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Abstract

A limitation of current ASR systems is the so-
called out-of-vocabulary words. The solution to
overcome this limitation is to use APR systems.
Previous research on Dutch APR systems identi-
fied Time Delayed Bidirectional Long-Short Term
Memory Neural Network (TDNN-BLSTM) as one
of best performing state-of-the-art NN architecture
for PR. The goal of this research is to evaluate the
performance of the TDNN-BLSTM architecture for
phoneme recognition on Mandarin read and spon-
taneous speech, analyze the differences in perfor-
mance for the two speech styles as well as compare
the results with previous research on Dutch PR.

To achieve this goal 4 different NN models of the
TDNN-BLSTM architecture were built and trained
on Mandarin read and spontaneous speech. The
test results of the NN models were used to cal-
culate the phoneme error rate (PER), decomposed
PER, and the contribution of individual phonemes
to the overall PER. Based on these findings, conclu-
sions are formulated regarding the impact of differ-
ent languages, speech styles, and the architectural
changes on the performance of the TDNN-BLSTM
architecture.

1 Introduction

Automatic speech recognition (ASR) is a perfect example of a
system that benefited from the popularity of machine learning
and was able to make the step from theory to practical appli-
cation. Indeed, due to the relatively recent developments of
deep learning, ASR performance has improved a lot, to the
point that it is used in many different applications including
smartphones and smart speakers.

Although current ASR systems work fairly well, they have
their limitations. One of these limitations is that an ASR
system can only recognize those words that are in its lex-
icon. If a word is not in its lexicon, it cannot be recog-
nized. To be able to deal with such out-of-vocabulary words,
automatic phoneme recognizers (APR) are often employed.
Such an APR transcribes the speech signal into a sequence of
phonemes, i.e., sounds, instead of words.

In speech recognition phonemes are defined as the smallest
unit that will distinguish between words [9]. Thus phonemes
are the building block of speech. Therefore phoneme detec-
tion is a key step in speech recognition [8]. Although there is
some research on APR systems [8], it is typically done with
only a small number of well-researched data sets. However a
recent study [5], introduced two new APRs systems that were
able to outperform the until then best Dutch APR by a wide
margin [3]. Based on its findings, the research concluded that
the performance of different speech styles was dependent on
the architecture of the neural network used in the design of
the APR system.

This research builds upon the work done by [5] and aims to
assess the performance of TDNN-BLSTM on Mandarin read
and spontaneous speech. To be noted that Mandarin is a tonal
language, and as such it will give insight on how the perfor-
mance of the NN changes across different types of languages.
Thus this research aims to answer/investigate the following
questions:

¢ What is the performance of the TDNN-BLSTM on Man-
darin spontaneous speech?

* What is the performance of the TDNN-BLSTM on Man-
darin read speech?

* How does the performance of the TDNN-BLSTM com-
pare between Mandarin read and spontaneous speech?

* How do the results of the TDNN-BLSTM on Man-
darin speech compare to previous research conducted on
Dutch speech?

This report is structured as follows. First, in Section 2 an
overview of the used corpora and tools is given as well as
background information about TDNN-BLSTM. Besides that,
section 2 also gives an overview on how this research will
evaluate its results. Section 3, discusses the initially proposed
experimental setup of this research and its variations as well
as presents the purpose and the expectations from the cor-
responding experiments. The issues encountered during the
data preparation step and their possible impact on the cor-
responding results are also introduced in section 3. Section
4 presents the results of the corresponding experiments de-
scribed in section 3 and their findings. Section 5 is a reflection
on responsible research and talks about the reproducibility of
the study Thereafter, in Section 6, a summary with the an-



swers to the proposed research questions is presented along-
side future research ideas.

2 Methodology

As stated in Section 1, this research is meant to evaluate the
performance of TDNN-BLSTM on Mandarin speech. This
section explains what TDNN-BLSTM is, its characteristics,
as well as the evaluation metrics and procedure. A brief de-
scription of the corpora used for NN training concludes this
section.

2.1 TDNN-BLSTM and what it is ?
The problem of basic/vanilla Recurrent Neural Networks

¢ Basic RNNs are unidirectional, which means that a time
step ¢ is only predicted using the information of the
parsed sequence from time steps  to -1 [5]. However,
speech frames are also characterized by their future con-
text.

e The phenomenon of gradient vanishing [4], prevents
NN from learning long-term dependencies.

