
Assessment of Parkinson’s
Disease Severity from Videos
using Deep Architectures

Zhao Yin

ASSESSMENT OF PARKINSON’S DISEASE SEVERITY
FROM VIDEOS USING DEEP ARCHITECTURES

by

Zhao YIN

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday August 19, 2020 at 2:00 PM.

Student number: 4778863
Project duration: October, 2019 - August, 2020
Thesis committee: Dr. J.C. van Gemert, TU Delft, supervisor

Dr. Hamdi Dibeklioglu, Bilkent University, daily supervisor
Dr. Huijuan Wang, TU Delft, external committee member
Victor Geraedts, LUMC, external expert
Ziqi Wang, TU Delft, co-supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

The thesis report presents the work done for my master’s thesis project. The research was
conducted within the Computer Vision Lab, TU Delft, under the supervision of Dr. J.C.
van Gemert. Dr. Hamdi Dibeklioğlu and Ziqi Wang have been my daily co-supervisors.

In the first part, the report shows the publication output of this work - the scientific
paper, which contains the main contents of the report, including motivation, related
work, methods, experiments, and results. The latter part describes some fundamental
knowledge related to this work to help understand the scientific paper.

During the project, I have gained a lot, not only the knowledge for the research but
also the time management skills that help me complete the project systematically. I be-
lieve those skills will still affect me greatly in my future career.

I want to thank Dr. J.C. van Gemert for his great support and useful guidance through-
out the project. Furthermore, I would like to acknowledge Dr. Hamdi Dibeklioğlu, Ziqi
Wang, and Victor Geraedts for daily help on my thesis’s progress and always being pa-
tient with my mistakes. Dr. Hamdi Dibeklioğlu and Ziqi Wang helped me construct the
structure of the technical parts of the project. Victor Geraedts helped me understand
difficult clinical contents. I would also like to thank my family and friends for their en-
couragement and support.

Zhao Yin
Delft, August 2020

v

CONTENTS

1 Scientific Paper 3

2 Introduction 17
2.1 Motivation . 17
2.2 Research Questions . 17

3 Background on Deep Learning 19
3.1 Convolutional Neural Networks. 19

3.1.1 Convolutional Layer . 19
3.1.2 Non-linearity Layer . 21
3.1.3 Pooling Layer . 23

3.2 ResNet . 24
3.3 Self-attention . 24
3.4 Relative Positional Embeddings . 25
3.5 Class-Balanced Loss . 26

4 Action Recognition 27
4.1 Inflated 3D Convolutional Neural Network 27
4.2 Self-attention Replacing 3D Convolutional Layer 28

5 Transfer Learning 31
5.1 Brief Introduction to Transfer Learning 31
5.2 Deep Transfer Learning . 32

6 Parkinson’s Disease 35
6.1 MDS-Unified Parkinson’s Disease Rating Scale 35

1

1
SCIENTIFIC PAPER

3

1

Assessment of Parkinson’s Disease Severity
from Videos using Deep Architectures

Zhao Yin
Delft University of Technology

zhao yin@outlook.com

Abstract— Parkinson’s disease (PD) diagnosis is based
on clinical criteria, i.e. bradykinesia, rest tremor, rigidity,
etc. Assessment of the severity of PD symptoms, however,
is subject to inter-rater variability. In this paper, we propose
a deep learning based automatic PD diagnosis method us-
ing videos recorded during the assessment with the Move-
ment Disorders Society - Unified PD rating scale (MDS-
UPDRS) part III. Seven tasks from the MDS-UPDRS III are in-
vestigated, which show the symptoms of bradykinesia and
postural tremors. We demonstrate the effectiveness of au-
tomatic classification of PD severity using 3D Convolutional
Neural Network (CNN) and the PD severity classification
can benefit from non-medical datasets for transfer learning.
We further design a temporal self-attention (TSA) model
to focus on the subtle temporal vision changes in our PD
video dataset. The temporal relative self-attention-based
3D CNN classifier gives promising classification results
on task-level videos. We also propose a task-assembling
method to predict the patient-level severity through stack-
ing classifiers. We show the effectiveness of TSA and task-
assembling method on our PD video dataset empirically.

Index Terms— Parkinson’s disease (PD), deep learning,
transfer learning, self-attention, multi-domain learning.

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive neuro-
logical disorder, affecting over 10 million people around the
world according to the American Parkinson Disease Associ-
ation (APDA) [42]. Individuals with Parkinson’s disease typ-
ically present with characteristic motor symptoms, including
bradykinesia (i.e. slowness of movement), rigidity (stiffness),
and rest tremor [45]. These symptoms are progressive over
time, subsequently leading to an increase in their severity.

At present, the Movement Disorder Society - Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS), containing
four parts: I for non-motor experiences of daily living, II for
motor experiences of daily living, III for motor examination
and IV for motor complications, has been widely used as
a validated tool to quantify PD severity [18], [31]. MDS-
UPDRS is the revised and more comprehensive version of the
original UPDRS [16] and they are highly correlated on the
motor sections [32]. This study uses the MDS-UPDRS part
III (MDS-UPDRS-III) as the measurement for analysis, which
contains 18 tasks and 33 scores, with some tasks pertaining to
either left or right extremities. Each task, tied to a symptom
assessed by clinically trained raters, has five responses linked
to symptom-severity: 0-normal, 1-slight, 2-mild, 3-moderate,

and 4-severe, providing consistency across tasks. Collapsing
all the scores to provide the patient with a composite total
score is not recommended by [18] but can still be applicable
given the minimal clinically important difference threshold
values [30] and is often used in clinical practice to monitor
disease progression. Although MDS-UPDRS-III is currently
the gold standard to quantify the severity, it still has the
potential to cause less reliable ratings due to the intrinsic
inter-rater variability caused by the non-identical inter-rater
protocols and inexperienced examiners [15], [48]. Besides, the
presence of the specialist is mandatory when giving the rating
decisions. However, the patient’s motor status can change
significantly during the two consecutive examinations. These
difficulties make the manual rating inefficient and urge for
automatic quantification method. In this work, we propose a
deep learning based PD severity quantification approach using
videos. We show the overall pipeline in Fig. 1.

The goal of PD severity quantification is that, given an
individual patient’s video performing a specific task, the
corresponding severity level can be predicted by the machine
learning algorithm to assist ratings of examiners. As the task
performed by the patient in the video is a kind of action,
we naturally think of the human action recognition method
to solve the identification of Parkinson’s severity. Recently,
many action recognition architectures [5], [17], [19] achieve
promising performance on public human action datasets and
one of the mostly used architecture is the inflated 3D CNN
(I3D) [5], which is a 3D CNN with 3D kernels inflated from
a 2D CNN with an additional temporal dimension. Therefore,
we opt to use I3D as the base model for this work.

Due to the small size of our PD dataset, directly training I3D
from scratch is inefficient and prone to overfitting; thus, we
use transfer learning to pre-train the network on large datasets
to make the training process more stable. However, public
datasets we pre-train on have noticeable motion differences
while the motion difference in our PD dataset is subtle.
Such large domain discrepancy makes it difficult to transfer
knowledge between domains, so we need a solution to focus
on exploring the temporal motion changes. Besides, the video
in our dataset is a repeating task with periodic actions, where
the model should learn the repeating frequency or the starting
and ending point. Thus, we need another solution to assign
different weights for the frames of the video. Additionally, as
stated in [37], [39], not all frames are equally crucial for action
recognition, so we propose to use temporal self-attention to

2

TaVk-leYel
claVVificaWiRQ

TaVk-aVVembling

PUedicWiRQ

TSA�mRdel

FeaWXUe

...TaVkV

PaWieQW

Train

E[WracW feaWXreV

PUedicWiRQ

PaWieQW-leYel
claVVificaWiRQ

Fig. 1: The flowchart of the automatic PD severity quantifi-
cation. The task symbols from left to right denote task finger
tapping, hand movements, kinetic tremor, leg agility, postural
tremor, pronation, and toe tapping.

assign the weights for frames as well as solve the domain
discrepancy issue. The benefit is not only for such a repeating
dataset but also for other datasets because it holds for other
datasets as well that not all frames are equally important.

Once we can predict each task’s severity, each patient will
have a separate severity score for each task. However, it’s
more clinically interesting to give a summary severity for the
patient rather than multiple ones, so we propose to apply a
novel task-assembling method to combine the predictions of
different tasks from the patient to predict a single score.

The contributions of this work are:
1) we perform automatic task-level PD severity classifica-

tion using I3D from videos of our PD dataset, based on
seven tasks in MDS-UPDRS-III;

2) we show that I3D can benefit from non-medical datasets
with transfer learning;

3) we propose TSA to overcome the large discrepancy of
motion difference between non-medical datasets and our
PD dataset during transfer learning;

4) we propose a task-assembling method to combine the
models of different tasks to produce a single concluding
severity score for a patient.

II. RELATED WORK

A. Machine/Deep Learning Based Approaches

Machine/deep learning based PD analysis has been in-
tensively researched in recent years. For instance, the K-
nearest neighbors (KNN) ensemble AdaBoost classifier and
support vector machines (SVM) with RBF kernel are used to

classify between PD patients and controls based on the fea-
tures extracted from individual handwriting [14]. For image-
based analysis, discriminant analysis and SVM are used to
differentiate PD patients and controls based on segmented
high-activity regions of the single photon emission computed
tomography (SPECT) scans of the brain [4]. For signal-based
analysis, signals acquired from the gyroscope attached to the
subject’s finger are extracted to feed into multiple classifiers
[46]. In [2], glottal flow features are used as input for SVM
classifier to detect PD with an accuracy of 75.3%. Apart
from the image- and signal-based analysis, the video is also
used as an input data type for PD quantification [51], [54].
However, to the best of our knowledge, apart from [43] in
which freezing of gait videos are used to feed the 3D network,
most researchers extract the feature from videos as the final
input for classifiers without fully utilizing the video resource.
Based on machine/deep learning approaches, our work applies
action recognition method to quantify PD severity using RGB
video data.

B. Transfer Learning

Transfer learning is a research problem in machine learning
that focuses on storing knowledge gained while solving one
problem and applying it to a different but related problem
[53]. It is widely used as a pre-training approach to offer the
model a better starting point instead of training from scratch.
In the work of [34], CNN layers trained from ImageNet
is reused to transfer visual recognition tasks to learn mid-
level representations for small datasets. In action recognition,
researchers apply transfer learning to pre-train the model on a
large dataset to make the training process faster, more efficient,
and less prone to overfitting with a significant performance
improvement [5], [19]. Most related research shows that
transfer learning can be a useful tool to make the network
work on small datasets, and thus we use transfer learning in
this work to help improve the performance on our PD dataset.

C. Capture Temporal Information

1) For General Video Dataset: In action recognition, re-
searchers apply various methods to capture the temporal
information crucial in video data. In the work of [47] (C3D),
3D CNN is used as a spatiotemporal feature extractor for
videos, and the extracted features are used as inputs for simple
linear classifiers. Based on the 3D CNN, an I3D is introduced
to take advantage of pre-trained 2D models [5]. Similar to
3D CNN, I3D performs 3D convolution on both spatial and
temporal dimensions simultaneously. However, in I3D, pre-
trained 2D filters are repeated or inflated multiple times to
form 3D filters. Therefore, I3D can benefit from successful
image (2D) classification models trained on large datasets
such as ImageNet [11]. Besides 3D CNN, a combination of a
stack of CNNs and Long-Short Term Memory (LSTM [21])
networks is applied to exploit the temporal information [1],
[12] as well. These methods apply either 3D CNN or 2D
CNN with fusion methods such as LSTM on the video data
to capture the temporal information. We use I3D as our base
model because of its decent performance on public datasets,
including Kinetics-400 experimented in [19].

