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Using quality and intelligibility measures to create
an estimator for reverberation time in a
shoebox-shaped room with a multilayer perceptron
model

Anneline Lucia Mol, Supervisors: Jorge Martinez Castaneda, Dimme de Groot

Abstract—Reverberation is a key aspect when designing the
interior of buildings, and must be carefully considered in the
context of the function of the room. Defined by the reverberation
time (RT), it is known to have a big influence on the intelligibility
and quality of audio in closed spaces. In this work, we investigate
the relationship between the RT and explore the feasibility
of using multilayer perceptron (MLP) networks to create an
estimator for the RT by using the values of objective measures
as input features. We investigate five measures in particular:
the Perceptual Evaluation of Speech Quality (PESQ), Virtual
Speech Quality Objective Listener (ViSQOL) and its extension
focused on audio (ViSQOLAudio), and the Short-time Objective
Intelligibility Measure (STOI) and its extension ESTOI. We
create a 3-layer MLP network that estimates the RT with a mean
absolute error of 0.144 on our simulated RIR test sets and 0.196
on our real RIR test set.

Index Terms—Audio Quality, ESTOI, Multilayer Perceptron,
Objective Measures, PESQ, Reverberation Time, Speech
Intelligibility, STOI, ViSQOL, ViSQOLAudio

I. INTRODUCTION

From at home settings with loudspeaker placement to more
professional settings such as indoor architecture, reverberation
is a major aspect in how sound is perceived within an enclosed
space, and is therefore of great interest [1], [2]. It is often
defined in terms of the Reverberation Time (RT), described
using the Tgo metric. This is the time taken in seconds
for the amplitude of a room impulse response (RIR), the
characterising sound of an enclosing space, to reduce by 60
dB, the level at which the sound falls outside the perceptual
range of hearing [3].

There are currently multiple ways to obtain a measurement
of the RIR in a room and extract the RT [4], [5], [6]. However,
the cost and requirements of these methods leads to question
whether or not it may be possible to estimate the RT reliably
and with reasonable accuracy with a less resource-intensive
method instead.

Currently, much work has been done to estimate the
RT blindly using machine learning, where the use of a
convolutional neural network (CNN) with audio as input is
particularly popular. These attain accuracies with the Mean
Squared Error (MSE) of predictions ranging from 0.03 to 0.07
when tested on real RIRs [7], [8]. However, they also have
complex models with little insight to their workings due to
the high number of input parameters and are therefore often

computationally expensive [9]. This warrants the question
whether a simpler model can be created.

Audio quality and speech intelligibility are two concepts that
have been shown to be quite dependent on reverberation time
[2]. Speech intelligibility refers to how well words present in
audio can be identified and understood while perceptual audio
quality, refers to how sound is experienced by a human listener.
Both concepts are mostly rooted in subjective experience and
evaluation with methods such as MUSHRA, but objective
measures have been developed to replicate expected subjective
quality or intelligibility scores and have been evaluated and
compared [10], [11], [12]. Xia et al. [13] have shown that there
is a negative relation between reverberation and intelligibility.
Similarly, Ratnam et al. [14] express that the RT is of
importance to both audio quality and speech intelligibility.

In this research, we are interested to see if there is a
relationship between the outputs of these measures and the
RT value and whether the outputs of these measures can
serve as features to form an estimator for the RT using a
multi-layer perceptron (MLP) model, which is a simple form
of artificial neural network (ANN). This unconventional yet
innovative take on using quality and intelligibility measures
can help create a model that could be a lot simpler than the
earlier mentioned neural networks that take audio as an input,
allowing for easier insight into the role of the parameters and a
lower running cost. This leads to the following main research
question:

Can objective audio quality and speech intelligibility
measures be used to estimate the reverberation
time through the use of a multilayer perceptron
network with performance comparable to other
state-of-the-art estimators?

This paper explores the dependencies between different
audio quality and intelligibility measures and the reverberation
occurring in the acoustic scene, investigating the feasibility
of creating an estimator for reverberation time from these
quality measures. The set of measures evaluated contains the
following: Perceptual Evaluation of Speech Quality (PESQ)
[15], Virtual Speech Quality Objective Listener (ViSQOL)
[16], its audio equivalent ViSQOLAudio [17], and Short-time
Objective Intelligibility measure (STOI) [18] and its extension
Extended Short-time Objective Intelligibility measure (ESTOI)



[19]. These are individually experimented upon before being
combined to create a new estimator for reverberation time
using a MLP network. The resulting model is then evaluated.

