruptible appliances may impede load reduction in future time steps when incentives may be higher.
Operation times of time-shiftable appliances must be considered in the future to improve the potency of
appliance scheduling.

Finally, MARL-iDR is trained and validated in a period with relative high outside temperatures and large AC
consumption (April to October). Curtailing the AC provides a considerable amount of load reductions in
these months. However, the effectiveness has not been tested in winter months or at different locations. AC
demands are likely to be much smaller in January or in colder cities. In these scenarios, it makes more sense
to curtail (water) heating appliances or lighting.



5
Conclusion and Recommendations

5.1. Conclusion

This thesis proposes MARL-iDR, a novel decentralized MARL approach, for a residential incentive-based DR
program formulated as an MDP. The approach balances interests of the aggregator and multiple residential
participants while preserving the privacy of participants and making decisions in real-time. The aggrega-
tor agent learns a policy that dispatches suitable incentives to participants based on total energy demand
and a target reduction, while minimizing financial costs. The participant agent learns to respond to these
incentives by reducing consumption to a fraction of the original demand. The participant agents curtail
or shift requested household appliances based on the selected consumption reduction using a novel Dis-
junctively Constrained Knapsack Problem optimization, while minimizing residents’ dissatisfaction. The ap-
proach demonstrates the ability to induce flexibility in residential demands to relieve grid congestion. A case
study shows a PAR reduction of 9% compared to the original demand.

The first research question of this thesis was: How can a residential IBDR program be designed to relieve grid
congestion? This question is answered by environment model of an IBDR program suitable for deployment
in the residential sector. The IBDR program aims to provide DSOs with demand-side flexibility at critical mo-
ments. The DSO determines a target reduction necessary to relieve congestion and the participants provide
the DR resources through aggregation to achieve the target reduction.

The second research question of this thesis was: How can RL automate a residential IBDR program while
preserving privacy and considering heterogeneous preferences of residential consumers? This question is an-
swered by the proposed MARL algorithm. The algorithm automates responses of households to DR requests
in real-time. The algorithm minimizes dissatisfaction of residents with diverse consumption patterns and
heterogeneous preferences. Finally, the algorithm controls multiple agents, allowing it to make decisions in
a decentralized fashion with minimal information exchange to preserve the privacy of residents.

5.2. Recommendations

This work delivers initial steps towards a proof of concept and towards a possible future real-time application.
Further research is needed before integrating RL agents with the HEMS in households. As a recommendation,
the following points require further research to improve the performance of the MARL-iDR approach:

• In the current approach, all RL agents are acting independently without any awareness of other agents
or any form of coordination. Demand-side flexibility could be increased when agents start coordinating
their strategies. For example, PAs could coordinate scheduling of appliances to prevent the rebound ef-
fect. Such coordination requires some information exchange which may violate privacy requirements.
A more implicit approach is to shape the reward function of PAs to include a collective goal, implic-
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itly compelling agents to collaborate to maximize rewards. For example, the agents receive a bonus if
the collectively reach the target reduction or, on the opposite, they do not receive any incentives if the
target reduction is not met.

• Despite the fact that the agents are training in a non-stationary environment, the agents converge to a
stable policy. It is recommended to study what the impact of this non-stationarity is and if providing a
stable environment improves the final policy. For example, if the policy of all PAs is fixed, will exclusive
training of the AA lead to convergence to a better policy?

• The environment is modelled with time steps of 15 minutes. Since MARL-iDR promises real-time re-
sponses, the approach should allow deployment at smaller time intervals, e.g., seconds or even mil-
liseconds. It is hypothesized that by correctly tuning the dissatisfaction coefficients the approach can
make decisions at any time interval larger than the time required to make decision. Empirical evidence
is required to confirm the hypothesis that the approach generalizes over different time step sizes.

As a recommendation, the following points require further research to bring the approach one step closer to
practical implementation:

• Little is known about the generalizability of the approach. The case study was performed on a limited
amount of households and a limited amount of appliances. The case was set in Austin, Texas, US, with
warm weather conditions. To allow a widespread application, it is recommended to investigate the per-
formance under different conditions, e.g., the number of participants, more diverse sets of household
appliances, different locations, weather conditions and periods of the year.

• As in interruptible service programs, the target reduction is pre-defined by utilities. In the case study
of this work the target reduction is set to 80% of the peak demand. For practical implementation, it is
useful to utilities to have a variable target to provide the flexibility they need to prevent grid congestion.
It is recommended to test a range of targets and find the feasible limits of this target.

• For simplicity, the time-shiftable appliances are assumed to operate with constant power consumption.
In practice, the power consumption of household appliances fluctuates. It requires further investiga-
tion to test the effectiveness with real power consumption data as input.