YIN: ASSESSMENT OF PARKINSON’S DISEASE SEVERITY FROM VIDEOS USING DEEP ARCHITECTURES 3

2) For Periodic- and Subtle-Motion Video Dataset: The spa-
tiotemporal template of motion features is used to recognize
and segment the repetitive motion by template matching [36].
In [9], CNN is used to count the number of repetitions, and
circle length in periodic-motion videos. Besides the task of
action recognition, the estimation of repeating frequency is
studied in [35], using a Lagrangian approach and an Eule-
rian approach as the frequency estimators. In periodic-motion
videos, we need to focus on the repeating frequency, starting,
and ending points to make the model work.

In medical datasets such as movement disorder dataset,
videos usually have subtle motion changes, which are hard
for architectures to work because subtle motion information is
difficult to capture and can not even be seen with bare eyes.
The subtle motions can be magnified using a steerable pyramid
[26], [50]. In the work of [10], motion frequency is used to
estimate material properties. Similarly, signal analysis in the
Fourier domain is employed to estimate the tremor frequency
of subtle motions [35]. In subtle-motion videos, we need to
focus on magnifying the subtle motion or directly estimating
the frequency.

D. Self-Attention

Self-attention is extensively explored since the Transformer
network is introduced for machine translation [49] where the
self-attention is used to compute the interactions between
words. In recent work, the QANet [55] architecture uses
self-attention in cooperation with convolutions for machine-
reading and question answering tasks, where the convolution
computes local interactions and self-attention computes global
interactions. In image tasks, self-attention with relative posi-
tional embeddings is usually used to compute the interactions
among pixels in the same image and allows the model to
learn which part of the image is of more importance [3].
In the non-local network [52], self-attention can be used in
convolutional architectures to learn the long-range interac-
tions among pixels in images or videos for object detection
and video classification. In general, self-attention is used in
architectures for modeling sequences as it can capture long-
distance interactions. In this paper, we propose a new method,
temporal self-attention model, for PD quantification, which
involves I3D and the self-attention mechanism, attempting to
detect the periodic and subtle motion in the video data.

E. Multi-domain Learning

Multiple similar domains can be learned to let the model
work on a new target domain using parameter combination
from multiple classifiers [13], [24]. In [6], perceptron-based
algorithms are employed for multi-task binary classification
problem with the similarity estimation among tasks. Basically,
multi-domain learning explores the relationship between tasks
or domains and incorporates them to solve a new task. In
this work, we combine the features from multiple domains
(i.e., tasks from MDS-UPDRS-III) to predict patient-level PD
severity classification.

III. METHODS

In this section, we explain the details of the proposed
video-based automatic classification of Parkinson’s disease.
The overall flow of the algorithm is described as follows.
Initially, each video is preprocessed to be consistent with
other videos concerning size, task starting point, mean, and
standard deviation. At the same time, we use network-based
transfer learning to transfer knowledge from non-medical
datasets to the medical one, i.e., reusing the network trained
on large datasets as the pre-trained model to replace model
initialization. Then, the pre-trained model is fine-tuned on the
collected Parkinson’s dataset to learn the underlying patterns.
After fine-tuning, the model can be used as the classifier for
task-level classification. By combining the features extracted
by the deep models from different tasks and training a shallow
neural network using those features, patient-level analysis can
be further made.

A. Inflated 3D Convolutional Neural Network (I3D)

In this paper, we use I3D as the base network with ResNet
as the backbone instead of Inception-v1 as the former is
more natural to extend (currently 18, 34, 50, 101, 152-layer
variations are available) and its pre-trained models are already
available [19]. Furthermore, rather than using two streams
(RGB frames and optical flow), we use RGB frames as the
only input because computing optical flow is time-consuming,
which is not feasible if the real-time prediction is required.

The model is optimized using gradient descent by minimiz-
ing the empirical loss with class-balanced focal loss [8]:

J(!) =
1

N

NX

i=1

✓
� 1� �

1� �ny

CX

c=1

(1�pti,c)
� log(pti,c)

◆
+� k!k22 ,

(1)
where C, N , ! and � denote the number of classes, number
of samples, learned parameters and focusing parameter, and
� = (N � 1)/N . ny stands for the number of samples in the
ground-truth class y and pt is defined as

pt =

(
p if y = c

1� p otherwise.
(2)

B. Self-attention Replacing Convolution

We describe the proposed temporal self-attention block for
video classification following the symbol styles of [3], that is,
T , H , W and C refer to the time, height, width and number
of input filters of an activation map. Nh, dv and dk refer to
the number of heads, the depth of values and the depth of keys
and queries in multi-head-attention [3], assuming that dv and
dk can be evenly divided by Nh. dhv and dhk denote the depth
of values and keys/queries per attention head.

1) Temporal Self-attention over Video Volume: Given an
input tensor of shape (C, T,H,W) with the batch dimension
omitted for simplicity, we first transpose and flatten it to
a tensor X 2 RHW⇥T⇥C and perform multi-head-attention

4

on the temporal dimension. The output of the temporal self-
attention block for a single head is

Oh = Softmax
✓
QKT

q
dhk

◆
V, (3)

where queries Q = XWq , keys K = XWk and values V =
XWv and Wq , Wk 2 RC⇥dh

k and Wv 2 RC⇥dh
v are learned

linear transformations1. Note that we transpose the last two
dimensions of V to correctly multiply with Q. Concatenating
the outputs from all heads we get

O =
⇥
O1, . . . , ONh

⇤
. (4)

The shape of O is (HW ⇥ T ⇥ dhk). We then project it again
using the learned linear transformation WO 2 Rdv⇥dv

MultiHead(Q,K, V) = OWO, (5)

where MultiHead(Q,K, V) is of shape (HW ⇥ T ⇥ dhv).
After reshaping back to the original spatial and temporal
dimension, we have the final output MultiHead(Q,K, V) 2
RT⇥H⇥W⇥dv of our temporal self-attention block if relative
postional embeddings [3] (see Section III-B.2) not applied.

The novelty of our temporal self-attention block is applying
the self-attention mechanism solely on the temporal dimen-
sion, leaving the spatial dimension untouched. The advantage
is that self-attention can capture the long-range temporal
changes while keeping standard CNN there, capturing the
necessary visual patterns simultaneously. As such, the abilities
of both self-attention and CNN can remain and incorporate in
the temporal self-attention block, which effectively makes up
the drawback of I3D.

Fig. 2 illustrates the temporal self-attention mechanism. The
temporal sequence of feature points (red ones) that share the
same spatial position is the atomic unit, on top of which the
temporal self-attention applies. We have HW sequences/units
located at all spatial positions, and each of them is independent
of others when performing the temporal self-attention.

2) Relative Positional Embeddings: The only difference be-
tween 1D and 2D relative positional embeddings is the di-
mensions involved in the algorithm. Thus we refer to [3]
for the details of 2D relative positional embeddings, and we
do not discuss the 1D variation anymore in this paper. To
implement temporal relative self-attention, we add relative
temporal information to the temporal self-attention block’s
output. The output is now changed from Equation 3 to

Oh = Softmax
✓
QKT + Srel

Tq
dhk

◆
V, (6)

where Srel
T 2 RHW⇥T⇥T is the matrix of relative position

logits along the temporal dimension.
3) Temporal Relative Self-attention: We combine temporal

self-attention with 1D relative positional embeddings to form
our new building block-temporal relative self-attention block.
Fig. 3 describes the whole pipeline of the proposed block.

1Bias terms are ignored when we mention linear transformations.

Fig. 2: An example of temporal self-attention. Assume the
stack of those rectangles is a feature map (or more intuitively
for 3D data, feature volume) from one channel. Each rectangle
represents the spatial visual patterns at a specific temporal
position. Our temporal self-attention is performed on the
feature points colored in red, which share the same spatial
position along the temporal dimension. It can be seen as self-
attention through time.

CRQY3d,�WUaQVSRVe,�UeVhaSe

OXWSXW�Rf�laVW�la\eU

SSliW�RQ�chaQQel,�WUaQVSRVe

TUaQVSRVe

RelaWiYe
SRViWiRnal
embedding

SRfWma[

TUaQVSRVe,�UeVhaSe,�cRmbiQe

CRQY3d

OXWSXW�Rf�WemSRUal�Velf-aWWenWiRn�blRck

Fig. 3: The general pipeline of our temporal relative self-
attention. Rectangles in the workflow represent tensors with
shape specified, and italic words stand for tensor operations.
⌦ and + denote tensor product and addition.

YIN: ASSESSMENT OF PARKINSON’S DISEASE SEVERITY FROM VIDEOS USING DEEP ARCHITECTURES 5

4) Temporal Relative Self-attention Network (TSA): Once the
temporal relative self-attention block is built up, the convolu-
tional block in any architecture can be substituted. Take 3D
ResNet-34 for instance, which has 33 convolutional layers. We
replace those layers as many as possible with our block from
the last convolutional layer to the first one until we hit the
memory bottleneck.

The time complexity of our block is O(HWT 2dk) com-
pared to the convolutional block O(HWTC), which is time-
efficient since the temporal size is typically small after a few
layers. The memory cost is O(HWT 2Nhdhk) compared to the
convolutional block O(HWTC).

C. Multi-task Assembling

Using the model we discussed in previous sections, it can
solve the task-level severity classification on our PD dataset.
Given a sample related to a specific task from the dataset,
we can predict its task severity St. Nonetheless, it is more
clinically interesting to tell the severity score of a patient Sp

instead of tasks. Therefore, we propose two multi-task assem-
bling methods to combine the tasks to do severity classification
for patients. Note that the following methods require trained
models on the PD dataset for task-level classification.

1) Vector Averaging and Vector Weighting: We use the
trained model as a feature extractor to compress the infor-
mation of a video into a dense one. We first extract the
flattened vector F 2 Rd of dimension size d as the compressed
information, which is the input feature of the fully connected
layer. Each video, containing only a single task from a patient,
produces one feature vector Fm of task m and all videos from
that patient produce feature vectors FM 2 Rd⇥M of all M
tasks. Different tasks may contribute unequally to a patient’s
severity score, so we use two strategies to convert (or combine)
FM into a vector F 2 Rd, representing the feature of a patient.

The first approach is to average features, formulated as

F =
1

M

MX

m=1

Fm, (7)

by assuming each feature (task) contributes equally. The
second approach is to take the weighted average of features
as the following

F =
1

M

MX

m=1

↵mFm, (8)

where ↵m (
PM

m=1 ↵m = 1) is the learnable weight for task m.
The first approach is a special case of this one. Afterward, F is
fed as input to train a shallow neural network2. The network is
optimized using gradient descent by minimizing the empirical
loss J(!) (see Equation 1) where N is the number of patients.

2) Attention-based Feature Weighting: In the feature aver-
aging and weighting approach, we assume task weights are
identical across all patients. However, patients may not share
the same task weights so that the global task weights may
be insufficient and inaccurate. Therefore, we propose to use

20, 1 or 2 hidden layers with non-linear activation.

channel-wise attention-based weighting, which automatically
assigns task weights for each patient separately. To do so, we
use another feature map FM 2 RM⇥C⇥T⇥H⇥W (M denotes
the number of tasks), the output of the last convolutional or
our self-attention layer, as the extracted feature for a video.

