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Abstract

The challenge in this thesis is to find out if an off-the-shelf embedded system can
replace an off-the-shelf laptop or desktop computer when its task is to perform
vision-based velocity control using inverse kinematics on a robotic arm.

The results of this thesis are that an algorithm was developed which had to
be tested in simulation and should run (semi-)autonomously on an embedded
system but there are no good test results on the algorithm.

Developing and testing an algorithm using an existing simulation proves to
be very problematic as the used simulation software is very complex and has
gone out of support by its developers.

Although the embedded system was chosen because it is equiped with a dig-
ital signal processor, I sadly found out that its proprietary driver is mutually
exclusive with robot-messaging middleware, when it comes to operating sys-
tems´ kernel support: the choice was between the driver by using an old kernel
or the middleware by using a new kernel. The latter was chosen.

A real-time software kernelpatch necessary to communicate with the robotic
arm unfortunately was still in development in the final stage of this work.

Porting an inverse kinematics algorithm from Matlab to C++ and adapting
the trajectory generating algorithm for middleware went well, but could not be
tested thoroughly because of simulation and real-time issues. This also holds
for testing the velocity control algorithm.

The conclusion of this report is that there is future work necessary in order to
see if the developed algorithm for vision-based velocity control actually works.
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1 Introduction

1.1 Robotic arms

Robotic arms are in use, amongst others, for medical and industrial purposes.
For medical purposes, one can think of an arm prosthesis or a mind-controlled
arm for paralyzed people. Industrial examples are automated welding or paint
robot arms in car manufacturing.

Philips Applied Technologies has developed the Philips Experimental Robot
Arm or PERA. The PERA is a compliant anthropomorphic arm which means
it is a flexible arm which is shaped as a humanoid arm with similar kinematics.
Philips states in its manual that they developed it as a research tool. As such,
it is to be used only in a laboratory for the research of humanoid robotics
because of its human kinematics. However, it is used outside laboratories as
well: e.g. the Amigo-team of the Eindhoven University of Technology (TUe)
uses the PERA for their robot. Amigo is an acronym for Autonomous Mate for
IntelliGent Operations.

The PERA has clearly defined limitations in speed as well as in lifting weight.
The arm is originally controlled by a computer running Ubuntu Linux as shown
in Fig. 1 and the power controller as shown in Fig. 2.

Figure 1: Computer belonging to the PERA

Generally, the control of robots and robotic arms is taken care of by either off-
the-shelf or industrial computers. In challenges such as the RoboCup [1], this
is mostly not different. Even when the robotic device is remote-controlled, it is
still controlled by a computer.
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Figure 2: Original computer and Power controller with red Emergency stop
button

At the Delft Biorobotic Laboratory, since January 2013 part of the Delft
Robotic Institute, robots are mostly controlled by an off-the-shelf computer
which is onboard the robot. For this thesis, the challenge is to see if an off-
the-shelf general purpose computer is indeed necessary to control a robotic arm
such as the PERA or if it can be done by an embedded system.

Vision is a common part of robotics by which objects can for example be de-
tected or classified. Detection can for instance be done by using the interruption
of a lightbeam or, more complex, processing an image from one or more cameras.

Velocity control can be necessary to prevent damage to either a robot itself
or objects near a robot. For instance, in a car factory the welding or painting
arm needs to be able to adjust its speed. That way it can keep up with the
cars on the conveyor belt and it is able to work on the correct parts and avoid
collision with a car. In case of the PERA, its motors have a maximum safe
speed. If this speed exceeds this maximum, the speed might give vise to an
over-voltage when decelerating which can damage the controller boards. Also,
when an object is detected in its path and an alternative path is not known, the
velocity has to be reduced.

The challenge for this thesis is to develop an algorithm for vision-based
velocity-control with trajectory generation for the PERA. Because this thesis
is about Embedded Systems, the challenge is reformulated to develop the algo-
rithm and run it (semi-)autonomously on an off-the-shelf embedded system.
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1.2 Related work

Baturone et all [2] describes an efficient design methodology allowing to start
with any kind of fuzzy controller and then transforming it until a system suit-
able for easy DSP implementation is obtained. In Yang et all [3] an embedded
fuzzy controller for a nonholonomic mobile robot is developed. The robot was
built based on behaviour-based artificial intelligence, where several levels of
competences and behaviours are implemented. A class of fuzzy control laws
is formulated using Lyapunov’s direct method. In Gohiya et all [4] a mobile
robotic system for monitoring plants and environment parameters using a wire-
less network is envisioned and developed based on an ARM9 platform running
Linux. Rinner et all [5] presents a rapid prototyping environment for flexible
embedded systems on multi-DSP architectures. This prototyping environment
automatically maps and schedules an application onto a multi-DSP architecture
and introduces a special, lightweight reconfiguration environment onto the tar-
get platform. Chen et all [6] presents a new idea of constructing an architecture
with DSP basement and supplementing it with some RISC features. It can ex-
ert the advantages of DSP architecture by instruction level parallellization and
powerful memory access capability.

According to Chaumette and Hutchinson [7], vision can be used to locate the
destination and with this knowledge minimize the error in movement. In this
paper, the case is considered of a fixed goal pose in combination with a mo-
tionless target. This correlates to inverse kinematics. In HuChang et all [8] an
embedded FPGA-based visual servoing platform (VSP) is proposed to meet the
requirements on data transfer and computation capability for quick response
visual servoing tasks. Do Hyoung et all [9] introduces an active vision system,
which has a fast and simple system architecture that uses a high-speed serial
communication bus. Litzenberger et all [10] presents an embedded vision sys-
tem for object tracking applications based on a 128 × 128 pixel CMOS temporal
contrast vision sensor.

In Zheng et all [11], two simple on-line smooth trajectory generators are devel-
oped by adapting available non-linear tracking differentiators using the known
velocities of the given rough trajectory. Roel Pieters [12] developed Direct Tra-
jectory Generation, or DTG, which deals with object avoidance. This can be
achieved both online and offline. Torsten Kröger [13] developed a method for
Online Trajectory Generation. Delsart et all [14] presents Tiji, a trajectory
generation scheme, which is an algorithm that computes a feasible trajectory
between a start and a goal state, for a given robotic system. It is geared to-
wards complex dynamic systems subject to differential constraints. Chi-Kin Lai
et all [15] addresses the problem of collision avoidance with moving obstacles
for unmanned aerial vehicles.

1.3 Outline

This thesis applies Roel Pieters’ algorithm to the PERA on an embedded sys-
tem. As such, in section 2, robot modelling is descibed with respect to the
PERA. Section 3 discusses the architecture of the embedded system software,
and section 4 the implementation, after which section 5 describes the chosen
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embedded system. In section 6, the simulations that are done are discussed
and section 7 discusses the experiments. In section 8 conclusions will be drawn
followed by section 9 with recommendations and section 10 with suggestions for
future work.
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2 Robot Modelling

2.1 Introduction

When an existing robot is used to analyse the performance of a new algorithm,
the robot has to be modelled in order to see if it is able to execute that algorithm.
This model should physically and kinematically be similar to the real robot as
much as possible.

As mentioned in the Introduction, the PERA is used in the Amigo robot
for its left and right arm, which is modelled using the Gazebo [16] simulation
environment. In order to not ”reinvent the wheel”, I decided to use the Amigo
simulation for this work as well. In the DBL, only the right-side PERA is
available, so only this part of the simulation was used.

To represent the model in Gazebo, the Unified Robot Description Format
(URDF) representation is used. URDF is an Extensible Markup Language
(XML) specification in which a robot is described in the Robot Operating Sys-
tem (ROS) framework [17]. The specification includes:

� a kinematic description

� a dynamic description

� a visual representation

� a collision model

Kinematic description
The kinematic description consists of a list of link elements (links) and joint
elements (joints) that connect the links. Joints can connect links rigidly or with
a single degree of freedom where a single degree can be either fixed, revolute,
prismatic or continuous.
Dynamic description
The dynamic description tells about inertial properties such as link mass and
friction coefficients.
Visual representation
Although a visual representation usually is associated with Computer Aided
Design (CAD) or 3D-modelling, in URDF it describes geometric properties like
cylinder, box, dimension and colour.
Collision model
The collision model is used to detect collision with itself or/and an external
object.

The vision-based control algorithm in this work uses a camera rigidly at-
tached to the end effector, a construction also known as eye-in-hand. For this
purpose, a camera is added to the the simulation. The most important func-
tional properties of this camera are

� image resolution: 640× 480 pixels

� RGB output format

� a frame rate of 30 frames per seconds which is the actual rate of the real
camera
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For this work, the location of the camera is on the gripper, which will not be
used. Reason for locating it on the gripper is that for object detection an image
is preferrably without occlusion.

The physical properties of the camera are also added to the model of the
PERA. To this end, both a physical link and a fixed joint for the camera are
added to the file that describes the arm. The joint defines the exact location of
the cameralink on the hand. Located on the gripper, it is actually off the hand
but still fixed to it. Result of this construction is that this way, the focal axis
of the camera is aligned with the x axis of the hand. If the joint would connect
the camera to a finger of the gripper, its focal axis would not be aligned as such
and thus not point in the direction of the object.

The Robot Operating System is software developed by WillowGarage [18]
and provides libraries and tools for building robot software. It uses nodes and
topics or/and services for communication between those nodes.

A node is an application either provided by ROS or created by a developer.
A topic is a message that can be published by and be subscribed to by nodes
and usually provides floating point data. A service only acts when it is called,
so a node providing a service will be inactive until then. It contains a clear text
message and a request to and a response from a service node.

2.2 Kinematics of the PERA

2.2.1 Introduction

The kinematics of a robot describes the motion of a manipulator without con-
sidering the forces and torques that cause the motion. It can be divided into
forward kinematics and inverse kinematics.

Forward kinematics is determining the position and orientation of the end ef-
fector with the values (angles) of the joints of a manipulator. Inverse kinematics
can be divided into inverse position and inverse velocity kinematics.

Inverse position kinematics is the calculation of the joint angles from the
position and orientation of the end effector and using these angles to control
the arm using forward kinematics. Inverse velocity kinematics is the calculation
of the joint velocities that in the end make the desired end effector velocity.

2.2.2 Inverse kinematics

In this thesis, inverse kinematics is used. The reason is that both the simulation
and the real world are defined in cartesian coordinates. These are uniquely
numerical coordinates in the form of (x y z). This is easier to work with than
joint angles of each of the seven joints and, moreover, people are used to working
with them.

To control an end effector, the joints between the end effector and a chosen
origin also have to be controlled. So with velocity control, the velocity of the
end effector is directly related to the velocity of the joints between the robot
torso and the end effector. The inverse joint velocity kinematics is calculated
according to the equation from Siciliano et all [19] which is for a nonredundant
nonsingular manipulator.

q̇ = J−1(q)
[

ṗd + Kpep

L−1
(
LTωd + KOeO

) ] (1)
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In this equation

� q̇ is the joint velocity

� J−1 is the inverse Jacobian

� ṗd is the desired end-effector velocity

� Kp and KO are positive definite matrices

� ep the position error

� ωd is the desired angular velocity

� eO the orientation error. eO = φd−φe or the desired minus the computed
set of Euler angles.

� L is the interaction matrix or image Jacobian matrix

This solution uses the geometric Jacobian and with that it avoids occurrences of
representation singularities, which would happen with the analytical Jacobian.
For calculating the position, the joint angle q is calculated using the generated
trajectory, an initial position in radian, q̇ and the time.

2.2.3 Transformations for the PERA

For kinematic modeling of the robot arm, coordinate frames must be established,
so positions and orientations can be represented, as well as transformations
among these frames.

A representation of this kinematic configuration can be obtained by using a
homogeneous transformation which is a matrix representation of a rigid motion.
For modeling a robot manipulator, the representation can be more simplified
by using the Denavit - Hartenberg or DH convention. This convention assumes
that

� a manipulator is made up of links and joints

� a joint is 1 DOF (Degree of Freedom) that is either revolute or prismatic

� there are n joints, starting from 1 to n where joint i connects link i− 1 to
link i

� there are n+ 1 links, starting from o to n+ 1 where o (origin) is the base
and n+ 1 is the end effector

� link i moves when joint i is activated

� link 0 is fixed to the origin

As mentioned, the inverse kinematics is concerned with the finding of the joint
variables in terms of the end effector’s position and orientation. However, there
may or may not be a solution that may or may not be unique. Eq. 2 taken
from Sprong et all [20] shows a 4× 4 homogenous transformation where R is a
rotation matrix and o is an origin.
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H =
[
R o
0 1

]
∈ SE(3) (2)

Then at least one solution has to be found for Eq. 3

T 0
n(q1, · · · , qn) = H (3)

where

T 0
n(q1, · · · , qn) = A1(q1) · · ·An(qn) (4)

H is the desired position and orientation of the end effector. In Eq. 4, homo-
geneous transformation Ai is a product of four basic transformations which are
shown in Eq. 5.