• Today, a large portion of residential houses include Photo-Voltaic (PV) systems as well as Energy Stor-
age Systems (ESS). This allows storage of locally generated solar energy and consumption during peak
hours. A more realistic case study includes PV systems and ESS in households.
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A
In-depth Analysis

A.1. Customer Baseline Load (CBL)

In IBDR programs, demand reductions are measured against a reference demand, i.e., CBL. The exact de-
mand of participants in future time steps is unknown, hence, aggregators have to estimate the demand of
their participants. In practice, utilities deploy different methods in existing IBDR programs to determine the
CBL. Most of these methods rely on historical data and statistical analysis. Fig. A.1 shows the predicted de-
mand or CBL against the actual demand for the first four households from Fig. 4.1. For households 1 and 3,
the patterns in the load curves are similar to historical patterns, hence it can be seen that the CBL roughly cor-
responds to the actual demand, except for some outliers, e.g., the peak between 17:00 and 18:00 of household
1. Often such peaks deviate from the CBL when appliances are requested outside the regular pattern of the
household. Household 2 and 4 on the other hand, show less correspondence between the actual demand and
CBL. This is explained since there are less patterns in the consumption behavior of these households. Mis-
matches in actual demand and CBL affect behavior of the PA. When the CBL is higher than the demand, e.g.,
between 12:00 and 14:30 in household 2, the PA will receive incentives even without reducing consumption.
When the CBL is lower than the demand, e.g., between 15:00 and 18:30 in household 2, the PA may decide
that it can not reduce demands below the CBL and chooses maximum consumption to avoid dissatisfaction
costs. In the illustrative example in Appendix A.2 the demand is peaking above the CBL, however the PA still
reduces the demand significantly to reach below the CBL.
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(a) Household 1 (b) Household 2

(c) Household 3 (d) Household 4

Figure A.1: Actual demand and predicted demand (CBL) for four households.

A.2. Appliance Scheduling

This thesis proposes an action space of discrete power rates for the PAs to control the power demand of the
household. The selected action is followed by an appliance scheduling optimization that converts a power
rate into a power assignment to household appliances. This appendix analyzes this transition from power
rate to power assignment in depth.

Time step t = 73 (18.15) is considered on the same day and the same PA as the case study (Fig. A.2). In
this specific time step, residents request operation of multiple household appliances simultaneously which
contributes to the complexity of the power assignment. The EV has been delayed for 4 time steps up to this
point and which causes a dissatisfaction of 1 for denying the requests. A new request is submitted to run the
washing machine (WM), which causes a smaller dissatisfaction of 0.1 for denying the request. In addition,
the AC is demanding a significant amount of power which can be curtailed. The EV demands a constant
4 kilowatt, the WM demands 1 kilowatt, the AC demands 2.47 kilowatt and an additional 0.64 kilowatt is
demanded by non-shiftable appliances, 8.11 kilowatt in total. The AA offers the PAs 3 cents per kilowatt
reduction and has determined a CBL of 3.80 kilowatt as a reference consumption for this particular PA. Table
A.1 shows the how the appliance scheduling optimizer assigns power based on the power rate selected by the
PA.

If power rate a = 1.0 is selected, all appliances receive the requested power. In this case, no dissatisfaction
is caused, but also no power is reduced. Therefore, the CBL is exceeded and no incentive is earned. If the
power rate is smaller, the scheduler first denies the WM power (a = 0.9, a = 0.8), then denies the EV power
(a = 0.7, a = 0.6, a = 0.5). The AC is only slightly curtailed at a = 0.8. However, delaying either of them is
not a significant power reduction to consume less than the CBL. For a = 0.4 both the EV and the WM are
delayed and the AC and the non-shiftable appliances consume a total of 3.11 kilowatt, subceeding the CBL
and earning incentives. For power rates lower than 0.4 power consumption of the AC is curtailed. In the
extreme case of a = 0.0, no power is assigned at all, causing significant dissatisfaction, mostly for the AC
(18.26). The optimal myopic action in this time step is a = 0.3 (1.55), the PA selected a near optimal power
rate of a = 0.2 (1.03). However, optimal myopic action may not give the highest long-term reward.



A.3. Impact of Dissatisfaction Coefficients 33

Figure A.2: Time step selected for analysis of appliance scheduling.