The first weighting strategy is to apply squeeze-and-
excitation block [22] to map the input feature FM to a set
of channel weights. As the task weights are our concerns
instead of the channels, we take the task dimension as the
channel dimension in the squeeze-and-excitation block. The
process can be formulated as follows. First, squeeze global
information into a task descriptor by using global average
pooling to generate task-wise statistics

zm =
1

C ⇥ T ⇥H ⇥W

CX

c=1

TX

t=1

HX

h=1

WX

w=1

Fm(c, t, h, w), (9)

where Fm denotes the feature map for task m. Then we excite
the task-wise statistics to task weights (W1 2 RM

r ⇥R, W2 2
RR⇥M

r in which r is the dimensionality-reduction ratio)

↵M = �(W2�(W1zM)), (10)

where ↵M , � and � denote task weights, the sigmoid activation
and the ReLU [33] function. Finally we obtain the combined
feature map F 2 RC⇥T⇥H⇥W

F =
1

M
↵MFM . (11)

Applying the squeeze-and-excitation block to get task
weights is rather simple but turns out to be efficient. It flexibly
generates different weights for different patients accordingly.
However, this approach assumes each feature point in the
feature map contributes equally, which means a task weight
is a global weight for all feature points. We can explore even
further by making each feature point having its own weight
↵t,h,w,m, which brings about the pixel-wise attention-based
weighting approach.

We opt to use the self-attention mechanism similar to our
temporal relative self-attention block for pixel-wise weighting,
by applying it on the task dimension instead of the temporal di-
mension. First, we reshape and flatten FM 2 RM⇥C⇥T⇥H⇥W

into the shape of (THW ⇥M ⇥C) and then the output of a
single attention head can be computed as

Oh = Softmax
✓
(FMWq)(FMWk)Tq

dhk

◆
(FMWv), (12)

where Wq , Wk 2 RC⇥dh
k and Wv 2 RC⇥dh

v are learned linear
transformations. Afterwards, we combine attention results of
all heads and project using OW 2 Rdv⇥dv to form the task
weighted feature map

F =
⇥
O1, . . . , ONh

⇤
OW . (13)

Note that the task weights for each feature point ↵t,h,w,m is
implicitly embedded in the computation of attention output.

Task weighted features using both approaches are fed into
a shallow neural network consisting of batch normalization
[23], the ReLU function, global average pooling, and a fully
connected layer.

6

The summary of the proposed four task-assembling methods
can be found in TABLE I. Vector averaging and vector
weighting use the outputs of the last global average pooling
layer while attention-based weighting methods use the outputs
of the last convolutional/self-attention layer in the network. We
denote avgpool and layer4 as the feature types.

IV. EXPERIMENTAL SETTINGS

A. Dataset

In this paper, we introduce a new video dataset for Parkin-
son’s disease analysis. We develop this dataset principally
because there is a lack of such datasets for Parkinson’s disease
analysis. We believe that having one will facilitate research in
this area because the dataset simulates the procedure of how
experts diagnose patients using MDS-UPDRS-III scores. Be-
sides, the dataset is challenging enough to act as a performance
benchmark where the advantages of different architectures can
be demonstrated.

1) Data Collection: Consecutive patients who underwent ei-
ther a Levodopa Challenge Test (LCT [38], [40]) prior to DBS
surgery, or underwent a Stimulator Challenge Test (SCT, [7],
[20]) after DBS surgery, were recruited. All patients fulfilled
the criteria for idiopathic PD. Patients who underwent a LCT
were videotaped twice (i.e. Med-OFF and Med-ON); patients
who underwent SCT were videotaped three times (Med-OFF-
Stim-ON [28], Med-OFF-Stim-OFF [29], Med-ON-Stim-ON
[20]). Video recordings were made with the camera in a fixed
position, with a complete overview of the patient central on
the screen. Due to the varying nature of the examination room,
the camera’s position and angle towards the patient varied, as
well as the background and surroundings. During the MDS-
UPDRS-III examination, the zoom-function was occasionally
used to focus on the hands or feet.

All videos were made in one continuous recording of
the examination. Separate segments were created by clipping
the videos per task (left and right separately if required):
bradykinesia of the hands (MDS-UPDRS-III items 3.4, 3.5,
3.6), bradykinesia of the legs (items 3.7, 3.8), postural tremor
(item 3.15), kinetic tremor (item 3.16). Rigidity was not
included as this symptom is not assessed through visual
observation; global bradykinesia, speech, freezing-of-gait, and
rest-tremor were not included as no specific video-segment
pertained to those tasks and they were evaluated throughout the
entire recording. The local medical ethics committee waived
the formal evaluation of the study. All patients gave written
informed consent.

2) Dataset Overview: The dataset contains 39 subjects and
1082 videos. Each sample in the dataset is of resolution 1920
by 1080 and 25 fps. The duration of samples may be different
on different tasks. Fig. 4a shows the duration distribution of
our dataset.

The dataset contains T = 11 tasks for most of the patients
based on the MDS-UPDRS-III, namely finger tapping, gait
freezing, hand movements, leg agility, pronation, toe tapping,
arising from chair, kinetic tremor, postural tremor, postural
stability and rest tremor. Note that not all tasks are used in
the experiments. Each video has a task-level severity score

St 2 {0, 1, 2, 3, 4} (0: normal, 1: slight, 2: mild, 3: moderate
and 4: severe) labeled by experts. Each patient has a patient-
level severity score

Sp =
TX

t=1

St. (14)

The distributions of St (over all tasks) and Sp are shown in
Fig. 4b and Fig. 4c.

B. Settings

To evaluate our methods for Parkinson’s severity classifica-
tion, we use the above-described dataset. In our experiments,
only RGB frames are used as the input for the deep archi-
tectures. The clips are resized to 32 ⇥ 224 ⇥ 224 resolution
without changing their spatial aspect ratios.

After splitting the dataset into five folds, we train networks
on four of them and test it on the rest one in rotation.
The overall accuracy is obtained by taking the average of
the individual accuracy tested on each fold. There is no
subject overlap between folds to avoid network cheating by
recognizing the appearance of the patient.

I3D is pre-trained on both UCF-101 (by ourselves) and
Kinetics-400 (by [19]). TSA is pre-trained only from UCF-
101 (by ourselves). Batch size of 15, learning rate of 0.001
without decay and weight decay (�) of 0.01 are used.

The task-level score St 2 0, 1, 2, 3, 4 is split into two
classes: class 0 for {0, 1} and class 1 for {2, 3, 4} since we are
more interested in whether the model can distinguish between
the slight and severe group of patients. The patient-level score
Sp is split into three classes in the way that each class has
an equal number of patients. Method specific settings are
provided alongside when showing the results in Section V.

V. RESULTS

In this section, we show the results of our experiments.
We test seven tasks with high quality videos, finger tapping,
hand movements, kinetic tremor, leg agility, postural tremor,
pronation and toe tapping. They are denoted as finger, hand,
kinetic, leg, postural, pronation and toe for simplicity. We
use ResNet-34 as backbone because through experiments we
find that ResNet-34 is the most suitable one in this study,
considering the size and difficulty of our dataset. One can of
course use other backbones if the size, complexity and classes
of the dataset are different from ours. We have to emphasize
that, in all experiments, although patients contribute more than
one video, no patient is included into both the training- and
test-set because even though videos of a patient are separate
ones, they are still from the same patient.

A. Validate Temporal Relative Self-attention Network

Before applying TSA on PD dataset, we first check whether
it works better than I3D on two frequently used public datasets
UCF-101 and HMDB-51. Hyper-parameters are chosen with-
out optimization: input shape of 64⇥ 224⇥ 224, lr of 0.001,
batch size of 45, weight decay of 10�5 and optimizer of SGD
with momentum [44]. The backbone is ResNet-18 for fast

YIN: ASSESSMENT OF PARKINSON’S DISEASE SEVERITY FROM VIDEOS USING DEEP ARCHITECTURES 7

TABLE I: The summary of four task-assembling methods.

vector averaging vector weighting channel-wise attention weighting pixel-wise attention weighting

Input type avgpool avgpool layer4 layer4
Weights differ among tasks 7 3 3 3
Weights differ among patients 7 7 3 3
Weights differ among feature points 7 7 7 3
Core mechanism averaging learnable weight vector squeeze-and-excitaion [22] self-attention

(a) The histogram of the duration
of samples, using 80 bins. The av-
erage duration is 6.3 seconds, and
90% of samples are shorter than 10
seconds, with less than five samples
longer than 25 seconds.

(b) The bar chart shows the distribution
of task-level severity score. From low to
high severity class, the number of sam-
ples decreases, which shows the class
imbalance issue in our dataset.

(c) The histogram of patient-level severity
score using 20 bins. Compared to task-level
severity distribution, patient-level severity dis-
tribution has no obvious imbalance issue. The
number of patients across the range of severity
is approximately on the same level.

Fig. 4: Distributions of the sample duration and task/patient-level severity of our dataset.

TABLE II: Top-1 accuracy on UCF-101 and HMDB-51. All
accuracy are averaged over three splits. Both methods use
ResNet-18 as the backbone. TSA shows better performance on
both datasets so that it can be further applied to PD dataset.

Method (scratch) UCF-101 HMDB-51

ResNet-18 [19] 42.4 17.1
TSA ResNet-18 51.5 22.1

illustration. TABLE II shows that TSA outperforms I3D when
both trained from scratch. The performance improvements
demonstrate the effectiveness of TSA and the possibility of
applying it to our PD dataset.

B. Benefit from Transfer Learning

We utilize three datasets: Kinetics-400 [25], UCF-101 [41]
and HMDB-51 [27] to pre-train our models considering their
large sizes, high quality and popularity. Then, we fine-tune
the pre-trained models on our PD dataset. Since our dataset
contains periodic and subtle motions while public datasets
have easily distinguishable motions, the relatedness between
our dataset and public datasets is not tight. As such, the
parameters from the convolutional stem may not be optimal
after transferring to our dataset. Thus all layers of the model
rather than part of them are fine-tuned.

I3D and task finger and hand are used to demonstrate the
function of transfer learning. Convergence is confirmed for
every compared setting for a fair comparison. Note that for
task-level classification we have binary classes. In TABLE III,
I3D trained from scratch, I3D pre-trained from UCF-101, and

I3D pre-trained from Kinetics-400 are compared based on the
binary accuracy, precision, recall, and mean f1-score. Here the
mean f1-score is formed as:

2

C

CX

i=1

precisioni ⇥ recalli
precisioni + recalli

, (15)

where C is the number of classes. In general, I3D pre-trained
from the two datasets outperform I3D (scratch), demonstrating
that I3D can benefit from non-medical datasets with transfer
learning. Moreover, the performance improvement of I3D
(Kinetics-400) from I3D (scratch) is more notable than I3D
(UCF-101) especially on task hand, which indicates the model
would benefit more from a larger dataset with transfer learning.

C. Task-level Severity Classification

Building a model good at predicting the task severity score
is our first concern and affects the later experiments and
research. Two architectures - I3D and our TSA are compared
in TABLE V on seven tasks from MDS-UPDRS-III. The class
distribution can be found on TABLE IV. Note that we replace
convolutional layers in 3D ResNet-34 layer3 and layer4 with
temporal relative self-attention block to construct our TSA
network. The dataset in the brackets denotes on which the
model is pre-trained. We show precision and recall along with
mean f1-score because the mean f1-score as the only indicator
can be insufficient in some cases. For instance, when either
precision or recall is too low, and the other is sufficiently high,
we can not conclude that this result is satisfactory by only
focusing on the moderate mean f1-score averaged on the two
extreme values. In general, the mean f1-score is used as the

8

TABLE III: Accuracy, precisons, recall and f1-score on two
tasks from MDS-UPDRS-III using I3D with and without
transfer learning. I3D using transfer learning achieves better
results than I3D trained from scratch on both finger and hand
tasks. Moreover, transfer learning with a larger dataset (i.e.,
Kinetics-400) has more benefits to the model.