Ai = Rotz,θiTransz,diTransx,aiRotx,αi =
cosθi −sinθi 0 0
sinθi cosθi 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



×


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cosαi −sinαi 0
0 sinαi cosαi 0
0 0 0 1

 =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1



(5)

In Eq. 5, θi, ai, di and αi are the parameters joint angle, link length,
link offset and link twist, respectively for link i and joint i.

When a manipulator has at least six joints, it is possible to simplify the in-
verse kinematics problem by kinematic decoupling. This decouples the problem
into inverse position kinematics and inverse orientation kinematics. Simplified
for simulation, the PERA has seven joints, so the decoupling is applied and
there are two sets of equations, representing rotational (Eq. 6) and positional
(Eq. 7) equations:

R0
7(q1, · · · , q7) = R (6)

o07(q1, · · · , q7) = o (7)

The seven joints are revolute and therefore there are seven DOFs. This does not
change with the addition of the joint between the hand and the camera because
it is fixed. In reality, the shoulder, elbow and wrist are differential drives. For
the seven joints in the simulation there have to be transformation matrices.
These joints are

� shoulder roll

� shoulder pitch
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� shoulder yaw

� elbow pitch

� elbow yaw

� wrist pitch

� wrist yaw

In Fig. 3, the simplified coordinate frames and in Fig. 4 the position extremes
are shown.

Figure 3: Seven coordinate frames of the PERA

The parameters according to the DH convention for the inverse kinematics
of the PERA are shown in table 1. The link lengths a1, a2, a3 are 0 because
there is no distance between the joints and a5 and a7 are 0 because there is no
distance to the respective pitch joints.
The joint limits for the PERA are shown in table 2.
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Figure 4: Position extremes of the PERA

Table 1: Inverse kinematics DH parameters for the PERA

Link aj αj dj θj Explanation
1 0 −π/2 0 θ∗0 fixed to shoulder
2 0 −π/2 0 θ∗1 pitch joint directly connected to roll joint
3 0 π/2 0.32 θ∗2 yaw joint directly connected to pitch joint
4 0.32 −π/2 0 θ∗3
5 0 π/2 0.28 θ∗4 yaw joint directly connected to pitch joint
6 0.28 −π/2 0 θ∗5
7 0 0 0 θ∗6 yaw joint directly connected to pitch joint

a: length, α: twist, d: offset, θ: angle, ∗ indicates variable

Table 2: Joint limits

Joint θmin[rad] θmax[rad]
θ0 0 π/2
θ1 −π/2 π/2
θ2 −π/2 π/2
θ3 −π/2 0.95
θ4 −1.83 1.83
θ5 −0.99 0.99
θ6 −π/4 π/4

When axes y1...y6 are fully aligned, the PERA reaches the boundary of its
workspace which correponds to a singular configuration or singularity. Identify-
ing a singularity is important for a couple of reasons. For example, it represents
a configuration from which a direction or motion may not be possible.

The problem is to find joint velocities q̇ that give the desired end-effector
velocity ξ with the Jacobian kinematic relationship,

15



ξ = J(q)q̇ (8)

Note that J cannot be inverted in case of the PERA since this is only possible
for a square Jacobian, which means a maximum of six joints. So in case of the
PERA, the inverse velocity problem only has a solution if and only if rank J =
rank [J ξ]. Since the number of simulated joints of the PERA is more than 6,
it is kinematically redundant and the Jacobian cannot be inverted. There will
only be a solution to Eq. 8 if ξ is in the range space of the Jaocbian. This
implies that the inverse velocity problem can be solved using the pseudo-inverse
of J . Now if rank J = m and m < n, where m is the number of rows and n the
number of columns, the right pseudo-inverse of J is

J† = JT (JJT )−1 (9)

and JJ† = Im, where I is the unity matrix. Then the inverse velocity is calcu-
lated as

q̇ = J†ξ + (In − JJ†)b (10)

with b ∈ Rn being an arbitrary vector. J is computed using singular value
decomposition:

J = UΣV T (11)

where the columns of U ∈ Rm×m are the eigenvectors of AAT from a given
matrix A and the columns of V ∈ Rn×n are the eigenvectors of ATA. Both U
and V are orthogonal matrices and Σ is a matrix:

Σ ∈ Rm×n =


σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · σm 0 · · · 0

 (12)

In Eq. 12, σi ≥ 0 are the singular values of the matrix and eigenvalues λi = σ2
i .

Then the right pseudo-inverse of J is shown in Eq. 13

J† = V Σ+UT (13)

with

Σ+ =


σ−1

1 0 · · · 0 0 · · · 0
0 σ−1

2 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · σ−1
m 0 · · · 0

 (14)

2.2.4 Obstacle avoidance by Direct Trajectory Generation

The PERA has a reachable workspace, which is the space formed by all positions
that the end effector can reach. In this space, objects may be present that have
to be avoided. To avoid an obstacle, there are some methods to accomplish this:

� Using an online generated trajectory

16



� Using an offline generated trajectory

� Using controlled velocity

� Using a combination of methods

A trajectory is a path that has to be traversed within a certain amount of
time. Online generation means that the trajectory is generated during the
activity of the PERA. Advantage of this is that the trajectory can be changed
if necessary but it requires a complicated algorithm. Offline generation means
that the trajectory is generated prior to the activity of the PERA. Advantage
is a simpler setup, disadvantage is that any disruption can cause unforeseen
effects.

Trajectory generation is used to determine how the end effector has to move
to avoid other objects on the way to the destination object. The use of Direct
Trajectory Generation (DTG)[21] for obstacle avoidance means that constraints
can be dealt with immediately. Among these contraints are the positions of the
points along a trajectory, but also the maximum velocity at such a point. There
are two algorithms for avoidance:

� point-to point or simple

� multi-point

With the point-to-point algorithm, there is a starting and end point, which is
the avoidance point. For the multi-point algorithm, a via point is involved.

The DTG algorithms can be used in two ways: a vision determined starting
point and a user given end point or the other way around. With the point-
to-point algorithm, using a user given starting point and a vision determined
end point, the velocity of the end effector has to be reduced to zero at a short
distance from the object. So the control loop looks like Fig. 5, where q is the
constraint vector. Elements qf , q̇f and q̈f form an avoidance motion.

q = [qi, qf , q̇i, q̈i, q̇f , q̈f ] (15)

Figure 5: Control schema

This vector consists of
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� initial point qi

� final point qf

� initial velocity q̇f

� initial acceleration q̈i

� final velocity q̇f

� final acceleration q̈f

In this thesis, the simple trajectory is used. So after detection of the object, the
end effector moves from the starting point in a straight horizontal line along the
x axis. So the y and z coordinates do not change. In Fig. 5:

� ẋi is the velocity

� ẋc the current velocity

� xi is the cartesian coordinate

� t is the time

� x is the position

� ẋ is the velocity read

� q is the joint angle

� q̇ is the joint velocity

The DTG algorithm generates a 4 column table consisting of the trajectory:
time, position, velocity and acceleration. From this table, only the time, the
position and the velocity are used.
The motion of the PERA along the trajectory is shown in Fig. 6 where ts is
the start time and te the end time of the trajectory. It uses pseudo-inverse and
a Vandermonde matrix which is a matrix with the condition that each row has
to be a geometric sequence. Such an m× n matrix looks like Eq. 16.

Figure 6: Trajectory sketch

M =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2

1 α3 α2
3 · · · αn−1

3
...

...
...

. . .
...

1 αm α2
m · · · αn−1

m

 (16)

Originally a stand-alone C program with the trajectory as output written in a
text file, it is changed for this thesis into a program providing a ROS service
that generates the trajectory and writes to file once called.
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2.2.5 Determining the distance to an object

To avoid an object by using vision, it is important to generate a depth image.
This depth is used to determine the distance to an object. The properties of
coloured images contain the values x, y and z, which represent width, height,
and colour. The depth of an image is not known, i.e. the depth of each pixel in
the image.

The best way to generate a depth image1, is using stereo vision, which
generally utilizes two cameras. Stereo vision with one camera is possible as
well, when images are taken from different positions, see Fig. 7.

Figure 7: Determining the distance using one-camera stereo vision

When there is only one camera present at one position, the distance can also be
determined. This is usually under the condition that the geometrical character-
istics of the object are known. Downside of this approach is that the accuracy
will be lower than with stereo vision. In this case there are the following options:

� image-based visual servoing

� prior calibration with the object

� using the perimeter of the object

Image-based visual servoing uses a vector of object feature parameters and uses
e.g. the Speeded Up Robust Features (SURF) method, proposed by Bay et all
[22]. This method consists of 2 steps:

� fixing a reproducable orientation based on information from a circular
region around the interest point

� construct a square region aligned to the selected orientation and extract
the SURF descriptor from it

With this option, the geometric charateristics do not need to be known in ad-
vance. Disadvantages are that end effector trajectories cannot easily be pre-
dicted and it may produce collisions with obstacles.

With prior calibration, the width in pixels of each object has to be measured
at a known distance. By using the focal length of the camera, the next time
the distance is known by determining the width in pixels again. Disadvantage
of calibration is that it has to be repeated for each object.

1Siciliano, p. 409
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When using the perimeter, the distance is determined by subsequently thresh-
olding the image, applying the canny algorithm, find the contours (perimeter)
and calculate its length. Then the ratio of the perimeter and the prior known
geometric characteristics of the detected object is the distance. The larger the
perimeter, and thus the smaller the ratio, the shorter the distance to the ob-
ject is. Disadvantage of using the perimeter is that its calculation has varying
results.

2.2.6 Velocity of the end effector

The control of the velocity of the end effector is important for two reasons.
The first reason is that it enables the PERA to stop safely before reaching
the object. The second reason is that the motors used for the PERA have a
maximum safe speed. If this speed limit is broken, the motors will generate
more power than the power supply. When this happens, this over-power might
damage the motion controller boards. Table 3 shows the limits of the angular
speed of the motors as stated in the manual.

Table 3: Maximum motor speeds in rad/s
shoulder 1 & 2 shoulder 3 elbow 1 & 2 wrist 1 & 2

speed 1.47 2.27 2.8 3.54

The velocity of an end effector can be divided into two velocities:

� angular velocity

� linear velocity

The angular velocity is the velocity with which it rotates around its joint axis
and is measured in either radians per second (rad/s) or revolutions per minute
(rpm) where 1 rad/s = 0.104720 rpm. The linear velocity is the velocity along
a straight line and is measured in m/s. For completeness, the relations between
the velocities are given. For the used eye-in-hand system, the camera velocity
is expressed as

ξ =
[
v
ω

]
(17)

where v is the linear velocity and ω is the angular velocity. The relation between
the joint velocity and the velocities in Eq. 17 is the Jacobian J : v = JP (q)q̇
and w = JO(q)q̇ [23].
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3 Architecture and Implementation

3.1 Architecture

Figure 8: Global architecture

In Fig. 8 the global architecture is shown, where t = θ, w = ω, xd = ẋ, yd
= ẏ, a = α, d = distance. The architecture has a commandline user interface,
software and hardware modules, and can be simulated partially.

Next, the modules, functions and interfaces in the architecture are described
from the bottom upwards. Unless stated otherwise, where the interfaces ”write”,
”read” and ”send” are used in combination with software modules, ROS mes-
saging is used between the respective modules.

Description of module functions
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• The function of the module ”Data” is to contain both the textfile holding
the model of the object being detected and the textfile holding the trajectory
generated by the DTG.
• The module ”PERA” hides the physical PERA as well as the simulated ver-
sion.
• The module ”Camera” hides both the simulated and the physical camera.
• The module ”Display” hides a simulated as well as a physical display.
• The function of the module ”DTG” is to generate the trajectory along which
the PERA will have to move.
• The function of the module ”Fwd. Kin.” is to read, write and compare the
angles θi and velocities ωi.
• The function of the module ”Aquisition” is to capture the image from the
camera and send it both to the display and to the module ”Image segment.”.
The module is started by ”Image segment.”.
• The function of the module ”Inv. Kin.” is to calculate θi and ωi.
• The function of the module ”Image segment.” is to perform image segmenta-
tion by thresholding.
• The function of the module ”Difference” is to calculate the angles of the PERA
and the distance of the Tool Center Point to the object.
• The function of the module ”PI controller” is to control position xi, yi, zi and
ωi.
• The function of the module ”User” is to provide the commandline interface
that allows all modules to be started and ended as well as enabling the user to
fill the module ”Data” with object model data.

