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Preface

This report is the final report of the thesis work of Lindy Spiteri, student at the faculty of Aero-
space Engineering, Delft University of Technology. To graduate for the master Space Engineering,
profile space mission design, research was done to see if a MEMS micro–gradiometer can detect
lakes on the surface of Saturn’s moon Titan and extract density information from the gravity mea-
surements made from these lakes.

Readers only interested in the different aspects of the research done are referred to chapter 2 for
information about Titan, chapter 3 on gradiometry and chapter 4 for the theoretical background
on the gravity field. The models used is described in chapter 5 and the analysis done in chapter
6. Readers only interested in the beautiful figures I created are referred to appendices E and F.

First of all I want to thank my supervisors, Bert Vermeersen of Delft University of Technology and
Martijn Smit of SRON. Next to that I want to thank professor Klees for all the fruitful meetings to
enlarge my understanding of the gravitational potential and a special thanks goes to my fellow
students in rooms 9.06 and 9.03, especially Elja, for their enthusiasm, help and nice lunches. Fi-
nally I would like to thank my roommate Kevin and my boyfriend Joost for their support through-
out the year.

Enjoy reading!

Delft, September 22, 2008
Lindy Spiteri
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Summary

Titan, the largest moon of Saturn, has a significant atmosphere in which it hosts a methane cycle
in resemblance to the Earth’s hydrological cycle, including clouds, rain and surface lakes. One
of the key questions within the science community today is what the origin is of the methane on
Titan. Methane is one of the chemicals produced by life forms. Is some kind of bacteria active
on Titan? Was it incorporated in the interior at the time of formation or is it formed and stored
in the interior? One way to learn more about the interior of a celestial body is by doing gravity
measurements, using a so–called gravity gradiometer.

The Titan and the Saturn System Mission is a joint venture between ESA and NASA (TBC), a
combination from studies for Cosmic Vision 2015–2025 and Outer Planet Flagship Mission. As
part of in situ investigation components a hot–air balloon will be released in the atmosphere of
Titan. One of the instruments on board of the gondola of the hot–air balloon will be a micro–
gradiometer, as initially proposed by SRON, the Netherlands Institute for Space Research, since
the conventional gradiometers are far to bulky and heavy to send on a planetary mission.

Pictures taken by instruments on board of the Cassini spacecraft prove that lakes are present at
the polar regions of Titan. The composition of these lakes is still unknown, though it is believed
that these lakes consist of a hydrocarbon mixture. With the area of the lakes known, gradiometer
measurements could resolve for the density of these lakes. It is the aim of this research if a MEMS
micro–gradiometer on board of a hot air balloon floating in the atmosphere of Titan can detect
(sub–)surface lakes. Can then the density of the lakes be resolved from the gradients? With what
accuracy can the gradiometer resolve for the density of the lakes?

A basic model of the gravity gradients of Titan is created using MATLAB. One of the problems
that was encountered creating such a model is that not much information on the global gravita-
tional field of Titan is available. The classic approach using a spherical harmonic representation is
not possible, as there is not enough data yet. Therefore the mass layer method, which assumes the
gravitational potential of lakes can be represented by a single mass layer on the surface of Titan, is
used to model two lakes. The lakes are selected from a Cassini image of the northern polar region.

Different simulations are done in order to see what the effect is of balloon altitude, of different
trajectories along which measurements can be done, of different densities of the lakes, in order
to see how the lake density influences the gravity gradients, and of the location of the lakes with
respect to the surface of Titan. When changing one of these parameters, the influence can directly
be noted in the gradients simulated. The strength of the gravity gradients decreases with altitude
and it is shown that the measurements at higher altitudes are not sufficiently accurate. The same
holds for sub–surface lakes: the further the lake is located beneath the surface of Titan, the weaker
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the gradients.

The gradients that are measured along the axis of the chosen reference system (the diagonal gra-
dients) give a larger difference in magnitude than the off–diagonal gradients, and thus are better
measurable. The least–squares method is used to compute the lake density from the observations
simulated. The accuracy of the computed density is the same for computations using only the
diagonal gradients of the gravity tensor as for computations using the complete gravity tensor.
Concluding, the diagonal gradients give the larger part of the information and it is therefore very
important to emphasize the sensitivity of the part of the gradiometer that will measure the diag-
onal gradients.

The models used in this research are very basic models. The models show that a gradiometer
can give a lot of information on the lakes on Titan. Due to its high sensitivity many small surface
features can be distinguished and in combination with visual data it can be powerful tool to
determine the interior structure locally.
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Chapter 1

Introduction

Titan, the largest moon of Saturn, amazes us every time again and again. This moon, orange in
appearance, has a significant atmosphere in which it hosts a methane cycle in resemblance to the
Earth’s hydrological cycle, including clouds, rain and surfaces lakes. One of the key questions
within the science community today is what the origin is of the methane on Titan. Methane is
one of the chemicals produced by life forms. Is some kind of bacteria active on Titan? Was it
incorporated in the interior at the time of formation or is it formed and stored in the interior? One
way to learn more about the interior of a celestial body is by doing gravity measurements, using
a so–called gravity gradiometer.

TandEM – Titan and Enceladus mission, was proposed in response to ESA’s Cosmic Vision 2015–
2025 call for proposals, a mission with the goal of exploring the two of the moons of Saturn in
situ, Titan and Enceladus, to understand their atmosphere, surface and interior. TandEM was se-
lected for further studies within the Cosmic Vision plan, but the mission is a candidate for NASA’s
outer planet flagship missions too. Therefore ESA and NASA have started a collaboration on the
mission studies: Titan and the Saturn System Mission (TSSM). As part of in situ investigation
components a hot–air balloon would be released in the atmosphere of Titan. One of the instru-
ments on board of the gondola of the hot–air balloon would be a MEMS micro–gradiometer, as
initially proposed by SRON, the Netherlands Institute for Space Research.

Measuring the gravity field from space using a gradiometer has not been done before. GOCE, the
gravity field and steady–state ocean circulation explorer to be launched in October 2008, will be
the first satellite carrying a gradiometer on board. A lot is expected from GOCE: it will determine
gravity–field anomalies with an accuracy of 1 Gal, the geoid with an accuracy of 1–2 cm and the
spatial resolution will be better than 100 km. This gradiometer, however, is far to bulky and heavy
to send on a planetary mission. GOCE is a dedicated mission with no other scientific instruments
on board. It is clear that such a configuration is not possible for planetary missions: it would
require too much money and mission time for the science return that would then be achieved.

Pictures taken by instruments on board of the Cassini spacecraft prove that lakes are present at
the polar regions of Titan. The composition of these lakes is still unknown, though it is believed
that these lakes consist of a hydrocarbon mixture. With the area of the lakes known, gradiometer
measurements could resolve for the density of these lakes. Can a MEMS micro–gradiometer on
board of a hot air balloon floating in the atmosphere of Titan detect (sub–) surface lakes? Can then
the density of the lakes be resolved from the gradients? With what accuracy can the gradiometer
resolve for the density of the lakes?
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To find the answers to these questions a model will be created using a computer program called
MATLAB. One of the problems that will be encountered creating such a model is that not much
information on the global gravitational field of Titan is available. The classic approach using a
spherical harmonic representation is not possible, as there is not enough data yet. Before creating
the model several assumptions are made:

- The gradiometer is not damaged during the journey toward Titan and during deployment
in Titan’s atmosphere. It arrives at Titan fully functional

- The gradiometer is a perfect instrument (no noise, instantaneous measurements)

- The position of the gradiometer with respect to the moon is known accurately

- The gravity field is simulated locally

Starting from these assumptions a very basic model of the gravity gradients of Titan is created.
From the lakes as seen by Cassini at the northern polar region a selection is made and modeled
as mass anomalies. Finally several datasets are created and the density is resolved from the sim-
ulated measurements using the least–squares method.

This report is built up as follows: an introduction to Titan is given in the next chapter. It gives a
description on what is known about the planet and recent discoveries are mostly included. Gra-
diometry, the technique used to measure the gravity gradients of the gravitational potential, and
the gradiometer, the instrument used to measure the gravity gradients, are discussed in chapter
3. Chapter 4 describes the theory behind the gravitational and tidal potential. Chapter 5 describes
the model that is created and chapter 6 provides an analysis of the results from the model. Finally,
chapter 7 finishes this report with conclusions and recommendations.
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Chapter 2

Titan

Discovered in 1655 by Christian Huygens, Saturn’s largest moon, Titan, is the second largest satel-
lite in the solar system (after Ganymede of Jupiter). Christiaan Huygens was a Dutch mathemati-
cian, astronomer and physicist. In 1659 Systema Saturnium was published, in which he revealed
a full exposition of his observations of the system of Saturn, the determination of the period of the
moon he had discovered and an explanation of his new theory on Saturn’s appearance [21]. This
chapter will try to give a complete picture of the moon Huygens discovered. It will start with an
introduction to the Saturnian system in which Titan is located and it will give some characteris-
tics of Titan (section 2.1). Hereafter past and future missions to Titan are discussed. Section 2.3
elaborates on the formation of planets and interior of Titan, two closely related subjects. Most of
what nowadays is known on the surface characteristics of Titan will be described in section 2.4
and finally, in section 2.5, several aspects of the atmosphere will be treated.

2.1 The Saturnian system

This section will start with a brief introduction into the system of Saturn, the planet around which
Titan is in orbit. Next to that some main orbital and physical elements of Titan are presented.

2.1.1 Saturn Y

Saturn, the second largest planet (after Jupiter) in our solar system is named after a major Roman
god: Saturnus, the god of agriculture and harvest and father of Jupiter. This planet is classified
as a gas giant, with a radius of approximately 60,000 km and a gaseous atmosphere. The planet
itself mainly consists of hydrogen, a small amount of helium and other trace ele ments. The inner
core of Saturn consists of rock, surrounded by a thick layer of metallic hydrogen, with a mass
more than ten times as larges as the mass of the Earth. The main physical characteristics and
orbital elements are given in table 2.1. Though all four outer planets haven a system of rings, that
of Saturn is the most distinctive. Its appearance is bright and be can be seen through a simple
telescope. The rings are mainly composed out of ices, rocks and dust. Pictures of the so–called
A ring made in the ultraviolet light (UV), see figure 2.1, clearly show distinctive features of the
rings. Saturn is orbited by at least sixty known satellites, of which Titan is the largest. Together
with Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus it is one of the more massive moons,
which has become a spheroid under its own gravitation.