Method Metric finger hand

I3D (scratch)

acc 65.4 65.6

precision, recall 0.60, 0.70 0.69, 0.61

f1 0.65 0.65

I3D (UCF-101)

acc 68.6 70.0

precision, recall 0.55, 0.76 0.76, 0.61

f1 0.66 0.68

I3D (Kinetics-400)

acc 69.2 77.5

precision, recall 0.57, 0.76 0.80, 0.75

f1 0.67 0.77

TABLE IV: Class distribution of seven tasks in our Parkinson’s
dataset. In general, the class imbalance in task finger, hand,
pronation and toe is acceptable. In remaining tasks, the class
imbalance issue is severe.

Task Class 0 Class 1

finger 66 91
hand 89 71
kinetic 130 38
leg 145 39
postural 62 23
pronation 104 72
toe 87 71

indicator when both precision and recall are reasonably good,
otherwise considering inspecting precision and recall.

1) Task-level Performance: TABLE VI extracts the best
mean f1-score of all seven tasks from TABLE V regardless
of the methods used and Fig. 5 shows the receiver operating
characteristic (ROC) curve for each task accordingly. Three
out of seven tasks have a mean f1-score higher than 0.7 and
close to 0.8, and only one task leg is under 0.6. The average
mean f1-score across all seven tasks is 0.71, sufficiently good
for classification on a medical dataset. It demonstrates that
deep architectures can predict the task (i.e., task from MDS-
UPDRS) severity of a patient with decent accuracy given the
video from that task.

In particular, task finger, hand and pronation are the top-3
well-classified task in terms of mean f1-score and ROC curves
in Fig. 5a, 5b and 5f, because 1) most of the videos are zoomed
in to focus on the objects, making it easier for the model
to look at the relevant patterns and 2) the class imbalance
problem is slight compared to task kinetic, leg and postural.
The difficulty and label noise of tasks can also contribute
to the phenomenon but no argument can be made without
confirmation from experts. On the opposite, task leg has the
lowest mean f1-score, and the ROC curve in Fig. 5d does not
bulge towards the top-left corner of the figure, indicating a
corrupt model for task leg. After inspecting TABLE V, we

can observe quite low recalls of 0.17 and 0.14 using I3Ds and
an inadequate recall of 0.35 using TSA.

The performance discrepancy between tasks exposes some
disadvantages of our architectures. First, the ratio of objects,
e.g., hand in task hand movements and toe in task toe tapping,
occupying the bounding box of the video matters. In task finger
tapping, hand movements and pronation, the zoom-function is
occasionally used to focus on the objects, and most of the
videos are zoomed in during the pre-processing stage, which
gives the architectures cleaner and more easy-to-identify input
data. Second, the effects of the class imbalance problem on
the architectures cannot be ignored. Due to the PD dataset
is a periodic- and subtle-motion dataset, which is different
from public datasets. Identifying task severity is harder than
classifying different human actions. In such a case, the extreme
class imbalance can corrupt the architectures’ behavior even
if the class-balanced loss [8] is adopted. However, the class
imbalance is everywhere in real-world settings or at least in
Parkinson’s disease. As such, we leave solving class imbalance
on the PD dataset as one of the future work.

2) Model Comparison: In TABLE V, we see that in terms of
the mean f1-score, TSA (UCF-101) outperforms I3D (UCF-
101) on six tasks with a significant margin. Besides, the
average mean f1-score of the former is also better than the
later without any doubt. Since the only difference between
the two is the backbone used, we can conclude that our TSA
performs better than I3D on the PD dataset.

Also, compared to I3D (Kinetics-400), TSA (UCF-101)
still has 1.5% improvements even if pre-trained from a much
smaller and less complex dataset. It demonstrates that TSA
is better at dealing with the large discrepancy of motion
difference between non-medical datasets and our PD dataset.
So we think TSA pretrained from Kinetics-400 would further
improve the performance. Due to the limit of time and
computation resource, we leave it as the futher work.

Regarding the time cost of the temporal relative self-
attention, it is completely acceptable as the network can still
run with a bit more time cost. However, the memory cost can
be problematic if the network is too deep due to the hardware
memory limitation. As such, we give some useful solutions in
terms of the algorithm itself:

1) only replace convolutional layers with small temporal
size (usually the last few),

2) reduce dk and
3) use large kernel size or stride on the temporal dimension

at the first few layers to quickly decrease the temporal
size to the one you want and use kernel size of 1 at fol-
lowing layers to maintain the temporal size unchanged
until the last layer.

Another issue of TSA is that a large learning rate is possible
to cause the exploding gradients problem, which can be
overcome by applying approaches such as the ReLU activation
function and pre-training.

D. Patient-level Severity Classification

We use the trained model on each task as the feature
extractor to extract the learned patterns and apply the proposed

YIN: ASSESSMENT OF PARKINSON’S DISEASE SEVERITY FROM VIDEOS USING DEEP ARCHITECTURES 9

TABLE V: Accuracy, precision, recall, and f1-score on seven tasks from MDS-UPDRS-III using I3D and TSA. Datasets in the
brackets denote where the model is trained. In general, I3D pre-trained from Kinetics-400 outperforms I3D trained from UCF-
101, indicating transfer learning with larger datasets has more benefits than smaller datasets. TSA pre-trained from UCF-101
is already comparable to I3D pre-trained Kinetics-400, even using transfer learning with a smaller dataset.

Task I3D (UCF-101) I3D (Kinetics-400) TSA (UCF-101)

acc precision recall f1 acc precision recall f1 acc precision recall f1

finger 68.6 0.55 0.76 0.65 69.2 0.57 0.76 0.67 78.2 0.75 0.81 0.78
hand 70.0 0.76 0.61 0.68 77.5 0.80 0.75 0.77 75.6 0.79 0.72 0.75
kinetic 78.0 0.87 0.10 0.49 73.8 0.82 0.49 0.66 79.2 0.87 0.51 0.69
leg 79.3 0.88 0.17 0.53 79.3 0.88 0.14 0.51 70.1 0.81 0.35 0.58
postural 74.1 0.85 0.08 0.47 77.6 0.87 0.34 0.61 70.6 0.78 0.56 0.67
pronation 68.8 0.76 0.56 0.66 77.8 0.87 0.71 0.77 72.2 0.76 0.67 0.71
toe 64.6 0.72 0.52 0.62 67.7 0.70 0.65 0.68 62.0 0.68 0.53 0.61
average - - - 0.59±0.09 - - - - 0.67±0.09 - - - - 0.68±0.07

(a) finger tapping (b) hand movements (c) kinetic tremor (d) leg agility

(e) postural tremor (f) pronation (g) toe tapping

Fig. 5: ROC curves for seven tasks from MDS-UPDRS-III. The ROCs on task finger, hand, pronation and toe are well shaped,
indicating that models on these tasks performs well. The remaining ROCs are close to the diagonals, which means the models’
performance is not good.

four task-assembling methods to incorporate tasks to produce a
single concluding severity score for a patient. The patient-level
severity is split into three classes by cut-off: slight 2 [0, 23],
moderate 2 (23, 40] and severe 2 (40,�] with equal number
of patients. The detailed clinical information for each class can
be found in TABLE VII. Experiments are repeated 20 times
to ensure validity.

1) Single-Task Baseline: To demonstrate the effectiveness
of task-assembling methods, we first do patient-level severity
classification using only one single task as the baseline. The
result is shown in TABLE VIII. The performance rank using
each task has a relative position similar to the one in task-level
severity classification shown in TABLE VI. The best mean f1-
score is 0.60 using single task hand, which is served as the
baseline to compare with assembling methods.

2) Benefit from Task-assembling methods: Four task-
assembling methods incorporate seven tasks used in task-
level severity classification. From TABLE IX, we see that all
task-assembling methods, including the most straightforward
averaging strategy, outperforms the single-task baseline. The
best method is the pixel-wise self-attention based weighting in
terms of the accuracy and mean f1-score, with an improvement
of 4.9% from the baseline. These results demonstrate that
patient-level severity classification benefits from all tasks com-
bined compared to based on a single task, which is intuitive
since it is also hard for experts to diagnose a patient by
inspecting just one task.

Comparing all four methods, we see the weighting strategy
is better than just simple averaging, indicating that each
task contributes unequally to the patient-level severity. More-

10

TABLE VI: The best mean f1-score on seven tasks from MDS-
UPDR-III regardless of the architecture used. The rank tells us
the top-3 well performed tasks are finger, hand and pronation.

Task f1 Rank

finger 0.78 1
hand 0.77 2
kinetic 0.69 4
leg 0.58 7
postural 0.67 6
pronation 0.77 2
toe 0.68 5
average 0.71 -

Fig. 6: Weights for seven tasks learned by vector weighting
method. The weights of task finger and hand are higher than
the average, which means in the task-assembling approach,
i.e., vector weighting, they contribute more than other tasks in
the prediction of the patient-level severity.

over, the attention-based weighting slightly outperforms the
learnable vector-based weighting. It is because 1) layer4 has
more feature points, potentially more representable for a task
than avgpool, and 2) attention-based weighting gives more
flexibility to the weights such that patients can have task
weights exclusively learned based on their condition.

We show the weights learned in the vector weighting
method in Fig. 6 to give a general feeling of which task
may contribute less or more to the prediction of patient-level
severity. Weights are averaged across 20 runs on each fold,
a total of 100 runs. As the two attention-based weighting
methods assign task weights for patients exclusively, it is not
intuitive to see the overall weight distribution on tasks. In Fig.
6, we see the top-2 tasks with highest weights are hand and
finger, which well matches the performance rank in TABLE
VIII. The rest tasks remain the similar position as in TABLE
VIII except that task kinetic drops to the lowest rank. We
suspect the reason being the effect of severe class imbalance
problem of task kinetic.

3) Distinguishing between slight and severe classes: We
remove the class moderate with the remaining classes un-
touched to focus on the classification between slight and
severe classes. The result of the best single task baseline and
assembling methods are shown in TABLE X. By combining
seven tasks, we gain 0.3%-3.1% performance improvements
compared to using a single task. At best, we can achieve
an mean f1-score of 0.83 on distinguishing between slight

and severe classes. Moreover, the attention-based weighting
methods still outperform the vector-based ones, matching the
case in TABLE IX.

In general, attention-based weighting strategy is the first
choice to assemble the tasks, but the vector-based one is
also applicable, given its higher time efficiency. It is also
worthwhile to exclude some tasks to see the ablation effects
on patient-level performance. As the main focus of this paper
is to show the potential of combining tasks, we leave it as
future work.

In Section V-D.2 and V-D.3, we empirically show the
possibility that a multi-task algorithm based on an incom-
plete video-overview (i.e. not all MDS-UPDRS-III items are
included) can help discriminate between groups of disease
severity in both slight-moderate-severe and slight-severe cases
with acceptable mean f1-scores, 0.63 for the former case
and 0.83 for the latter case. Besides, the performance of
single task and weights visualization demonstrates the tests
of bradykinesia hands among all videotaped items are best
reflective of the total MDS-UPDRS-III.