Section II elaborates on the measures considered in this
project. Section III then outlines the methodology followed
during this project after which Section IV explains particular
choices made in the research to ensure our research was
responsible. Section V details the results obtained from the
experiment whereafter Section VI concludes and provides
ideas for potential future investigation.

II. OBsECTIVE MEASURES

Though many objective quality and intelligibility measures
exist, this research focuses on using only a selected subset
of objective and intrusive measures. These measures require
both the clean reference audio and degraded audio to calculate
a score. Below each of the selected measures is briefly
elaborated upon and the motivation for use is given. Lastly,
some measures not selected are explained.

A. Perceptual Evaluation of Speech Quality (PESQ)

PESQ is a standard objective speech-focused quality
measure that was developed for predicting what the subjective
quality of the input would be when looking at telephony [15].
The algorithm functions by first identifying delays between
the original and degraded input, and then using this delay
set to compare the original and degraded audio using an
internal perceptual model. The key to this for PESQ is that
the internal representation of the signals is ‘analogous to the
psychophysical representation of audio signals in the human
auditory system’ [20]. From this, a Mean Opinion Score
(MOS) score is calculated.

Although this recommendation is no longer in force and
replaced by recommendation P.863, Perceptual Objective
Listening Quality Assessment (POLQA), PESQ as a measure
still performs well compared to other quality measure (QM)s,
motivating us to use this measure [11]. Additionally, research
has shown that PESQ has a decent correlation to reverberation
features such as the reverberation tail effect [21]. We use an
open Python implementation available from Wang et al. and
run the samples on the wide-band version of the measure with
a sampling rate of 16 kHz [22]. As our audio samples have
a sample rate of 48 kHz, these are resampled before being
measured by the algorithm.

B. Virtual Speech Quality Objective Listener (ViSQOL)

ViSQOL is another intrusive QM which was made to model
human sensitivity to degradations in speech quality [16]. Being
developed with the weaknesses of PESQ such as clock drift in
mind, a bigger focus is placed on which types of degradation
are noticeable to the human ear. The algorithm works by
identifying corresponding patches of interest and compares
the similarities of their spectrograms to calculate a similarity
score.

In this project, we use the implementation provided
by the Audio Toolbox in MATLAB 2024a [23]. Another
implementation openly available is mentioned by Hines et al.
[17].

C. Virtual Speech Quality Objective Listener for Audio
(ViSQOLAudio)

ViSQOLAudio [17] is an adaptation of ViSQOL that
generalises beyond speech to consider the full audio spectrum,
becoming a more general system [11]. Rather than isolating
patches of sound to compare, ViSQOLAudio considers all
patches important. The number of frequency bands evaluated
have also been increased to accommodate for a human’s full
range of hearing, rather than only focusing on bands used in
speech. The measure then outputs the result on a similarity
scale from O to 1.

We choose to include both the original ViSQOL and
ViSQOLAudio measure as they are created for different
types of audio and may therefore exhibit different behaviour
depending on the clean speech provided. Similarly to ViSQOL,
we use the implementation provided by MATLAB 2024a’s
Audio Toolbox.

D. Short-time Objective Intelligibility measure (STOI)

STOI, as opposed to the other measures, is a speech
intelligibility metric rather than a quality metric. Created to
handle speech degraded using time-frequency techniques [12],
the measure first turns both the original and degraded audio
into frames in time-frequency representation before calculating
an intermediate score and averaging this over all bands and
frames to create the final score [18]. We use a publicly
available Python implementation based on the original Matlab
implementation available from [24].