Description of the module interfaces

• ”Data” module: the object model and trajectory are read by the module
”Difference”.
• ”PERA” module: θi, ωi and distance d(xi, yi, zi) are read by modules ”Fwd.Kin.”
and ”Difference”.
• ”Camera” module: the image is captured using a ROS camera driver.
• ”Display” module: it receives the image from the ”Aquisition” module.
• ”DTG” module: after being triggered by the module ”Difference”, it writes
the trajectory data to a textfile.
• ”Fwd.Kin.” module: it reads the current angles θi and velocities ωi from the
modules ”PERA” and ”Inv. Kin.”. It writes angles θi and velocties ωi to the
PERA. The module is started from the commandline by the user.
• ”Inv.Kin.” module: it reads the PERA coordinates and velocities from the
controller, and afterwards it sends the results to ”Fwd.Kin.”. The module is
started by the user from the commandline.
• ”Image segment” module: via a variable it receives the captured image from
the ”Aquisition” module, and sends the segmented image to the module ”Dif-
ference”.
• ”Difference” module: It reads the trajectory and object model from the files
contained in the module ”Data”. Via a variable it sends d(xi,yi,zi) and the
actual model size to the module ”PI controller”. After a positive trigger, the
module ”DTG” is called. The module is started from the commandline by the
user.
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• ”PI controller : it reads d(xi,yi,zi) and ωi from the module ”PERA”, and αi
and d(xi,yi,zi) from the module ”Difference”. The module sends x, ẋ, y, ẏ, z
and ż to the module ”Inv.Kin.”. The module is started by the user.

Mapping of the modules

In the ideal non-simulation situation, the modules for image aquisition and
image segmentation are on the DSP, which is inside the dashed green area.

When the Gazebo simulation is active, the modules for PERA, camera,
display and image aquisition are performed by the simulation, which is inside
the dashed blue area. The rest of the system is outside the simulation.

The software and data inside the dashed red area is on the embedded system.
Outside the dashed areas, the user has to start the software, fill the datafile with
the object model and either manually switch on the PERA powersupply or start
the simulation.

Figure 9: PI control schematics of the implementation

In Fig. 9 the control loop is shown. After the start, a first set of data is sent to
inv.kin.. This sends angles θi and velocities ωi to fwd.kin.. From here this data
is sent and recieved in feedback. PERA, World and camera are necessary in this
process to get the image that has to be processed by imaging. This contains both
aquisition and processing. Based on the processed image, the object data and
the trajectory, the angles θi and velocities ωi are determined. The ”-1” block
is an integral action, which makes a controller error 0 if it reaches a steady
state. According to its manual, the PERA has a PID controller which is part
of the Xenomai real-time software and checks for error conditions on maximum
velocity and acceleration. Since the PI controller checks on the actual values
outside Xenomai, both controllers do not interfere with eachother.
Fig. 10 on page 24 shows the setup of the embedded system in the ideal situa-
tion when the DSP is used. In this situation the camera is directly connected
to the DSP via the special camera connector. The embedded system’s manual
does not state its standard or protocol. Fig. 11 shows the actual setup of the
hardware. As can be seen, both the PERA and the camera are connected to the
embedded system the same way while the simulation runs on a laptop, which is
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Figure 10: The ideal set-up for
the embedded system

Figure 11: Block schema of hard-
ware setup

an HP Elitebook 8530p with 4 GB RAM. Simulation is a way to find out if the
combination of a model and an algorithm can do the desired task. After a suc-
cessful simulation, experiments can prove whether the hardware and software
are indeed capable of the tasks.

Boundary condition and convention

The experiments on the physical PERA and simulations on the virtual PERA

Figure 12: Position extremes of the PERA with lengths

are done under the condition that the detectable object is within the reachable
workspace of the PERA. In contrast to the Amigo, the PERA is during the
experiments mounted at a static position. Therefore, considering the lengths of
the arm and end effector, shown in Fig. 12, any object further away than 40 cm
from the end effector is out of the reachable workspace when keeping the end
effector horizontally.
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There are several conventions for roll, pitch and yaw. The convention used
for this thesis is the same as stated in the manual of the PERA and as shown
in Fig. 13 on page 25.

Figure 13: The followed convention for roll, pitch and yaw

The manual of the PERA recommends a setup where the PERA is the only
device connected to the USB port. However, since this recommendation is from
2010, experiments have been done to see if this recommendation still holds.

3.2 Implementation

All modules are implemented in ROS nodes. A ROS node is a program that uses
ROS to subscribe or/and advertise to ROS topics. A ROS topic is a message
with which messages are sent between ROS nodes. Another possiblity is the use
of a ROS service. In this case, an inactive ROS servicenode is called by another
ROS node and after providing its service it will return to inactivity.

3.2.1 Forward kinematics

This node subscribes to the ROS topic advertised by the inverse kinematics
node and publishes the joint angles to the PERA after which the end effector is
placed in the position with the desired carthesian coordinates. These advertised
coordinates are used as feedback by the image processing node.

Angles

+callback(): void

+Angles(): constructor

+run(): void

+main(): int

Figure 14: Class diagram for forward kinematics

In Fig.14 the Angles class is shown, which is in the forward kinematics node
arm jref gen. The callback function receives the data from the inverse kine-
matics node and the PERA. The Angles constructor defines the subscription
to ROS messages and the publishing of ROS messages to other ROS nodes. It
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also calls the callback function. The run function makes it possible to pusblish
the data to the PERA.

3.2.2 Inverse kinematics

The algorithm used for the inverse kinematics is based on formula 3.89 for inverse
velocity kinematics from Siciliano and calculates the joint velocity q̇i = ωi×J−1.
Implemented in Matlab by dr. Dragan Kostić, it was ported to C++ for this
thesis. Reason for porting instead of interfacing Matlab and C++ is that one can
run only binaries autonomously on the embedded system. If Matlab exported
C code is used, Matlab is needed as well and besides the consumption of extra
resources, there is no Matlab version for the ARM processor. When Matlab is
used externally, it only supports the use of embedded system I/O by Simulink.

In Matlab all variables are either vectors or matrices, and any conversion
between them is done automatically. For C++, the Eigen3 library is designed
to use linear algebra. It enables the use of vectors and matrices with either fixed
or variable size. The class diagram in Fig. 15 shows the structure.

GeometricJacobian

+parameters(): struct

+rotation_matrix_Philips_arm(): MatrixXf

+rotx(): matrixXf

+roty(): MatrixXf

+rotz(): MatrixXf

+rpy2tr(): Matrix4f

+tr2rpy(): VectorXf

+Jacobian_Philips_Arm(): MatrixXf

+pinv(): MatrixXf

+callback(): void

+GeometricJacobian(): constructor

+run(): void

+~GeometricJacobian(): destructor

+main(): int

Figure 15: Class diagram for inverse kinematics

The rotation matrix Philips arm function calculates a rotation matrix for
the PERA and is called by the callback function. The functions rotx, roty
and rotz return a homogeneous transformation representing a rotation of θi
about their respective axis. The rpy2tr function returns an homogeneous trans-
formation for the specified roll/pitch/yaw angles. These correspond to rotation
about the Z-Y-X axes respectively. This function calls for the rotx/roty/rotz
functions. The tr2rpy function returns a vector of roll/pitch/yaw angles cor-
responding to the rotational part of the homogeneous transformation TR. The
pinv function is a C++ solution for the Matlab pinv function. It is taken
and adapted from the trajectory generation code. All these functions are used
or called by callback. The struct parameters defines the dimensions of the
arm, centers and weights of mass, mass moments of inertia and gravitational
acceleration.
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The node reads the x coordinate and the velocity ẋ at that point from
the textfile generated by the DTG node, calculates both the joint velocity and
angle and sends them to the forward kinematics node by advertising the rostopic
joints angle.

3.2.3 Image segmentation

This node is responsible for capturing the camera image and determining the
distance d(x, y, z) of the end effector to the object. For the communication with
the inverse kinematics node, the ROS topic im proc was created.The structure
of this node is shown in Fig. 16. The following functions are performed:

� image segmentation

� determination of the image perimeter

� determination of the object perimeter

� detection of object keypoints

� calculation of the geometric characteristics of the object by using contents
from the user provided geochat.dat file.

ImageProc

+GetThresholdedImage(): IplImage

+callback_ImageProc(): void

+callback_BB_Twist(): void

+ImageProc(): constructor

+run(): void

+~ImageProc(): destructor

+main(): int

Figure 16: Class diagram for image processing

The objective of image segmentation is to make it easier to analyse a digital
image by partitioning it into objects. The analysis is done by assigning a label
to objects or boundaries with the same characteristics. After this analysis, all
labels that are not wanted are removed. Next, the remaining object in the image
can be processed further to determine its size.

Figure 17: Image of tennisball by
daylight

Figure 18: Segmented image of
same tennisball by daylight
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On page 27, Fig. 17 shows a normal image of a yellow tennisball and Fig.
18 shows the same tennisball after segmentation.

The segmentation is done by thresholding, which means that the colour value
of 1 colour is used to separate everything with that colour from the image. The
resulting binary image shows the separated object in a black image. After the
segmentation, two methods can be followed to calculate the distance to the
object. For a successful calculation, the condition is that the distance between
the end effector and the detectable object is no further that 40 cm. Reason for
this is the reachable workspace limit as can be seen in Fig.12 on page 24. One
method is to determine the number of pixels of the perimeter. This is done
using the findContours and arcLength functions.

Using the length of the contour, the decreasing ratio of the full contour and
the object properties is a measure for the distance. Generally, the determination
is influenced by the position of the camera with respect to the end effector. The
end effector consists of the hand and a gripper. The length of the gripper is 10
cm, so if the camera is placed on the hand, the captured frame will correspond
to the coordinates of the hand.

If the determined object location is further than it actually is, the gripper
could make contact with the object while avoidance is the objective. So apart
from the reason mentioned in the chapter on kinematics, this is another reason
why the camera will be positioned on the gripper.

A second method is keypoint detection. The total length of distances be-
tween the keypoints of the perimeter is a measurement of the perimeter length
in pixels. From this, and the ratio of the complete image, the distance is mea-
sured. An example of keypoints is shown in Fig. 19. In this image, the small
circles are the keypoints.

Figure 19: Example of keypoints taken from [24]

For the implementation of this node, OpenCV is used. OpenCV is a library
that contains an API for different programming languages. API is the abbrevi-
ation of Application Programming Interface and defines functions needed to get
a specific task done. In this thesis C++ is used and although C++ is a subset
of C, the API’s are different in detail.

In Fig.16 on page 27, GetThresholdedImage performs the image segmen-
tation. The callback ImageProc function receives the image, calls the image
segmentation function and does the distance calculation. The callback BB -
Twist function receives the calculated distance and controls the velocities. The
run function sends the data using ROS messaging.
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Since the adjustment of the velocity depends on the distance determined by
the image processing, this takes place in this node as well. The camera velocity,
shown in Eq. 18, contains both the linear and the angular velocity.

ξ =
[
v
ω

]
(18)

With an eye-in-hand system, the camera can be attached either above or below
the wrist. In the latter case, the camera only observes the object and this
approach is chosen for this thesis.

Although eye-in-hand systems in general have the origin of the camera frame
move with linear velocity v and the camera frame rotate about the ω axis, , the
DTG algorithm only uses translation. This means that the camera is positioned
right in front of the detected objected, after which the distance is determined.

3.2.4 Trajectory generation

Cartesian coordinates contain position (x, y and z coordinates) as well as ori-
entation (roll, pitch and yaw). As mentioned earlier, the trajectory works by
translating along one cartesian coordinate. Reason is that the DTG works in a
2D image plane in which there are only x and y coordinates. So when moving
along more than one axis, a separate calculation is needed for each axis.

Unlike the other nodes, this node provides a ROS service and is called from
the image processing node until the call is successful and the trajectory is gen-
erated. The trajectory is written into a newly created file on disk which is read
by the inverse kinematics node. In Fig. 20 the class diagram is shown.

DTG_simple

+DTG_two(): void

+pinv(): void

+callback(): bool

+DTG_Simple(): constructor

+run(): void

+~DG_Simple(): destructor

+main(): int

Figure 20: Class diagram of the simple version of DTG

The dashed lines in Fig. 21 indicate that either one or the other happens, not
both at the same time.

Listing 1 shows that as long as the boolean variable traject is false, the
service will be called until traject is set true. The request of the service is the
starting x coordinate of the gripper, the responses are the x coordinate of the
end point and the velocity of the end effector at the end point.

The output of the trajectory generation in 1 direction is a table consisting
of 4 columns as shown in Table 4.
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service
request
successful

service request
failed: no response

service request
successfull:
response

Image processing
node

Trajectory generation
node

time

Figure 21: Schematic of a ROS service request

Listing 1: Code snippet of the call for trajectory generation
boolean no traject = true;

...
while (no traject)
{

if (dtg client.call(srv))
{

...
no traject = false;

}
else
{

ROS ERROR("Call to DTG failed");
}
...

}

Table 4: Columns of the original DTG trajectory
time x ẋ ẍ
1.000 . . . . . . . . .

... . . . . . . . . .
0 . . . . . . . . .