2.1.2 In orbit around Saturn

Titan is the twentieth most distant moon of Saturn and is frequently described as a satellite with
planet–like characteristics. It has an atmosphere, seasons due to the approximately 26.7◦inclina-
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Figure 2.1: Saturn’s A ring seen in ultraviolet light. From the inside out, the ‘Cassini division’ in faint
red on the left is followed by the A ring in its entirety. The A ring begins with a ‘dirty’ interior of red
followed by a general pattern of more turquoise as it spreads away from the planet, which indicates denser
material made up of ice. The red band, roughly three–quarters of the way out in the A ring, is known as
the ‘Encke Gap’ [Courtesy: ESA].

Table 2.1: Characteristics of Saturn [7].

Mean orbital elements
Semi–major axis (a) 9.5428244 AU
Eccentricity (e) 0.055509
Inclination (i) 2.4889◦

Orbital period 29.423519 yr
Ω 113.666◦

ω 93.057◦

Mean longitude (Lm) 50.077◦

Aphelion distance 10.11595804 AU
Perihelion distance 9.04807635 AU

Physical data
Mass 568.46·1024 kg
Density 687.3 kg/m3

Equatorial radius 60 268 ± 4 km
Polar radius 54 364 ± 10 km
Rotational period 10h39m22s.4
Obliquity 26.73◦

Surface gravity 8.96 ± 0.01 m/s2 (0.914 g)
Geometric albedo 0.47
Planetocentric constant (GM) 3.79·1016 m3/s2

tion to the ecliptic of Saturn, a diameter roughly 50% larger than Earth’s moon and it is 80% more
massive. Titan, Venus, Mars and Earth are the only bodies in our solar system with a signifi-
cant atmosphere, making Titan the only moon in our solar system which resembles an Earth–like
planet. The dense smog layer in Titan’s atmosphere makes it impossible to probe the satellite’s
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surface in visible wavelengths, only in far infrared (IR) (the longer wavelengths) and with the use
of radar sounding a glimpse of the surface can be seen. Spectra of the atmosphere show the smog
layer to consist of various hydrocarbons, nitriles and some carbon oxide compounds [7].

The orbit of Titan is, just like most of the planetary satellites, prograde1 and synchronous with
respect to Saturn, which means that the orbital period of 15.945 days is equal to the rotational
period of the satellite. The sideral period of Saturn is 10,759 days (29.42 years), which gives the
duration of one season on Titan to be 7.365 years.

Titan has a 3:4 orbital resonance2 with another, smaller, moon of Saturn, Hyperion. The gravita-
tional acceleration at the surface of Titan is 1.35 m/s2, 0.14 times the gravitational attraction at the
surface of the Earth. The surface pressure is 1.5 bar, 1.5 times the surface pressure of the Earth
(1 bar). The orbital elements and other physical characteristics of Titan can be found in table 2.2.

Table 2.2: Characteristics of Titan ([29] and [62]).

Mean orbital elements
Semi–major axis (a) 1.22187·106 km
Eccentricity (e) 0.0292
Inclination (i) 0.28◦

Orbital period 15.945421 Earth days
Rotation period Synchronous

Physical data
Equatorial radius 2575 ± 2 km
Mass 1345.53·1020 kg
Density 1880 ± 4 kg/m3

Surface temperature 94 K
Surface pressure 1496 hPa (1.5 bar)
Surface gravity 1.352 m/s2 (0.14 gEarth)
Geometric albedo 0.21
Planetocentric constant (GM) 8978.13 ± 0.06 km3/s2

2.2 Observing Titan: missions to the moon of Saturn

Pioneer 11 passed the moon Titan at a distance of 360,000 kilometers on September 2, 1979, taking
five images which constructed the first picture of Titan from outer space, see the left picture of
figure 2.2. In 1980 the Voyager 1 spacecraft deliberately made a detour, terminating its Grand Tour
to the outer planets, to make more images of Titan and its atmosphere. The first Voyager picture
is shown in the middle of figure 2.2. Nowadays the Cassini spacecraft sends high–resolution
images, not only in the visible wavelength, back to the Earth. The left picture of figure 2.2 was
made on its approach to Titan. All images show that Titan is covered in an orange haze, a feature
of Titan’s dense atmosphere. It is colored orange because methane particles which reside in Titan’s
atmosphere absorb all wavelengths in the visible band, except the orange wavelength.

1see appendix A
2see appendix A
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Figure 2.2: Titan as seen in the visible band by Pioneer 11 (left) [Courtesy: NASA], Voyager 1 (middle)
[Courtesy: NASA] and Cassini (right) [Courtesy: ESA].

2.2.1 Voyager

The original goal of the Voyager missions was to make a closeup study of Jupiter and Saturn, Sat-
urn’s rings, and the larger moons of the two planets. The two Voyagers were both launched from
Cape Canaveral, Florida, aboard a Titan–Centaur rocket, Voyager 2 on August 20, 1977 and Voy-
ager 1 on September 5, 1977. Until now Voyager 1 and 2 explored all the giant planets of the outer
solar system, Jupiter, Saturn, Uranus and Neptune; 48 of their moons; and the unique system of
rings and magnetic fields these planets possess. As of February 2008, Voyager 1 was at a distance
of 15.7 billion kilometers (105.3 AU) and Voyager 2 at a distance of 12.7 billion kilometers (85 AU)
from the Sun. Currently five science investigation teams are still participating in the Interstellar
Mission, as the Voyager mission is renamed to. It is expected that both spacecraft will have their
electrical power and attitude control propellant to continue operating until around 2020, though
with loss in subsystem redundancy [28].

The trajectory as designed for Voyager 1 was to send the spacecraft past Titan and behind Sat-
urn’s rings. Until then scientists believed that Titan was the largest satellite in our solar system,
because the measurements were limited to the top of the haze. On its close approach Voyager
diametric radio occultation showed that Titan’s surface was actually below a haze and that Ti-
tan is slightly smaller than Ganymede. Though the surface cannot be seen on Voyager pictures,
several detached haze layers can be seen. Another distinctive feature that was seen was a dark
hood around the north pole, where the haze layers merge with the main layer. Under the better
viewing conditions of Voyager 2, the hood was found to be a dark ring around the pole. Next to
that the southern hemisphere was slightly brighter than the northern, which possibly is a result
of seasonal effects. The Voyagers flew past Titan when the season was equivalent of mid–April
and early May on Earth, or early spring in the northern hemisphere and early fall in the south on
Titan [28].

2.2.2 Cassini–Huygens mission

The Cassini–Huygens mission to Saturn is a joint endeavour of ESA, NASA and the Italian space
agency, Agenzia Spaziale Italiana (ASI). The Cassini spacecraft carries twelve instruments in or-
bit around Saturn and the Huygens lander escorted another six instruments to the surface of
Titan. Cassini–Huygens is the largest interplanetary spacecraft ever built. It lifted off from Cape
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Canaveral on October 15, 2007 aboard a Titan IVB–Centaur rocket and used several gravity as-
sists3 to reach its final destination: the Saturnian system. During the nominal mission lifetime,
which ended June 2008, Cassini has completed 75 orbits around Saturn, 44 close fly–bys of Titan,
and numerous fly–bys of Saturn’s other icy moons [11]. Last April, a mission extension was ap-
proved by NASA and the Cassini spacecraft will continue its journey for at least two more years
around Saturn and its moons, under the name of Cassini Equinox, see section 2.2.3.

The Cassini orbiter

The Cassini spacecraft is 6.7 m high and 4 m wide and alone weighs 2125 kg. The Huygens probe
adds another 349 kg and including 3.1 tonnes of propellant, the launch mass of Cassini–Huygens
was 5.82 tonnes. Three Radioisotope Thermoelectric Generators (RTGs) provide power for the
complete spacecraft including the instruments, computers, radio transmitters, attitude thrusters
and reaction wheels. Communication can be done using the high–gain or one of the two low–
gain antennae mounted on the spacecraft. At the moment the primary function of the high–gain
antenna is to support communication with Earth, next to that it is used for scientific experiments.
During the first part of its voyage to Saturn, the high–gain antenna was positioned toward the Sun
such that it could function as a shield to protect the spacecraft’s instruments from solar radiation.
The low–gain antennae are only used for communication in emergency situations such as a power
failure on board of the spacecraft. The twelve scientific instruments on board are [11]:

- Cassini Plasma Spectrometer (CAPS) explores plasma (highly ionized gas) within and near
Saturn’s magnetic field

- Cosmic Dust Analyzer (CDA) studies ice and dust grains in and near the Saturn system

- Composite Infrared Spectrometer (CIRS) measures infrared energy from the surface, atmo-
sphere and rings of Saturn and its moons to study their temperature and compositions

- Ion and Neutral Mass Spectrometer (INMS) examines neutral and charged particles near
Titan, Saturn and moons to learn more about their atmospheres and ionospheres

- Imaging Science Subsystem (ISS) takes pictures in visible, UV and near–IR light

- Dual–Technique Magnetometer (MAG) studies Saturn’s magnetic field and its interactions
with the solar wind, the rings and the moons of Saturn

- Magnetospheric Imaging Instrument (MIMI) images Saturn’s magnetosphere and measures
interactions between the magnetosphere and the solar wind, a flow of ionized gases stream-
ing out from the Sun

- Cassini Radar (RADAR) maps surface of Titan using radar imager to pierce the veil of haze.
It is used to measure heights of surface features too

- Radio and Plasma Wave Spectrometer (RPWS) investigates plasma waves (generated by
ionized gases flowing out from the Sun or orbiting Saturn), natural emissions of radio en-
ergy and dust

3see appendix A
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- Radio Science Subsystem (RSS) searches for gravitational waves4 coming from beyond the
solar system; studies the atmosphere, rings and gravity fields of Saturn and its moons by
measuring telltale changes in radio waves sent from the spacecraft

- Ultraviolet Imaging Spectrograph (UVIS) measures ultraviolet energy from atmospheres
and rings to study their structure, chemistry and composition

- Visible and Infrared Mapping Spectrometer (VIMS) identifies the chemical compositions of
the surfaces, atmospheres and rings of Saturn and its moons by measuring colours of visible
light and infrared energy emitted or reflected

The Cassini orbiter has flown by Titan several times already, but more flybys are still planned.
After the data became available from the Huygens lander and earlier Titan encounters, the density
in the upper atmosphere was discovered to be greater than originally expected. Hence some of
the ‘lower’ flyby altitudes had to be adjusted to a higher altitude, otherwise the air–drag of the
upper atmosphere might have changed the orbit of the Cassini spacecraft too much. Table 2.3
gives an overview of all past and coming flybys of the nominal mission of the Cassini orbiter and
it is indicated which altitudes were revised. For more recent information on these flybys and on
flybys with other moons of Saturn, see the Cassini–Huygens website [11].