E. Extended Short-time Objective Intelligibility measure
(ESTOI)

ESTOI is another intelligibility metric and takes inspiration
from STOI [19]. It expands to work for a larger range
of input signals and distinguishes itself from STOI by not
assuming mutual independence between frequency bans and
incorporating spectral correlation. The measure first extracts
the temporal envelopes of the subbands of both the clean and
degraded audio before normalising the resulting spectrograms.
On these, the "distance" of each band is computed and then
averaged to give the final intelligibility index. We use the
implementation of ESTOI from the same library as that of
STOL

F. Other measures considered

Beside the measures chosen explained above, several other
measures have been considered for use. Table I lists the other
metrics considered with reasons for exclusion.

III. METHODOLOGY

Using the reasoning mentioned in Section II to establish a
set of measures to investigate, the experiment can be divided
into four parts: creating the dataset of clean and degraded
audio, generating the feature dataset, creating and training
the MLP, and testing the MLP. These individual parts are
explained in subsections III-A, III-B, and III-C. Figure 1 shows
a graphical representation of the pipeline that a pair of clean



Measure Noise Robustness
PESQ Previous ITU standard and wide use, previously used in the
context of reverberant audio [21], [25].
PEASS Very high computation time [26].
ViSQOL Focus on human-perceptible degradation and open-source
measure.
ViSQOL- | Purpose to rate quality of music and audio samples may
Audio react to the RT differently than other measures.
POLQA No non-commercial licences of the software available.
PEAQ Non-commercial versions no longer maintained, very slow
or not easily available to use in Python [27].
PEMO-Q | Found implementations cannot be used in Python project
structure [28].
HAAQI High computational complexity makes runtimes unfavorable
[29].
STOI and | Computationally inexpensive, appears to be affected greatly
ESTOI by higher RTs [30]

TABLE I: An overview of the quality and intelligibility
measures considered for use with their reasons for inclusion
or exclusion.

audio and a RIR undergoes to estimate the Tg9. A copy of the
repository containing all code used in the project is available
on the 4TU repository [31].

A. Acquiring and generating materials

To run an intrusive measure, input requires a clean and
degraded audio sample. We create the latter by combining the
clean audio with a RIR, as is shown by the noise model in
equation 1.

x(n) = s(n) * h(n) +v(n) 6]

Here, the clean signal s(n) is convolved (denoted by )
with the room impulse response /(n) to create the ‘degraded’
signal x(n). v(n) denotes additive noise, such as Additive
White Gaussian Noise (AWGN), that may also be present.
When creating the training set, we set the amount of additive
noise v(n) = 0. During testing, some sets containing noise are
created, which is further expanded upon in Section III-D.

To create a training set, we obtain samples of anechoic audio
samples from the TSP speech database and simulate a set of
RIRs [32]. The TSP dataset is used because it contains a set
of speakers of different genders and some non-native speakers.
The generated set is divided into a training and testing set with
a ratio of 9:1 of train-vs-test. We also create an additional
testing set from real RIRs with the same method, but this is
further explained in Section III-D.

For this project, we use audio sampled at a rate of 48 kHz.
This is done such that the full range of human hearing can
be captured properly according to the Nyquist sampling rate
[33].

1) Acquiring Room Impulse Responses (RIRs): RIR
simulation is done using Habets’ method in MATLAB [34].
We choose to simulate RIRs rather than use a dataset of real,
measured ones because of the large amount of data necessary
to train a MLP: many datasets of real RIRs cover only a few
room configurations, meaning that a wide variety of RT values
cannot be obtained without combining many sets. Simulation
instead provides the ability to easily manipulate the room
conditions, allowing us to generate a wider variety of RTs.

Habets’ algorithm is based on the Mirror Image Source
Method (MISM), a geometric approach to simulating RIRs
originally proposed by J. Allen et al. [35]. We generate 181
sets of 100 RIRs each, where sets each have a requested
Tso value incrementally increased from 0.1 to 2 seconds with
steps of 0.01 and a corresponding room configuration. To use
Habets’ implementation, the following input parameters have
to be determined: room dimensions, reflection coeflicients of
the walls, and microphone and speaker positions. These are
determined as follows for each requested Tg:

Room dimensions are chosen from 1.5 m and adjusted
exponentially using the desired T¢p and a maximum random
deviation of +0.5 m. The deviation allows for a wider variety
of room configurations. The inverse of Sabine’s formula, of
which the original is shown by Equation 2, is used to obtain
an average absorption coefficient. The individual absorption
coefficients are then alternated between positive and negative
with random deviation, averaging out to the average absorption
coefficient. These are then converted to reflection coefficients.
The alternation is used as it increases the similarity of the
simulated RIRs to real ones.
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Above, T denotes the reverberation time in seconds, V the
volume of the setting in m?, and A the total absorption of the
setting in sabins, which is equal to the total spatial area of the
room S in f2 multiplied by the average absorption coefficient
@ [2]. It has to be noted that this formula is only an estimate
of the RT, and that the RT also depends on speaker and
microphone positions.