4 Embedded System

4.1 Introduction

Embedded systems are not described by a single definition. According to Vahid
et all [25], one can state that any computer other than a desktop computer,
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is an embedded system. Strictly speaking, this means that laptops should be
regarded as embedded systems although they are not accepted as such. Another
description can be that an embedded system is a computer that controls a device
that is not a computer. Examples for this one are a microwave oven, a washing
machine or a board computer. A property that goes for most embedded systems
is that they are usually based on ARM or (Atmel) AVR2 processors.

4.2 The board

Figure 22: Image of the BeagleBoard-xM taken from the referencemanual

The BeagleBoard-xM (BBxM) shown in Fig. 22 is a ARM-based board with
a clock-frequency of 1 GHz. It has a Texas Instruments Cortex-A8 compati-
ble Open Multimedia Applications Platform (OMAP) DM3730CBP System-on-
Chip (SoC) processor. The Cortex-A83 is a dual-issue superscalar CPU which
means that it is single-core using instruction level parallellism [27]. It is also a
RISC CPU, which means that it uses a reduced instruction set, compared to for
example Intel CPUs. Also, the Cortex-A8 is single-threaded. This means that
only one instruction can be executed at a time.

The OMAP3 is a heterogeneous multicore CPU because it is divided into the
ARM general purpose processor (GPP) and the TMS320C64x (C64x+) Digital
Signal Processor (DSP), with an L2 cache up to 1 MB, and 512 MB Low-Power
Double Data Rate (LPDDR)4 Random Access Memory (RAM)5.

The BBxM is targeted at the Open-Source (developers) community and not
intended for use in end-products. As such it is an board suited well to use
in experiments. Apart from the mentioned DSP, the BBxM has the following
properties:

2There is no official explanation of what AVR stands for, but it is commonly accepted that
it stands for Alf (Egil Bogen) and Vegard (Wollan)’s RISC processor, where Alf and Vegard
are the original architecture developers.[26]

3A indicates Application processor
4Because of its low-power it is very suitable for mobile use
5the volatile working memory of a computer
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� RS232 serial connection

� SMSC 9514 Combined USB/Ethernet

� DVI-D (digital video) output connection

� 512 MB RAM

Electrical demands show that the BBxM is very energy friendly, which com-
plies with a low cost solution. However, using the USB A ports requires that:

� the power input must be 4.75V-5.25V (ideally 5.0V).

� the USB hub must have a power cable and can not be powered by a USB
cable.

� 400mA for the BBxM plus up to 500mA per USB device. USB cameras
use around 150mA.

Figure 23: Ideal set-up for the
embedded system with connec-
tiontypes

Figure 24: Actual schema of
hardware setup with connection-
types

The place of the BBxM in the hardware setup is shown in Figs. 10 and 11 on
page 24. However, because of the difference between the ideal setup and the
actual setup, the connections are shown in Figs. 23 and 24. The Leopard Im.
cable in Fig.23 fits to the earlier mentioned 40 pins connector and delivers the
images directly to the DSP. The actual setup can cause connection problems
because the ethernet connection is an ethernet simulation over USB which is
dealt with by the earlier mentioned SMSC 9514 chip.

4.3 Embedded Linux

As with all embedded systems, the use of an operating system is required. The
choice is basically the same as for standard computers so one can choose Win-
dows Embedded or Embedded Linux. Because of its open character, Embedded
Linux is chosen. Linux is offered in many so-called distributions, of which three
were considered because of their use by the community for the BBxM:
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� Android [28]

� Ubuntu Linux [29]

� Ångström Linux [30]

According to Perneel et all [31], Android is not qualified for use in real-time
environments. Therefore the choice is between Ubuntu and Ångström. Ubuntu
fully supports ROS and, depending on tools, kernel-version and -configuration,
support for DSPLink while Ångström has full support for DSPLink and experi-
mental support for ROS. Because both the DSP and ROS have a keyrole in this
thesis, experiments are done with both Ubuntu and Ångström.

4.4 Real-time

The PERA works real-time, so the software using the PERA has to be able to
deal with real-time as well. Real-time can be divided into hard real-time and
soft real-time.

In the case of hard real-time, when an event can occur in e.g. a situation of
life and death, there is a deterministic deadline. In case of soft real-time, there
is a generally met deadline [32].

The Linux kernel is not real-time. Real-time functionality on Linux can be
achieved by adding real-time software to the kernel. The real-time software
used by the PERA driver is Xenomai [33] which is ”...a real-time development
framework cooperating with the Linux kernel, in order to provide a pervasive,
interface-agnostic, hard real-time support to user-space 6 applications, seam-
lessly integrated into the GNU/Linux environment.”

To be able to run the Xenomai sub-kernel with the Linux kernel, three
Xenomai packages have to be installed and the Linux kernel source has to be
patched with Xenomai prior to building it. These packages are:

� linux-patch-xenomai, the kernel patch that integrates Xenomai with the
Linux kernel

� libxenomai1, the driver that has to be loaded to access Xenomai

� xenomai-runtime

Since a computer can normally cope with only one kernel, there has to be
a way to control the cooperation between the computerhardware, the Linux
kernel and the Xenomai sub-kernel. This control is often taken care of by a
hypervisor, which is a software, firmware or hardware that creates and runs
virtual machines.

The hypervisor function is taken care of by Adeos, which is a nanokernel
HAL (hardware abstraction layer) that operates between computer hardware
and the operating system that runs on it. Figure 25 shows how Xenomai is inte-
grated with the Linux kernel. ADEOS is the abbreviation of ”Adaptive Domain
Environment for Operating Systems”, ipipe stands for ”interrupt pipeline”.

6User-space is ”the memory area where all user mode applications work and this memory
can be swapped out when necessary.”
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Figure 25: Graphical explanation of Xenomai/ADEOS

4.5 Computer vision

As the velocity control in this thesis is based on vision, a real-time and efficient
computer vision application progamming interface (API) is necessary. Such an
API is available as OpenCV [34] which is ”designed for computational efficiency
and with a strong focus on real-time applications”.

Since OpenCV is available for ROS, it is easy to use in nodes. It can also
efficiently use the memory, which is very important for an embedded system. For
example, the OpenCV Mat class automatically allocates output image memory
allocation for OpenCV functions. In this thesis the API is used to capture and
process images in aid to determine the distance to an object.

4.6 Camera

As mentioned earlier, this thesis uses a trajectory generation algorithm devel-
oped by Roel Pieters [12]. The equipment used for his work is shortly reviewed
here.

The camera that is used is the Prosilica GE680M, targeted at the professional
market and unavailable during this thesis. The available models are GE680 and
GE680C which both have a resolution of 640×480. The only difference between
these cameras is that the standard model delivers monochrome images whereas
the ”C” model delivers colour. Another important property is the framerate of
205 fps.

The BBxM has a 40 pins connector that supports camera modules from
Leopard Imaging [35], for example the LI-5M03. This way, a camera is connected
directly to the DSP, which makes image processing much faster than when a
USB camera is used. The modules are mounted directly on the BBxM. However,
the driver for the LI-5M03 requires an older kernel, while ROS requires a newer
kernel on which a USB camera can work. As a consequence, it is chosen to use
a USB camera. Because of the proprietary driver, the protocol used between
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the DSP and the camera is unknown.
The camera used for this thesis is a Logitech HD Pro Webcam C920, see Figs.

26 and 27. Its maximum resolution is 1920× 1080 with a maximum framerate
of 30 fps. Because of this framerate, the camera simulation in Gazebo is set at
30 fps. This setting can give a problem with the quality of the captured images.
Reason is that with a mains frequency of 50 Hz, an image captured at 30 fps
will not always have a constant result. In simulation, this problem does not
occur.

Figure 26: Logitech Pro Webcam C920: topview

Figure 27: Logitech Pro Webcam C920: frontview

In order to get a good view of what the BBxM is grabbing and deciding on, it
is best to view the camera images on a monitor, to test the properties of the
camera prior to using the ROS driver, Cheese and GUVCView are used.

4.7 Image Processing

To be able to use the full capacity for image processing on the BBxM, the DSP
should be used. Without using it, the BBxM will run the code but the images
from the camera will be processed using the same memory and CPU as is used
for ordinary data.

Like with any other hardware, a driver is necessary to get access to the DSP.
There are three drivers capable for this:

� DSPBridge

� DSPLink

� SYSLINK
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The choice is made by looking at the support for the SoC CPU. DSPBridge does
not support the SoC DSP/GPP combination of the DM3730 while DSPLink
does. SYSLINK supports access to the DSP from OMAP4 onwards, which
makes DSPLink the driver to use.

In combination with DSPLink, DSP/BIOS LINK [36] provides a small firmware
real-time library and tools for real-time analysis, runs on the DSP side and pro-
vides services such as:

� PROC (Basic processor control)

� Inter-Processor Communication protocols for different types of data trans-
fer between the processors

� Inter-Processor Communication building blocks which are low-level build-
ing blocks used by the protocols

Communication between the GPP and the DSP works as follows:

� messages are send to the DSP and received back using DSP/BIOS LINK.

� the message contents are verified against the data sent to the DSP

DSPLink is an API from Texas Instruments and comes with tools for commu-
nication between the GPP and the DSP. Its latest release brings Linux kernel
2.6.37 with it. To get the DSP working, both DSP/BIOS and DSPLink are
necessary.

The main processes are:

� a Linux application that loads and starts the DSP using PROC calls and
exchanges messages and data through message queues (MSGQ) through
a shared memory region which is configured using POOL.

� a DSP/BIOS application that starts after being loaded by the Linux ap-
plication and a task (TSK) receives and sends messages back to it using
the MSGQ and POOL structures.

4.8 Connectivity

Like other computers, the BBxM has several interfaces:

� a USB OTG port

� an ethernet connector

� an RS232 serial connector

� a USB-A hub

The USB OTG port is used to connect the BBxM to another computer by
ethernet over USB. This can be another BBxM or any other.

By using the ethernet connector, it can be connected to any ethernet net-
work. When inter-computer communication is needed, using the secure socket
layer (ssl) is recommended. Commands using ssl are:
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� secure shell (ssh): enables operating the BBxM over a secure connection
from anywhere the connection to the BBxM is established.

� secure copy (scp): enables to copy files from and to the BBxM over a ssh
connection.

With the serial connector, a terminal-like connection can be made with for
example a laptop, depending on the Linux kernel. When there is no other
connection available, and only textual output is sufficient, the BBxM can be
managed as well using minicom on Linux and PuTTY on Windows. ROS messages
can be sent over the serial port using ros-serial. However, for this thesis, this
is not recommended to use. Reason is that on the laptop, ROS Electric is
installed, while on the BBxM, ROS Groovy is installed and the ROS messages
of different ROS versions are binary different so the messages are mostly likely
misunderstood. ROS Electric is on the laptop because of the used version of the
Gazebo/Amigo simulation, and it was not available for the BBxM where ROS
Groovy had to be used.

The USB-A hub is suitable to connect various peripherals such as the PERA
and a webcam. Experiments have to show if they can be connected simultane-
ously or not.

37



5 Simulations

Figure 28: Sideview sketch of the Amigo simulation

As mentioned earlier, the simulations are done using Gazebo in combination
with the Gazebo simulation plugin for ROS. Gazebo is built on top of the Open
Dynamics Engine which is an open-source library. It allows the simulation of
rigid body structures that are connected via joints. The graphical rendering is
done by the Object-Oriented Graphics Rendering Engine. This 3D engine is
open-source as well.

As mentioned earlier, the simulation is run on a laptop. It uses an environ-
ment that consists of the simulated Amigo with a can and a monitor on a table
as shown in Fig. 28. For the simulation in this thesis, the monitor is not used.
This environment is designed by the Robocup@home team of the TUe and for
this thesis changed by

� relocating the can to coordinates

 x
y
z

 =

 0.85
−2.4
0.8


� rotating the Amigo by 90◦ to the right, pointing the right-side arm in the

direction of the can at the same y coordinate as the can.

� lifting the right arm of the Amigo in such a way that the end effector is
at the same z coordinate as the can.

This way the starting position

 0.718
−3.049
0.791

 of the end-effector should have a

distance of 40 cm from the object. With the maximum reachable distance of
the end-effector, this is a first test.

As described in the chapter on Robot Modelling, the URDF can contain
collision information. During some simulations it was noticed that the PERA
is able to go straight through the monitor as if it is not there. See the sketch in
Fig. 28. But since the simulation will only include the can and not the monitor
as an object that has to be avoided, this is of no concern.

In the original experiments for the DTG (see [37]), an object had been placed
between the initial position and the desired end-position. The object avoidance
causes the end-effector to reach a totally different end-position. This is not the
case for this thesis since the desired end-position will be at close distance in
front of the object.

