
 
 

Delft University of Technology

Document Version
Accepted author manuscript

Licence
CC BY-SA

Citation (APA)
Abate, P., Di Cosmo, R., Gousios, G., & Zacchiroli, S. (2020). Dependency Solving Is Still Hard, but We Are Getting
Better at It. In K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M.-E. Fokaefs, & M. Zhou (Eds.), 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering (SANER): Proceedings (pp. 547-551).
Article 9054837 IEEE. https://doi.org/10.1109/SANER48275.2020.9054837

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1109/SANER48275.2020.9054837


Dependency Solving Is Still Hard,
but We Are Getting Better at It

Pietro Abate
Nomadic Labs
Paris, France

pietro.abate@nomadic-labs.com

Roberto Di Cosmo
Inria and Université de Paris

Paris, France
roberto@dicosmo.org

Georgios Gousios
Delft Univ. of Technology

Delft, The Netherlands
g.gousios@tudelft.nl

Stefano Zacchiroli
Université de Paris and Inria

Paris, France
zack@irif.fr

Abstract—Dependency solving is a hard (NP-complete) prob-
lem in all non-trivial component models due to either mutually
incompatible versions of the same packages or explicitly declared
package conflicts. As such, software upgrade planning needs
to rely on highly specialized dependency solvers, lest falling
into pitfalls such as incompleteness—a combination of package
versions that satisfy dependency constraints does exist, but the
package manager is unable to find it.

In this paper we look back at proposals from dependency
solving research dating back a few years. Specifically, we review
the idea of treating dependency solving as a separate concern
in package manager implementations, relying on generic depen-
dency solvers based on tried and tested techniques such as SAT
solving, PBO, MILP, etc.

By conducting a census of dependency solving capabilities
in state-of-the-art package managers we conclude that some
proposals are starting to take off (e.g., SAT-based dependency
solving) while—with few exceptions—others have not (e.g., out-
sourcing dependency solving to reusable components). We reflect
on why that has been the case and look at novel challenges for
dependency solving that have emerged since.

Index Terms—software components, dependency solving, SAT
solving, package manager, separation of concerns

I. INTRODUCTION

Initially introduced in the early 90s, package managers have
been used to support the life-cycle of software components—
listing available packages, installing, removing, and/or up-
grading them—for several decades now. Initially prevalent
in UNIX-like software distributions, they have reached peak
popularity during the past decade expanding first to develop-
ment stacks for library management—at the time of writing
libraries.io [13] lists more than 30 package managers, most of
which are programming language-specific—and then to final
users in various “app stores” forms.

One of the key responsibilities of package managers [7] is
dependency solving. In a nutshell, a dependency solver takes as
input: (1) the current status of packages installed on a given
system, (2) a universe of all available packages, (3) a user
request (e.g., “install the aiohttp library”), and (4) explicit
or implicit user preferences (e.g., “only install strictly required
packages” v. “install all recommended packages too”). As its
output, a dependency solver produces an upgrade plan, which
is a partially ordered list of low-level actions that should be
executed to reach a new status that satisfies the user request;
example of such actions are “download version 18.2.0 of the

attr library”, “uninstall version 3.5.4 of aiohttp”, and “install
version 3.6.2 of aiohttp from downloaded zip file”.

Dependency solving is a hard problem in all non-trivial
component models. It has first been shown to be NP-complete
in 2006 for expressive dependencies such as Debian’s [16]—
which allows version predicates (e.g., python3-aiohttp
>= 3.0.1), AND/OR logical connectors, virtual packages,
and explicit inter-package conflicts. Intuitively, the difficulty of
dependency solving comes from the fact that it is not enough
to explore the dependency tree of the package you want to
install, because you might need arbitrarily deep backtracking
to check if a valid solution to the user request does exist. In
formal terms, (Debian’s) dependency solving can be encoded
as a SAT solving problem and vice-versa [11], [14], [16].