The speaker and microphone positions are randomly
sampled from a uniform distribution with the following
restrictions: neither speakers nor microphones may be
positioned closer than 0.5 m from a surface, and microphones
may not be placed closer than 0.2 m to a speaker. These
restrictions are necessary for obtaining consistent results, as
stated by the standard for measurement of room acoustic
parameters [4]. Per set, 20 microphones and 5 speakers
are randomly placed, resulting in 100 combinations between
microphone and speaker and thus, 100 RIRs being simulated
per room. These RIRs are first exported as arrays from MatLab
and then saved as .wav files using a Python script. Here, they
are also sliced such that the peak of the RIR, representing the
direct signal, is at time ¢ = 0.

2) Ground Truth: Because the method generates the input
parameters stochastically and uses an estimation formula, the
actual Tgo of the resulting RIRs may differ from the requested
one. This is why we run the sets through a script that used
Pyroomacoustics’ ‘measure_rt60’ function to measure the Tgg
value to use as ground truth in our model [36]. This function
uses Schroeder’s curve to estimate the 75y and can specify
the decay curve to measure to estimate the value from [5].
This method is widely used in practice despite struggling
when the decay range available is less than 35 dB [14]. In
our project, we call the function to measure the Tyy using
default parameter values, extrapolating from 30 dB instead if
the impulse response is too short to do the former.

T
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Fig. 1: The layout for the entire pipeline. Clean, anechoic speech is convolved with a room impulse response to create degraded
audio. This is then run through the measures together with the clean data and the clean data is also run against itself. The
output of the latter is used to normalise the former before the resulting normalised measure values are fed into the multilayer

perceptron. The output is an estimate of the Tg.
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Fig. 2: Distribution of the RIRs generated for the training set.
Although requested Tgos were uniformly distributed, the Tgos
measured from the generated sample deviated a lot from the
requested.

For simplicity, we assume the measured and estimated
Tso’s to be the average across all frequency bands or
frequency-independent. Table 2 shows the distribution of the
Tso values of the RIRs generated.

3) Generating degraded audio: We then create the
degraded audio segments by convolving the RIRs with
the clean audio segments using SciPy’s method for FFT
convolution [37]. The sampling of clean audio files is done
per requested Ty bin, taking 7 samples from the clean dataset
and 20 RIRs per bin and convolving all of them to create 140

samples per requested T¢ and a total of 25, 300 degraded audio
samples to train and test on. SciPy’s ‘fftconvolve’ function
is used for convolution as it has a lower running time than
standard time-domain convolution on larger datasets [37].
The end of the resulting degraded audio is trimmed to have
the degraded audio length match that of the clean audio,
which is necessary to run certain measures. The final audio
dataset consists of tuples of the clean and degraded audio
samples, labeled with information of the RIR used to create
the degraded sample, including the RT Ty value.

B. Generating the dataset

To obtain the values of each measure for each tuple created
in the previous step, we run the audio dataset through a
pipeline that calculates the score for each combination of clean
and degraded audio. The pipeline runs through the dataset in
batches of 200 samples, running each measure on each sample
before saving the intermediate result. By doing this in batches,
less memory is required at one time to run the pipeline and
intermediate saving is possible. The chunks are concatenated
into one final dataset at the end. Aside from obtaining a
clean-vs-degraded dataset, each clean audio sample used is
also run against itself. We then use the resulting measure
values of this set to normalise the clean-vs-degraded set.

C. Creating a regression model

Lastly, we use the feature set generated in the previous
section to train a machine learning (ML) model. For this,
we use TensorFlow’s Keras API to model a MLP regression
network [38]. To prepare the features for input, normalisation
is applied on each column independently. This allows for a
more stable performance of the model once it is trained.