* The important information of a time step ¢ lies in a rela-
tively narrow context of that time step [6].

TDNN-BLSTM stands for Time-Delayed Bidirectional
Long-Short Term Memory Neural Network, it is a NN that
combines in itself different types of architecture. Thus the ob-
tained hybrid-NN can cope with every single issue described
above.

First, the LSTM architecture, by introducing cells and
gates, can "learn" when and how to update the "internal mem-
ory" of a neuron, which solves the vanishing gradient prob-
lem. Thus the NN gets the property to differentiate the data
patterns/sequences that are important and must be kept (gets
a long- and short- memory ). In the context of PR, LSTM
helps in differentiating between phonemes that share similar-
ities in their pronunciations. With a correct setting, LSTM
can enable accents predictions/differentiation thus improving
the precision of the System.

Besides getting an "internal memory", that remembers pat-
terns across sequences of data, in speech recognition, the
current sounding of a phoneme is directly dependent on not
only its previous but also the upcoming phonemes. Unfor-
tunately, as already mentioned simple RNNs are not able to
"foresee" the future, but bidirectional RNN can. A situation
where a bidirectional NN is useful is trying to predict the next
phoneme in the following sentence: "/h/ /e/..." Predicting the
next phoneme in this sentence is a guess without any other
context (e.g. /m/, /1/, /v/, etc.). However, when the part af-
ter this time step is predicted as: ".../o/ /u/." predicting the
phoneme becomes easier (i.e./I/) [5]. The way BRNN works
is by having 2 layers of RNN, one of them being a reverse
copy of the other. We then combine the obtained past and
future states and can compute/predict the phoneme.

Even though by using LSTM we can learn and memorize
the common patterns that add up to a phoneme representation
we often do not require the full sequence for this. In phoneme
recognition, the distinctive characteristics of a phoneme are
often "hidden" in very small chunks ( which often overlap )

when compared to the actual sequence. Time-Delayed NN
are meant to introduce a temporal context when making pre-
dictions [10] by also analyzing the 7 - r to ¢ in contrast to
default RNNs. The strength of TDNNs for PR comes from
the characteristic that important information of a time step t
lies in a relatively narrow context of that time step [6].

2.2 Evaluation

The performance of the TDNN-BLSTM trained acoustic
model is evaluated as follows:

¢ The Phoneme error rate (PER) of the NN is calculated to
find the overall performance of the attempt/experiment
for each

* A decomposed PER of a model is to be calculated, thus
allowing to identify the strengths/weaknesses of the dif-
ferent models/settings.

¢ The contribution to total PER is to be calculated.

The Phoneme Error Rate (PER) is based on the "Leven-
shtein Distance" and is the main metric used to evaluate the
performance of attempts. The "Levenshtein Distance" aims to
find the minimum number of single-character edits between
2 strings [11]. Similarly, PER calculates the difference in sin-
gle phonemes edits between, in this case, the ground truth and
the predicted phoneme transcripts. The PER metric is calcu-
lated by considering 3 types of edits that are needed such that
the ground truth and predicted phoneme sequences match,
namely:

* deletions - phonemes that are not present in the predicted
transcript but are part of the ground truth transcription.

* substitutions - phonemes that must be changed for other
phonemes so that they match the ground truth transcrip-
tion.

* insertions - phonemes that are not present in the ground
truth transcript but are present in the predicted sequence.

The formula for calculating PER is as follows:

Sait + Loy + Doy
N

The above formula represents the sum of all substitu-
tions(S), insertions(I), deletion(D) for all the phonemes di-
vided by the total number of phonemes that occur in the
ground truth(N).

Besides that, the decomposed PER represents the individ-
ual contributions of all the phoneme substitutions(S), inser-
tions(I) and deletions(D) to the overall PER, thus providing
insights into the strengths and weaknesses of the NN. The
three formulas for calculating the decomposed PER are pre-
sented below:

PER =

Sa
%Substitutions = N”
I,
%Insertions = Wll
D,
%Deletions = —2

N



The formula for calculating individual contribution to total
PER is as follows:

Se +1,+ D,
Sait + Lot + Do

By calculating the contribution to PER, it is possible to
identify what percentage of the total PER belongs to certain
phoneme and as such its impact on the overall performance.

ContributionToPERphoneme, =

2.3 Corpora and Tool Set

The corpora used in this research are the Aidatatang_200zh
corpus [1] and the Magicdata corpus.