More recently [2] it has been shown that even much simpler
component models induce NP-completeness, it is enough for a
package manager to support multiple package versions and to
forbid co-installation of different versions of the same package
(which is almost invariably the case).

The complexity of dependency solving is further increased
by the fact that users generally do not want a solution; but
rather an optimal one w.r.t. some criteria, even when they
are not stated explicitly. For instance, when requesting to
install wesnoth users generally expect to install the minimum
amount of additional packages that allow them to play that
game (also known as the “minimum install problem” [23]).
This translate to an optimization problem, which poses addi-
tional challenges on dependency solving implementation.

During the 2005–2015 decade it had been observed how
most state-of-the-art package managers were incomplete (i.e.,
incapable of proposing a valid upgrade plan when one existed)
and not expressive enough (i.e., not allowing users to express
user preferences to drive the optimization part of dependency
solving). A substantial body of research has been devoted
to study dependency solving to improve the capabilities of
package managers, in particular in the framework of the
Mancoosi European research project [17].

In this paper we look back at one particular proposal [2]
from back then, that of treating dependency solving as a
separate concern in package manager design and implementa-
tion, delegating it to a specialized, highly-capable dependency
solver based on state-of-the-art constraint solving and opti-
mization techniques.



Fig. 1: CUDF: a common language to encode dependency solving scenarios (figure from [2])

Paper structure: We review the “separate concern” pro-
posal in Section II; we conduct a census of dependency solving
capabilities for state-of-the-art package managers (Section III);
based on census results we reflect on what has actually came
true of that proposal (Section IV); we conclude considering
novel challenges for dependency solving (Section V).

II. DEPENDENCY SOLVING AS A SEPARATE CONCERN

We can breakdown the research proposal [2] we are re-
viewing into two main claims. The first was that dependency
solving should be expressive. Expressive in the sense that
dependency expressions should be powerful (package name
and version predicates, conflicts, boolean connectors, etc.) and
that users should have the possibility of expressing their own
optimization criteria to complement built-in ones. To reap the
benefits of such expressivity dependency solvers should be
complete. And to that end dependency solver implementations
should not be improvised using ad-hoc heuristics, but rather
delegated to specialized solvers based on tried and tested
techniques in constraint solving and optimization.

The second claim was that there is no need to reinvent the
dependency solving wheels over and over again, once for each
package manager. We can instead build capable dependency
solvers once (multiple times only if justified by the use of
different techniques or to innovate in neighbor areas), and plug
them into package managers as needed.

To support these claims a formal representation language
called CUDF (for Common Upgradeability Description For-
mat [20]) was designed, with the idea of using it as a lingua
franca between package managers and solvers, as depicted in
Fig. 1. According to this view a package manager facing a
dependency solving user request will first translate it to an
upgrade problem expressed in CUDF, then invoke a CUDF-
enabled dependency solver on it, which will return a CUDF-
encoded solution to the original package manager. As shown
in the modular package manager architecture of Fig. 2, only
the back and forth CUDF translations are platform-specific;
dependency solvers themselves are package manager agnostic
and hence reusable.

As practical evidence of the feasibility of that approach
an international dependency solving competition, called

TABLE I: General purpose, CUDF-enable dependency
solvers (MISC 2010–2011 sample participants).

CUDF solver technique / solver
apt-pbo [22] Pseudo Boolean Optimization
aspcud [12] Answer Set Programming
inesc [4] Max-SAT
p2cudf [4] Pseudo Boolean Optimization / Sat4j [15]
ucl Graph constraints
unsa [18] Mixed Integer Linear Programming / CPLEX [6]

MISC [2], has been run for 3 yearly editions from 2010 to
2012, using CUDF as the input/output format for participating
solvers. The competition has been run on real dependency
solving problems gathered by package manager users (via a
submission system) as well as on randomly generated ones,
starting from real-world package repositories. All data used
as input for the competition has been made publicly avail-
able [19]. As a byproduct of MISC, several CUDF-speaking
general purpose dependency solvers have been released; some
examples are shown in Table I.