The Huygens landing probe

On January 14, 2005, the Huygens lander descended into the atmosphere of Titan. Using three dif-
ferent parachutes in sequence to ensure a soft landing, the Huygens probe made a two and a half
hour trip before it finally reached the surface. The probe carried six scientific instruments, pro-
tected by a hard shell which functioned as a brake and as thermal protection during the descent.
The instruments were mainly meant to analyze Titan’s atmosphere and surface [11]:

- The Aerosol Collector and Pyrolyzer (ACP) collected aerosols for chemical–composition
analysis

- The Descent Imager/Spectral Radiometer (DISR) took images and made spectral measure-
ments using sensors covering a wide spectral range. A few hundred meters before impact,
the instrument switched on its lamp and acquired spectra of the surface material

- The Doppler Wind Experiment (DWE) used radio signals to deduce atmospheric proper-
ties. The drift of the probe caused by the winds in Titan’s atmosphere induced a measurable
Doppler shift in the carrier signal. Other radio–signal–perturbing effects such as the swing-
ing motion of the probe was detected from the signal too

- The Gas Chromatograph and Mass Spectrometer (GCMS) identified and analyzed the var-
ious elements within the atmosphere. It was equipped with gas samplers too, which were
filled at high altitudes and analyzed during descent when more time was available.

- The Huygens Atmosphere Structure Instrument (HASI) used its sensors to measure the
physical and electrical properties of the atmosphere. It had an on–board microphone too, to
record sounds, see [11] for this recording

4see appendix A
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Table 2.3: Date of the Cassini flybys at Titan and the flyby altitudes. As stated in September 2007.

Titan flyby Flyby date Alt. (km) Titan flyby Flyby date Alt. (km)

2004 2007
TA October 26 1200 T23 January 13 10001

TB December 13 1200 T24 January 29 2631
2005 T25 February 22 10001

Huygens descent January 14 60 000 T26 March 10 9801

T3 February 15 1577 T27 March 26 10101

T4 March 31 2402 T28 April 10 9901

T5 April 16 1025 T29 April 26 9801

T6 August 22 3758 T30 May 12 6901

T7 September 07 1025 T31 May 28 960
T8 October 28 1451 T32b June 13 9501

T9 December 26 10 409 T33 June 29 1932
2006 T34 July 19 1332
T10 January 15 2043 T35 August 31 3212
T11 February 27 1813 T36 October 02 9751

T12 March 19 1951 T37 November 19 10001

T13 April 30 1855 T38 December 5 1300
T14 May 20 1879 T39 December 20 9701

T15 July 2 1906 2008
T16 July 22 9501 T40 January 05 10101

T17 September 07 10001 T41 February 22 10001

T18 September 23 9601 T42 March 25 10001

T19 October 09 9801 T43 May 12 10001

T20a October 25 10301 T44 May 28 1348
T21 December 12 10001

T22 December 28 1300

1Revised altitudes [47]

- The Surface Science Package (SSP) is a suite of sensors which determined the physical prop-
erties of the surface at the impact site and provided information on its composition. The
package includes an accelerometer to measure the impact deceleration, sensors which mea-
sured the index of refraction, temperature, thermal conductivity, heat capacity, speed of
sound, and dielectric constant of the material at the impact site

The Huygens probe was designed to land and survive on liquid material, since this was what the
scientists at the time expected.

Discoveries by Cassini and remaining questions

Next to not finding a global ocean, the Cassini–Huygens mission has discovered many important
features of Titan. Here a short list of the most important discoveries [45]:

- Ethane and ethane clouds were observed that varied over time

- Fluvial channels, lakes and seas were imaged by Cassini radar

- A strong indication of evaporating methane/ethane from the ground has been found
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- Evidence for cryovolcanism has been found

- Surface deposits of carbon dioxide have been detected

- A non–synchronous spin was measured. This could indicate the presence of a subsurface
ocean, see section 5.3

The major question that remains open is what is the source of Titan’s methane is and what the
sink is for its organic products. Cassini data suggest that Titan’s climate has not been static in the
history of the solar system and may still be changing today, but no real evidence is given so far
[68].

More remains unanswered by the Cassini mission, to give some examples [45]:

- What are the lakes made of? What is flowing in the rivers?

- Is there active volcanism? What kinds of tectonics?

- How are the polymers made in the atmosphere? What is the energy source?

- When and how do the heavy rains occur?

- Is there a rock/metal core? How thin is the crust?

- Is ammonia present and what is the loss rate of the major gases?

- What are the organics at Titan’s surface? What is the potential for life?

Considering this is not even the complete list of questions, a lot still has to be discovered. Maybe
Cassini will still solve some of these questions the coming years, but a future mission to Titan
might be able solve the remaining mysteries on this fascinating moon of Saturn.

2.2.3 Cassini Equinox Mission

June 30 marked the end of the original Cassini–Huygens mission and with this end the Cassini
Equinox mission started. The mission will run from July 2008 to September 2010. The mission
extension will build further on the primary mission, principal mission objectives are given by
([30] and [11]):

- To study the Saturnian moons, in particular Titan and Enceladus, in more detail

- To monitor seasonal effects on Titan and Saturn

- To explore new regions of the Saturnian magnetosphere

- To observe the unique ring geometry of the Saturn equinox in August 2009 - when sunlight
will pass directly through the plane of the rings

The focus in the study on the moons on Saturn will lie on Titan and Enceladus. Titan, because of
its similarity with (future) Earth and Enceladus, because of the potential habitability of the moon
[30].
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In august 2009, Saturn’s autumnal equinox5 will occur, then the sun shines directly on the equator
illumination the rings of Saturn in a different way. Past observations, when the rings were illu-
minated from the south, revealed complex dynamics and interactions with the moons. This time
Cassini will monitor seasonal changes as the angle of sunlight shifts to the top of the ring plane
and the northern hemispheres of Saturn and its moons ([30] and [11]).

2.2.4 Future missions

Titan has a lot for us to discover and it is worth a visit again. With the call for proposal’s for ESA’s
Cosmic Vision two missions to the outer planets were selected for further studies: TandEM, to
Titan and Enceladus, in the Saturn system and Laplace, to Europa in the Jupiter system. Both
studies are candidates for NASA’s Outer Planet Flagship Mission (OPFM) too and now the forces
are joint in two mission studies: Europa and the Jupiter System Mission (EJSM) and Titan and the
Saturn System Mission (TSSM). In the autumn of 2008 the decision will be made whether to go
back to either Jupiter or Saturn and the implementation of this mission will start in 2009.

TANDEM - Titan and Enceladus mission

The initial TandEM concept consists of two moderately–sized spacecraft to be launched around
2020. One is defined as a Titan–Enceladus orbiter, carrying Enceladus landers, and the other will
be a carrier for Titan in situ investigation elements, the Titan hot–air balloon (Montgolfière) and
three mini–probes [4].

The Titan–Enceladus orbiter would deliver up to two Enceladus landers, which would perform
in situ seismic, temperature, and possibly compositional measurements. The data relay will be
provided by the orbiter during the flybys of Enceladus approximately every 8.25 days. After per-
manent orbit insertion of Titan, the Montgolfière and surface probe investigations will take place.
The orbiter then will be maneuvered to a polar orbit around Titan to perform optimized Titan
orbital science and to provide telecom support to the Titan in situ elements [4].

The principal mission objectives are driven by the question the Cassini–Huygens mission raised,
and are given in short:

- Titan space environment: thorough investigation of Titan’s atmosphere, ionosphere and
exosphere, as well as its plasma and magnetic field

- Titan’s neutral atmosphere: to obtain more data on temperature, pressure, CH4 and C2H6

humidity, wind fields, internal structure and evolution of clouds, haze characteristics, evap-
oration rates and temperature over the lakes, surface composition and thermal properties,
volumetric changes in lakes and river systems and solar partitioning

- Titan’s surface: to obtain (high–resolution) infrared stereo and radar surface mapping, lo-
cally and globally and in–situ measurements of surface material from a variety of locations

- Enceladus: to perform measurements as mentioned above for Enceladus’ jets, plumes and
surface

5see appendix A
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- Titan and Enceladus interiors and origins: to explore the interiors of Titan and Enceladus by
quantifying spatial and temporal variations of topography, gravity field and magnetic field
(if any), to determine the composition of the interior and surface materials, proportions of
noble gases and isotopic ratios

- Investigation of the astrobiological features by, among others, isotopic and molecular com-
position, molecular structure of Titan’s aerosols and of its various surface materials, to do
a chemical analysis of the ejecta produced by cryovolcanism and to investigate molecular
and isotopic composition of Enceladus’ plumes

More information on the TandEM mission can be found at the mission website [68].

Outer Planet Flagship Mission

The mission studies of the OPFM have embraced Titan as study object because of its low gravity
and a thick atmosphere, which make Titan accessible for in situ exploration. This allows a broader
range of scientific instruments to be taken on this exploration and therefore Titan, “the rich and
diverse body offering extraordinary scientific return, is an excellent choice for the next Flagship
mission” [70].

The targets of Titan system science include among others geology, meteorology, chemistry, geo-
physics, space physics and hydrology. To address all these parts the Titan Explorer (TE) mission
architecture, includes a separate orbiter, lander, and balloon. The mission to be launched in 2018
will arrive at Titan, through two Venus and two Earth flybys, in 2028. An Atlas V 551 will carry
all three elements, an orbiter, a lander and a balloon, housed in individual aeroshells [70].