Parameter

Number of neurons per layer

Activation function of neurons in hidden
layers

Learning rate

Available options
integer between 1 and 12
[“tanh’, ‘relu’]

[0.01, 0.001, 0.0001]

TABLE II: Overview of the possible parameter values allowed
during hypertuning of the multilayer perceptron models. The
tuner searches through the option with an incrementally
increasing number of epochs to efficiently find the optimal
parameters.

1) Model architecture: With the aim for simplicity in model
structure in mind, we choose to use a feed-forward ANN which
performs regression, also known as a MLP. These networks are
known for being able to learn non-linear data well. Another
model option is using a CNN but we choose against using
these as these models are more suited for higher dimensionality
inputs like audio and images to extract patterns while here, we
have only five input features.

Using TensorFlow’s Keras library [38], the network is built
with 5 input features, namely the scores of the measures, and
one output representing the estimated Tgo value. We create
7 different architectures with the number of layers ranging
between 1 and 4 which will each be tuned and trained.

2) Parameter tuning and training: Before training the
model, hyperparameter training is done to find the optimal
network configuration. We use the Hyperband tuner [39] from
the ‘keras_tuner’ package to search for the best activation
function, loss function, learning rate, and number of neurons
per layer. The possible options to search through are shown
in Table II. We configure it to run thrice for each parameter
set so that the penalty of unlucky random weight allocation
at the start of a search is limited. Additionally, we add early
stopping to speed up the process.

After tuning, we train and test the best configuration of
each model. The training is done for 100 epochs, allocating a
random 10% of the training set as a validation set and shuffling
the training set before each epoch. We use the Adam optimiser
with the learning rate found from tuning [40]. The trained
models are saved to ‘keras’ files.

D. Testing the models

Once trained, the models are tested on four sets of audio: a
set with simulated RIRs, the same set with AWGN added with
signal-to-noise ratio (SNR)s equal to 10, 20, 30 and 50 dB, and
a test set made using measured RIRs from the dEchorate set
[41]. The size of the sets using simulated RIRs is 5096 and that
of the real RIR set is 193. Testing on a set of real, measured
RIRs is done to determine how representative the training set
is for real data and how generalisable and applicable our model
is to unseen data. Testing on noisy variants of the simulated
test set is done to explore how robust the network is to noise
when the RIRs are more similar to those in the training set.

When testing, we measure the MSE, Mean Absolute Error
(MAE), and Pearson’s correlation coeflicient p. These metrics
are defined according to the equations 3, 4 and 5.
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When using equations 3 and 4, n refers to the number of
samples in the test set, where y; is the true Tgo value and y;
is the value predicted by our model.

X - X) (X -Y)
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When using Equation 5, X will refer to the ground-truth
Tso values and Y to the values predicted by the model. The
coefficient obtained lies between —1 and 1, where p = +1
indicates a total positive or negative correlation and p = 0
indicates no correlation at all.

Additionally, we perform SHapley Additive exPlanations
(SHAP) analysis on the best-performing model with real
RIR set to explore the contribution of each input using the
SHAP package’s ‘shap.PermutationExplainer’ class [42]. The
best-performing model is determined by taking the weighted
average of the MAE where the real RIR test set weighed twice
as much as the simulated ones.

p(X.Y) = ®)

IV. RESPONSIBLE RESEARCH

A. Adhering to FAIR principles

We keep the FAIR and Open Science principles in mind
when progressing through this research [43]. As such, the
code base is publicly available on the 4TU repository under
a GPL license and certain steps have been taken to enforce
these principles.

The code base is created with documentation for almost all
functions and a README file for every major part or module,
allowing for easier understanding of the code written. These
are all written aimed at those not yet very familiar with the
subject matter. Additionally, the parameters with which we run
scripts are provided in separate files or as default values for
function parameters, to allow for faster running of the project
and improve reproducibility.

To improve interoperability the code base is designed to be
as modular and self-contained as possible, such that different
modules may run by themselves and can be edited and adapted
easily. This is done with the exception of an overarching
constants file that keeps track of values and locations used
throughout the project.