III. A DEPENDENCY SOLVING CENSUS

Almost a decade later, has this view of expressive, complete,
and mutualized dependency solving become true?

To verify that we have conducted a census of the depen-
dency solving capabilities of current package managers. We
have included in the census major language-specific package
managers from libraries.io [13] as well as package managers
from notable Free/Open Source Software (FOSS) distributions
and platforms, such as Debian, RedHat and Eclipse.

Census results are summarized in Table II. For each package
manager we considered the following dimensions:

Versioning scheme: How does the package manager
specify versions for the artifacts it manages? Common ver-
sioning schemes include semantic versioning (semver) and
its derivatives, where a version is identified by a quadruplet
major.minor.patch.qualifier, where each qualifier
specifies an order. Other schemes include Debian’s version
spec (debian) and using free form strings with no ordering
semantics (git tags, strings).

Distribution: How are packages distributed? Most pack-
age managers use centralized archives, whereas a new trend



Fig. 2: A modular package manager architecture (figure from [3])

is to use github as a distribution platform in addition to
collaboration.

Granularity: What is the minimal unit that can be ver-
sioned? Most dependency managers version artifacts at the
package level, but some, notably those that support package
distribution over github also allow versioning of repository
branches.

Version Locking: Does the package manager support
locking the results of a package resolution? Most package
managers enable this option, to help developers maintain
reproducible builds.

Qualifiers: Does the package manager support selecting
specific dependencies based on external build configurations?
One such typical example is the inclusion of test runner de-
pendencies only when running tests. Many package managers
enable this feature to minimize the set of dependencies in
specific environments.

Dependency range operators: What levels of expressivity
does the package manager range specification language en-
able? Package managers that use semantic versioning (or other
types of hierarchical versioning) enable users to specify ranges
of dependency versions a package depends upon. For example,
a package might depend on all patch versions of an artifact
version 4.3; this can be expressed as a range: >= 4.3.*.
To express more complex scenarios, many package managers
allow boolean operators on ranges.

Range modifiers: Even more complex scenarios might
arise with dependency ranges: what if a developer wants
to express a constraint such as “update to all new minor
versions, but not to the next major one”. Range modifiers
enable developers to anticipate new patch (flex patch) or
new minor (flex minor) versions without having to explicitly
modify their project’s manifest files.

Resolution process: We consider the following facets of
package managers approaches to dependency solving:

• Correctness: Will the package manager always propose
solutions that respect dependency constraints?

• Completeness: Will the package manager always find a
solution if one exists?

• User preferences: Can the user provide custom optimiza-
tion criteria to discriminate among valid solutions? For

example, in order to minimize/maximize the number of
packages matching stated characteristic [21] or to veto
certain packages.
Approximate solutions: When a solution cannot be found,

some package manager may try to proceed anyway by relaxing
some constraints.

• Missing dependencies: When a dependency version con-
straint cannot be satisfied, most package managers will
report an error, while some (e.g., Cargo and Maven) will
ignore the error and install the latest available version.

• Conflicts: When the transitive closure of a dependency
resolution includes more than one version of the same
artifact, most package managers will bail out with an
error, as no valid solution exists. Some package managers
on the other hand will force the installation to complete
nonetheless: Cargo rewrites the conflicting symbol names
to enable multiple versions of libraries to co-exist; others
select the version that is closer to the root of the depen-
dency tree of the package whose dependencies are being
resolved.

Among the various features listed above, user defined
preferences for driving dependency resolution appear to be
the least known, hence we provide here a few examples to
illustrate what they look like and how they are used.

The opam package manager for the OCaml programming
language offers the user a rich set of preferences,1 here is an
example:
opam install merlin --criteria="-changed,-removed"

which requests to install merlin. Since this is a develop-
ment tool, the user does not want its installation to impact
other libraries installed in the system that might be also
used as build dependencies of the project. To this end, the
-changed,-removed preferences indicate that, among all
possible solutions, we prefer the one that minimizes changes
to the system, and minimizes removal of other packages.