The orbiter will have a nominal mission life time of four years and it will carry twelve instru-
ments. Thus it will facilitate radio science to provide global mapping, remote sensing observa-
tions and in situ upper atmospheric measurements. The orbiter design utilizes aerocapture in
Titans atmosphere to save 4 km/s of velocity change capability. The direct–entry lander, build
upon the experience from Huygens and Mars missions, will carry eight instruments and will in
particular allow for seismic measurements and direct analysis of surface composition. The aerial
vehicle, a Montgolfière (hot–air) balloon, can circumnavigate Titan using zonal winds and taking
measurements with five instruments. This Balloon inflates during entry and descent and remains
near an altitude of 10 km to bridge the science gap between the orbiter and lander scales, notably
providing widespread meter–scale imaging of the surface and subsurface radar sounding [70].

The two objectives of the OPFM are defined by four investigations and listed in order of priority
[70]:

1. Titan: an evolving Earth–like system

- Determine the composition and transport of volatiles and condensates in the atmo-
sphere and at the surface, including hydrocarbons and nitriles, on both regional and
global scales, in order to understand the hydrocarbon cycle. Determine the climatolog-
ical and meteorological variations of temperature, clouds, and winds
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- Characterize and assess the relative importance today and throughout time of Titan’s
geologic, marine, and geomorphologic processes, e.g. cryovolcanic, aeolian, tectonic,
fluvial, hydraulic, impact, and erosion

- Determine the role of the interaction of Titan’s upper atmosphere and ionosphere with
Saturn’s magnetosphere in determining the evolution and climatology of Titans at-
mosphere, especially the loss of materials and as a source of free energy and heat for
driving the chemistry and dynamics. Determine the chemical pathways by which the
nascent tholin formation takes place in the upper atmosphere

- Determine the state of internal differentiation. Understand the heat sources and ther-
mal evolution of Titan. Determine if Titan has a metallic core and an intrinsic magnetic
field. Determine the extent and origin (tidal vs. tectonic) of Titan’s geodynamic activity

2. Titan’s organic inventory: a path to prebiological molecules

- Determine the chemical pathways leading to formation of complex organics at all al-
titudes in the Titan atmosphere and their modification and deposition on the surface
with particular emphasis on ascertaining the extent of organic chemical evolution on
Titan

- Determine geochemical constraints on bulk composition, the delivery of nitrogen and
methane to the surface, and exchange of surface materials with the interior over geo-
logic time

- Determine where chemical modification of organics on the surface may have occurred,
in particular, possible hydrolysis of tholins by transient liquid water into pyrimidines,
amino acids, e.g. via impact melt or cryovolcanic deposits.

- Determine the depth of any subsurface liquid water ocean, its thickness and electrical
conductivity, and the lateral variations in thickness and rigidity of the overlying icy
crust

More detailed information can be found in the public release version of the Titan Explorer Flag-
ship Mission Study [70].

Titan and the Saturn System Mission

TSSM is a joint venture between ESA and NASA, a combination from studies for Cosmic Vision
and OPFM, as described previously. The now phase 2 study has an important constrained ap-
plied: aerocapture cannot be used, due to its technological immaturity. This led at the NASA side
to a rethink of the mission: because of mass limitations, limited orbital payload can be included,
but there is an opportunity to investigate other parts if the Saturn system (e.g. Enceladus) because
science is possible prior to Titan orbit insertion. The main objectives of the TSSM are [45]:

- To produce a breakthrough in scientific advancement in understanding Titan, a very Earth–
like system

- To achieve major advance beyond Voyager and Cassini by carrying out focused Titan explo-
ration initiatives

- To conduct dedicated remote sensing (using an orbiter) and in situ campaigns
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To achieve this, three teams were set up: a Joint Science Definition Team (JSDT), a mission en-
gineering team for the orbiter (at JPL) and a mission engineering team for the in situ vehicle (at
ESTEC). The JDST is responsible for the level 1 science requirements, the hierarchical definition
of the scientific goals and the definition of the straw man payload. The two engineering teams
will focus on the mission requirements, mission architecture, data return and the systems require-
ments document for both their own part [45].

The main mission goals are to investigate the moons Titan and Enceladus and their connection to
the overall Saturn system. The scientific objectives that will be addressed follow from the Cosmic
Vision and the Flagship studies as described previously.

The Titan orbiter will be optimized for Titan science and will have a Cassini–like design [9]. The in
situ vehicle studies at ESTEC include a hot–air balloon, a lander, probe(s) or a recently suggested
submarine [45].

Initial concepts of a Titan Montgolfière look very promising. The combined heat source for the
local gas of the atmosphere and the electrical source for the Montgolfière would be a Multi–
Mission Radioisotope Thermoelectric Generator (MMRTG). The Montgolfière would be released
from an entry aeroshell and inflated during descent, full inflation would be reached above 10 km.
Following inflation, the Montgolfière would float around Titan’s globe carried by the winds. At
mid–latitudes, it is estimated that the balloon would circle the globe in about six months and with
a designed lifetime of at least one year this would mean at least two circumnavigations of Titan’s
globe. Altitude control will be autonomously by using a vent valve in the top of the balloon,
steered by on–board software, which will get its information from attitude and altitude sensors.
Payload options to be studied for the Montgolfière range in mass from 10 to 30 kg. Among the
large list of in situ payload options, see [9], the gradiometer can be found and it is thus still an
option to be part of the instruments to be selected for the gondola under the balloon.

Figure 2.3: Artist impression of the Titan explorer [Courtesy: NASA].
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Balloons in the atmosphere of Titan

Because of the prospect of a future mission to Titan, a review was performed on the key factors of
different aerial platforms, see [41] and a study on possible trajectories for a passive balloon, see
[74].

Figure 2.4: Simulation of different trajectories
of a passive balloon at an altitude of 2 km [74].

A wide variety of balloon concepts were investigated,
including concepts that were not within the NASA Flag-
ship study. The main focus of the review was on heat
and electrical energy supply as well as different buoy-
ancy options. The design driver is the radioisotope
power supply, with which a large platform can be de-
signed and thus having the advantages for a large scien-
tific payload and long lifetime. Because of the thermal
output of this power supply a Montgolfière would be
an ideal solution in terms of longevity, weight perfor-
mance, easy inclusion of attitude control and the pos-
sibility for including propulsion and surface sampling
options. Inclusion of small radioisotope power sources
was not researched in depth, mainly because these
power supplies are still under development, though this
might be a very attractive possibility in the (near) future.
Another option is a battery–powered gas balloon, which would reside in the troposphere (up to
40 km) and stratosphere (40-320 km, see section 2.5 for more details). The longevity of these bal-
loons would only be a couple of days and with very low data return, both very unfavorable [41].

A two dimensional version of the Titan global circulation model (GCM) of Titan’s atmosphere
has been developed, see [52] and [54]. This model describes multiple coupling between dynamics,
haze, chemistry and radiative transfer. Using the prediction of the winds on Titan included in this
model, eighteen hypothetical massless passive balloons are released in the atmosphere, under the
assumption that they remain at a constant altitude and have no dynamics of their own relative to
the wind. The balloons are released at two different altitudes, two and twenty km, and at nine
different latitudes (80◦N, 60◦N, 40◦N, 20◦N, 0◦, 20◦S, 40◦S, 60◦S, 80◦S). Results of the simulation
for balloons released at an altitude of two km are given in figure 2.4. Though the model is largely
hypothetical, it might give small indication on the path a possible passive balloon would take,
released at certain latitudes and during certain seasons [74].

2.3 The interior of Titan

The interior of a planet or satellite can not be observed directly. Nevertheless it is possible to
derive information on the interior from direct observable parameters, such as the mass, size and
shape of the body. Using information on the gravitational field and rotation rate of a celestial
body, estimations can be made on the degree of concentration of mass at center of that body. The
gravitational field can to some extent be determined from the orbit of (natural) satellites or rings.
If evidence for volcanism and plate tectonics are found, constraints can be set on the thermal
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environment below the surface of a planet. Energy output provides information on the thermal
structure of the interior [7].

This section will start with a short description on the formation of planets and the outer satellites,
after which the possibilities for the interior of Titan is discussed. This section concludes with
some comments on how gravity measurements can be used to infer the interior structure.

2.3.1 Planet formation

By understanding the formation of the solar system, much can be said about the interior of the
planets in the solar system. Elements assumed to be found in the early solar nebula were the
building blocks for what eventually became the planets that are orbiting the Sun nowadays. Com-
bining this with the chemical compounds found nowadays on Titan, it is possible to trace back
how Titan was formed and hence what kind of material was incorporated into its interior.

Formation of the planets in the solar system

Astrophysical models suggest that flattened circumstellar disks are a natural byproduct of star
formation. These protoplanetary disks originate from the collapse of rotating molecular cloud
cores, where a significant fraction of the materials in the core falls onto a rotationally supported
disk orbiting the pressure–supported (proto) star. The disk has the same initial elemental compo-
sition as the growing star, in our solar system the Sun. At sufficient distance from the Sun it was
cool enough for a small percentage of the material to cool down into solid form. Within a few AU
of the Sun this dust was mainly composed of rock–forming compounds, whereas further away
a more or less equal amount of ices (H2O, CH4, CO, etc) wass present in solid form next to the
rocky solids. What happens during and after the infall stage is still poorly understood. The disk
was then very active and probably highly turbulent, most likely due to a mismatch of specific
angular momentum of the gas hitting the disk with that required to maintain keplerian motion,
gravitational instabilities, viscous and magnetic forces [7].

The micrometer–sized dust grows to kilometer–sized planetesimal, which by different perturba-
tions lead to accretion. Accretion is the process where the planetesimal, by means of their own
gravity, gain mass by collection of interstellar gases and objects. Eventually solid bodies in the
inner solar system formed the terrestrial planets. The planetary cores, which have several times
the mass of the Earth, formed the outer solar system. These massive cores were able to gravita-
tionally attract and keep substantially amounts of gaseous material from the solar nebula. This
was not the case with the less massive planetesimal, the terrestrial planets. The gases in their
current atmospheres are formed from material that was incorporated in the solid planetesimal.
The current low eccentricities of the orbits of the outer planets imply that some damping process
has been taken place, for instance accretion/ejection of small planetesimal or interactions with
residual gas within the protoplanetary disk. For a more in depth discussion on planet formation
see chapter 12 of [7].
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Formation of planetary satellites in the outer solar system

The previous section indicates that the interior of a planet or moon is highly dependent on the
environment in which it was created. Hence satellites being created in the same solar nebula, at
more or less the same time, have a lot in common.