38



5.1 RAM memory use

The amount of RAM in a computer has a major influence on simulations. The
first basic simulations are run on 3 GB RAM and exists of running

� Gazebo

� the Amigo simulation

� the forward kinematics node arm jref gen

� the three camera nodes image view camera out, image view camera out -
seg and image view camera out perimeter

� command rostopic echo /gazebo/link states/pose[43]/position, which
displays the x, y and z carthesian coordinates

� Eclipse SDK 4.2.2 with CDT plugin (for C++ development)

� Java VM 1.7.0 25

The simulation runs from the start of the simulation at ROS simulationtime
5.339 till 12.54. The amount of RAM in use during this simulation is (round)
2.9 GB. In order the find the memory used by Eclipse, Eclipse is ended and thus
removed from RAM. This shows that the difference in RAM use is only 2kB.
Running the inverse kinematics node pera 7dof inv kin, the top command
shows that it consumes 5560 kB. For extensive simulations, a larger amount of
RAM is better.

5.2 Influence of the Linux kernel

The speed of any application on a computer depends on both CPU speed and
the available amount of RAM. On 32-bits computers, a critical role is played
by the kernel for addressing RAM. A standard 32-bits kernel is able to address
a maximum of 232 = 4294967296 byte ≈ 4 GB. A 32-bits kernel with Physical
Address Extension (PAE) can surpass that limit. On a 64-bits computer this is
no issue.

On the laptop, the amount of addressed RAM is 3 GB while its BIOS shows
that 4 GB is present. A check on the kernel shows that the installed kernel is
a version without PAE. After installing a PAE-kernel, the free command shows
4 GB RAM. Running the same basic simulation as in the previous paragraph,
the break-down of the memory use is shown in Table 5 on page 40.
Table 5 shows a very different use of RAM than with the non-PAE kernel. The
total amount of RAM in use (1.07 GB) clearly does not even come close to
3 GB. It is not clear though, if this difference is completely explained by the
kernel change. This is not further investigated.

5.3 Start and end of simulation

After starting the simulation environment, the actual movement in the simula-
tion is started by the forward kinematics node. It is noticed that there if often a
delay of multiple seconds before the PERA actually starts its movement. Since
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Table 5: RAM use during basic simulation running on PAE kernel
Software Used RAM (bytes)
Linux + 1 terminal 657137664
2nd terminal added 659906560
3rd and 4th terminal added 666406912
Amigo simulation added 994598912
arm jref node added 1009180672
arm im proc node added 1045262336
5th terminal added and running echo position 1073025024

there is no delay in the nodes, the assumption is that it is caused by either the
Amgio simulation or by Gazebo.

The end of a movement in the simulation is often very slowly. This shows
that there is a velocity control active in either the Amigo simulation or Gazebo.
Since velocity control is part of the subject of this thesis, this built-in velocity
control has to be disabled in order to be able to test its correct working without
experiments on the real PERA. After examining the simulation software and
scripts, the built-in velocity control could successfully be disabled by changing
the start-script.

5.4 Memory allocation

All software that is used, is loaded into RAM first. Sometimes and at random
moments, but after running the simulation for some time, the image proc node
aborts giving the error terminate called after throwing an instance of
´std::bad alloc´. This error is no segmentation fault and thrown when the
program is out of memory or due to a stack overflow. A stack is a memory area
where data is added or removed according to the Last In, First Out (LIFO)
principle. Being out of memory is not the case, since the other nodes keep
running. Increasing the stack size by changing a software setting is a possible
solution but it does not explain why only this node aborts, and the others keep
running. Since the error is of intermittent nature, it is hard to determine the
cause and it is not further investigated during this thesis.

5.5 Minimum and maximum angles

Both the Amigo simulation and the PERA have minimum and maximum angles
for the joints. The minimum joint angle is when a joint is at its start position,
the maximum joint angle is when a joint is set to its utmost position.

When applying the minimum and maximum angles of the PERA to the
software, it shows that the roll of the shoulder is not responding correctly. It
turned out that the direction signs in the Amigo simulation are reversed for the
right-side PERA. So, as shown in Table 6, the range of the roll of the shoulder
Rs as stated in the manual is different than in the simulation.
Presumably, the ranges in the manual are correct for the left-side PERA. Also,
the values for the pitch movement of the elbow is very different in simulation
as Table 7 shows.
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Table 6: Difference in range between PERA and simulation. Angles in radians.
PERA simulation

min 0 -1.57
max 1.57 0

Table 7: Difference in angles (in radians) between PERA and simulation
PERA Simulation

min. -1.57 0.01
max. 0.95 2.22

5.6 Erratic behaviour

It is commonly known that most software contains errors of some kind, even
though it compiles without warnings or errors. Software that usually runs just
fine, can show erratic results that can possibly cause dangerous situations. Soft-
ware written for this thesis makes no exception.

The inverse kinematics algorithm mostly runs fine, with a start position at
q0 = [0, -0.45, 0, 1.6, 0, 0.4. 0]. However, sometimes it shows behaviour which
is not immediately reproducible. The following situations occur:

� after reaching its start position, the PERA starts moving and does not
stop.

� all angles become 0, resulting in the PERA stretched downwards. For the
real PERA this is a different position, as decribed earlier.

� the PERA takes an entirely different position with very different joint
angles and holds it position. See Fig. 29 for an example.

� after starting the pera 7dof inv kin node, instead of assuming its start-
ing position q0, one or more of the preset joint angles is set to 0. Despite
restart, this can randomly happen once or multiple times after eachother.

Figure 29: Erratic starting position
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5.7 Position of the shoulder

The Amigo version used in this thesis dates from end 2012/start 2013. In the
simulation, the height of the shoulder is flexible. If the arm is moving upwards
and the end effector gets stuck under a rigid object, the upper body of the Amigo
will slide into the lower torso. During the experiments, the PERA is mounted
rigidly on top of a table and is not compliant to any displacing force. As a
result, certain events during the simulation can not be compared completely
with the real PERA.

5.8 Determination of the size

As described earlier, two methods to determine the size of an object are to use
the length of its contour or to calculate the distances by using the keypoint
locations. With hindsight, these methods are also part of blob object detection
which could have been used. Examples such as [49] show it is possible.

The problem with using the first method is that neither the contour nor the
arclength prove to be constant. To get the best approximation of its length,
the contour and arclength are determined several times and the largest value is
used.

The problem with the second method is that often, keypoints are not aligned
in a single line along the perimeter but grouped together and thus can not be
used to calculate the perimeter length of the object. Corner keypoint detection
of the object is not possible either because those indicate corners of areas with
equal values instead of corners of an object.

As such, determining both the size of and the distance to an object with one
camera from one position is only feasible by approximation.

5.9 Direct Trajectory Generation

As stated earlier, the condition for a successful call to the DTG is such that
the distance between the end effector and the detectable object is no further
than 40 cm. In addition to that, the generated trajectory length is emperically
adapted from 1000 to 285. Reason for this adaptation is that the x value of the
trajectory is around 0.4 then, which is 40 cm.

Table 8: Results of trajectory generation with Direct Trajectory Generation
time x ẋ ẍ

1 2.5342e-08 7.59881e-05 0.151824
...

...
...

...
0.718 0.358696 3.13491 13.4103
0.717 0.361837 3.14831 13.377
0.716 0.364992 3.16167 13.3433

Table 4 on page 30 shows the generic contents of the output. Table 8 shows the
results of the Direct Trajectory Generation algorithm according to Roel Pieters
which works in 1 dimension.
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The table shows that the velocity and acceleration increase until halfway,
then decrease till 0. Since the end effector has to stop before the object is
reached, the trajectory has to be generated with the end point located before
the object as the sketch in Fig. 30 shows where A is the camera and B is the
object.

Figure 30: Trajectory between camera and object with avoidance location

After comparing it to the algorithm provided by D. Kostić, the length of the
trajectory is changed back to its original 1000. Reason is that the x coordinate
is calculated after measuring the distance so each coordinate will fit in.

The algorithm differs from the one provided by D. Kostić by the number
of elements in the trajectory vector. DTG returns 4 elements per direction (x,
ẋ and ẍ) and thus for a 2D trajectory has to be run twice. Since the inverse
kinematics algorithm in this thesis uses both x and y coordinates, the vector
returned by DTG is changed accordingly by adding y and ẏ and setting them
to 0.

5.10 Test trajectories

During previous tests, the PERA shows not to move despite of the generation
of a trajectory. Therefore a test is done to see if the end effector (and thus the
PERA) is able anyway to make a move following a given trajectory. First a
test is done using the original algorithm and simulation in Matlab. Its track is
replaced by 2 different trajectories and the result with both is that the PERA
follows its newly given trajectory perfectly and in time. Next, a trajectory
similar to the one created by the DTG is tested with good results.

Then the DTG-created trajectory is replaced by the same test trajectories
in the Gazebo environment. Result is that nothing happens. The correct ROS
messages are sent with the correct values, but there is no movement. So while all
tested trajectories are clearly good, some mechanism in the Gazebo simulation
prevents the trajectories from being executed. I was unable to find out which
mechanism is responsible for this failure.

5.11 Velocity control

In theory the angular, linear and joint velocities of the end effector can be
used to control the PERA. For excerting velocity control in this simulation, the
software nodes are dependent on the possibilities offered by the rostopics from
the Amigo.

The command rostopic list shows that the only accepted velocities are for the
joint: joint position, joint velocity and joint acceleration. As a consequence, the
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velocity control for this thesis can only be the earlier described ξ or q̇. Hence,
the node publishing the velocities only needs to publish the joint velocities.

5.12 Moving backwards

The Amigo simulation is complex software and the used version is not supported
by the Amigo team. Since the start of this thesis, it is noticed that the Amigo
is prone to very slowly move backwards, as shown in Table 9. Since with any
position the Amigo is in, its back can be in a different direction, this movement
is independent of a coordinate. As a result of this backwards move, the working
space will change and the object gets out of the reachable working space. This
phenomenon is unknown to the Amigo team.

Table 9: Backwards move of Amigo in simulation
time (h) x (m) y (m)

0.18 0.60 -2.37
1.34 0.57 -2.365

Because the Amigo is facing the object in the x direction, the backwards move
is also in this direction. The shown coordinates are of the amigo::finger1 -
tip right link which is a finger tip of the right-side hand.

5.13 Reaching a given coordinate

The first inverse kinematics test in the simulation is done using the inverse
kinematics node that comes with the Amigo simulation. An attempt to move
the right-side end-effector over a distance of 1 cm after reading the cartesian
coordinates of the right hand results in very erratic behaviour such as complete
displacement of the robot. Subsequent attempts of changing coordinates, re-
ducing or enlarging the required distance and comparing coordinate systems do
not give the desired result. After checking on the source code it turns out that
the inverse kinematics algorithm is not fully implemented and does not work.
This is confirmed by the Amigo team.

The decision is made to use a Matlab implementation by Dragan Kost́ıc
instead, which is written with the Amigo in mind. After porting the code from
Matlab to C++, the kinematics are still wrong. Since the simulation is started
with start.launch, this file is checked and it turns out that the node amigo -
velocity kinematics might interfere. After disabling this node, the inverse
kinematics node seems to work correctly.

The first series of tests is without the use of the DTG algorithm. The
objective is to reach the can at the coordinates (x, y, z) = (1, 2.4, 0.8). To
accomplish this, the robot is turned clock-wise over an angle of 0.78rad or 45◦

and the maximum linear twist is set at 0.5. From the starting position, the
arm starts with a delay of several seconds and then moves to the correct x
and z coordinates. The y coordinate is not reached, seemingly because the end
effector collides with a table edge. An oddity is also that the orientation of the
end effector changes: it tilts to the left and back to horzontal. This is corrected
by comparing the orientation of both left and right end effector and adjusting
if necessary.
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After finding the coordinates of the fully stretched arm using forward kine-
matics pointed towards the can, it shows that the given final end effector co-
ordinates are actually outside of the reachable workspace of the arm. It also
shows that the coordinates of the end effector (and thus of the whole robot) are
world coordinates. To solve the workspace problem, two corrections are made.
The first correction is that the x coordinate of the can is changed to 0.9 which
is the edge of the table. The second correction is that both x and y coordinates
as well as the rotation of the Amigo is changed, so that the Amigo faces the
table head-on.

After starting the simulation, the PERA moves towards the position where
it detects the object. However, not all joint angles are immediately calculated
correctly. During the tests it takes up to 6 restarts of the simulation before
the initial position is calculated correctly. Since the algorithm by D. Kostić is
proven to work in Matlab, it remains unclear why this happens.

5.14 Reaching a detected object

A detected object can be reached by searching for an object with a distinct
colour. After that, the length of the contour of this object has to be determined.
With the contour length, the ratio between the image contour and object’s
contour is calculated. Based on this ratio, the speed is determined: the larger
the ratio, the faster the speed. As described earlier, the problem with using the
contour length is that the contour is not always constant. The use of keypoints
has the problem that its number is not constant and they are not equally spread.