VI. CONCLUSION

In this paper, we successfully apply deep architectures on
the PD video dataset to automatically identify the task-level
severity, i.e., item scores in MDS-UPDRS-III given the video
of the task, with satisfactory performance in terms of both
accuracy and mean f1-score. Due to the small size of our
PD dataset, we employ transfer learning from non-medical
datasets to improve the performance of the model.

On the aspect of algorithm, we propose a new method,
namely TSA, for action recognition problem and validate it
on two commonly used public datasets and our Parkinson’s
dataset. The promising results compared to I3D demonstrate
the effectiveness of TSA and better ability of handling motion
discrepancy between non-medical datasets and our PD dataset
during transfer learning. TSA is highly flexible which can
be embedded in any 3D network for action recognition by
replacing the CNN layer with the temporal relative self-
attention block.

We propose four task-assembling methods to incorporate
tasks to identify the patient-level severity by using the models
trained on each task. Compared to using only a single task,
tasks combined can produce a better performance under both
two classification scenarios: slight-moderate-severe and slight-
severe. It is clinically interesting that through analysis of
multiple tasks, we can give a summarized severity score, which
can assist in the manual rating of Parkinson’s disease with
reasonably good accuracy and mean f1 score.

REFERENCES

[1] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia,
and Atilla Baskurt. Sequential deep learning for human action recog-
nition. In International workshop on human behavior understanding,
pages 29–39. Springer, 2011.

[2] EA Belalcazar-Bolanos, JD Arias-Londono, JF Vargas-Bonilla, and
JR Orozco-Arroyave. Nonlinear glottal flow features in parkinson’s
disease detection. In 2015 20th Symposium on Signal Processing, Images
and Computer Vision (STSIVA), pages 1–6. IEEE, 2015.

YIN: ASSESSMENT OF PARKINSON’S DISEASE SEVERITY FROM VIDEOS USING DEEP ARCHITECTURES 11

TABLE VII: Clinical information for three classes in patient-level classification. Note that each patient is videotaped two or
three times, and the severity score of each time may fall into different classes. For simplicity, L-OFF, L-ON, A, B, and C denote
Levodopa challenge test OFF, Levodopa challenge test ON, Med-OFF-Stim-ON, Med-OFF-Stim-OFF, and Med-ON-Stim-ON.
Each class has an approximately equal number of patients and videos, i.e., no severe class imbalance issue.

Class Score Number of patients Age Disease duration (year) Male/Female Number of videos

all L-OFF L-ON A B C

0 15±4 32 61±8 11±4 22/10 351 0 130 66 0 155
1 32±5 32 65±9 12±5 28/4 374 62 36 145 65 66
2 53±8 31 64±8 11±5 21/10 357 152 21 12 172 0
total 33±16 39 63±8 11±5 28/11 1082 214 187 223 237 221

TABLE VIII: Single task baseline for patient-level severity
classification (three classes). Rank is calculated based on
the average mean f1-score from two inputs. The top-3 well-
performed tasks used for patient-level classification are task
hand, finger and kinetic. Task hand achieves a mean f1 score
of 0.6, which is used as the best single-task baseline.

Task Input Accuracy f1 Rank

finger avgpool 60.3±2.8 0.58±0.05 2layer4 60.7±3.2 0.60±0.04

hand avgpool 61.5±2.8 0.60±0.04 1layer4 60.7±3.1 0.60±0.03

kinetic avgpool 59.7±2.7 0.58±0.04 2layer4 60.5±3.4 0.60±0.04

leg avgpool 50.6±2.7 0.45±0.05 6layer4 60.0±3.7 0.59±0.04

postural avgpool 54.9±2.5 0.48±0.05 5layer4 60.8±3.5 0.60±0.04

pronation avgpool 59.3±3.2 0.56±0.05 4layer4 61.3±3.4 0.60±0.04

toe avgpool 51.3±2.8 0.46±0.06 6layer4 60.6±3.9 0.59±0.04

TABLE IX: Patient-level severity classification (three classes)
using single task and task-assembling approaches (seven
tasks). The four task-assembling methods outperform the
single-task baseline with the channel-wise and pixel-wise
attention weighting being the best methods.

Method Input Accuracy f1

single task baseline avgpool 61.5±2.8 0.60±0.04

vector averaging avgpool 62.7±2.4 0.60±0.04
vector weighting avgpool 64.1±2.4 0.63±0.05
channel-wise attention weighting layer4 64.5±3.1 0.63±0.04
pixel-wise attention weighting layer4 64.5±2.8 0.63±0.03

TABLE X: Patient-level severity classification (two classes
with class moderate removed) using single task and task-
assembling approaches (seven tasks). The four task-assembling
methods outperform the single-task baseline with the pixel-
wise attention weighting being the best method.

Method Accuracy f1

single task baseline 81.1±2.2 0.80±0.04

vector averaging 81.4±1.7 0.80±0.03
vector weighting 81.9±2.1 0.81±0.04
channel-wise attention weighting 82.2±3.1 0.82±0.05
pixel-wise attention weighting 83.6±1.2 0.83±0.02

[3] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V
Le. Attention augmented convolutional networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages 3286–3295,
2019.

[4] Noopur A Bhalchandra, R Prashanth, Sumantra Dutta Roy, and Santosh
Noronha. Early detection of parkinson’s disease through shape based
features from 123 i-ioflupane spect imaging. In 2015 IEEE 12th
International Symposium on Biomedical Imaging (ISBI), pages 963–966.
IEEE, 2015.

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6299–
6308, 2017.

[6] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Linear
algorithms for online multitask classification. The Journal of Machine
Learning Research, 11:2901–2934, 2010.

[7] Kelvin L Chou, Jennifer L Taylor, and Parag G Patil. The mds- updrs
tracks motor and non-motor improvement due to subthalamic nucleus
deep brain stimulation in parkinson disease. Parkinsonism & related
disorders, 19(11):966–969, 2013.

[8] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie.
Class-balanced loss based on effective number of samples. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9268–9277, 2019.

[9] Ross Cutler and Larry S. Davis. Robust real-time periodic motion
detection, analysis, and applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):781–796, 2000.

[10] Abe Davis, Katherine L Bouman, Justin G Chen, Michael Rubinstein,
Fredo Durand, and William T Freeman. Visual vibrometry: Estimating
material properties from small motion in video. In Proceedings of the
ieee conference on computer vision and pattern recognition, pages 5335–
5343, 2015.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[12] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell.
Long-term recurrent convolutional networks for visual recognition and
description. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2625–2634, 2015.

[13] Mark Dredze and Koby Crammer. Online methods for multi-domain
learning and adaptation. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, pages 689–697,
2008.

[14] Peter Drotár, Jiřı́ Mekyska, Irena Rektorová, Lucia Masarová, Zdeněk
Smékal, and Marcos Faundez-Zanuy. Evaluation of handwriting kine-
matics and pressure for differential diagnosis of parkinson’s disease.
Artificial intelligence in Medicine, 67:39–46, 2016.

[15] Luc JW Evers, Jesse H Krijthe, Marjan J Meinders, Bastiaan R Bloem,
and Tom M Heskes. Measuring parkinson’s disease over time: The real-
world within-subject reliability of the mds-updrs. Movement Disorders,
34(10):1480–1487, 2019.

[16] SRLE Fahn. Unified parkinson’s disease rating scale. Recent develop-
ment in Parkinson’s disease, 1987.

[17] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convo-
lutional two-stream network fusion for video action recognition. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1933–1941, 2016.

[18] Christopher G Goetz, Barbara C Tilley, Stephanie R Shaftman, Glenn T

12

Stebbins, Stanley Fahn, Pablo Martinez-Martin, Werner Poewe, Cristina
Sampaio, Matthew B Stern, Richard Dodel, et al. Movement disorder
society-sponsored revision of the unified parkinson’s disease rating
scale (mds-updrs): scale presentation and clinimetric testing results.
Movement disorders: official journal of the Movement Disorder Society,
23(15):2129–2170, 2008.

[19] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal
3d cnns retrace the history of 2d cnns and imagenet? In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
pages 6546–6555, 2018.

[20] CJ Hartmann, L Wojtecki, J Vesper, J Volkmann, SJ Groiss, A Schnitzler,
and M Südmeyer. Long-term evaluation of impedance levels and clinical
development in subthalamic deep brain stimulation for parkinson’s
disease. Parkinsonism & related disorders, 21(10):1247–1250, 2015.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7132–7141, 2018.

[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[24] Mahesh Joshi, Mark Dredze, William Cohen, and Carolyn Rose. Multi-
domain learning: when do domains matter? In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 1302–1312,
2012.

[25] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back,
Paul Natsev, et al. The kinetics human action video dataset. arXiv
preprint arXiv:1705.06950, 2017.

[26] Julian FP Kooij and Jan C van Gemert. Depth-aware motion magnifi-
cation. In European Conference on Computer Vision, pages 467–482.
Springer, 2016.

[27] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote, Tomaso Poggio,
and Thomas Serre. Hmdb: a large video database for human motion
recognition. In 2011 International Conference on Computer Vision,
pages 2556–2563. IEEE, 2011.

[28] Franziska Maier, Catharine J Lewis, Nina Horstkoetter, Carsten Eg-
gers, Till A Dembek, Veerle Visser-Vandewalle, Jens Kuhn, Mateusz
Zurowski, Elena Moro, Christiane Woopen, et al. Subjective perceived
outcome of subthalamic deep brain stimulation in parkinson’s disease
one year after surgery. Parkinsonism & related disorders, 24:41–47,
2016.

[29] Franziska Maier, Catharine J Lewis, Nina Horstkoetter, Carsten Eggers,
Elke Kalbe, Mohammad Maarouf, Jens Kuhn, Mateusz Zurowski, Elena
Moro, Christiane Woopen, et al. Patients’ expectations of deep brain
stimulation, and subjective perceived outcome related to clinical mea-
sures in parkinson’s disease: a mixed-method approach. Journal of
Neurology, Neurosurgery & Psychiatry, 84(11):1273–1281, 2013.

[30] Attila Makkos, Márton Kovács, Zsuzsanna Aschermann, Márk Harmat,
József Janszky, Kázmér Karádi, and Norbert Kovács. Are the mds-
updrs–based composite scores clinically applicable? Movement Disor-
ders, 33(5):835–839, 2018.

[31] Pablo Martinez-Martin, Carmen Rodriguez-Blazquez, Mario Alvarez-
Sanchez, Tomoko Arakaki, Alberto Bergareche-Yarza, Anabel Chade,
Nelida Garretto, Oscar Gershanik, Monica M Kurtis, Juan Carlos
Martinez-Castrillo, et al. Expanded and independent validation of
the movement disorder society–unified parkinson’s disease rating scale
(mds-updrs). Journal of neurology, 260(1):228–236, 2013.

[32] Marcelo Merello, Eliana Roldan Gerschcovich, Diego Ballesteros, and
Daniel Cerquetti. Correlation between the movement disorders society
unified parkinson’s disease rating scale (mds-updrs) and the unified
parkinson’s disease rating scale (updrs) during l-dopa acute challenge.
Parkinsonism & Related Disorders, 17(9):705–707, 2011.

[33] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In ICML, 2010.

[34] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and
transferring mid-level image representations using convolutional neural
networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1717–1724, 2014.

[35] Silvia L Pintea, Jian Zheng, Xilin Li, Paulina JM Bank, Jacobus J van
Hilten, and Jan C van Gemert. Hand-tremor frequency estimation in
videos. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 0–0, 2018.