The satellites that are in orbit closest to the giant planets (near the Roche limit6, for Saturn this
limit is at 147,000 km) are in general quite small and consist mainly of rock. These moons were
formed very close to their planet and at high temperatures, so most probably the water–ice is
completely evaporated during formation. Planetary rings are formed at the location where the
tidal forces from the planet are large enough to break up the small bodies held together solely by
their own gravity, though the rings seen today are not the same as were formed billions of years
ago (see [7] for more information on planetary rings). In the outer regions, small bodies orbit the
four outer planets in a highly eccentric and inclined orbits. This diversity in satellites orbiting a
planet suggest that not all the satellites are formed in the same manner.

Most planetary systems have regular and irregular satellites. The regular satellites are the moons
that orbit the planet in a low eccentric, prograde orbit near the equatorial plane of the planet. This
implies that these satellites were formed by a solid body accretion process, in the same manner
the planets were formed around the Sun, within the protoplanetary disk surrounding the planet.
These disks could very well contain material from the outer portions of the protoplanet’s enve-
lope, or material that is directly captured from the protoplanetary disk. The irregular satellites are
the small bodies orbiting the planet in the high eccentric, high inclined orbits, and it is believed
that these satellites are captured in the planetary system from heliocentric orbits which passed
through our solar system. These satellites are composed largely of water–ice with only a small
amount of rock. [7].

From the sixty known satellites orbiting Saturn, 38 are classified as irregular satellites, of which
nine orbit Saturn with a prograde orbit and 29 in a retrograde orbit. Eight have the title of inner
satellites and only ten are classified as regular satellites, of which Titan is one [29]. The remaining
4 have not been classified, since it is not clear to which group they belong yet.

2.3.2 The interior structure of Titan

When comparing Titan’s density and radius to other moons, it is an intermediate between the Jo-
vian satellites Ganymede and Callisto. The densities of these satellites indicate that their interiors
are mostly composed of ice and silicates. However Titan has a significant atmosphere, dominated
by nitrogen and methane, which suggests that the interior is enriched with more volatile ices.
These volatile ices, in the case of Titan NH3·H2O and CH4·H2O, have similar densities to ‘nor-
mal’ water–ice. The lower temperature in the less massive proto–Saturnian nebula, compared to
the proto–Jovian nebula, favored the incorporation of a larger amount of volatiles [62].

6see appendix A
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Theoretical models of the interior of Titan

At the moment, no data on the Moment–of–Inertia (MoI) factor is present. This factor can restrict
the possibilities for the interior of Titan significantly. Hence only using theoretical models, in anal-
ogy of the Jovian satellites, some constraints on the interior of Titan can be given. The presence of
the substances such as methane found in the atmosphere suggests a certain amount of volatiles
incorporated within Titan’s interior. Next to that, the interior of Titan should have a mechanism to
compensate for the methane lost in the atmosphere (see section 2.5). This makes it plausible that,
since observations by the Cassini spacecraft never found a global ocean, a sub–surface ammonia–
water ocean is present underneath the ice–I mantle (see figure 2.5, ice–I is often used in analogy to
ice–Ih). Simulations show that if Titan’s current interior is totally solid, it presumably has always
been in this state and would give strong constraints on the formation of Titan. On the other hand,
if a liquid layer was formed during accretion, it should still be present nowadays and it might
contain a significant fraction of ammonia [71].

So, most likely Titan’s interior is differentiated in an iron and rock core and an icy mantle. Plane-
tary differentiation is the process during planet formation where the denser particles will sink to
the center of a planet and the less denser materials will rise to the surface and thus create the man-
tle. Undifferentiated planet models represent a planet where such a differentiation between core
and mantle has not been taken place. The mantle of Titan, considering the pressure and temper-
ature of the moon, is a layer of ice I. Water ice is a major constituent of the planets and satellites
in the outer Solar System. Depending on the pressure and temperature, water–ice can take at
least fifteen different crystalline forms. The various crystalline forms are mainly represented by
the temperature and the pressure; the higher the pressure, the more densely the water molecules
are packed. Figure 2.5 shows the phase diagram of water, the different phases of water–ice are
well understood compared to for instance ammonia and methane ices or mixtures of these. To
get a better understanding more experimental data is required, such as experimental work on
nitrogen–water, ammonia–water and ammonia–methane–water systems at high pressures and
low temperatures [58].

Figure 2.5: The phase diagram of water [Courtesy: Fortes].
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Titan’s core

Evolution of Titan’s core has been researched for two extreme cases [58]: (1) CI chondrite and
(2) EH enstatite chondrite. Chondrites7 are stones of meteoric origin, characterized by the small
round granules called chondrules8. If the chondrites of case (1) were included in the planetoids,
the present core of Titan will probably be a well–mixed convecting layer with an average temper-
ature of 1400 K, and a thick cold thermal boundary layer, having a total radius of rcore = 1870 km
[58]. If the chondrites were EH chondrites (case (2)), Titan’s core most probably will be divided
into two layers: an inner liquid iron core, (thickness rliquid iron ≈ 910 km), surrounded by a well–
convecting silicate layer (thickness rsilicate layer ≈ 800 km) [58].

Gravity measurements and the interior

Figure 2.6: A possible interior structure of Ti-
tan.

The thickness of the sub–surface ocean largely de-
pends on the amount of volatiles incorporated in the
mantle, the actual radiogenic heating of the core and
the heat transfer through the surface. These prop-
erties are still unknown, but based on models which
couple Titan’s orbital eccentricity to its interior as-
sumptions about these properties are made. The
presence of volatiles in the sub–surface ocean low-
ers the freezing temperature of the ocean, hence low-
ering the temperature of the ice I layer and increas-
ing its viscosity. This influences the heat trans-
fer through the surface again, making the estimation
of the thickness of the sub–surface ocean very hard
[62].

Theory shows that the Love numbers are linearly related
to the ice shell thickness [62]. The tidal Love number is
a measure of the response to the gravitational pull of
a nearby body. The orbital eccentricity of Titan causes
tidal variations of the quadrupole moments from which
the second degree potential Love number k2 will be de-
rived, k2 being related to the interior structure and rheological properties [62]. Thus, when the
Love numbers and the quadrupole moments of the gravity field, J2 and C22, are known, the inte-
rior structure can be inferred. With four ideal flybys, two at Titan’s periapsis and two at Titan’s
apoapsis [55], J2 and C22 can be determined from Doppler tracking of the perturbation of the
Cassini orbiter (see section 3.1). Section 4.3 will treat these computations and accompanying esti-
mations of the expected Love numbers.

Low tidal dissipation rates are more consistent with a primordial origin of Titan’s significant or-
bital eccentricity that otherwise should have been damped to smaller values over the age of the
solar system. This will be treated extensively in section 4.4.

7see appendix A
8see appendix A
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The most likely interior of Titan

Looking at the research done until now, scientists in Europe at the moment believe that the interior
structure will be divided, from surface to center, into an ice–Ih layer, an ammonia rich water liquid
layer, a high–pressure ice layer (mainly phases V and VI) and a rocky core [71], see figure 2.6.

2.4 The surface of Titan

Scientists have speculated about Titan’s surface for a long time. To compensate for the methane
lost due to ionization in the outer atmosphere and other natural processes, initial speculations
were that Titan should be completely covered by a deep hydrocarbon ocean. But quite the con-
trary was found when the Huygens probe landed on the surface of Titan, as will be described in
this section.

2.4.1 The Huygens landing site

Figure 2.7: The surface of Titan as seen by the
DISR instrument on the Huygens probe [Cour-
tesy: ESA].

The surface of the Huygens landing site was nei-
ther hard, like for instance solid ice, nor the ex-
pected liquid. The probe landed on a surface
that consists of a solid, granular material having
either a low or zero cohesion or a fluid compo-
nent, resulting in a mixture of wet sand or a
textured tar/wet clay. The possibility that the
measurements made by the Huygens probe are
of one of the cobbles resting on the surface, in-
stead of the surface itself, cannot be ruled out
[93]. A view of Titan’s surface at the Huy-
gens landing spot, made by DISR on board of
the Huygens probe is given in figure 2.7. Al-
though no liquid bodies were directly imaged by
the DISR instrument, it found a compelling evidence
for fluid flow on the surface of Titan. At least a
few structures that were seen on the pictures sug-
gest that there are cryovolcanic flows on the sur-
face.

The GCMS instrument on board of the Huygens probe measured during the descent an increased
amount of methane toward the surface, while the nitrogen count rate remained constant [65].
Methane, ethane and propane are liquids at Titan’s surface conditions. In the photochemical
models of Titan, propane is produced only 1/40th as abundantly as ethane [42]. This, in com-
bination with the measurements made by the GCMS at the surface of Titan, shows that ethane
and methane should be present at Titan’s surface. The presence of cyanogen (C2N2), benzene and
CO2 is most probable [50].
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2.4.2 Imaging by the Cassini orbiter

The radar on the Cassini orbiter has until now observed dunes, lakes, cryovolcanic features, river–
like channels, degraded impact craters and mountains. Although many new insights are given,
it should be kept in mind that these results are only based on 20% coverage of Titan’s surface of
which most taken from the northern hemisphere and equatorial regions.

Lakes on the surface of Titan

Though the descent of the Huygens probe did not reveal a global ocean, Cassini observations
have shown areas on the radar images darker than other patches of area, see figure 2.8. These
large radar–dark areas are interpreted as lakes. The hypothesis that these lakes are filled with
hydrocarbons is supported by their very low reflectivity and morphological similarities to lakes
on Earth. If the lakes are not filled with liquid hydrocarbons, it might be that the patches seen are
depressions and channels formed in the past, which have now been filled by a very low–density
deposit that is darker (that is the lower the reflectivity of the deposit, the darker the features will
be observed in the pictures) than any observed elsewhere on Titan. Approximately 68% of Titan’s
north polar region above 60 degrees is now covered by SAR–images obtained by Cassini, but only
12% of the south polar region is mapped. The dark pathes found on the southern polar region do
have the same backscatter as the northern lakes [40].