Power
rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Consumption

WM 0 0 0 0 0 1 1 1 0 0 1
EV 0 0 0 0 0 0 0 0 4 4 4
AC 0 0.74 1.48 2.22 2.47 2.47 2.47 2.47 1.97 2.47 2.47
Total 0.64 1.38 2.12 2.86 3.11 4.11 4.11 4.11 6.61 7.11 8.11

Dissatisfaction

WM 0.1 0.1 0.1 0.1 0.1 0 0 0 0.1 0.1 0
EV 1 1 1 1 1 1 1 1 0 0 0
AC 18.26 8.95 2.92 0.18 0 0 0 0 0.73 0 0
Total 19.36 10.05 4.02 1.28 1.1 1 1 1 0.83 0.1 0

Reduction 3.16 2.42 1.68 0.94 0.70 0 0 0 0 0 0
Incentives earned 9.49 7.27 5.05 2.83 2.09 0 0 0 0 0 0
Reward -9.87 -2.78 1.03 1.55 0.99 -1 -1 -1 -0.83 -0.1 0

Table A.1: The conversion from power rate to power assignment by the appliance scheduling optimization for time step is t = 73 on July
1st. The residents request the washing machine, EV and AC. For each power rate also the reduction relative to the CBL (3.80), the earned
incentive and the reward are given.

A.3. Impact of Dissatisfaction Coefficients

The dissatisfaction coefficientβ controls for each appliance how fast the dissatisfaction of the residents builds
up when it is delayed or curtailed. From Eq. (3.2) and Eq. (3.3), it can be derived that dissatisfaction increases
quadratically as a function of the delay and the power curtailment respectively. To confirm the impact of the
dissatisfaction coefficients on the dissatisfaction, the average curtailment for the AC and the average delay of
the EV are investigated under different values of the dissatisfaction coefficient. The training setup is the same
as the case study described in Section 4 except all PAs are trained independently with different values for β.
To make sure the different coefficients do not affect the AA, its policy is fixed, i.e., the policy the AA converged
to in the case study.

Fig. A.3 shows how the dissatisfaction coefficient of the AC affects power curtailment. The non-zero AC power
curtailments for each household and in each time step over the month July are concatenated and the boxplot
is presented. The median is slightly decreasing from 0.36 kilowatt for β= 1.0 to 0.18 kilowatt for β= 5.0. The
impact is also clearly observed in the range in which power curtailments fall. For β= 1.0, power curtailment
reaches up to 3.3 kilowatt. For β = 4.0, the maximum power curtailment is below 1.2 kilowatt, although for
β= 5.0 several outliers have larger power curtailments.

Fig. A.4 shows how the dissatisfaction coefficient of the EV affects the delay of charging the EV. The non-zero
delays for each EV request from each household over the month July are concatenated and the boxplot is
presented. It can be observed that the median decreases when the coefficient is increased. For β= 0.01, the
median of delay is 2.25 hours in contrast to a median delay of 1 hour for β= 0.07. The same trend is observed
in the maximum delays. For β= 0.01, the maximum delay over all EV requests is 6.75 hours. For β= 0.07, the
maximum delay is just 2.75 hours.

In practice, the dissatisfaction coefficient could be an internal parameter in any HEMS that can be explic-
itly controlled by the residents or learned by the HEMS through feedback from the user about their level of
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Figure A.3: Effect of the dissatisfaction coefficient on the power curtailment of the AC.

Figure A.4: Effect of the dissatisfaction coefficient on the delay of charging the EV.

dissatisfaction.

Varying dissatisfaction coefficients represent heterogeneous household preferences. Table A.2 provides the
exact values for the dissatisfaction coefficients for each household and each appliance as used in the case
study.
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ID AC EV WM DW Dryer
1 3.000 0.040 0.100 0.060 0.200
2 2.843 0.023 0.038 0.071 0.079
3 2.009 0.090 0.257 0.010 0.493
4 3.131 0.022 0.103 0.082 0.151
5 2.302 0.028 0.010 0.027 0.294
6 3.088 0.010 0.168 0.017 0.552
7 2.363 0.010 0.222 0.062 0.361
8 1.918 0.082 0.137 0.010 0.010
9 2.932 0.078 0.066 0.032 0.391
10 2.248 0.032 0.010 0.017 0.283
11 3.006 0.031 0.059 0.010 0.177
12 2.596 0.070 0.185 0.127 0.148
13 5.322 0.091 0.192 0.067 0.142
14 1.584 0.112 0.010 0.010 0.127
15 2.536 0.062 0.127 0.039 0.415
16 2.462 0.104 0.200 0.010 0.183
17 2.339 0.036 0.010 0.010 0.156
18 2.358 0.010 0.067 0.034 0.084
19 4.472 0.010 0.133 0.010 0.174
20 4.514 0.067 0.031 0.010 0.098
21 2.751 0.027 0.176 0.010 0.155
22 1.045 0.042 0.087 0.029 0.378
23 3.828 0.012 0.105 0.131 0.025
24 2.841 0.019 0.217 0.010 0.010
25 2.232 0.010 0.133 0.112 0.260

Table A.2: Dissatisfaction coefficients used in the case study.
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