The Aidatatang_200zh corpus is a free Chinese Mandarin
read speech corpus containing 200 hours of acoustic data,
with 600 speakers from different accent areas in China. The
stated accuracy of the corpus transcripts is larger than 98%
[1]. This study uses a pre-selected subset of the respective
corpus with the training set being composed of 10 speakers
with a total of 3.5h of recorded Mandarin read speech.

The Magicdata corpus is a Chinese Mandarin conversa-
tional corpus, which however is not freely available as the
previously specified one. This study makes use of a pre-
selected subset of the respective corpus with the training set
being composed of 26 speakers with a total of 4k of recorded
Mandarin spontaneous speech.

It is worth mentioning that the two corpora that are used,
each represent a different speech type, namely the sponta-
neous and prepared speech. The main difference between
these two is, spontaneous speech is a more variable and less
well-articulated speech. Moreover, previous research [5],
concludes that the performance of the NN is dependent on
the speech types it was trained on.

Besides that, it is worth mentioning that the respective
training- and test- sets do not contain any overlapping speak-
ers and/or utterances.

This research also makes use of Kaldi [2], a state-of-the-
art toolkit written in Shell and C++ used to extract and create
feature vectors, build the language model as well as build and
train the acoustic model, and perform decoding.

3 Experimental work

This section introduces the experimental work of this research
such as:

* the lexicon of the corpora
« the feature vectors used in this research.

e the parameters used for TDNN-BLSTM training and
their variations

* the purpose and/or expectations of the conducted exper-
iments

* the issues and the restrictions of this research setup

3.1 Corpora Lexicon

Table 1 gives an overview of the individual phonemes
used/present in the selected corpora. Additional entries are:

e [SPN] - usually used to describe noise in audio segments
and not only (see 3.4)

» [SIL] - used to represent silence is audio speech seg-
ments

* [LAU] - used to represent laughter.

Besides that, due to Mandarin being a tonal language, Ta-
ble 1 includes phonemes with digit suffixes such as [AA1],
[AA2], [AA3], etc. The purpose of including digit suffixed
phonemes is for the NN to be able to represent and capture
tone information at the phoneme level rather than during the
feature vector creation step. The consequences and impact
of using phonemes that capture tone variation is described in
section 3.3

Z SIL AAl | AA2 | AA3 | AA4 | AAS | AEIL
AE2 | AE3 | AES | AH1 | AH2 | AH3 | AH4 | AHS
AOl | AO2 | AO3 | AO4 | AW1 | AW2 | AW3 | AW4
AWS | AY1 | AY2 | AY3 | AY4 | AYS | CH D
EH1 | EH2 | EH3 | EH4 | EHS | ER1 | ER2 | ER3
ER5 | EYl | EY2 | EY3 | EY4 | EYS5 | F G
HH IY1 IY3 IY4 IY5 J JH K

L LAU | M N N2 N3 N4 N5
NG1 | NG2 | NG3 | NG4 | NG5 | OWI1 | OW3 | OW4
OWS | P Q R R2 R3 R4 RS
SH SPN | T UH1 | UH2 | UH3 | UH4 | UH5
UWI1 | UW2 | UW4 | UWS | W X Y

Table 1: Corpora Lexicon

3.2 Experimental Settings

This subsection presents the specific settings used for and
during the conducted experiments.

This research uses existing Kaldi scripts to extract two dif-
ferent types of features: I-Vectors and Mel-frequency cep-
strum features [5]. The MFCC and I-Vector features are then
concatenated forming a single feature vector that is used as
input for the NN.

Table 2 presents the default parameters [5] as well as their
variations that were used for training TDNN-BLSTM on both
prepared and spontaneous speech whilst Figure 1 depicts the
architecture used for each of the conducted experiments.

Parameter\#Experiment | 1 2 3 4
BLSTM layers 3 3 4 4
TDNN layers 7 7 9 9
cells per BLSTM layer 1024 256 256 256
mini-batch 128 128 64 64
initial learning rate 0.001 0.001 0.001 0.01
final learning rate 0.0001 | 0.0001 | 0.0001 | 0.001

epochs 6 8 8 8

L2-regularisation 0.00005

dropout schedule 0,0@20,0.3@0.50,0

Table 2: Experimental settings for training TDNN-BLSTM on Ai-
datatang_200zh and MagicData subset
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Figure 1: Architecture of the TDNN-BLSTM for experiment 1 & 2 - left, and experiment 3 & 4 - right.