Figure 2.8: SAR image of the lakes at the northern hemisphere. Compilation made of different pictures
during Cassini fly–bys [40].

To determine the depth of the lakes from the Cassini images, terrestrial analogs are used as a
guide. Thus, the smaller lakes (∼100 km2) are estimated to have a depth of the order of 10 m,
while the depth of the large seas is estimated to be ten times or more larger [42]. The exact com-
position of the liquid/sand in the lakes is still unknown. According to [48] the lakes at the surface
consist of a liquid hydrocarbon mixture. Table 2.4 gives the density and composition of the two
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mixtures as suggested in [48], together with the density of pure methane and pure ethane [82].

Table 2.4: Properties of the different hydrocarbon mixtures as proposed in [48], pure methane and pure
ethane at 1.5 bar [82].

Constituents (per mole) Temperature [K] Density [kg/m3]

Case 1: pure methane
1 CH4 92.7 448.90

Case 2: pure ethane lake
1 C2H6 92.4 649.43

Case 3: mixture I
0.35 CH4, 0.6 C2H6, 0.05 N2 92.5 547

Case 4: mixture II
0.08 CH4, 0.9 C2H6, 0.02 N2 92.5 620.5

Spectrospic data of Ontario Lacus in Titan’s south–polar region, obtained by Cassini VIMS, indi-
cate that ethane, probably in liquid solution with methane, nitrogen and other low–molecular–
mass hydrocarbons. This lake–like feature was already found in 2005 with the use of Cassini’s ISS
narrow–angle camera.

Dunes at the equatorial region of Titan

As the lakes are a distinct feature of Titan’s poles, dunes are found at the equatorial region up to
30◦, where about 40% of the surface is covered by 1–2 km longitudinal sand dunes. The height of
the largest dunes are estimated to be around 150 m and the average thickness about 30 m. These
estimations are all made by comparing the dunes at Titan with the longitudinal dunes present on
Earth [42].

Mountains

Prior to Cassini it was believed that impact structures would dominate the topography on Titan,
because these features are dominant on Ganymede and Callisto. Then mountains and mountain
ranges would be central peaks and rims of craters, but none of this was revealed by Cassini. The
highly elevated regions, which can be indicated as mountains, are estimated to cover 1% of Titan
surface. By using shading effects on the radar images and by making quantative estimations by
shape–from–shading (radarclinometry) several of these mountain features have been observed
more closely and measured. Mountains up to a height of 1930 m and with an average slope of
37.2◦are found in widely varying locations around Titan. If internal processes are responsible for
this widespread variety of mountains, these processes have not been localized adequately. What
the images do indicate is that erosion has been or currently is active at the surface of Titan. The
age of a typical mountain is estimated between 20 and 100 million years, on geological timescales
this is very young [51].
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Figure 2.9: The atmospheric temperature profile of Titan’s atmosphere as measured by the HASI instru-
ment (solid line) compared to the engineering model (dashed line) [15].

2.5 The atmosphere

As mentioned before, Titan has a significant atmosphere. This section will describe the distinct
features of Titan’s atmosphere. The temperature profile is mostly based on observations and
measurements, while the composition of the haze and the functioning of the methane cycle are
more hypothetical. The formation of clouds and the existence of winds are partly based on a
theory applicable to Earth and partly on recent observations of the Cassini–Huygens mission.

2.5.1 The atmospheric profile

During the descent of the Huygens probe, HASI determined the density of the atmosphere, from
which the temperature and pressure were derived. The atmosphere was encountered earlier than
expected, already at an altitude of 1500 km it could be detected. The HASI instrument character-
ized the thermosphere, between 500 and 1020 km, by the presence of temperature variations due
to dynamic phenomena, for instance gravity waves and gravitational tides [15]. A minimum tem-
perature value of 152 K was measured at 490 km altitude, which could indicate the mesopause.
Hereafter the temperature of the stratosphere increased while descending, until a value of ap-
proximately 186 K at 250 km and 0.3 Pa. Temperatures in the lower part of the mesosphere and
the upper part of the stratosphere all were about 5–10 K higher than predicted by models. From
150 km downwards the temperature is directly measured by temperature (TEM) sensors and the
pressure by the pressure profile instrument (PPI), see figure 2.10. The solid line represents the
measurements of the two units, while the circles (ingress) and crosses (egress) are the values ob-
tained by Voyager 1 radio occultation. The tropopause, indicated by the minimum temperature
reached during the descent, was encountered at 44 km (70.4 K, 115 hPa). The surface temperature
measured was 93.65 ± 0.25 K and the pressure was 1467 hPa ± 1 hPa, within expectations [15].

The HASI temperature profile of the lower atmosphere was compared to Voyager data and the
comparison suggests that the atmosphere is uniform and slowly changing at the mid latitudes
[15]. The question does remain if the profile measured by HASI is valid throughout the entire
atmosphere of Titan, only at mid–latitudes or locally.
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Figure 2.10: Temperature profile (left) and the pressure profile (right) as measured by Huygens instru-
ments [15].

The engineering model of Titan’s atmosphere resembles more or less that of the Earth. According
to the models the surface pressure is 1.46 bar and the temperature 93 K. The troposphere extends
to the tropopause at an altitude of approximately 40 km (140 hPa, ±70 K). Above the tropopause
the stratosphere extends, where at 320 km altitude the temperature reaches a minimum value of
177 K and the pressure drops to about 5–6 Pa. Increasing the altitude, the temperature decreases
again. In contradiction to the profile measured by the HASI instrument, the models locate the
mesopause at a height of 800 km (135 K, 0.01 Pa). The reason for this difference is not clear. In the
outer atmosphere the temperature rises to temperature of roughly 180 K (0.01–0.03 Pa) at∼800 km
[7].

2.5.2 Molecular composition

At the surface of Titan the atmosphere consists for roughly 95% of Nitrogen (N2) and 5% of
methane (CH4). Higher in the atmosphere the percentage is about 98% N2 and 2% CH4. GCMS
observations of the lower atmosphere and surface have identified traces of ethane (C2H6), pro-
pane (C3H8), benzene (C6H6), cyanogen (C2N2), carbon dioxide (CO2) and hydrogen cyanide
(HCN). Of the noble gases only traces of Argon (36AR and 40AR) could be identified, see [50].

2.5.3 Titan’s (organic) haze

The smog layer covering Titan is formed at an altitude of 300 to 500 km, by organic aerosols, con-
sisting of hydrocarbons (e.g. HCN) and nitriles (e.g. NH3). Aerosols are small particles, which
reside in the atmosphere. The haze in the upper atmosphere reflects 30% of the incident sunlight
and as much as 40% is absorbed, resulting in an anti–greenhouse effect, cooling the surface by
nine Kelvin. On the other hand the troposphere acts as an thermal blacket, warming the surface
roughly for twenty Kelvin compared to the situation in the absence of a troposhere. Net the sur-
face of Titan is warmed eleven degrees with respect to its equilibrium [46].

Evidence is found that complex negatively charged hydrocarbon molecules, tholins, are formed
at an altitude of around 1000 km. At this altitude, methane and nitrogen is destroyed under in-
fluence of sunlight and energetic particles, which then will form larger, more complex molecules
and eventually tholins, see figure 2.11. These heavy molecules (radii of ∼260 nm) are gravita-
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tionally bound to Titan and will fall back to the lower atmosphere, where they indeed are found
by the ACP (Aerosol Collector and Pyrolyzer) on board of the Huygens probe [25]. The high lin-
ear polarization and the strong forward scattering of the particles imply that the haze particles
are small monomers [19]. The radius of the monomers as measured by the DISR instrument is
0.05 µm, though the data indicate that larger radii are possible too. A better estimate of the size
will be available after the analysis of the solar aureole measurements made. These are measure-
ments made during the descent of the Huygens probe through the haze upwards, looking at the
brightness of the visible spectra of the Sun. Other observations by DISR probe demonstrated that
there was significant haze opacity at all altitudes during the descent, which would imply that the
haze extends all the way down to the surface [76].

Figure 2.11: A simplified photochemical scheme on the haze formation in Titan’s atmosphere [1].

2.5.4 Titan’s methane cycle

Figure 2.12: A simplified picture of Titan’s
methane cycle.

It is strongly believed that the methane on Titan func-
tions in the same way as water on Earth, that is, a
methane cycle on Titan exists similar to the terres-
trial hydrological cycle, involving clouds, rain and
surface liquids, see figure 2.12. Methane, just as wa-
ter, can exist as gas, ice and liquid. At 1.5 bar and
a temperature of 94 K, methane and ethane are in
the liquid phase, see appendix B. Looking at the
atmospheric profile (figure 2.9) and pictures of the
northern hemisphere made by Cassini, it is plausible
that the methane and ethane do exist in liquid form,
though a lot remains uncertain about the function of
methane on Titan. The source of the methane is yet
unknown, either it arrived at Titan at the time of its
formation or it is/was produced on Titan. Methane is
one of the organic molecules produced by life forms;
hence the question arises if the methane found on Ti-
tan is an indication for the presence of bacteria or if it
is formed by some geological process. Up till now no concrete evidence is found for the microbi-
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ological production of methane. The methalogical cycle is expected to be a closed cycle; however
current data are inadequate for evaluation of the recirculation of methane from the surface into
the interior.

Removal of methane from the atmosphere

The methane on Titan is removed from the atmosphere by two chemical processes: photochem-
istry and condensation.

In the ionosphere (above 700 km) methane is destroyed by photolysis, the process where under
influence of photons chemical compounds are broken down. The shorter wavelengths (below
140 nm) initiate the production of short–lived, fast–reacting radicals, which subsequently form
ethane (C2H6) or will react with other atmospheric molecules (see figure 2.11). The ethane dif-
fuses downwards and condensates in a region of about 15 km, just above the tropopause. Though
the ethane mixing ratio below 15 km is uniform, the amount of ethane that condenses is expected
to vary, due to temperature changes at the surface and in the troposphere. On the surface the
amount of ethane is expected to compete with the haze material, which is formed in comparable
amounts [1].