[36] Ramprasad Polana and Randal C Nelson. Detection and recognition of

periodic, nonrigid motion. International Journal of Computer Vision,
23(3):261–282, 1997.

[37] Michalis Raptis and Leonid Sigal. Poselet key-framing: A model for
human activity recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2650–2657, 2013.

[38] Gerard Saranza and Anthony E Lang. Levodopa challenge test: indica-
tions, protocol, and guide. Journal of neurology, 2020.

[39] Scott Satkin and Martial Hebert. Modeling the temporal extent of
actions. In European conference on computer vision, pages 536–548.
Springer, 2010.

[40] Sebastian Schade, Friederike Sixel-Döring, Jens Ebentheuer, Xenia
Schulz, Claudia Trenkwalder, and Brit Mollenhauer. Acute levodopa
challenge test in patients with de novo parkinson’s disease: data from
the denopa cohort. Movement disorders clinical practice, 4(5):755–762,
2017.

[41] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A
dataset of 101 human actions classes from videos in the wild. arXiv
preprint arXiv:1212.0402, 2012.

[42] David G Standaert, Marie H Saint-Hilaire, and Cathi A Thomas. Parkin-
son’s Disease Handbook. American Parksinon Disease Association, New
York, USA, 2015.

[43] Renfei Sun, Zhiyong Wang, Kaylena Ehgoetz Martens, and Simon
Lewis. Convolutional 3d attention network for video based freezing
of gait recognition. In 2018 Digital Image Computing: Techniques and
Applications (DICTA), pages 1–7. IEEE, 2018.

[44] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
International conference on machine learning, pages 1139–1147, 2013.

[45] Sigurlaug Sveinbjornsdottir. The clinical symptoms of parkinson’s
disease. Journal of neurochemistry, 139:318–324, 2016.

[46] Chusak Thanawattano, Chanawat Anan, Ronachai Pongthornseri, Song-
phon Dumnin, and Roongroj Bhidayasiri. Temporal fluctuation analysis
of tremor signal in parkinson’s disease and essential tremor subjects. In
2015 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 6054–6057. IEEE, 2015.

[47] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. Learning spatiotemporal features with 3d convolutional
networks. In Proceedings of the IEEE international conference on
computer vision, pages 4489–4497, 2015.

[48] Travis H Turner and Marian L Dale. Inconsistent movement disorders
society–unified parkinson’s disease rating scale part iii ratings in the
parkinson’s progression marker initiative. Movement Disorders, 2020.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[50] Neal Wadhwa, Michael Rubinstein, Frédo Durand, and William T
Freeman. Phase-based video motion processing. ACM Transactions
on Graphics (TOG), 32(4):1–10, 2013.

[51] Ferdous Wahid, Rezaul K Begg, Chris J Hass, Saman Halgamuge,
and David C Ackland. Classification of parkinson’s disease gait using
spatial-temporal gait features. IEEE journal of biomedical and health
informatics, 19(6):1794–1802, 2015.

[52] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-
local neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7794–7803, 2018.

[53] Jeremy West, Dan Ventura, and Sean Warnick. Spring research presen-
tation: A theoretical foundation for inductive transfer. Brigham Young
University, College of Physical and Mathematical Sciences, 1(08), 2007.

[54] David C Wong, Samuel D Relton, Hui Fang, Rami Qhawaji, Christo-
pher D Graham, Jane Alty, and Stefan Williams. Supervised classifica-
tion of bradykinesia for parkinson’s disease diagnosis from smartphone
videos. In 2019 IEEE 32nd International Symposium on Computer-
Based Medical Systems (CBMS), pages 32–37. IEEE, 2019.

[55] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai
Chen, Mohammad Norouzi, and Quoc V Le. Qanet: Combining local
convolution with global self-attention for reading comprehension. arXiv
preprint arXiv:1804.09541, 2018.

2
INTRODUCTION

Parkinson’s disease (PD) is mainly diagnosed, in typical cases, based on symptoms (with
tests like neuroimaging), which can be recognized by human experts. Recently, the usage
of sensor devices attached to the patients and machine/deep learning based methods
arise to help automatically detect the symptom and its severity [2, 9, 16] as an objective
assistant to the human experts. These machine learning methods try to detect the dis-
tinctive features typically from four kinds of data: signal dynamics (e.g, handwriting [27]
and motor data from wearable device [28]), vocal data [4], images (e.g, magnetic reso-
nance images [33]) and videos (e.g, clinical videos of freezing of gait [31]). In this study,
we focus on automatic PD severity classification from videos using deep learning.

2.1. MOTIVATION

A MONG the data types used in machine learning approaches, video is not yet fully ex-
plored to show the potential for PD diagnosis. Besides, most methods based on clini-

cal videos extract hand-crafted features from videos as the input data rather than directly
utilizing the videos as the input and thus problem dependent and time-consuming. We
wonder if it is possible to do PD severity classification using the videos as the input data.
In [31], researchers show the possibility of PD classification from the freezing of gait
videos using 3D CNN, which gives us the confidence to explore this task further. Only
one type of clinical task is used in [31], and one task is usually not sufficient for an accu-
rate diagnosis for patients. Therefore, we are still curious if videos from other tasks (such
as the tasks in MDS-UPDRS-III) can also be used as the input for PD severity classifica-
tion with acceptable accuracy.

2.2. RESEARCH QUESTIONS

T HE first research question is:

• Can we perform automatic PD severity classification from videos of multiple tasks
in MDS-UPDRS-III using deep architectures?

17

2

18 2. INTRODUCTION

As the size of the clinical dataset we use is small, it is hard to train the network on the
dataset from scratch efficiently. Thus we try to use transfer learning to pre-train the net-
work on large public datasets to overcome this issue. Then the second research question
can be:

• Can the network benefit from public video datasets using transfer learning?

Comparing public video datasets with the clinical dataset, we can observe that there
are substantial motion differences among classes in public datasets. In the clinical dataset,
however, the motion difference is too subtle to be recognized by inexperienced severity
raters. This discrepancy between source and target dataset can reduce the positive ef-
fect of transfer learning and increase its difficulty to be applied. So the third research
question can be:

• How to overcome the issue that brings by the large discrepancy between source
and target domain during transfer learning?

Here, the PD severity classification is only performed on multiple tasks separately
from each patient, and thus each patient has separate severity for each task. However, it
is more clinically interesting to produce a summary of the patient’s severity rather than
multiple ones. So we form the forth as well as the final research question as:

• How to combine the trained model on different tasks to produce a final summary
severity score for the patient?

3
BACKGROUND ON DEEP LEARNING

Deep learning is a class of machine learning methods based on artificial neural networks
with representation learning. It allows complex computational models to learn and rep-
resent the data with multiple levels of abstraction. Different from conventional machine
learning techniques, deep learning has the advantage that there is no longer the need to
carefully design a feature extractor to transform raw data to feature representation based
on which a classification model can make predictions. Therefore, deep learning can be
a powerful and flexible tool for dealing with problems or data from which informative
features cannot be extracted quickly and easily.

In computer vision, deep learning has facilitated solving various problems, such as
object detection, motion tracking, action recognition, and human pose estimation se-
mantic segmentation [14, 17, 19, 29, 32]. All these tasks are solved with representation-
learning methods, mostly based on Convolutional Neural Networks (CNNs) inspired by
the visual system’s structure. It is the combination of CNNs and deep learning that accel-
erates the improvement of tackling computer vision tasks. In this chapter, we introduce
the basic idea of CNNs and parts of our proposed network.

3.1. CONVOLUTIONAL NEURAL NETWORKS

T HE key idea of CNNs is to replace matrix multiplication in neural nets with con-
volution and leave everything else untouched such as maximum likelihood, back-

propagation. CNN assumes the input is laid out on a grid (1-D, 2-D, 3-D). Mostly, a CNN
comprises three main types of neural layers, i.e., convolutional layers, non-linearity Lay-
ers, and pooling layers, with each layer having a specific function that transforms input
to output with or without learnable parameters. A demonstration of the overall structure
is shown in Figure 3.1. We explain each component in the following sections.

3.1.1. CONVOLUTIONAL LAYER
In CNNs, the convolutional layer is the core building block that takes up most of the
computations, and its task is to detect local patterns from the previous layer and map

19

3

20 3. BACKGROUND ON DEEP LEARNING

Figure 3.1: CNN components [12] including convolutional layer, non-linearity layer and pooling layer.

the patterns to a feature map.
A convolutional layer contains a set of learnable filters of size width (W) £ height (H)

£ depth (D) (2-D convolution) and each filter connects to only a local region of the input
volume. The convolution is operated between the filter and the input connected to that
filter. An illustration of the convolutional layer is shown in Figure 3.2. Each filter has
the same depth as the input volume, and the number of filters applied equals the depth
of the output volume. The output volume is computed by element-wise multiplying
the input volume with each filter and summing up the results from all filters, with bias
offset. Formally, the process of calculating each element of the output volume can be
formulated as

X (l)
i = b(l)

i +
D(l°1)X

j=1

K (l)
i , j §X (l°1)

j , (3.1)

where X (l)
i is the i th feature map of output (W (l)£H (l)£D (l)) of layer l ; K (l)

i , j is the filter of

size FW £FH connecting the j th feature map in layer l °1 with i th feature map in layer
l , and b(l)

i is the bias matrix.
As each filter connects to only a local region of the previous layer’s neuron, which

leads to a sparse connection, the number of parameters in convolution can be vastly re-
duced compared to dense connection. The comparison between sparse and dense con-

3.1. CONVOLUTIONAL NEURAL NETWORKS

3

21

Figure 3.2: Illustration of convolution with each depth slice of input volumes, filters and output volumes vi-
sualized in row stack [18]. Element-wise multiplication is performed between input regions and filters. The
target value in output volume is the summation of multiplication’s outputs. The number of filters used decides
how many channels in the output layer.

nection is shown in Figure 3.3. Besides, the parameters of each filter are shared across
all spatial locations. These two properties make it possible to scale up neural networks
to process large images or video sequences.

3.1.2. NON-LINEARITY LAYER

The neural network (NNs) can be seen as a complex function mapping input to output
with tolerable accuracy. However, without non-linearity, the complex NN is only able to
learn a function similar to the linear model, even keeping adding layers to the network,
not to say learning patterns automatically from complex inputs. To make the NNs/CNNs
capable of learning complex structures, we need to add non-linearity function to the
network, called non-linear activation function in the non-linearity layer.

The activation function takes the feature map generated by the convolutional layer
and performs activation operation on the feature map to output the activation map. As
the activation function applies element-wise operation on the feature map, the shape
of the activation function’s input and output is the same. The operation of activation

3

22 3. BACKGROUND ON DEEP LEARNING

Figure 3.3: Comparison between sparse and dense connection [12]. In the upper figure, neurons are only
connected to its neighbors, which is the sparse connection. In the lower figure, neurons are connected to
every other neuron, which is the dense connection.

function can be formulated as

X (l) =æ(X (l°1)), (3.2)

with

X (l) 2RW (l)£H (l)£D(l)
,

X (l°1) 2RW (l°1)£H (l°1)£D(l°1)
,

W (l) =W (l°1), H (l) = H (l°1),D (l) = D (l°1),

(3.3)

where æ is the activation function.
There are four commonly used non-linear activation functions: 1) tanh

x(l) = tanh(x(l°1)), (3.4)

2) sigmoid

x(l) = ex(l°1)

1+ex(l°1)
, (3.5)

3) ReLU [24]

x(l) = max(0, x(l°1)) (3.6)

and 4) Leaky ReLU

x(l) =
(

0.01x(l°1) if x(l°1) < 0

x(l°1) otherwise,
(3.7)

where x denotes a single element of X . The most commonly used activation function
in the neural network is ReLU because of its reduced likelihood of vanishing gradient,
increased probability of resulting sparse representation, and computational efficiency.