3.3 Experiments: Purpose and Expectations

This subsection explains the purpose of the conducted exper-
iments as well as presents some the expected results.

The first experiment uses the default settings as proposed
by [5]. The purpose is to abstract the NN so that the results
are only language-dependent, thus allowing for comparisons
across different types of languages, in this case a compari-
son between Dutch and Mandarin. Moreover, analyzing the
overall and decomposed PER will give insights into the pos-
sible differences and/or origin of the errors for the respective
languages.

By considering the reduced size of the training set (see sec-
tion 2.3), experiments 2, 3 & 4 will aim to test whether it is
possible to improve the results obtained in experiment 1 by
tweaking different parameters such as the epoch parameter
which determines the period of evolution/the number of gen-
erations of a NN model. Moreover, parameters such as the
number of cells per layer, the batch size, and the learning rate
are also changed in an attempt to account for the small train-
ing sets.

Besides only tweaking the NN parameters, experiments 3
& 4 do introduce additional TDNN and BLSTM layers to
the NN model with regards to the default proposed settings
from experiment 1. The idea is to identify how additional

layers influence the overall and decomposed PER of the sys-
tem. The correlation between the additional layers and the
distribution of phoneme contribution to PER among different
speech styles is also worth investigating.

Lastly, as depicted in [5] and is explained in section
2.3, read speech being overall a more consistent and well-
articulated speech, results in better scores in the experiments,
thus such a pattern is also expected to be observed here.

3.4 Restrictions

One of the starting points of any of the above-mentioned ex-
periments/attempts was the Data preparation step. The se-
lected corpora represents the content of the recordings as sen-
tences/sequences of words, thus they are to be transcribed into
phoneme sequences.

The first issue is the incompleteness of the transcripts. The
lexicon attached to the Magicdata corpus is incomplete (less
than 2%), thus parts of the transcripts that were not possible
to be transcribed were marked as spoken noise.

The second restriction is due to Mandarin being a tonal
language, which means that the tone of the syllable affects
the meaning of the sequence. The provided lexicon for both
Magicdata and aidatatang_200zh corpora does, occasionally
provide multiple transcriptions for the tone-dependent sylla-



ble that alter the meaning of the words. However, the ability
to choose the correct tone-dependent transcription in an au-
tomated way as well as being able to prove its veracity, es-
pecially for a non-Mandarin speaker, falls out of the scope of
this project.

The third restriction is a result of the available data
set/corpora size. The article [5] that this research builds
upon, used for its training, a subset of 140 hours from the
Corpus Gesproken Nederlands(CGN). However, this research
uses subsets of the provided corpora, Aidatatang_200zh (read
speech) and Magicdata (conversational speech), which are
considerably smaller (see section 2.3). Thus even if the pre-
selected subsets would maintain the distribution of the speak-
ers similar to the full sets, due to their reduced size, less ac-
curate models are to be expected.

4 Results

This section introduces the results that were obtained after
conducting the experiments specified in section 3.2. First,
the overall PER of all the experiments is given (see Section
4.1). Then the errors of the architecture are further analyzed
by identifying their origins (see Section 4.2). Lastly in section
4.3 analyzes the distribution of the contributions to the overall
PER.

4.1 Opverall Phoneme error rates

Tables 3 and 4 present the PER results for all of the conducted
experiments according to section 3.2.

Experiment | 1 2 3 4

PER 48.89% | 50.68% | 51.21% | 45.31%
subst. 34.16% | 35.35% | 36.31% | 32.99%
delete 11.50% | 12.38% | 11.89% | 9.22%
insert 321% | 293% | 3.0% 3.09%

Table 3: Read speech results (Aidatatang_200zh corpus).

Experiment | 1 2 3 4

PER 37.88% | 39.86% | 43.09% | 35.38%
subst. 25.25% | 26.92% | 25.10% | 24.09%
delete 9.86% 1031% | 15.44% | 8.67%
insert 2.82% | 295% | 2.54% | 2.61%

Table 4: Spontaneous speech results (Magicdata corpus).