In the troposphere methane is removed by condensation. The methane mole fraction as measured
by the Huygens GCMS is given in figure 2.13. In the stratosphere the value is constant, and the
uniform mixing in the lower stratosphere and upper troposphere was as expected too. Below an
altitude of 32 km to approximately 8 km, the methane mole fraction gradually increased, from
8 km until the surface the value remained more or less constant (4.92 ± 0.25·10−2). This could
indicate evaporation of liquid methane, and a possibility of rain, representative features of the
methalogical cycle. This only holds if there is a system that if methane is transported from the
surface to the interior, it circulates back out to the surface again, just as water does on Earth. It
is believed that there are two plausible possibilities for the condensation of methane: (1) CH4

vapour over pure CH4 liquid and (2) N2 dissolved in CH4 liquid. These two possibilities are
described extensively in [1] and will not be treated here any further.

Figure 2.13: The methane mole fraction in Titan’s atmosphere as measured by the Huygens GCMS in-
strument [1].
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Hydrogeochemical source of the methane

It is believed that the interior of Titan does not permit recycling of the on the surface deposited
hydrocarbons back into methane, which means that the replenishment of methane into the at-
mosphere has to come from another source. A possibility is that methane could be deposited in
the interior as methane clathrate9 from the subnebula. Of the noble gases that could have been
deposited in the interior of Titan during formation, xenon is trapped at a temperature close to
that required for methane. Due to the absence in GCMS measurements of large amounts of heavy
noble gases, especially xenon, this is a less likely option. Thus, as mentioned before, it is believed
that either biology or geology is responsible for the methane production on Titan [1].

Another possibility is the production of methane by water–rock reactions. In oceans on Earth,
seawater hydrolysis the oxidized magnesium (Mg) and iron (Fe) rich silicates into serpentinite, a
process called serpentinization10. End products of this process are methane and hydrogen sulfide,
for more details on the key geochemical reactions see [1]. On Earth these gases provide an energy
source for deep sea chemotroph micro–organisms, organisms that obtain energy by the oxidation
of electron–donating–molecules in their environment. On Titan these gases would be expected
to be released from the surface, but the Huygens GCMS instrument found no evidence of H2S or
other sulfur compounds at the surface.

These water–rock reactions usually take place under high temperatures, temperatures only found
at Titan’s core. Recently discoveries in oceans on Earth have shown that these reactions can occur
at lower temperatures. The low–temperature serpentinization mechanism proves more promis-
ing, though not enough laboratory data on this process is present. A chemical model on formation
of CH4 on Mars yields, if scaled up to Titan’s surface area and assuming Titan’s interior is made
up of half water–half rock, a value comparable to the amount of methane found on Titan today.
Though looking over geologic time, the amount of methane would be much larger. So though the
analogy between Titan and Mars does not hold exactly, it does show that hydrochemical processes
are capable of producing large amounts of methane to restore the amount lost in the atmosphere
as discussed in this section. More laboratory data on the low–temperature serpentinization pro-
cess is needed to prove this mechanism. The produced methane can easily be stored as a stable
clathrate–hydrate, which has been found in terrestrial oceans, and models show it should exist in
the interiors of Mars and Titan too [1].

Methane outgassing

In order to replenish the mentioned loss of the methane from the atmosphere, the CH4 stored in
the interior needs to be released back into the atmosphere. Indirect evidence of outgassing has
been found on Cassini images, where possible cryovolcanoes are indicated. Direct evidence can
only be found by the detection of radiogenic argon (40Ar). Radiogenic argon is a decay product of
potassium (40K), which presumably is incorporated in the core at time of formation (see section
2.3). The half–life of 40K is 1.3 billion years, which implies that the conversion of 40K into 40Ar
must have been completed billions of years ago. The mole fraction of 40Ar measured by GCMS
(4.32±0.1 × 10−5) is roughly one–half the expected value, assuming Titan’s rocky interior is simi-

9see appendix A
10see appendix A
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lar to that of the Earth and the outgassing just as efficiently. The exact release rate of methane can
only be found after thorough understanding of Titan’s interior, however when scaling the rate of
volcanism of Earth and Venus to Titan’s surface area, it seems sufficient to recover from the loss
by photochemistry [1].

The possibility that methane outgasses by another system remains one of the possibilities too, and
together with the cryovolcanism this could bring even a larger amount of methane back into the
atmosphere. Still uncertainties are present about the amount of methane present at Titan’s surface
and the composition of Titan’s interior and the manner in which methane is replenished into the
atmosphere. The complete cycle as discussed here is still largely hypothetical.

2.5.5 Clouds

The methane clouds on Titan cover less than 1% of the total surface area. Though the existence
of clouds is now confirmed, no significant signature of rain is found yet [15]. The last couple of
years research has been done and proposed solutions have been put forward, but still the origin
and composition of the clouds are not fully understood [7].

Formation of clouds

To form clouds small particles, Cloud Condensation Nuclei (CCN), are needed. The surface ten-
sion of water is not high enough to solely form a cloud. On Earth these CCN are for instance
desert sand, sea salt or other particles that are dispersed in the atmosphere. These particles do
not necessarily have to be injected in the atmosphere from the surface, particles from outer space
could behave as CCN too.

Evidence for clouds on Titan

To confirm the existence of clouds on Titan, observations were done with the W. M. Keck telescope
using the speckle imaging technique. Speckle imaging is a high resolution technique that works
well on bright objects such as Titan. The wavelength range of 1.95–2.29 µm includes both a strong
methane absorption band and a window where methane absorption is nearly zero, so that light
can penetrate to the surface. The clouds detected using adaptive optics techniques with narrow
band imaging with the Gemini and Keck telescopes in December 2001, were located near Titan’s
South Pole. Observations with the W. M. Keck telescope confirm that the bright spots seen at
the southern hemisphere in October 1998 are clouds and not surface features or artifacts of the
speckle reduction process [17].

Nature of the clouds

After the confirmation of the discovery of clouds on Titan, more research was done on this phe-
nomenon. Large storms near the South pole and long (stringy) clouds only at certain latitudes
have been observed. Titan’s circulation dictates the 40◦S latitude of Titan’s clouds. There has
been no observed correlation with the cloud activity and Titan’s orbital position so far and the
clouds tendency to appear only at certain longitudes suggests a correlation to the surface – this is
still largely uncertain due to the multiple active centers within the clouds [18]. A possible solution
could be the existence of cryovolcanism on Titan’s surface. Another possibility is that the clouds
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are present due to convection from lakes. Until now, lakes have only been identified in the polar
regions, so a connection between the two seems evident.

Recent observations [19] have reported a polar ethane cloud at the northern hemisphere. Until
now, clouds were detected only at southern latitudes. The particles composing the northern cloud
are smaller than the particles composing the southern methane clouds, apart from this the clouds’
characteristics are all consistent with the condensation of ethane. This could indicates that there
is a difference in the cloud composition depending on the hemisphere being observed. A possible
influence of seasons, but this has not been confirmed. The northern cloud was only found at an
altitude of 30–50 km, above 60 km none was observed [19].

The Huygens descent probe measurements support the existence of clouds. On basis of me-
thane humidity measurements it is most likely the probe passed through an optically thin cloud
of methane ice from 30–20 km altitude and droplets of methane–nitrogen liquid from 16–7 km.
The publication [44] supports the existence of clouds with the help of measurements with the tilt
sensors of the SSP too. As the Huygens probe floated under the parachute through Titans atmo-
sphere there was a lot of buffeting, even though the air itself was fairly still. Based on knowledge
of turbulent cloud layers on Earth, it was shown from Huygens data that the probe must have
passed through a turbulent cloud layer.

2.5.6 Winds

The knowledge of the winds is based on models developed over the years. The models often com-
prehend a part of Titan’s dynamics, for instance Risbeth et al. (2000) [58] developed a dynamical
model of Titan’s thermosphere and Zhu and Strobel (2005) [94] a model on the equatorial super-
rotation (i.e. at the equatorial region of Titan the winds flow significantly faster than the planets
rotates, ∼110 m/s at 0.1 hPa) in Titan’s stratosphere. Rannou et al. (2004) have combined the ma-
jor part of the knowledge into a coupled dynamics–microphysics model of Titan’s atmosphere.
This section will focus on the commonalities of the models and what was measured during the
decent of the Huygens probe.

Predictions made by the models

On Titan an equator–to–pole like Hadley circulation exists. Hadley cell circulation is the atmo-
spheric circulation caused by the heating of the air at the equator, which subsequently will flow
to the lower pressure regions, the poles. Here the air cools down and will flow back again to
the equator. The influence of the sun on the heating of the air at the equator is considered to be
minimal, the influence of the Hadley circulation will not be large. Studies with CIRS on board of
Cassini support this Hadley type of circulation. The measurements show an increase in volatiles
toward the north pole, which is consistent with polar subsidence [69].

Prograde zonal winds are estimated to be about 100 m/s, occurring in the upper stratosphere
([58], [53] and [94]). The zonal winds are caused by the difference in temperature between the
day and the night side of the moon; on Titan day–night temperature difference (at solar maxi-
mum) is about ∆T = 20 K at an altitude of 800 km. At solar minimum these effects are expected to
be a few degrees less. Thermospheric winds causing circulation in the atmosphere are estimated
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to have speeds around 60 m/s and are of major influence for the dynamical constants. The circu-
lation pattern suggested by Rishbeth et al. (2000) [58] differs largely from that of the Earth. The
possibility exists that Saturn’s magnetosphere is forcing some of the winds on Titan, but too little
is known about both the magnetosphere of Saturn and Titan [58].

Gravitational winds in Titan’s atmosphere

The proximity of Saturn and the eccentric orbit of Titan forces gravitational tides in Titan’s atmo-
sphere. According to the model used in [75], the atmospheric response is a prograde propagating
tidal wave, with a diurnal (daily) frequency and zonal (in West–East direction) phase speed of
cϕ = 3.87 cos ϑ m/s, where ϑ represents the co–latitude, restricted to the troposphere and strato-
sphere with an upper boundary at approximately 300 km. While the zonal wind remains pro-
grade, since the background circulation is stronger than the tidal amplitude, the meridional (in
North–South direction) wind changes direction twice per Titan day and four times along the par-
allel of latitude. Instantaneous wind speeds of 5 m/s have been found in the simulations. In the
lower atmosphere the tidal amplitudes are quite small, at the tropopause (∼40 km) the maximum
temperature amplitude is approximately 0.3 K and the horizontal wind components are approxi-
mately 2 m/s. In the troposphere and above 150 km, the horizontal tidal winds reach amplitudes
of 4 m.