IV. DISCUSSION

The first observation about census findings (Table II) is that,
almost 15 years after the seminal work dependency solving

1See https://opam.ocaml.org/doc/External solvers.html for full details.

https://opam.ocaml.org/doc/External_solvers.html


TABLE II: Dependency solving feature matrix for state-of-the-art package managers.

Package
man-
ager

Version
scheme

Solver Distribution
granularity

Version
locking

Qualif. Dependency range
operators

Range
modifiers

Resolution process Approximate
solutions

gt/lt and or not flex
patch

flex
mi-
nor

cor-
rect-
ness

comp-
lete-
ness

user
prefs

missing
deps

conflict

Go
(dep)

git
tags

ad hoc github branch yes no no no no no no no yes yes no error error

npm semver ad hoc archive package yes no yes yes yes no yes yes ? ? no error keep
both

Packagist git
tags

ad hoc github branch yes no yes yes yes no yes no yes ? ? ? error

opam debian CUDF
(any)

git package work-
around

yes yes yes yes yes no no yes yes yes error error

PyPI /
pip

pep-
440

ad hoc archive package yes conda yes yes no yes yes yes yes yes no error error

Nuget semver ad hoc archive package yes no yes yes no no no no yes yes no error nearest
wins

Paket semver ad hoc archive,
github

package,
branch

yes no yes yes no no yes no yes yes no error error

Maven semver ad hoc archive package no yes yes yes yes yes no no yes yes with
plug-
ins

latest nearest
wins

RubyGems semver ad hoc archive package yes bundler yes yes no no yes no ? ? ? error error
Cargo semver ad hoc archive,

git
package,
branch

no yes yes yes no no yes yes yes yes no latest name
man-
gling

CPAN strings ad hoc archive package no yes yes yes yes yes no no no no no error error
Bower semver ad hoc git package ? ? yes yes yes no yes yes yes yes no error use

res-
olu-
tions

Clojars semver ad hoc archive package ? ? yes yes yes yes no no yes yes error error error
CRAN debian ad hoc archive,

git
package ? yes yes yes yes yes no no no no no error error

Hackage
/ cabal

semver ? archive package ? no yes yes yes yes yes no ? no no error error

Debian
(apt)

debian CUDF
(any)

package package pinning yes yes yes yes yes no no yes yes yes error error

RedHat
(dnf)

dnf libzypp archive package ? yes yes yes yes yes yes yes yes yes ? error error

Eclipse
P2

semver sat4j archive package ? yes yes yes yes yes yes yes yes yes yes error error

NP-completeness, a significant set of package managers rely
on robust, specialized solvers, able to support correct and
complete dependency solving—e.g., Eclipse uses P2, built
on top Sat4J [15], SUSE and RedHat use libsolv (itself
based on the libzypp2 SAT solver), while Debian and Opam
can use any external CUDF solver. This is good news: the
importance of using complete dependency solvers seems now
well acknowledged and it seems to be common knowledge that
this entails leveraging solver technologies like SAT, MaxSAT,
PBO, ASP or MILP, instead of ad-hoc dependency graph
traversals. We consider that a significant part of the first claim
of [2] actually made it through.

On the other side, it seems that only Opam has embraced [1]
the “separation of concern” approach advocated in [2], with
apt-get somewhat halfway through, as it offers access to
external solvers only as an option. There are several factors
that may explain this limited success: some are technical,
others are of social nature.

From the technical point of view, we notice two issues. First,

2https://en.opensuse.org/openSUSE:Libzypp satsolver

the CUDF format has some shortcomings. While it is very
well adapted for package managers that use versioning and
dependency schemes similar to the Debian ones, it does not
support natively dependency constraints involving qualifiers
(used by Eclipse P2) or non overlapping version intervals
(npm)—they can be supported, but at the cost of additional
complexity in the CUDF adapter. Second, while relying on one
or more external solvers may be a smart choice in the long
run,3 it introduces an external dependency in a key component,
the package manager, that needs to be properly catered for.
These two aspects have likely reduced the buy-in on relying
on third party CUDF solvers.