As can be seen from Table 3 and 4 the settings of ex-
periment 3 achieved the worst overall results for both spon-
taneous and read speech. Experiment 2 changes its results
very little on the read speech in contrast with the spontaneous
speech result where it improved by 3%. Experiment 1 with
the default parameters showed an improvement of roughly
2% independently of the speech type, whilst experiment 4,
succeeded to achieve the lowest overall PER, which means
the best-observed performance. When compared to the re-
sults of [5], the obtained PER for TDNN-BLSTM are con-
siderably higher (the performance is worse) independently of
the experiment. However, the decrease in the performance of

NN is to be expected mainly due to the reduced size of the
training corpus, as described in section 3.4.

4.2 Decomposed PER

Besides that, Table 3 & 4 also include the decomposed PER,
or the individual percentage contribution of substitutions,
deletions, and insertions to the overall PER. Thus by inspect-
ing the obtained results, it can be noticed that most of the er-
rors originate from substitutions, followed by deletions, and
lastly insertions. Moreover, if we compare the decomposed
PER across the two speech types the number of insertions
error hardly ever changes settling at around 3%. Similarly,
the number of deletions slightly fluctuates with an average of
11% across the 4 experiments for both spontaneous and clear
speech. However, when it comes to the number of substi-
tutions between conversational and prepared speech, we get
to observe the biggest differences so far, with an average of
25.4% and 34.7% respectively across all 4 experiments. Sim-
ilarly, it can be seen that TDNN-BLSTM performed better on
spontaneous speech rather than on clear speech, despite the
expectations formulated in section 3.3. Indeed, this also does
not match with results from previous research on Dutch PR.
A reason for this unexpected and contradictory result may be
the difference in the quality of the recordings between the
read and spontaneous speech corpora.

As mentioned above most of the errors originate from sub-
stitutions independently of the speech type, which is not the
case for the Dutch-based TDNN-BLSTM model from [5].
The reason for this is, as previously explained, the fact that
Mandarin is a tonal language. The latter statement is also
supported by Figure 2 that pictures the list of substitutions
needed so that the predicted sequences match the ground
truth. It can be noted that most of the substitution errors are
between phonemes with the same basis but different digit suf-
fixes.

4.3 Contribution to PER

The evaluation of the performance of TDNN-BLSTM is fur-
ther analyzed by inspecting the contribution to PER between
different experiments Figure 3 and 4, as well as between dif-
ferent speech styles Figure 5. It is worth mentioning that for
the sake of simplicity the phoneme with the same basis was
replaced by the respective basis. For example phonemes such
as [AA1] and [AA2] were converted to [AA].

By inspecting Figure 3 it can be concluded that the distri-
bution of the contributions to PER is not directly dependent
on the parameter and architectural changes of NN across the
conducted experiments for read speech.

In Figure 4 the only perceivable changes to the distribution
of contributions to PER can be seen in experiment 3, where it
succeeds to get a slightly lower contribution to PER for 4 out
of 7 top error-prone, namely [R], [Y], [W], [G] which at the
same time (excluding [R]) do not have any tone variations of
themselves present in Table 1. The previous statement may
try to infer that some models of NN with additional layers
and/or reduced cell size may favor non-tonal phonemes, but
not enough evidence as well as the poor overall PER of ex-
periment 3 support this hypothesis. Thus, similarly to the
observations on read speech, from Figure 4, we can infer that



substitution I¥1 IY4 100

substitution IY4 IY1 a9
substitution I¥2 IY4 74
substitution I¥3 IYl 50
substitution N4 N1 16
substitution AE4 AE1 44
substitution IY4 IY2 413
substitution I¥1 IY2 38
substitution I¥2 IY1 37
substitution NG2 NG1 37
substitution N L 36
substitution D L 34
substitution UWl Uk 34
substitution AE2 AE3 33
substitution AEl AE4 31
substitution IY4 IY3 31
substitution L D 29
substitution AE2 AE1 28
substitution I¥1 IY3 28
substitution JH SH 28
substitution NG2 NG3 28
substitution AA4 AAL 26
substitution I¥3 IY4 26
substitution Uw4 U1 26
substitution Q J 25
substitution CH SH 24
substitution Ow4 ow3 24
substitution AEl AE3 23
substitution N1 N4 23
substitution Uw3 Uk 23
substitution Q X 22

Figure 2: List top of tonal phoneme substitutions in Magicdata. ex-
periment 1.

the changes in experimental settings do not affect in nearly
any way the contribution to PER results for the conversational
speech.