To further re-usability, the licenses under which the
measures used are available are taken into account when
choosing the final subset of measures to be used. For example,
we choose against using the newer ITU-R recommendation
replacing PESQ, POLQA [15], as this is not available under
an open license.



B. Bias in datasets

When using machine learning, bias has to be considered
when selecting training and test data; implicit bias may always
be present when manually selecting data or datasets. In this
project, our subjective understanding of quality may influence
our choice in clean speech audio and the dataset to use. To
mitigate the presence of this bias within our datasets, multiple
datasets were considered that had a larger number of speakers
with a variety of backgrounds. Aside from the chosen anechoic
audio dataset, TSP speech, we also look at the EARS and
TIMIT dataset [44], [45]. Additionally, random sampling from
the entire clean audio set is done to decide on the subset to
use as clean audio, such that our implicit bias on speakers is
eliminated.

V. REsuLTS

Following the methodology outlined in the previous section
and using the minimisation of the MAE as our primary metric,
this section entails the results obtained.

We choose to omit the results for the noisy test set with
SNR = 50 dB in analysis and the weighted average as the
models all perform almost exactly the same here as for the
noiseless simulated test set. The scores obtained for this test
set are still visible for the sake of completion.

A. Finding the optimal architecture

Table III shows the weighted average defined in Section
III-D for the different performance metrics used. From this, we
identify that the models ‘mae_3div’ and ‘mae_2div’ perform
best with both their average MAE being 0.379. We take
the first model as the optimal architecture because of its
performance in prediction on the real RIR test set, dEchorate,
and the average Pearson’s correlation coefficient p being
slightly higher than other models, indicating that this model
may encapture the relationship between the input measures and
Teo slightly better than the other models.

Additionally, models with a decreasing number of neurons
over the layers score better than their counterparts that have
a uniform number of neurons over the hidden layers. For
example, model ‘mae_2div’ scores 0.493 and 0.972 lower in
the MAE and MSE than those of model ‘mae_2u’.

Model Architecture Activation | MAE | MSE | p
function

mae_1 5x17x1 tanh 0.475 | 0.419 | 0.626
mae_2div | 5x8x4x1 tanh 0.379 | 0.260 | 0.551
mae_2u 5x18x18x1 relu 0.872 | 1.232 | 0.310
mae_3div | 5x9x6x3x1 tanh 0.379 | 0.274 | 0.574
mae_3u 5x17x17x17x1 relu 0.788 1.003 | 0.354
mae_4div 5x17x13x9x5x1 relu 0.770 | 1.005 | 0.311
mae_4u 5x15x15x15x15x1 | relu 0.660 | 0.787 | 0.541

TABLE III: This overview contains the weighted average
scores of the MAE, MSE, and p of each model’s predictions
on the test set, rounded to three decimal places. The average
takes equal weighting for the simulated and noisy test sets but
gives a weighting twice as high for the real RIR test set. The
best-performing models have been highlighted.

B. Performance of model ‘mae_3div’

Table IV displays the MAE, MSE and p scores calculated
from predictions by the model ‘mae_3div’ when tested on the
different test sets. The model is able to attain an MSE of
0.049 on the simulated RIR test set and 0.065 on the real RIR
data set, dEchorate. These values are comparable with some
of the models’ performance in the ACE challenge, though
those scores include tests with noise conditions as well [8].
An interesting observation is that, although the dEchorate test
set has a higher MAE and MSE than the simulated RIR test
set, the maximum negative error for this set is much lower
with about —0.5 compared to almost —1.5. This may relate
to that the dEchorate set’s values have a much smaller range
between 0.8 and 1 second. It is notable that the value for
Pearson’s correlation coefficient for the dEchorate set is very
low, 0.159, compared to the other test sets. This suggests that
the model does not properly capture the relationship between
the values of the input measures and Tgy when real RIRs are
involved.

Test set MAE MSE P

Simulated 0.144 0.049 0918
Sim SNR 50 dB 0.144 0.048 0.919
Sim SNR 30 dB 0.292 0.116 0.884
Sim SNR 20 dB 0.551 0.373 0.794
Sim SNR 10 dB 0.894 0.974 0.526
dEchorate 0.197 0.065 0.159

TABLE IV: Resulting MAE (s), MSE (s?) and p scores
obtained from testing model ‘mae_3div’ on the different test
sets, rounded to three decimal places.