As for the social aspects, a broad adoption of the “separation
of concern” approach would mean convincing not one com-
munity, but many, to adapt the architecture of one of their key
tools and accept to rely a common standard on which they
would have individually little leverage. This is a significant
social challenge, and it is understandable that many preferred

3This is shown by the recent switch made in Opam from the aspcud
solver to mccs, triggered by performance issues that only showed up with
the growing number of existing packages.

https://en.opensuse.org/openSUSE:Libzypp_satsolver


to retain full control on their package manager, and just hard-
wire in it a specific solver, especially when one written in the
same programming language was available.

Hence we believe that it is already a significant success
to see the proposed approach embraced in full by the Opam
package manager, which is also the only one offering full
support for flexible user preferences. The direct implication
in the Opam/OCaml community of some of the proponents
of [2] has surely been an important adoption factor too. “If
you build it, they will come” is not always enough; broad
adoption also needs to actually go out of your way (and role)
to make the needed adaptations and provide concrete evidence
of the conveyed advantages.

V. OUTLOOK

“Dependency hell” is a colloquial term denoting the frus-
tration resulting from the inability to install software due to
complicated dependencies. From the review we conducted one
cannot conclude that the problem is solved. However, the
situation significantly improved w.r.t. less than a decade ago.
Several package managers are both correct and complete—
the two properties that contribute the most to addressing the
dependency hell—and the reinvention of dependency solving
wheels has been avoided in at least a few notable cases. All
in all, it seems that good dependency solving practices are
spreading, which makes us hopeful for a better future.

Novel depdency management approaches have emerged
since the proposals reviewed in this paper. On the one hand,
containerization and virtual environments have gained sig-
nificant traction; functional package managers [5], [8] have
become more popular, due to analogies with container tech-
nology and a surge in the interest for scientific and build
reproducibility. These approaches share the ability to create
separate package namespaces on-the-fly, allowing to deploy
side-by-side packages that would be incompatible in a shared
namespace. This has alleviated the need for correct and
complete dependency solving, but we speculate it will not
for long—the recent announcement4 that PyPI/pip, a software
ecosystem in which virtual environments are really popular, is
finally going to implement proper dependency solving seems
to be a step in the right direction.

Novel challenges are emerging on the front of dependency
auditing. For example, there is no way for developers to
know whether a security issue affecting a dependency is also
affecting their programs. Licensing incompatibilities cannot be
easily detected either, even though most packages come with
accompanying license metadata. The root cause behind those
issues is that the finest granularity in package management
is still the package, whereas software reuse happens at finer
levels (e.g., modules, functions, etc.) [10]. This discrepancy
leads to lost opportunities. The construction of inter-package
call graphs, as envisaged by the FASTEN [9] project, may
unlock several new package manager features, such as precise
tracking of security and licensing incompatibility issues, data-
driven API evolution, and several others.

4https://github.com/python/request-for/blob/master/2020-pip/RFP.md

ACKNOWLEDGEMENTS

This work has been partially funded by the FASTEN project,
part of the European Commission H2020 program (contract:
825328).

REFERENCES

[1] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice Le Fessant, and
Stefano Zacchiroli. Using preferences to tame your package manager.
In OCaml 2014: The OCaml Users and Developers Workshop, 2014.

[2] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli.
Dependency solving: a separate concern in component evolution man-
agement. Journal of Systems and Software, 85(10):2228–2240, 2012.

[3] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli.
A modular package manager architecture. Information and Software
Technology, 55(2):459–474, February 2013.

[4] Josep Argelich, Daniel Le Berre, Inês Lynce, Joao Marques-Silva,
and Pascal Rapicault. Solving Linux upgradeability problems using
boolean optimization. In LoCoCo: Logics for Component Configuration,
volume 29 of EPTCS, pages 11–22, 2010.