Lastly Figure 5 compares the contribution to PER for ex-
periment 4 across the two given corpora. By analyzing Fig-
ure 5 alongside Table 1 it can be observed that in the case of
read speech, most of the non-tonal phonemes (except [D] and
[J1) have higher contributions to PER when compared with
their spontaneous speech instances. Moreover, it can be noted
that nearly all of the tonal phonemes present in spontaneous
speech have a higher contribution to PER when compared to
the read speech instances. When more thoroughly consid-
ered, the just described observations emphasize the difference
between read and spontaneous speech, namely the variable
nature of the later one. With this observation, it is possible
to assume that considering spontaneous speech most of the
errors in the overall PER will originate from tonal phonemes,
mostly due to the shared basis of the phoneme acoustic struc-
ture. Meanwhile, most of the errors that will contribute to
the overall PER in the case of read speech will most proba-
bly come from non-tonal phonemes due to their unique and
less variable acoustic structure thus requiring less clear stable
spelling for the tonal phonemes.

5 Responsible Research

This is the first research that aimed to evaluate the per-
formance of phoneme recognition using TDNN-BLSTM on
Mandarin read and spontaneous speech thus to ensure the re-
producibility of the research section 2 gave a brief description
of the evaluation metrics, their respective formulas as well as
providing insights into the corpora used for training the NN
model. However, it is worth mentioning that the Magicdata
corpus is not freely available which may or may not be a prob-
lem for future research.

Besides that, the experimental settings such as the compo-
sition of the feature vector and the NN parameters as well as
the actual architecture of the TDNN-BLSTM were presented
(see figure 1 and section 3.2). Furthermore, section 3.4 talked
about possible restrictions of the experimental setup that may
have influenced the final results. Lastly, previous and similar
setup researches that were used to compare and support the
findings could be found in the references.

6 Conclusions and Future Work

This research aimed to test and evaluate the performance of
one of the proposed state-of-art APR systems on Mandarin
read and spontaneous speech. This section presents a sum-
mary of this study’s findings and compares them to other rel-
evant research with similar setup [5] [7], as well as gives an
overview of possible future work.

The overall results of TDNN-BLSTM on the two Mandarin
speech styles were presented in section 4.1, the results how-
ever are not very promising and the reason for this (see sec-
tion 3.4) was the small size of the subset of the corpora used
for training.

At the same time, the results indicate that the variations in
the structure of the NN hardly ever affected the results of the
overall and individual phonemes independently of the speech
style. Furthermore, the obtained results, as well as those of
[7], suggest that the only parameter variations that could im-
prove the performance of the NN are the number of cells per
NN layer and the learning rates. Thus future research could
take into consideration these findings when optimizing their
NN parameters.

Comparing the results of the two speech styles side by
side indicates that there exists a difference in performance
between tonal and non-tonal phonemes in Mandarin speech.
Section 4.3 demonstrates that tonal phonemes resulted in
more errors, whilst non-tonal phonemes had fewer errors
in the case of spontaneous speech when compared to read
speech. Additional research of other tonal languages could
be done to test if this observation holds as it may indicate the
required distribution of tonal and non-tonal phonemes in the
training set for achieving better results.

Lastly, this research compared the performance of TDNN-
BLSTM on Mandarin speech and Dutch speech from previ-
ous research [5]. This comparison reveals the origins of the
performance difference of TDNN-BLSTM across different
types of languages, namely tonal and non-tonal languages.
Indeed the results of section 4.2 point out that the presence
of tones notably affects the precision with which the NN cor-
rectly predicts phonemes. This can be seen by the significant
rise in the percentage of substitutions errors which are mostly
between tonal phonemes that differ only in their digit suf-
fixes for example [AA1] and [AA2]. Thus future work should
consider using different feature vectors that could capture the
tonal information of Mandarin speech. Additionally larger
corpora with more accurate phoneme transcripts and higher
distribution of tonal phonemes could be considered.

To conclude the goal of this research was to test the per-
formance of the TDNN-BLSTM architecture on Mandarin
read and spontaneous speech. It has done so in several ways.
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This work has analysed and compared how phoneme recogni-
tion using the TDNN-BLSTM architecture performed on the
two different speech styles as well as different languages. It
also analyzed whether the obtained results are dependent of
the TDNN-BLSTM architectural variations as well as identi-
fied the necessary settings for model optimization. Hopefully
this research enable future improvement and popularity of the
APR systems.
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