3.1. CONVOLUTIONAL NEURAL NETWORKS

3

23

Figure 3.4: The max pooling provides approximately translation invariance [12]. Compared to the top subfig-
ure, the inputs of the bottom one are shifted one pixel right. However, the outputs of the pooling layer do not
change much because max pooling is only sensitive to the maximum value in the window region instead of its
absolute position.

3.1.3. POOLING LAYER
The pooling layer is usually applied after multiple stages of convolutional layers or ac-
tivation layers to reduce the spatial size of the feature map or activation map as well as
minimizing the likelihood of overfitting.

The pooling layer has only two parameters, the spatial extent F (l) and stride S(l). It
takes the input volume of size W (l°1) £ H (l°1) £D (l°1) and generates output volume of
size W (l) £H (l) £D (l) where

W (l) = (W (l°1) °F (l))

S(l)
+1,

H (l) = (H (l°1) °F (l))

S(l)
+1,

D (l) =D (l°1).

(3.8)

The pooling layer’s key idea is to ensure approximate translation invariance in vision
tasks where it is more important to detect the patterns instead of locating the patterns.
See Figure 3.4 for the illustration of translation invariance. The pooling layer manages to
keep the most prominent patterns or features detected from previous layers in a smaller
representation by discarding less prominent ones with the loss of spatial resolution.

The most commonly used pooling methods are max pooling and average pooling.
The former finds the max value in the pooling window while the latter finds the average
value. Because of faster convergence and better performance, max pooling is mostly
used in state of the art deep architectures.

3

24 3. BACKGROUND ON DEEP LEARNING

Figure 3.5: ResNet blocks [14]. Left one is the basic block and right one is the bottleneck block. The basic block
has two convolutional layers with 3 by 3 filters. The bottleneck block has one convolutional layer with 3 by 3
filter and two convolutional layers with 3 by 3 filters.

3.2. RESNET

R ESNET [14] is a class of CNNs which significantly improved the performance on im-
age classification and object detection tasks. ResNet manages to learn residuals

from the layer inputs and is demonstrated to be easier to optimize, making it possible to
train substantially deep neural networks. In [14], five variants of ResNet are introduced:
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152, with the number indi-
cating how many layers adopted in the networks. The core building blocks for ResNet
are the basic block for ResNet-18/34, and bottleneck block for ResNet-50/101/152. The
two blocks are shown in Figure 3.5.

3.3. SELF-ATTENTION

S ELF-ATTENTION is a class of attention mechanism, and it can capture the interactions
within the sequence of inputs. Like attention, self-attention can also assign different

importance to the inputs, allowing the network to learn which part of the inputs should
be focused more. Self-attention is heavily explored since the Transformer network [37]
was proposed for machine translation tasks where the self-attention is used to compute
the interactions between words in the sentence.

In image tasks, self-attention is usually used to compute the interactions among pix-
els in the same image and allows the model to learn which part of the image is of more
importance [3]. In video tasks, we can use self-attention to learn the long-range interac-
tions among voxels in the same video [38] though [38] denotes the self-attention as the
non-local block. As a video contains both spatial and temporal dimensions and its size is
usually much larger than a single image, directly computing interactions among all vox-
els is both time and memory inefficient. Thus in this work, we use self-attention solely
on the temporal dimension to capture the interactions through time and leave CNN to
learn the features on the spatial dimension.

The core matrices of self-attention are the query, key, and value matrix, which are
learned through linear transformation, e.g., convolution operation. The self-attention
maps a query and a set of key-value pairs to an output. The output is the weighted
sum of the values, and the weights are produced from the incorporation (i.e., opera-
tions between matrices) of the query and key. Figure 3.6 shows the overall procedure

3.4. RELATIVE POSITIONAL EMBEDDINGS

3

25

Figure 3.6: The building block of self-attention [37]. Dot products are computed among query Q and keys K s.
The products are divided by a scaling factor to avoid diminishing gradients in softmax layer. The softmax is
applied to obtain the weights for the values. Finally, the weights and values are multiplied to form the final
outputs of self-attention.

of the self-attention block. The query and key have a dimension of dk and the value of
dv . First, the dot products are computed among queries and all keys. The products are
further divided by a scaling factor

p
dk to counteract the effect that dot products can

grow extremely large for large dk , causing diminishing gradients in the softmax layer.
The softmax function is applied to the outputs of dot products to obtain the weights for
the values. The whole procedure can be divided into two parts: computing weights for
values and computing outputs of self-attention by multiplying the weights with values.
The weights produced by the key and query can represent the importance of different
parts of the inputs. In the image, it means which pixel is more important, and in the
video, it means which voxel is more critical. Therefore, one can also see self-attention as
an approach to assign different importance on the inputs, enabling the model to learn
the most related patterns.

3.4. RELATIVE POSITIONAL EMBEDDINGS

A S self-attention is computed among all elements in input, e.g., the pixel in an image,
and it is permutation equivalent about the position of the elements, e.g., the outputs

do not change if we change the position of the pixel in the image. This property can af-
fect the effectiveness of modeling structured data, where the position is a type of crucial
information. For instance, if we change the pixels’ positions in an image where there is a
cat, the model or even ourselves can not recognize the cat well. We obtain global interac-
tions while losing the local ones. The relative positional embeddings (E r) are employed
to prevent permutation equivariance and allow attention to know how far two positions
are apart in the input.

For a 1D input, the E r the learnable embeddings are of shape H £L£dk , where H , L
and dk are the number of heads, sequence length and the dimension of key. E r has an

3

26 3. BACKGROUND ON DEEP LEARNING

Figure 3.7: Caption

embedding for each pairwise distance r = jk ° iq between a query and key in position iq
and jk . First, we need to compute the intermediate tensor R of shape L £L £dk , which
contains the embeddings between all keys and queries in relative distances. Then we
multiply R with reshaped query matrix Q to get the L £L logits matrix Sr el . With self-
attention, the output of relative self-attention is formed as:

O = Softmax
µ

QK T +Sr el

p
dk

∂
V. (3.9)

The relative positional embeddings can complement the drawback of position-unaware
of self-attention.

3.5. CLASS-BALANCED LOSS
The class-balanced loss is used to solve the training problem on imbalanced data by
adding a weighting factor that is inversely proportional to the effective number of sam-
ples [6] Eni . Eni = (1°Øni

i)/(1°Øi) for class i , where ni is the number of samples in class
i and Ø 2 [0,1) is the smoothing factor. Suppose the original loss is L, the class-balanced
(CB) loss is formed as:

LCB = 1°Ø
1°Øny

L, (3.10)

where ny is the number of samples in the ground-truth class y . Figure 3.7 visualize the
class-balanced loss as a function of ny for different Ø. In general, small weights are as-
signed to the class with large number of samples. When increasing Ø from 0 to 1 (exclu-
sive), the effect of re-weighting increases.

4
ACTION RECOGNITION

When it comes to CNNs, our first thought is its great power in solving vision tasks (e.g.,
detection, tracking, segmentation) from image data. Indeed, researches have made sig-
nificant progress in solving problems on images by utilizing the advantages of CNNs.
Besides image tasks, video tasks have also generally become the focus of research with
the appearance of vast video resources. Compared to the image, video as structured data
as well usually contains more information such as motion, the interaction between ob-
jects. Action recognition is a video-based task, and it is usually more complicated than
the image classification problem. For instance, in Figure 4.1, which is a single frame
taken from a video, to form an action recognition task, we need to answer which action
is performed in this video by observing the type of objects within it and the interactions
between objects through time. The action will be hard to detect when too many objects
appear, and the interactions between objects are complicated. This difficulty is all from
the additional temporal dimension of videos compared to images.

In classical computer vision, the Harris-3D detector and the Cuboid detector are
mostly used to detect the space-time salient points, but they depend on hand-crafted
features, which is highly problem dependent. Therefore, researchers start to focus on
learning low- to high-level features through representation learning or specifically deep
learning to solve action recognition tasks.

4.1. INFLATED 3D CONVOLUTIONAL NEURAL NETWORK

T HE video can be seen as a stack of images ordered in time. Therefore most of the
researches continue to use CNN as the building block for developing the deep archi-

tectures to solve video tasks.
One of the most successful deep architectures is the inflated 3D convolutional neural

network (I3D) introduced by [5]. It takes the advantages of successful image classifica-
tion deep architectures that have evolved over the last few years. The key concept of
I3D is to reuse parameters of those architectures that have already been well trained on
large-scale image datasets such as ImageNet [8].

27

4

28 4. ACTION RECOGNITION

Figure 4.1: Demo of action recognition, Horse race class in UCF-101 [30]. It is a screenshot of the original video.

Before moving on to the details of I3D, let us first get familiar with some popular ar-
chitectures, a subset of models for video tasks. Figure 4.2 shows commonly used five
kinds of models for video classification. The architecture of I3D is based on model b, ap-
plying convolution operation on both spatial and temporal dimensions simultaneously
by utilizing convolutional layers with 3D kernels. A simple demo for 3D convolution is
shown in Figure 4.3. The difference from model b, apart from the intrinsic structure, is
that the 3D filters of I3D are inflated from 2D filters by attaching an additional temporal
dimension. For example, a 2D filter of size FW £FH can be inflated to a 3D filter of size
FW £FH £FT where W , H and T denote the width, height, and temporal dimension. In
practice, we can bootstrap 3D filters from 2D filters by repeating the weights of 2D filters
FT times and dividing by FT for rescaling to ensure that the convolutional filter response
is the same. The advantage of I3D is that the weights of the 2D filters pre-trained on large
dataset such as ImageNet can be copied onto 2D filters that are repeated to form 3D fil-
ters. In other words, the inflated 3D CNN is implicitly pre-trained on the image dataset,
reducing the likelihood of overfitting and improving performance.

I3D is a robust type of video architecture in recent years, and it is flexible to incorpo-
rate into many CNN architectures. For example, the popular Inception family [32] and
ResNet family [14] can be easily inflated into the 3D version for video tasks by bootstrap-
ping their 2D pre-trained filters into 3D ones.

Regarding the effect of depth of I3D on the performance, it is found that with suffi-
cient data, I3D with more layers can achieve better accuracy on the action classification
task [13]. In [13], ResNet is used as the backbone network to inflate, and all versions of
ResNet with various number of layers are studied to achieve state of the art performance.

4.2. SELF-ATTENTION REPLACING 3D CONVOLUTIONAL LAYER

T HE 3D convolutional layer can be replaced with the temporal self-attention block
to construct the temporal self-attention network for action recognition. In this net-

4.2. SELF-ATTENTION REPLACING 3D CONVOLUTIONAL LAYER

4

29

Figure 4.2: Five commonly used video architectures [5]. K and N denote the number of frames and a subset of
neighboring frames in the video. Model a applies CNN on each frame and captures the temporal information
using LSTM on the top of CNN. Model b applies 3D CNN directly on the video volume by performing convolu-
tion on temporal and spatial dimensions simultaneously. Model c combines the results from 2D convolution
on one image and a stack of optical flows. Model d fuses results from model b and model c. Model e is a well-
known two-stream network that combines 3D CNN results on both stacks of images and optical flows. These
architectures differ in the aspects of whether convolutional layer uses 2D or 3D kernels, which kind of inputs
is used such as RGB frames and optical flow, and how features are incorporated across the frames.