As soon as the presence of the object (the can) is detected, the speed is
adapted according to the distance. It is clearly visible that the end effector
approaches the object, reduces the speed and stops. However, instead of coming
to a full stop, the arm withdraws a bit and then comes to a full stop while the
nodes keep running. This also happens when the nodes are stopped.

This suggests that there is either a node or some other lower level process
working during the running of the nodes. However, when observing a map of
ROS activity using rxgraph both during and after the running of nodes, no
interfering node or process is shown.

During most simulations it is observed that the PERA, and thus the end
effector, withdraws after reaching the coordinates in a fading oscillating move-
ment. Since efforts to eliminate this have no effect, the conclusion is that this
is a hard-coded movement in the Amigo simulation.

5.15 Observations after tests

A couple of times, after all four nodes are stopped, the PERA moves into a very
different position. This happens either shortly or some time after ending the
test. This time is not measured. Examples of these positions are

� fully stretched down

� fully stretched horizontally sideways

Unfortunately, it remains unclear what the cause of this behaviour is. The
Amigo team declined to help since it was an outdated and thus unsupported
version of the simulation. Using a new version of the simulation would at least
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require an operating system upgrade of the laptop and an upgrade of ROS with
a rewrite of software to solve ROS incompatibilities. However, since several
observed issues were unknown to the Amigo team, it remains unknown if those
would have been solved.

5.16 Conclusion

The objective of the simulations was to test the designed software architecture
and modules and find out if these met the expectations.

Tested were both forward and inverse kinematics with and without trajec-
tories, with given and generated trajectories.

The forward kinematics seemed to work well, but the application of inverse
kinematics and trajectories did not function at all in the Gazebo simulation.
The inverse kinematics from the used Amigo simulation is present in basis, but
it is not functional. An inverse kinematics algorithm from dr. Dragan Kostić
and the trajectories showed no problem in the Matlab simulation environment.

It turned out that the Amigo simulation had issues such as a continuously
moving robot with random erratic behaviour. Since the used version of this
simulation went out of support during this thesis and is complicated software,
it was hard to determine what the causes of the problems were.

Although the Amigo simulation was used both to save time and to not
reinvent the wheel, developing a PERA simulation would probably have been
better.
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6 Experiments on the physical robot and em-
bedded system

The experiments are done both with the laptop which is used for simulations as
well, and on the BBxM. It should be noted that for the simulation as provided
by dr. Dragan Kostić, the gravitational acceleration was defined as g = 0.
However, for the experiments this value can not be used since in the Netherlands
on average goes that g = 9.81m/s.

Considering the ROS website and various sources on the internet, Ubuntu
and Ångström are the two Linux distributions that are most used for ARM-
based embedded systems with ROS. The objective of the first experiments is to
see which of these distributions can be used on the BBxM to work with both
the DSP and ROS.

The use of the BBxM in this thesis was intended to be a small part, but as
a result of the ongoing experiments its part gradually became larger.

6.1 ROS on Ångström

In order to get Ångström to run on the BBxM, the file u-Boot.bin has to be
placed in the boot partition. To ensure the correct use of memory, uEnv.txt is
necessary as well.

It is available with either console-only or desktop environments XFCE or
Gnome. The use of a graphical environment is practical because of the use
of the camera to check for the object. Since the use of resources by XFCE is
known, and for Gnome is about 500MB, it makes the choice easy.

ROS is available via OpenEmbedded Layer [38] and is cross-compiled using
bitbake from the BeagleRos project [39]. OpenCV is available via repository.

Although DSPLink is readily available for Ångström, and the communication
with the DSP usually works well, testresults using example applications from
TI show that its working is not guaranteed. It also shows that even with two
successive runs of ./helloDSPgpp helloDSP.out 5, intending to send 5 messages
back and forth between GPP and DSP, the first run goes well and the second run
shows (amongst other) a message ”DSP-side configuration mismatch/failure”.
The only way to get the GPP-DSP communication working again, is a restart
of the BBxM. When helloDSPgpp fails, the other available example application
poolnotify (which uses the 4096 bits stack) will fail as well and vice-versa. If
the communication with the DSP works well, running helloDSPgpp gives an im-
mediate result showing that 5 iterations took ”0 seconds and 976 microseconds”
(time may vary).

Apart from the DSP/GPP communication, ROS has to work on the BBxM
as well. To accomplish this, several experiments are done to install ROS on the
BBxM. These experiments using the earlier mentioned OpenEmbedded show
that ROS is only available when a experimental Linux kernel is used. Any
image created with this kernel does not boot the BBxM, despite adjusting the
boot partition. Although the support for the OpemEmbedded software indicates
that BeagleBoard is supported, this does not include the BBxM. Results of the
experiments confirm this. Also the use of an image with a stable Linux kernel
shows that it is not possbile to install ROS in the BBxM using Ångström. Since
the challlenge of the work is to combine both a DSP and ROS, the experiments
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continue using Ubuntu.

6.2 ROS on Ubuntu

Since ROS for ARM is listed on the ROS installation page, though experimental,
it is assumed that a basic installation and eventual needed dependencies are
available from repository.

To use Ubuntu, the last supported desktop version for armhf is 12.04 which
comes just like the x86 version with the Unity desktop installed. Since this
desktop is a memory hog and slows down all activities, tests have been done
with a few other low-memory desktops to free up memory. For optimal use of
the memory the following setting and applications were used:

� LXDE [41] desktop which needs 256 MB RAM for minimal installation
with graphical environment to have as much memory available as possible
for applications and being able to view the camera output.

� FVWM [42] desktop which needs less than 256 MB, but does not handle
the mounting of USB devices nicely.

In the end however, to ensure that as much memory is available for this
thesis, no desktop environment is used. Instead all activities are done using
”ssh -X” sessions so all graphical output is shown on remote desktop.
After the first minimal installation of ROS Groovy and coying the sourcecode
of the nodes to the BBxM, building the arm image proc node shows that quite
a few more ROS packages are necessary.

An issue is that ROS Electric uses a different vision library for capturing
images than ROS Groovy. So this is changed and due to differences with camera
drivers the ROS version on the BBxM is changed to Hydro.

With both a laptop and an embedded system available, several hardware
combinations to utilize the PERA are possible. The following experiments are
considered to find out which hardware combination can be used:

� using only the laptop and the PERA, which means that both the camera
and the PERA will be connected to the laptop.

� using a laptop, an embedded system and the PERA. This means that the
PERA will be connected to the laptop and the camera will be connected
to the embedded system. The imaging node is running on the BBxM while
the other nodes are running on the laptop. The imaging node will use the
DSP.

� using ”full embedded control”: both the camera and the PERA will be
connected to the embedded system. Like with the previous option, the
imaging node will use the DSP.

The first experiment is carried out without the camera and shows that the
PERA can immediately run a homing task from Philips without any problem.
An experiment with camera only shows no problem either.

The second experiment can not been carried out. Reason for this is that
the ROS versions on the laptop and the BBxM are different and the serial
communication node provided by ROS is not available for the version on the
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laptop. Apart from that, by experts it is highly recommended to not use more
than one version of ROS at the same time. Reason for this recommendation is
that the messages differ for each ROS version and as such can give problems
when messages from one version are misinterpreted by the other.

The third experiment starts with letting the PERA do the homing task.
However, instead of a smooth move, the PERA starts to oscillate. The BBxM
manual states that all four USB ports have full LS/FS/HS support.

With this last result, the settings of the PERA software are changed to only
reading the joint angles. It shows that these can be read out well, but with both
a delay and an error message about a failing amplifier board #2. According to
the PERA manual, this is the RT-Motion USB #3 board which interfaces both
with the shoulder rotation motor and encoder and with the gripper motor and
encoder. After reconnecting the PERA to the laptop, it works as before. The
suspicion is that there is a timing issue at hand, but since the manual does not
provide timing data, this can not be confirmed.

Regarding the connection of the PERA to any computer, the manual of the
PERA recommends that no other USB devices should be used at the same time
as the PERA. This leads to the experiment of disconnecting the camera, mouse
and keyboard from the BBxM after starting the homing task. However, this
makes no difference since the PERA starts to oscillate again. The only difference
with the first oscillation is that there is no message about the RT-Motion USB
board and the oscillation starts at the wrist instead of at the shoulder.

Regarding the use of the USB ports, the manual of the BBxM states that
for power-consuming peripherals, a power supply should be used that delivers
more than 1.5A. So the next experiment is to use a power supply delivering 4A.
This makes no difference compared with the previous experiments.

To be sure, the PERA is tested again on the laptop and shows no problem.
This leads to the assumption that the USB communication as used by the
RtMotionUSB boards is not compatible with the BBxM.

Another considered cause is a difference in endianness. Endianness is the
sequence in which the least and most significant bit 7 (lsb and msb) are placed.
With little endianness, the lsb is placed at the right-hand side of the number as
is the case with the decimal numbersystem.

Intel-based computers are by default little endian, while Cortex-A8-based
computers are mixed-endian [40]: instructions are fixed little endian, data access
can be set to either little or big endian. This is controlled by the E bit in the
Program Status Register. A quick programmed test reveals that the output is
little endian. With this result, the endianness is ruled out as a cause.

As discussed previously, to experiment with the DSP, a driver is necessary.
The process of creating both the GPP and DSP side of the software does not
go smooth, despite the good and comprehensive guide from Texas Instruments.
Another issue is that there actually is support for the OMAP3530, but not for
the DM3730, probably because both are considered to be more or less equal.

Continuing with the BBxM, the nodes are copied and compiled. It shows
that the nodes have many ROS dependencies that are being installed via internet
during compilation.

For the following experiments, the imaging sofware will have to be compiled
with the special DSP toolset in order to make optimal use of the DSP.

7BInary digiT
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6.3 DSP driver

The utilization of a DSP is part of this thesis. The objective of these experiments
is to test the use of the DSPLink driver using either Ubuntu or Ångström.

For Ångström, the first option is to use the tools from the Embedded Systems
group at the Delft faculty of Electrical Engineering, Mathematics and Computer
Sciences (EEMCS). Requirements for a successful compilation as stated by them
are

� keeping the kernel magic the same

� cross-compiling the toolchain

� using gcc 4.7 for armhf architecture

As it turns out, this software is different in that the Linux distribution they
offer is using Ångström kernel 2010.7-test-20110220 and it is designed for the
standard BB . As described earlier, running a short helloDSP communication
test ends after a random number of runs with the message that communication
failed. So although the DSPLink driver does work, it is not stable. This is
confirmed by Texas Instruments telling that the type of DSP on the BBxM is
a different model than on the BB. However, a version of the test for the BBxM
is not offered.

The second option is the Narcissus website [43]. Here it is made easy to
create Ångström images with DSP. Upon testing though, the driver shows the
same behaviour as with the software provided by the EEMCS. After various
forum inquiries, it turns out that these images are for the standard board and
thus for the OMAP3530. The driver does work, but as before not very stable.

A third option is Circuitco website [44]. This website offers the image as
delivered with the BBxM but not the DSPLink driver. Cross-compiling is nec-
essary but very tedious using the same options as at EEMCS:

� Normal: -mcpu=cortex-a8 -mfloat-abi=hard -mthumb-interwork -march=armv7-
a -mfpu=vfpv3-d16

� Speed: -mcpu=cortex-a8 -mfloat-abi=hard -mthumb-interwork -march=armv7-
a -mfpu=neon -funsafe-math-optimizations

� Safe: -mfloat-abi=hard -march=armv7 -mfpu=vfpv3 geen fpu: -mfloat-
abi=softfp -march=armv7

Despite that the compilation goes well, the remaining problem is that ROS has
to work as well. And previous experiments on the BBxM with Ångström show
that this is a combination that does not work.

The next part of this experiment is to get DSPLink working on Ubuntu.
Ubuntu is available in different versions, such as 12.04 LongTermSupport (LTS)
and 13.04. Because of the support of the LTS version till 2015, this one is
chosen.

For using the DSP, the DSPLink driver has to be built against the Linux
kernel, using the toolset offered by Texas Instrumments and the recommended
Lite version of the cross-compile toolchain CodeSourcery. After cross-compiling
the same kernel version as used on the BBxM and building the DSPLink driver
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against it, it turns out that the driver is built for the ARMv6 architecture,
instead of ARMv7.

One reason turns out to be that although it is recommended to use CodeS-
ourcery, it only compiles for armel (ARM EABI Little-endian), not for armhf
(ARM hard-float). For armhf it is recommended that the Linaro toolchain is
used. However, after adjusting the toolchain, the driver is still compiles for
ARMv6. Searching the configuration files, autoconf.h shows that the kernel is
prepared for ARMv7 but that an omap3 beagle defconfig configuration file is
missing so it cannot be built for ARMv7 in combination with a kernel. Checking
various kernels shows that this configuration file is only delivered with the TI
toolchain. Attempts to use the configuration file with a current kernel end up
without usable result.

Conclusion of this series of experiments is that although various posts on
the internet forums show that the driver works fine, this does not apply to the
BBxM.