Testing on conditions where AWGN was added shows that
the model is very sensitive to noise. Figure 3 shows the
distributions of the errors between the model’s prediction and
actual Ty values. The bars show the maximum positive and
negative errors made by the model as well as the medians
for each test set. From this, it can be seen that additive
noise makes the model overestimate the RT, causing a median
overestimation of 0.25 s when the SNR is equal to 30 dB, up
to an overestimation 0.97 s when the SNR decreases to 10.

Looking further, into the error at different Ty, values, Figure
4 shows that the model makes more and bigger errors with
higher Tgo values. We attribute this behaviour to the RIR
distribution in the training set, which contains many more
RIRs in the range [0.1,1] than [1,2], as shown by Figure
2. This behaviour is consistent throughout the predictions of
the simulated test sets.

C. Investigating feature importance with SHAP

In an effort to gain a better understanding of how the model
may work internally, SHAP analysis is performed. Figure Sa
and 5b show summary plots of the SHAP values calculated.
These show the contribution of each input feature on the
predicted Tgo value on the x-axis, where colour indicates the
value of the input measure.

Being ordered by global importance within the test set,
the STOI measure is shown to have the greatest impact on
the predictions made in both sets. In the simulated test set,
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Fig. 4: Comparison between the predicted Tgp and the ground
truth value for the simulated test set. The diagonal line along
y = x indicates where the error between prediction and the
actual value is equal to O.

relatively low values of the STOI measure have a very positive
impact on the predicted Tgp, while higher values of STOI have
a negative impact on the predicted value, though not as severe
as the low values. In the real RIR test set, low and high STOI
values have equal impact.

The second most influential input feature in both sets is the
ViSQOLAudio measure. Although the contribution of lower
ViSQOLAudio values are similar in both sets, the higher
values of the measure seem to have a higher contribution in
the real RIR test set’s predictions.

The other three measures’ contribution differs between the
simulated and real RIR test set.

In the simulated predictions, ViSQOL has a visibly
higher contribution to the output value, showing a negative
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Fig. 5: Summary plot of the SHAP analysis of the simulated
and real RIR test sets. The x-axis describes the impact the
input value has on the prediction made for a sample, and the
colour of the dot indicates the value of the input feature. For a
measure, a distribution with high deviations from 0 indicates
a high contribution to the predictions while a distribution with
low variance centered around O indicates a low contribution
to model predictions.

relationship with the predicted value. Relatively high values
of ESTOI have some but not much impact while lower
values have more and PESQ has a fairly balanced contribution
between lower and higher values.

Contrastingly, relatively high values of the PESQ measure
have a higher impact on the predicted value in the real RIR test
set. VISQOL STOI have a dense distribution at 0, implying
that they may not be good measures to use to predict the Ty
for data with real, measured RIRs.

It must be noted that the contributions identified during
SHAP analysis are data-oriented and only describe the
contributions in the test sets analysed. Other test sets may
have different contributions.

VI. ConcLusioNs AND FUTURE WORK

In this research, we created a multilayer perceptron (MLP)
regression model that tries to estimate the reverberation
time (RT), though it falls short of competing with other
state-of-the-art estimators, having a mean absolute error of
0.197, a mean squared error of 0.065 and a Pearson’s
correlation coefficient of 0.159 when tested on a dataset
generated from real room impulse responses (RIR). However,
from the correlation scores obtained from running the
simulated test sets and the SHAP analysis done in Section
III-D, we do believe that creating a better estimator using
quality and intelligibility measures is possible.



We mainly attribute the lower performance to the quality
of the data used to train the network. All models created have
only been trained on a dataset generated from simulated RIRs,
of which the distribution of the Ty values was not uniform, as
shown by the distribution histogram in Figure 2. One possible
solution to make the training data more representative of real
RIRs is to use not only simulated but also real RIRs in
training, similar to what Gamper and Tashev have done [7].
As mentioned in section III-A1, obtaining a sufficient number
of real RIRs to train a model on is difficult, and an adequate
variation in RIRs will be difficult to provide. However, data
augmentation methods such as the ones mentioned by Bryan
could serve to decrease the size of datasets needed and make
them more balanced [46]. Alternatively, further testing on
improving the accuracy of the simulated RIRs could be done.