[5] Ludovic Courtès. Functional package management with guix. In ELS
2013: 6th European Lisp Symposium, pages 4–14, 2013.

[6] IBM ILOG CPLEX. V12. 1: User’s manual for cplex. International
Business Machines Corporation, 46(53):157, 2009.

[7] Roberto Di Cosmo, Paulo Trezentos, and Stefano Zacchiroli. Pack-
age upgrades in FOSS distributions: Details and challenges. In
HotSWUp’08: Hot Topics in Software Upgrades. ACM, 2008.

[8] Eelco Dolstra, Andres LÖh, and Nicolas Pierron. Nixos: A purely
functional linux distribution. Journal of Functional Programming, 20(5-
6):577–615, 2010.

[9] Fine-grained analysis of software ecosystems as networks FASTEN,
2019. Homepage: https://www.fasten-project.eu/.

[10] Mark Florisson and Alan Mycroft. Towards a theory
of packages, 2017. https://pdfs.semanticscholar.org/560e/
2dc1c37cd5c21a9ac935584d137c6fdd3ac0.pdf.

[11] Michael R Garey and David S Johnson. Computers and intractability,
volume 29. wh freeman New York, 2002.

[12] Martin Gebser, Roland Kaminski, and Torsten Schaub. aspcud: A
linux package configuration tool based on answer set programming.
In LoCoCo 2011: Logics for Component Configuration, volume 65 of
EPTCS, pages 12–25, 2011.

[13] Jeremy Katz. Libraries.io open source repository and dependency
metadata, December 2018.

[14] Daniel Le Berre and Anne Parrain. On SAT technologies for dependency
management and beyond. In SPLC (2), pages 197–200. Lero Int. Science
Centre, University of Limerick, Ireland, 2008.

[15] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2,
system description. Journal on Satisfiability, Boolean Modeling and
Computation, 7:59–64, 2010.

[16] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon,
Berke Durak, Xavier Leroy, and Ralf Treinen. Managing the complexity
of large free and open source package-based software distributions.
In ASE 2006: 21st IEEE/ACM International Conference on Automated
Software Engineering, pages 199–208, 2006.

[17] Managing the complexity of the open source infrastructure (Mancoosi),
2008. Factsheet: https://cordis.europa.eu/project/rcn/86231/factsheet.

[18] Claude Michel and Michel Rueher. Handling software upgradeability
problems with MILP solvers. In LoCoCo 2010: Logics for Component
Configuration, volume 29 of EPTCS, pages 1–10, 2010.

[19] Mancoosi project. Data from the Mancoosi solver competition and
articles, November 2019. doi:10.5281/zenodo.3556644.

[20] Ralf Treinen and Stefano Zacchiroli. Common upgradeability descrip-
tion format (cudf) 2.0. Technical report, Mancoosi project, 2009.

[21] Ralf Treinen and Stefano Zacchiroli. Expressing advanced user pref-
erences in component installation. In IWOCE 2009: International
Workshop on Open Component Ecosystem, pages 31–40. ACM, 2009.

[22] Paulo Trezentos, Inês Lynce, and Arlindo Oliveira. Apt-pbo: Solving
the software dependency problem using pseudo-boolean optimization. In
ASE’10: Automated Software Engineering, pages 427–436. ACM, 2010.

[23] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. Opium:
Optimal package install/uninstall manager. In 29th International Confer-
ence on Software Engineering (ICSE’07), pages 178–188. IEEE, 2007.

https://github.com/python/request-for/blob/master/2020-pip/RFP.md
https://www.fasten-project.eu/
https://pdfs.semanticscholar.org/560e/2dc1c37cd5c21a9ac935584d137c6fdd3ac0.pdf
https://pdfs.semanticscholar.org/560e/2dc1c37cd5c21a9ac935584d137c6fdd3ac0.pdf
https://cordis.europa.eu/project/rcn/86231/factsheet

	Introduction
	Dependency Solving as a Separate Concern
	A Dependency Solving Census
	Discussion
	Outlook
	References