6.4 Real-time

The real-time part of a Linux kernel consists of third-party libraries. The build
of the necessary Xenomai libraries succeeds with the help of Paul Corner, who
provides a patch for the (until Feb. 2014) unsupported armhf architecture. The
armel architecture already was supported.

After patching the kernel, cross-compiling it for Xenomai goes well and a
linux-image is created. Installation following the normal procedure with the
dpkg command and subsequent booting results in hanging of the BBxM. The ten
next experiments with changes with respect to debugging and display drivers
have the same result. Then using a different way of compilation which ends up
with a uImage and placing it directly in the boot partition results in a working
situation.

On recommendation from the Xenomai experts, Xenomai 2.6.3 and its latest
supported kernel 3.10.18 is used. With this, the Xenomai kernel boots and the
Xenomai tests results are as expected. However, in order to use the PERA,
ROS::master must be running. This is started with the roscore command and
although it starts, it does not start the ROS::master. As a result, the PERA can
not be activated. Installing ROS Hydro gives the result that roscore starts and
gives the message unable to contact my own server at [http://BBxM:<port>],
where port is e.g. 11311. This message would be due to networksettings, but
these are correct. Further tests show no improvement.

Another option is disabling the graphical environment on the BBxM and
only have graphics via ssh -X. Although this works and xterm can be used,
the working of roscore does not improve. See table 10. For a comparison, ker-
nels 3.2.51 and 3.10.18 also are installed on a computer with a 2 GHz AMD
AthlonXP 2400+ CPU and 2 GB RAM, with the ability to boot the 3.10.18
kernel with and without Xenomai. On this computer, no problems are found.

In order to find out possible causes, the following experiments are done:
Testing and possible replacement of the Python version, since roscore is a

Python script.
Result : valgrind roscore shows errors on both the testmachine and the BBxM
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Table 10: Results of starting roscore and ros master
kernel xenomai roscore via ssh roscore via ssh -X
3.2.51 n y y
3.10.18 n n n
3.10.18 y n n

while the roscore problem only occurs on the BBxM. So this can not be the
cause of the problem.

Reading from /proc by top and ps to find a difference between testmachine
and the BBxM.
Result : on the BBxM top stalls while ps works correctly, on the testmachine
everyone works as expected. Running busybox top shows no difference but the
use of busybox excludes version mismatches and library issues. However, it does
not reveal a real cause of the problem.

Running strace -p <roscore pid8> to find out which pid is running last.
Result : it becomes clear that a futex systemcall, which is a fast userspace locking
mechanism, is the last action before stalling. strace stalls an indefinite time,
until Ctrl-C is pressed. roscore still runs until the pid is killed. Like the previous
test, it does not reveal the cause.

Testing Xenomai on the 3.10.18 kernel. Although the patch for this kernel is
available for both the ARM and the x86 architecture, the developers state the
patch is not officially released and thus not supported. Despite of this situation,
an issue with transition to cpu-idle mode was fixed with a patch that is made
available. However, since the running of roscore is not dependent on Xenomai,
the patch is not applied.

Using ROS Hydro on kernel 3.10.18 to find out if this combination works.
Results: roscore starts once including the ROS::master. However, when starting
the Orocos wrapper, errors appear that stack/packages can not be found. This
can be solved using rosws set <name of package>, but this is a ROS Hydro
solution only and therefore not further investigated.

By incident, checking the time shows the following. The date command
shows that the systemdate and time on the BBxM runs fine on kernel 3.2 but
does not on kernel 3.10.18: time stops running after boot. It turns out that
the OMAP MCBSP option for enabling the clock is missing from the 3.10.18 kernel.
Without the time running, real-time activity is impossible. It turns out that
mcbsp as part of SND OMAP SOC MCBSP is relocated to the alsa sound. After
enabling this kernel-option, testing shows that both the network and USB fail for
the 3.10.18 kernel. Reverting the MCBSP setting does not re-enable the network
and USB. However, with kernel 3.14 configured with the configuration used for
3.10.18, it shows that the network works and roscore and top run fine. Drawback
is that there is no Xenomai patch for the 3.14 kernel yet. Further tests show
that while package management was an issue on the 3.10.18 kernel, it works fine
on the 3.14 kernel.

According to the ROS site, ROS Groovy is supported up till Ubuntu 12.10
Quantal which runs a kernel from the 3.5 series. So the next experiment is to
try kernel 3.5.7, as this version is also supported by the same Xenomai version.

8Process ID, a number assigned to a running system process or activity
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Results: the network does not function which is indicated by the lights being
off. Also both the mouse and keyboard are unresponsive. According to [45] this
is due to a kernel bug that causes EHCI USB to fail. Following a recommen-
dation to update the bootloader u-boot.bin according to [46] the result is a
boot ending with a kernel panic and the message VFS: Cannot open root device
”ubi0:rootfs” or unknown-block(0,0): error -19. After examining the serial con-
sole output, it turns out that the boot sequence wants to boot from a zImage
kernel instead of uImage. After adjustment to boot from a zImage, there is no
improvement so the 3.5.7 kernel is of no use.

The next experiment is to see if the last kernel supported by this Xenomai
version will run on the BBxM: the 3.8.18 kernel.
Results: the network does work in such a way that an IP address is requested.
However, establishing an ssh session is denied and a ping command receives
no response. The video stays black with the message that the 19 inch monitor
is unable to handle the resolution delivered by the TFP410 videochip of the
BBxM. Because of the EHCI patch experience with the 3.5.7 kernel, the result
for this kernel is expected the be same so the 3.8.18 kernel is of no use.

The latest kernel being used for this thesis is 3.14 but since the still ongoing
development of the Xenomai patch during the final stages of this thesis it is not
tested.

6.5 The Eigen library

For the use of both the Direct Trajectory Generation algorithm and the inverse
kinematics algorithm, the implementation is adapted for use with ROS Hydro
on the BBxM. Reason for this is that ROS Electric, which is used in the simula-
tion, is the last version for which the Eigen functions are native to ROS. Since
then, the Eigen library is an operating system dependency and as such has to
be installed by the operating systems’ package manager. The adaptation is a
change in the manifest.xml file of both the DTG and the inverse kinematics
node.

6.6 Camera behaviour

The following experiments with the camera are done to see if and how a camera
can be used for this thesis.

Earlier in this thesis the option is mentioned to mount a camera like the
LI-5M03 directly on the BBxM. For this thesis, direct mounting of this camera
requires the BBxM to be located on the end effector, which is not practical con-
sidering its interfaces. The solution is to use a cable to overcome the distance
between the BBxM and the camera when it is located on the end effector. How-
ever, the necessary driver is only supported for the 2.6 kernel used by Ångström.
Considering the results of the experiments with ROS on Ångström, this is no
solution for this thesis.

The Logitech camera used for this thesis, is tested using both laptop and the
BBxM with a variety of software. On the laptop, the cameratools GUVCView
and Cheese are used to find its specifications and possible speeds of capturing
images. For its use with ROS, the gscam driver is used.

On the BBxM, the aforementioned cameratools are used, as well as 3 ROS
camera drivers that fit the used ROS versions. Also, to find the effect of memory
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use, various desktop environments are used: fvwm, LXDE and XFDE. In the
end, the desktop environments are all discarded because of the use of graphics
via ssh -X.

Reasons for using the different environments is to find out the difference in
support for drivers between the releases and the difference in support between
the x86 and ARM platforms.

Because of the support of drivers by Ubuntu versions 12.04 and 13.04, both
have been tested. The final result is that version 12.04 is used for most experi-
ments. The results with 12.04 are described next.

In order to be able to see what the camera captures, there are two appli-
cations being recommended: GUVCview and Cheese. These application will not
be used by the rosnodes because the gscam rosnode will be used.

As expected, on the laptop there is no problem at all. With both applications
all moves in front of the camera were shown on screen without delay.

The results on the BBxM are different. Since Cheese works well on Ångström,
but crashes on Ubuntu 12.04 and GUVCView works well on both, the latter is
chosen.

Using GUVCView it shows that while the frames-per-second (FPS) settings
at 30 with a resolution of 640 × 480 are the same, a relatively slow movement
in front of the cam goes fine, but a fast movement shows a delay of about 1
second. Since the homing test shows that the PERA can move quite fast, and
the response has to be made in real-time based on the captured images, this can
be a real problem. Therefore, the velocity of the PERA has to be limited so the
images are shown on screen in real-time. Also, the images must be grabbed at
high speed. In the setup, GUVCView can be set to a net frequency of either 50
or 60 Hz. Changing from the standard of 60 Hz to 50 Hz does not improve the
capturing response.

While on ROS Electric the gscam driver is used, on ROS Groovy and Hydro
this driver does not work. On both the BBxM and the comparison machine,
attempts with gscam result in error followed by a core dump. After consulting
ahendrix (ROS armhf developer) the uvc camera driver for Hydro is used in-
stead. After changing the camera permissions to 444 (rw.rw.rw.), it runs as a
separate node and provides input for the image processing node. Since the sim-
ulation uses Electric, 2 nodes BBxM need adaptation for ROS before running
on the BBxM. This adaptation shows that in some cases there is no backwards
compatibility with ROS. This concerns the Eigen library, used for matrix calcu-
lations in C++ which needs a change in the CMakeLists.txt and the imaging
code which needs a complete rewrite.

For Hydro, the camera node uses the uvc camera driver which by default
uses 2 cameras. In order to use only 1 camera, the option uvc camera node is
used. It shows that the camera calibration is not always good. In such a case
very vague and/or very bright images are streamed. The solution is to restart
the camera node until the streamed images are good.

For completeness, the results with version 13.04 are described next. It turns
out the situation for viewing the camera is the other way around. GUVCView
meets with an malfunctioning ALSA installation while Cheese does start. Started
from a terminal window error messages failed to create a pipe screen for omap,
failed to open omap and Can’t record audio fast enough. The image refreshrate
in the Cheese window is very slow, and with the resolution set to 640× 480, the
capture rate in burst mode can not be set faster than with a delay of 1 image
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per second. Since this is too slow, the camera can not be used. Testing this
with on a regular computer, there is no problem with GUVCView.

6.7 Latency of the camera

The images taken by the Logitech camera are shown with a latency. There can
be several reasons for this.

The net frequency can be of influence with respect to the fps. In simulation,
there is only latency caused by the modelling-induced fps. In reality, if the net
frequency is not the same as the frame rate, black images may occur in the
output. In this thesis, this has not been experienced.

The frame rate of the real camera may differ from that of the simulated
camera. The simulated camera used in this thesis, is set to 30 fps. Using the
GUVCView tool, the fps of the real camera can be set at various values. For
the libuvc camera driver, this value is set in the launchfile and the fps shows no
issue.

The computer properties can be major influences since image processing is
dependent of the amount of system memory (RAM), the CPU speed, the used
vision algorithm and the availability and use of digital processing hardware such
as a DSP. As described earlier, the DSP is not used in this thesis. Since the
RAM and CPU speed can not be changed, the only variable for optimization is
the vision algorithm. For this, OpenCV is used.

The use of real-time software. While this can be expected, it shows that the
latency decreases while using a Xenomai-patched kernel on the laptop. Experi-
ments on the BBxM have not been done due to the earlier described issues on
real-time.

6.8 Use of the OpenCV API

The simulation is written on Ubuntu 10.04 while on the BBxM Ubuntu 12.04 is
used. For the image processing node, this has consequences. When compiling
the node on the BBxM, a couple of OpenCV instructions compile with the error
that the instruction does not exist. All of the instructions are part of the C-
API and have to be replaced by a C++-API version. However, as the C++-API
instructions contain different arguments, this has as a consequence, that both
the image capturing and the colour filter for the image segmentation require a
rewrite.

6.9 Imagestream via remote shell

After the experiments with the camera on the BBxM in combination with the
various desktop environments, it is decided to test remote graphics by ssh -
X and using the uvc camera driver. This makes that any graphic application
started on the BBxM is shown on the remote desktop.

After the node is started, the stream window pops up immediately. Then it
takes at least 5 seconds before the stream is shown and the stream frequently
stops after the first image. When this happens, a restart of the node is required
after which the image does stream correctly but with a delay up to 5 seconds.

This variable delay can be due to a couple of reasons. One reason can be the
remote (ssh) connection that is used. Large amounts of data have to be sent

55



over the network which takes time. The variation in time is then due to the
variation in data. Another reason can be the relatively low CPU speed and use
of RAM by the graphical process on the BBxM but this should be constant.

To find out which lighting source has to be used for the best filtering result,
tests are done with a lamp as well as daylight. The result of using direct daylight
is a blank imagestream due to overexposure of the camera. It turns out that
the uvc camera driver applies hardcoded maximum values for brightness and
contrast. As a result, the captured images are hardly usable.