Another way training data quality can be improved may be
by increasing the variation in the clean audio datasets could
serve to increase robustness. Although the TSP speech dataset
is decently varied, datasets created for variation like EARS or
non-speech datasets may contribute more to generalisability to
multiple audio contexts [32], [44]. Sadly it was out of scope
for this project to experiment on the input more.

Lastly, one of the main limitations of our model compared
to other state-of-the-art (SOTA) estimators is that it requires
clean, non-degraded audio in addition to the degraded one.
This makes it much less applicable in many situations.
Future exploration on using non-intrusive measures instead of
intrusive ones or combining this model with other methods
outside of machine learning may be valuable.
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APPENDIX

This appendix is a collection of all testing results obtained
from all models trained, grouped by model, excluding the best
performing model of which the results are shown in Table IV.
The subsection names refer to the filename under which the
model is saved. Additionally, Table V lists all the architectures
of the models after tuning.

TABLE V: Structures of models

Model No. neurons per layer | Activation
(inputx...xoutput) function
mae_1_3 keras 5x17x1 tanh
mae_2div_3.keras 5x8x4x1 tanh
mae_2u_3.keras 5x18x18x1 relu
mae_3div_3.keras 5x9x6x3x1 tanh
mae_3u_3.keras S5x17x17x17x1 relu
mae_4div_3 keras 5x17x13x9x5x1 relu
mae_4u_3 keras 5x15x15x15x15x1 relu

TABLE VI: Results obtained from testing model ‘mae_1’

Test set MAE MSE P

simulated 0.1427 0.0468 0.916
sim SNR 50 dB 0.1430 0.0459 0.917
sim SNR 30 dB 0.4270 0.2560 0.893
sim SNR 20 dB 1.0263 1.2277 0.816
sim SNR 10 dB 1.5816 2.7088 0.696
dEchorate 0.2595 0.0902 0.218

TABLE VII: Results

obtained from testing model ‘mae_2div’

Test set MAE MSE P

simulated 0.1492 0.0532 0.917
sim SNR 50 dB 0.1480 0.0517 0.918
sim SNR 30 dB 0.2853 0.1156 0.875
sim SNR 20 dB 0.5882 0.4339 0.703
sim SNR 10 dB 0.8093 0.8119 0.491
dEchorate 0.2221 0.0716 0.160

TABLE VIII: Results obtained from testing model ‘mae_2u’

Test set MAE MSE P
simulated 0.1415 0.0470 0.922
sim SNR 50 dB 0.1414 0.0461 0.923
sim SNR 30 dB 0.4906 0.3554 0.681
sim SNR 20 dB 1.1600 1.6506 0.234
sim SNR 10 dB 1.8415 3.7998 -0.154
dEchorate 0.7991 0.7699 0.088

TABLE IX: Results obtained from testing model ‘mae_3uw’

Test set MAE MSE P

simulated 0.1394 0.0455 0.923
sim SNR 50 dB 0.1397 0.0447 0.923
sim SNR 30 dB 0.4669 0.3225 0.742
sim SNR 20 dB 1.0405 1.3361 0.343
sim SNR 10 dB 1.5981 2.9522 -0.238
dEchorate 0.7419 0.6797 0.178

TABLE X: Results obtained from testing model ‘mae_4div’

Test set MAE MSE 2

simulated 0.1425 0.0472 0.921
sim SNR 50 dB 0.1422 0.0461 0.922
sim SNR 30 dB 0.4725 0.3206 0.738
sim SNR 20 dB 1.0729 1.4513 0.243
sim SNR 10 dB 1.6347 3.1593 -0.353
dEchorate 0.6482 0.5267 0.157

TABLE XI: Results obtained from testing model ‘mae_4u’

Test set MAE MSE o)

simulated 0.1427 0.0468 0.921
sim SNR 50 dB 0.1430 0.0459 0.922
sim SNR 30 dB 0.4270 0.2560 0.807
sim SNR 20 dB 1.0263 1.2277 0.632
sim SNR 10 dB 1.5816 2.7088 0.628
dEchorate 0.3909 0.2422 0.129
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