Figure 4.3: Demo for 3D convolution [1]. Similar to 2D convolution, element-wise multiplication is performed
between the input regions and filters and the result is summed up to produce the value in the output volume.
The difference from 2D is that 3D convolution involves the temporal dimension.

4

30 4. ACTION RECOGNITION

work, temporal self-attention is used to learn the long-range interactions among pixels
with the same spatial position along the temporal dimension. The key idea is to explore
the informative temporal patterns in the global scope to complement the shortage of
CNN that distant patterns cannot interact at the same layer.

5
TRANSFER LEARNING

Transfer learning is widely used to share the knowledge learned from one task with an-
other task, aiming to avoid expensive data collection and data labeling efforts, thus ben-
efiting the training of models on the new tasks. When tasks are similar in terms of their
feature space or distribution, transfer learning usually show a positive effect on solving
the target tasks.

In action recognition, transfer learning is also frequently applied. For instance, the
knowledge learned from in a larger action recognition dataset Kinetics-400 is transferred
to recognizing actions on much smaller datasets UCF-101 and HMDB-51 [5, 13], where
significant performance improvement is gained.

In this chapter, we briefly introduce the transfer learning and describe how it is used
in this work.

5.1. BRIEF INTRODUCTION TO TRANSFER LEARNING

F OLLOWING [26], we describe some notations and then give the definition of transfer
learning. Given a domain D = {X ,P (X)} where X is the feature space and P (X) is the

marginal probability distribution, a task can be denoted as T = {Y , f (·)}. Y is the task
objective, e.g., labels in classification tasks, and f (·) is the objective predictive function
that is learned from the training data. Each sample in the data can be represented as
a pair of the feature and corresponding objective {xi 2 X , yi 2 Y }. From probabilistic
viewpoint, f (·) can also be interpreted as conditional probability distribution P (y |x).

For simplicity, we consider only two domains involved in the transfer learning pro-
cess, source domain DS and target domain DT , which is the most common case in recent
research. Then the transfer learning can be defined as follows. Given a source domain
DS , source task TS , target domain DT , and target task TT , the transfer learning helps im-
prove the learning of target objective predictive function fT (·) in DT and TT , using the
knowledge learned in DS and TS where DS 6= DT or TS 6= TT . Figure 5.1 shows an example
of the transfer learning process.

The transfer learning taxonomy is summarized in Figure 5.2. Transfer learning is cat-
egorized into three classes: inductive transfer learning, transductive transfer learning,

31

5

32 5. TRANSFER LEARNING

Figure 5.1: The demo of the transfer learning process. The knowledge is first learned from sourse tasks and
then transfered to the learning system that tries to solve the target task.

and unsupervised transfer learning based on 1) what to transfer, 2) how to transfer, and
3) when to transfer [26].

Figure 5.2: The overview of transfer learning with different settings [26]. Transfer can be categorized into three
classes: inductive transfer learning, transductive transfer learning and unsupervised transfer learning.

5.2. DEEP TRANSFER LEARNING

S INCE deep neural networks dominate the machine learning field in recent years, trans-
fer learning is intensively incorporated with deep learning. The objective predictive

function f (·) stands for the universal function of deep neural networks. Compared to
transfer learning, deep transfer learning can be classified, using a different taxonomy,

5.2. DEEP TRANSFER LEARNING

5

33

into four classes [34] based on the deep learning techniques: instances-based [7, 39],
mapping-based [20, 36], network-based [15, 21, 25], and adversarial-based deep transfer
learning [35]. Instances-based deep transfer learning adds part of instances (weighted)
from the source domain to the target domain’s training data. Mapping-based deep trans-
fer learning maps instances in source and target domain to new data space for the target
task. Network-based deep transfer learning reuses the pre-trained partial neural net-
work (source domain) on the target domain, as a plug-and-play transferring strategy.
Adversarial-based deep transfer learning uses adversarial strategies to find the feature
representations that have good transferability between source and target domains. An
adversarial network can be applied to distinguish representations of the source and the
target domain in practice. The worse the adversarial network performs, the better trans-
ferability of the representations.

In this study, we adopt the most straightforward strategy - network-based deep trans-
fer learning as some researches have already illustrated its effectiveness [5, 13].

6
PARKINSON’S DISEASE

This chapter briefly describes the MDS-Unified Parkinson’s Disease Rating Scale, used
as a criterion to label the severity score.

6.1. MDS-UNIFIED PARKINSON’S DISEASE RATING SCALE
At present, the Movement Disorder Society — Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS), containing four parts: I for non-motor experiences of daily living, II for
motor experiences of daily living, III for motor examination and IV for motor complica-
tions, has been widely used as a validated tool to quantify PD severity [11, 22]. MDS-
UPDRS is the revised and more comprehensive version of the original UPDRS [10], and
they are highly correlated with the motor sections [23]. This study uses the MDS-UPDRS
part III (MDS-UPDRS-III) as the measurement for analysis, which contains 18 tasks and
33 scores, with some tasks pertaining to either left or right extremities. Each task, tied to
a symptom assessed by clinically trained raters, has five responses linked to symptom-
severity: 0-normal, 1-slight, 2-mild, 3-moderate, and 4-severe, providing consistency
across tasks.

35

BIBLIOGRAPHY

[1] 3D convolution animation by Thom Lane. https://thomelane.github.io/
convolutions/3DConv.html. Accessed: 2020-07-30.

[2] Giovanni Albani et al. “An integrated multi-sensor approach for the remote mon-
itoring of parkinson’s disease”. In: Sensors 19.21 (2019), p. 4764.

[3] Irwan Bello et al. “Attention augmented convolutional networks”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2019, pp. 3286–3295.

[4] Abdullah Caliskan et al. “Diagnosis of the parkinson disease by using deep neural
network classifier”. In: Istanbul University-Journal of Electrical & Electronics Engi-
neering 17.2 (2017), pp. 3311–3318.

[5] Joao Carreira and Andrew Zisserman. “Quo vadis, action recognition? a new model
and the kinetics dataset”. In: proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 2017, pp. 6299–6308.

[6] Yin Cui et al. “Class-balanced loss based on effective number of samples”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 9268–9277.

[7] Wenyuan Dai et al. “Boosting for transfer learning”. In: Proceedings of the 24th
international conference on Machine learning. 2007, pp. 193–200.

[8] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[9] M Kelley Erb et al. “mHealth and wearable technology should replace motor di-
aries to track motor fluctuations in Parkinson’s disease”. In: NPJ digital medicine
3.1 (2020), pp. 1–10.

[10] SRLE Fahn. “Unified Parkinson’s disease rating scale”. In: Recent development in
Parkinson’s disease (1987).

[11] Christopher G Goetz et al. “Movement Disorder Society-sponsored revision of the
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and
clinimetric testing results”. In: Movement disorders: official journal of the Move-
ment Disorder Society 23.15 (2008), pp. 2129–2170.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[13] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. “Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet?” In: Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition. 2018, pp. 6546–6555.

37

https://thomelane.github.io/convolutions/3DConv.html
https://thomelane.github.io/convolutions/3DConv.html

6

38 BIBLIOGRAPHY

[14] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778.

[15] Jui-Ting Huang et al. “Cross-language knowledge transfer using multilingual deep
neural network with shared hidden layers”. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 7304–7308.

[16] C Kotsavasiloglou et al. “Machine learning-based classification of simple drawing
movements in Parkinson’s disease”. In: Biomedical Signal Processing and Control
31 (2017), pp. 174–180.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information pro-
cessing systems. 2012, pp. 1097–1105.

[18] Lecture of CS231n Convolutional Neural Networks for Visual Recognition. https:
//cs231n.github.io/convolutional-networks/. Accessed: 2020-07-29.

[19] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[20] Mingsheng Long et al. “Learning transferable features with deep adaptation net-
works”. In: International conference on machine learning. 2015, pp. 97–105.

[21] Mingsheng Long et al. “Unsupervised domain adaptation with residual transfer
networks”. In: Advances in neural information processing systems. 2016, pp. 136–
144.

[22] Pablo Martinez-Martin et al. “Expanded and independent validation of the Move-
ment Disorder Society–Unified Parkinson’s disease rating scale (MDS-UPDRS)”.
In: Journal of neurology 260.1 (2013), pp. 228–236.

[23] Marcelo Merello et al. “Correlation between the Movement Disorders Society Uni-
fied Parkinson’s Disease rating scale (MDS-UPDRS) and the Unified Parkinson’s
Disease rating scale (UPDRS) during L-dopa acute challenge”. In: Parkinsonism &
Related Disorders 17.9 (2011), pp. 705–707.

[24] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltz-
mann machines”. In: ICML. 2010.

[25] Maxime Oquab et al. “Learning and transferring mid-level image representations
using convolutional neural networks”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, pp. 1717–1724.

[26] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Trans-
actions on knowledge and data engineering 22.10 (2009), pp. 1345–1359.

[27] Clayton R Pereira et al. “Deep learning-aided Parkinson’s disease diagnosis from
handwritten dynamics”. In: 2016 29th SIBGRAPI Conference on Graphics, Patterns
and Images (SIBGRAPI). Ieee. 2016, pp. 340–346.

[28] Erika Rovini et al. “Comparative motor pre-clinical assessment in Parkinson’s dis-
ease using supervised machine learning approaches”. In: Annals of biomedical en-
gineering 46.12 (2018), pp. 2057–2068.

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

BIBLIOGRAPHY 39

[29] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[30] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A dataset of
101 human actions classes from videos in the wild”. In: arXiv preprint arXiv:1212.0402
(2012).

[31] Renfei Sun et al. “Convolutional 3D attention network for video based freezing of
gait recognition”. In: 2018 Digital Image Computing: Techniques and Applications
(DICTA). IEEE. 2018, pp. 1–7.

[32] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[33] Athanasios Tagaris, Dimitrios Kollias, and Andreas Stafylopatis. “Assessment of
Parkinson’s disease based on deep neural networks”. In: International Conference
on Engineering Applications of Neural Networks. Springer. 2017, pp. 391–403.

[34] Chuanqi Tan et al. “A survey on deep transfer learning”. In: International confer-
ence on artificial neural networks. Springer. 2018, pp. 270–279.

[35] Eric Tzeng et al. “Adversarial discriminative domain adaptation”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017, pp. 7167–
7176.

[36] Eric Tzeng et al. “Deep domain confusion: Maximizing for domain invariance”. In:
arXiv preprint arXiv:1412.3474 (2014).

[37] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural informa-
tion processing systems. 2017, pp. 5998–6008.

[38] Xiaolong Wang et al. “Non-local neural networks”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2018, pp. 7794–7803.

[39] Yi Yao and Gianfranco Doretto. “Boosting for transfer learning with multiple sources”.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. IEEE. 2010, pp. 1855–1862.

	Scientific Paper
	Introduction
	Motivation
	Research Questions

	Background on Deep Learning
	Convolutional Neural Networks
	Convolutional Layer
	Non-linearity Layer
	Pooling Layer

	ResNet
	Self-attention
	Relative Positional Embeddings
	Class-Balanced Loss

	Action Recognition
	Inflated 3D Convolutional Neural Network
	Self-attention Replacing 3D Convolutional Layer

	Transfer Learning
	Brief Introduction to Transfer Learning
	Deep Transfer Learning

	Parkinson's Disease
	MDS-Unified Parkinson's Disease Rating Scale