6.10 HSV Colour values

Part of the replacement of the OpenCV instructions as described earlier is the
cv::inRange function. This function uses HSV instead of BGR. HSV stands for
Hue, Saturation and Value while BGR stands for Blue, Green, Red. A colour
that is detected in BGR can be converted to HSV and vice-versa.

In order to make sure which colour values to use with the Scalar argument in
the OpenCV cv::inRange function, pictures of test objects of roughly the same
colour are made and the HSV colour values measured using Gimp. Using these
values in OpenCV will give problems since according to [47], the range of HSV
values of Gimp differ from those of OpenCV as shown in Table 11.

Table 11: Difference between Gimp and OpenCV HSV values
H S V

Gimp 0 - 360 0 - 100 0 - 100
OpenCV 0 - 180 0 - 255 0 - 255

The probed Gimp HSV values of one of the pictured objects, a yellow tennisball
are 74-47-55. Converting the values to OpenCV gives the values in Table 12.

Table 12: Conversion between Gimp and OpenCV HSV values
Gimp factor OpenCV

74 ÷ 2 37
47 × 2.5 117.5 ≈ 118
55 × 2.5 137.5 ≈ 138

To create the lower and upper boundaries for the cv::inRange function, subtract
or add 20. Another test using a bordeaux-red mobile phone shows that it is well
detected by the camera and that filtering works. Detecting its contours however,
shows a difference between simulation and reality. While in simulation an object
shows just as it is, in reality light can cause an object to show on camera in
different shape. After processing the captured image of the phone, it is not
shown not in its entirety. As a result, correctly determining the distance to the
object is difficult.
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6.11 The libuvc camera driver

Because of the hardcoded settings of the uvc camera driver, a fork is created by
Ken Tossell. This is the libuvc camera, providing almost the same ROS topics as
uvc camera but it does not have hardcoded settings. Instead, the settings need
to be provided in a launch file. The driver also works faster than uvc camera.
To make it work, instructions from [48] must be applied.

Testing using the libuvc camera driver with the same mobile phone as an
object using a normal lamp, the distance can not be determined from the cap-
tured image as its size is undeterministic. Using daylight, the size can not be
determined by its contour either.

Using a yellow tennisball as an object, the filtering by daylight shows to be
much better than when using a lamp. The contour by daylight is better as well
although not useable either because only a small part of the tennisball is clearly
contoured. Most of the edge is faint and interrupted.

Without real-time implemented, and although this driver is faster than the
uvc camera driver, the time it takes to show an image in the window is more than
1 minute. Once the image is shown, it is updated every 3 to 5 seconds. Since
real-time is not implemented yet by lack of the patch, it can not be compared
with a real-time situation.

6.12 Source of light

As simulation shows, determining the contour and arclength prove only possible
by approximation. The experiments are done to see results from using a lamp
at a netfrequency of 50 Hz as well as daylight.

The results of using a lamp are that images are not constant. Reflections and
saturation both influence the edges and the form of the object so both contour
and keypoints methods are of no use. The results of using daylight are better
but still make determination difficult.

6.13 Driver for the PERA

To be able to use the PERA, a driver is needed to get access to it. Proof
of a successful load of the driver into memory is the creation of a file called
/dev/RTMotionUSBx where x can be either a or b. To accomplish this, a load
script is available.

The driver rtmotion usb.c is originally written by Philips Applied Tech-
nologies and when compiling it, several error messages are shown. These point
to the fact that the driver is created for Linux kernels up to 2.6.35 and as such
is no longer compatible with modern kernels.

In order to make the driver work with kernel version 3.2, buffer and error
definitions in the driver source code need to be replaced. For kernel versions
3.10 and newer, proc functions have changed.

The USB bus number is important as well. It indicates the bus to which the
PERA is attached. This must be determined prior to compilation, so the PERA
has to be attached to the USB in power-on mode and checked with the command
cat /proc/RtMotionUSB. This shows that for the BBxM the file src/IoConf.c
has to be changed. The shoulder, upper arm, elbow and wrist each have their
own definition.
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After adapting the driver and starting a homing test, it shows that the PERA
runs well on the laptop while it starts to oscillate immediately on the BBxM.
This can be caused by two reasons. The first reason is the fact that both the
network connection and the USB-A ports are connected to the USB bus. These
signals may interfere. The second reason, which is more plausible, is that during
the these tests, Xenomai is not running.

On another test using Ubuntu 13.04 with kernel 3.12.0, the driver does not
compile giving errors implicit declaration of function ‘create proc entry’
[-Werror=implicit-function-declaration] and dereferencing pointer to
incomplete type. The first error is found back in a bugreport for kernel 3.11.0
and is reproduced on a normal computer. As a result, this combination of kernel
and driver can not be used and Ubuntu 12.04 is restored.

6.14 Serial and USB interfaces

The BBxM has RS232, USB-A and USB-OTG interfaces. During the experi-
ments it became clear that the use of each interface is not just driver dependent
but also kernel dependent.

The possiblity of using the RS232 interface as a full terminal only works
when using an old kernel such as 2.6 with for example Ångström. Reason
for this limitation is that the kernel-option of low-level UART 9 debugging is
removed from later kernels.

When both the RS232 and ssh connection are used, it shows that the RS232
connection is necessary. Reason for this is that when the BBxM is shutdown, the
ssh connection is the first connection that is closed by the BBxM. The RS232
connection shows the entire process of shutting down until the message that the
BBxM has halted.

With kernel 3.2, the RS232 interface can only be used to watch the boot
process until the kernel is loaded into memory. In order to watch this happen,
the minicom program is used with ttyUSB0 as interface selected. Any input can
be recorded.

The USB-OTG interface can be used to connect the BBxM as a client to a
host computer via USB-over-ethernet. After connecting and checking with the
command ifconfig -a, the usb0 interface should show up. Despite attempts this
connection proves to be unable to work on Ubuntu 12.04.

Using Ångström, the ethernet-over-USB connection via USB-OTG proves
to be not working either. Although an ssh connection can be established, the
password is not accepted. As a result, this interface is not usable.

6.15 PERA joints vs. links

Another difference between the simulation en the PERA is in the topics. In
the simulation, the cartesian link coordinates can be read out from the topic
gazebo msgs::LinkStates. This way, it can be checked if the end-effector of the
PERA has reached its destination. With the PERA, the topic equivalent is
amigo msgs::arm links. It can not be used in a similar way though, because
in can not be instantiated to for example the end-effector. The topic used by
the Amigo is amigo msgs::arm joints as only forward kinematics is used by that

9Universal Asynchronous Receiver Transmitter
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project. In this way, checking if the end-effector has reached the desired or
calculated cartesion coordinates is not possible.

6.16 Conclusion

The objective was to use an embedded system for partial or full control of the
PERA with the use of ROS and the DSP. The choice for the BBxM was given
by the combination of a DSP for image processing, sufficient RAM and the
availablity of network and USB interfaces. Although the BBxM seemed to be a
good choice given its properties, the combination with software was not optimal.

Low-cost, off-the-shelf embedded hardware comes with limitations. In the
case of the BBxM, such a limitation is the use of the SMSC LAN9514 chipset
which connects the USB bus and ethernet where ethernet is actually simulated
by ethernet-over-USB.

Tested were combinations of the Linux distributions Ubuntu and Ångström
with the DSP driver, camera drivers, ROS and the real-time kernel-patch Xeno-
mai. It turned out that the use of ROS is mutually exclusive with the DSP
driver where it comes to support by the Linux kernel.

The one-camera-at-one-position method as described in section 2.2.5 shows
to be not accurate enough for velocity control. For stereo-vision, the end effector
is not large enough to hold 2 cameras of the used model and it remains to be
seen if the BBxM is capable of handling the simultaneous input from 2 cameras.

The use of open-source software is both an advantage and a disadvantage.
The advantage is that it is easy to adapt, free to use, and communities are
ready to help you. The disadvantage is that the update-rate of additives may
be different and does not necessarily keep pace with eachother and or/and an
operating system. As a result, they may not be compatible.

For commercial software the ”time-to-market” is essential and delay is usu-
ally not allowed. For open-source software the stability of the software is usually
the most important. Most of the time open-source software, be it an operating
system, application or a driver, is only released when it is considered to be stable
enough. In other cases, releases are as-is. In the case of Xenomai for the 3.14
kernel, timing issues are the reason it is not released at the end of this thesis.
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7 Conclusions

7.1 Simulation

The objective of the simulations was to test the designed software architecture
and modules and find out if these met the expectations.

Tested were both forward and inverse kinematics with and without trajec-
tories, with given and generated trajectories.

The forward kinematics seemed to work well, but the application of inverse
kinematics and trajectories did not function at all in the Gazebo simulation. The
inverse kinematics from the used Amigo simulation is present in basis, but it is
not functional. An inverse kinematics algorithm provided by dr. Dragan Kostić
and the trajectories showed no problem in the Matlab simulation environment.

It turned out that the Amigo simulation had issues such as a continuously
moving robot with random erratic behaviour. Since the used version of this
simulation went out of support during this thesis and is complicated software,
it was hard to determine what the causes of the problems were.

Although the Amigo simulation was used both to save time and to not
reinvent the wheel, developing a PERA simulation would probably have been
better.

7.2 Embedded System

The objective was to use an embedded system for partial or full control of the
PERA with the use of ROS and the DSP. The choice for the BBxM was given
by the combination of a DSP for image processing, sufficient RAM and the
availablity of network and USB interfaces. Although the BBxM seemed to be a
good choice given its properties, the combination with software was not optimal.

Low-cost, off-the-shelf embedded hardware comes with limitations. In the
case of the BBxM, such a limitation is the use of the SMSC LAN9514 chipset
which connects the USB bus and ethernet where ethernet is actually simulated
by ethernet-over-USB.

Tested were combinations of the Linux distributions Ubuntu and Ångström
with the DSP driver, camera drivers, ROS and the real-time kernel-patch Xeno-
mai. It turned out that the use of ROS is mutually exclusive with the DSP
driver where it comes to support by the Linux kernel.

The one-camera-at-one-position method as described in section 2.2.5 shows
to be not accurate enough for velocity control. For stereo-vision, the end effector
is not large enough to hold 2 cameras of the used model and it remains to be
seen if the BBxM is capable of handling the simultaneous input from 2 cameras.

The use of open-source software is both an advantage and a disadvantage.
The advantage is that it is easy to adapt, free to use, and communities are
ready to help you. The disadvantage is that the update-rate of additives may
be different and does not necessarily keep pace with eachother and or/and an
operating system. As a result, they may not be compatible.

For commercial software the ”time-to-market” is essential and delay is usu-
ally not allowed. For open-source software the stability of the software is usually
the most important. Most of the time open-source software, be it an operating
system, application or a driver, is only released when it is considered to be stable
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enough. In other cases, releases are as-is. In the case of Xenomai for the 3.14
kernel, timing issues are the reason it is not released at the end of this thesis.

7.3 Final conclusion

The challenge of this thesis was to see which problems occur when an embedded
system is applied to a vision in the loop robotic system and if an off-the-shelf
computer is necessary.

Considering the outcome of the simulations and experiments, there are prob-
lems that have to be solved so the question if an off-the-shelf computer is nec-
essary can not be answered at this time.
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8 Recommendations

8.1 Connectivity

When the BBxM will only be used for capturing and processing the imagestream,
the only option for a direct data connection would be the RS232 serial connec-
tion. To achieve this, both host and the BBxM must at least run the same ROS
version. Since the OMAP-serial option was removed from the vanilla kernel
after version 2.6, this kernel is recommended then.

8.2 DSP camera

When the BBxM will be used for full control, the direct-to-DSP camera could
be used in order to get faster processing. However, as this requires the by now
obsolete proprietary DSP driver, this will require the use of the 2.6 kernel.

8.3 Simulation

In case of a simulation, it would be better to use a simulation from scratch
so there both kinematics and control can be designed as necessary and the
similarity between simulation and PERA is better.
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9 Future work

9.1 Embedded control

Depending on the specifications such as RAM and CPU, full control by an
embedded system is yet to be seen. If full control is not possible, considering
the varying support by different kernel-versions of USB-OTG, RS232, bluetooth,
zigbee (IEEE 802.15.4 standard) or wifi, the best connection with a host is yet
to be tested.

9.2 PERA driver and Xenomai

The PERA driver is adapted for use with the newer kernels, but has yet to be
thoroughly tested.

Since Xenomai has yet to be released for the correct working kernel, it is
also not tested with the PERA driver. This remains to be done.

9.3 Reduce imaging time

For an as yet unknown reason, the time it takes for a captured stream to be
shown is with more than a minute too long. For a good working situation, this
time should be reduced to a couple of seconds at maximum.

9.4 Algorithm

Since the testing of the algorithm has not been conclusive during this thesis,
this needs to be done.

9.5 Embedded hardware

The BBxM is not the most widely used off-the-shelf embedded board. As DSP
integration is hard to accomplish on this board, other embedded systems with
or without DSP may be better suitable.
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