In the upper atmosphere (above the stratopause∼300 km) the tidal waves reach nonlinear ampli-
tudes due an approximate exponential growth by p0(r)−1/2 where p0 is the background pressure
and r radial distance from the center of Titan, positive outward. According to [66] gravitational
tides are an important component of the structure of Titans upper atmosphere. Unlike gravity
waves forced by for instance topography or convective and frontal systems, the forcing frequency,
zonal phase speed, longitudal wave number and forcing potential of gravitational tides will be
precisely known and predictions can be made using primitive equation models once the back-
ground pressure, mass density temperature and wind fields are well characterized, see [66].

Huygens decent and winds

During the Huygens descent Doppler measurements were performed by the tracking stations.
These measurements show that a zonal wind of about 100 m/s exists at an altitude of 140 km,
and that it is decreasing steadily toward the surface. Next to that the data shows that the wind
dropped to almost 0 m/s around 80 km altitude and that a reversal of the west–east zonal drift in
the lowest 7 km is present [44].

By assembling the mosaics made by the DISR instrument, a reconstruction of the descent path of
the Huygens spacecraft can be made. The found trajectory indicates that the probe was slowly
drifting westward, caused by the prograde winds, slowing down from 50 km altitude to 30 km
altitude and more rapidly to 20 km onwards. The last kilometers of the descent the wind dropped
to zero and reversed around an altitude of 7 km, near the expected top of the planetary boundary
producing a west–northwestwardly motion [76].The Huygens probe has only made measure-
ments on one location. To verify if the models and speculations really are correct, a whole series
of measurements at different places in the atmosphere is desired.
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Chapter 3

Gradiometry

Over the century, gravity had been measured in a lot of different ways: from the Eötvös torsion
balance until gravimetry from space. The traditional method of measuring the Earth’s gravity
field, as Eötvös initiated with his curvature and horizontal variometer, is based on comparing the
differences in how a ‘test mass’ responds to the gravitational attraction at different locations on
the surface of the Earth. Although data on gravity have been collected from many parts of the
world by traditional means, they vary considerably in quality and are incomplete. The process of
acquiring data on land and at sea is very time–consuming and expensive; global coverage with
data of a consistent quality would take decades. With the need for a global map of the Earth’s
gravity field [20], and the recent progress in improving accuracy of the instrumentation, the obvi-
ous solution is to make gravity observations from space.

Section 3.1 describes different techniques for measuring the gravity field from space, whereas
section 3.2 focuses on balloon–borne gravimetry. Theoretical background on these measurements
is given in the next section, section 3.3. This chapter concludes by looking at the instrument
itself and the technology used to miniaturize the GOCE gradiometer, which is too large to use on
planetary missions.

3.1 Gravimetry from space

There are various ways to determine the components of the gravity gradient tensor from space.
to do this several missions have been initiated to determine the gravity field of the Earth the
last decade. Gravimetry is the measurement of the gravitational field, either its magnitude or its
properties. This can be done using a (combination of) different measuring techniques, explained
first. Hereafter the (future) missions dedicated to measurements of the Earth’s gravitational field
are shortly described.

3.1.1 Measuring the gravity field

Gravimetric measurements can be made using a gravimeter or gradiometer or by tracking (nat-
ural) satellites of a celestial body. At the moment there are three ways to measure the gravity
field of a planet from space, by (1) Earth–based tracking of a spacecraft, (2) satellite–to–satellite
tracking (SST) or (3) by satellite gravity gradiometry (SGG).

Earth–based tracking of spacecraft

Earth–based tracking of spacecraft is the oldest technique of the three. From the beginning of
spaceflight it is used to determine where a spacecraft is. The first observations made use of data
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based on optical data, while nowadays radiometric Doppler data is used for orbit determina-
tion. The measurement technique exploits precise phase measurements of a microwave beam
generated from a stable frequency reference at a ground station, transmitted to the spacecraft and
coherently sent back to earth by means of a transponder. At the ground stations the frequency
shift [55]:

∆v
v

= y (3.1)

and the relative velocity ∆v

∆v = cy (3.2)

are measured with an investigation time τ. Here c = 3 · 105 km/s represents the speed of light
and y the Doppler radio signal. Due to the Doppler shifts in radio signals between the satellite
and the ground station, perturbations can be seen in the orbit. From these perturbations the grav-
ity field can roughly be determined.

The flyby geometry has a strong effect in the combined determination of J2 and C22. It is difficult
to measure both J2 and C22 from the same flyby, J2 can be best determined from a polar orbit
and C22 from an equatorial orbit [2]. In an equatorial flyby, the purely radial acceleration due
to the second degree zonal harmonic (J2) can be separated from the acceleration caused by the
sectoral term C22, by looking at the difference in the variation compared to the distance from the
body. In addition, the velocity variation perpendicular to the flyby–plane (the quantity provided
by Doppler data) is smaller than for a high inclination flybys. These facts make equatorial flybys
better suited to determine the non–zonal harmonics, the same holds for determination of the
J2 term in a polar orbit. The geometry affects the estimation of J2 and C22 in another way too:
Doppler measurements are sensitive only to the line–of–sight component of the velocity. This
inherent geometrical symmetry of the problem (rotations in the line of sight do not change the
observables) may result in nearly singular matrices and large estimation errors, if the data arc is
too short [24].

Satellite–to–satellite tracking

SST is based on the same principle as Earth–based tracking of satellites. Instead of measuring
from a fixed point on the Earth, another satellite is used to determine the position of the reference
satellite. There are two types of SST: high–low and low–low SST. With high–low SST one satellite
orbits a celestial body in a high orbit, while the other reference satellite orbits the body in a low or-
bit. Around the Earth, GPS–satellites are used for precise positioning of the low–flying reference
satellite. In the low–low formation, the distance between two satellites in the same orbit is mea-
sured. This distance changes due to the changes in the gravitational field of the body, which on its
turn changes due to internal mass distribution. Hence from the variance in the distance between
the two satellites, the gravity field is retrieved. An advantage of SST above Earth–based tracking
is that SST is able to give nearly continuous, high–precision and three–dimensional information
of the gravity field.
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Satellite gravity gradiometry

SGG is based on measured accelerations, the difference in acceleration is the gradient in the grav-
itational acceleration. Using three pairs of three accelerometers located at different points, the
variations in X, Y and Z–direction can be measured and the various components of the gravity
gradient tensor can be determined. Defining a gradiometer measurement as Γij, a measurement
of a one component gradiometer can be defined as [59]:

Γij =
aj(B)− aj(A)

bi
AB

=
∆aj

bi (3.3)

Here, i represents the direction of the baseline and bi
AB the length of the baseline between the

two proof masses A and B. Subscript j gives the direction the accelerometers are oriented in the
a local reference frame and aj gives the acceleration measured. Measurement precision ( σ(Γ)

Γ ) is
determined by the standard deviation σ(a) of the two accelerometer measurements [m/s2], which
are assumed to be identical, and the uncertainty of the baseline, σ(b), is given as [59]:

σ(Γ)
Γ

= 2
σ(a)
∆a

+
σ(b)

b
= 2

σ(a)
Γ · b +

σ(b)
b

(3.4)

If the baseline is rigid, assuming thermal expansion of the structure can be neglected, the term
σ(b)/b is equal to zero and the relative precision of a gradiometer is determined by the precision
of the accelerometer measurement and the length of the baseline. This means that when the base-
line length is increased, the gradiometer precision increases as well. Hence increase in baseline
length is an important aspect to increase gradiometric performance, provided that error sources
due to other sensor elements have to stay below this level [59].

One of the main problems with observing gravity using a satellite mounted gradiometer is the
fact that the strength of the a gravitational field decreases with altitude. This is very good shown
by the Meissl scheme, see figure 3.1, which is based on the representation by spherical harmonics.
The horizontal lines represent the amplification gained when measuring a derivative of gravita-
tional potential. The vertical lines show the damping which increases with altitude. The orbit of
a satellite must therefore be as low as possible to observe the strongest gravitational signal. How-
ever, the lower the orbit the more air–drag the satellite experiences, which causes disturbances in
the motion of the satellite. Atmospheric drag is not the only non–gravitational acceleration that
influences the measurements, others are:

- Direct solar pressure radiation

- Pressure of the planet’s albedo

- Pressure of the planet’s infrared radiation

All these accelerations are measured together with the gravitational accelerations by the gra-
diometer, and have to be ‘subtracted’ from the signal in order to derive the best possible gravity–
field model. On the GOCE satellite (see next section) active drag compensation and angular con-
trol will be used in order to maintain its extremely low orbital altitude of 250 km and to compen-
sate for the effect of non–gravitational forces [59].
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Figure 3.1: The Meissl scheme, which shows the damping factors (vertical) and amplification factors
(horizontal) for a signal constituent Vn of degree n [35].

3.1.2 Gravimetric missions

In the past several missions to determine the gravitational field of the Earth have been launched
and are still flying. The CHAllenging Minisatellite Payload (CHAMP), launched in 2000, deter-
mines gravitational anomalies using the high–low SST technique. The two Gravity Recovery And
Climate Experiment (GRACE) satellites, still in orbit, use the low–low SST principle. The Gravity
field and steady–state Ocean Circulation Explorer (GOCE), expected launch October 2008, will
use a combination of SGG and high–low SST to determine the Earth’s gravity field with a preci-
sion of 1 mGal.

CHAllenging Minisatellite Payload

Orbiting at a an altitude of approximately 400 km and using the high GPS satellites at an altitude
of around 20,000 km, it led to an improvement of up to two orders of magnitude in accuracy
in global gravity models for features of up to a few thousand kilometers. For example, there
has been a significant improvement in the data from polar regions, which are difficult to access
from the ground. With CHAMP temporal changes in the gravitational field due to global mass
redistributions, which are in general small, slow and large–scaled, can be recovered with a higher
signal/noise ratio and an increased spectral resolution too [20]. By this, a discrimination between
various signal sources becomes possible. The most interesting temporal gravity variations caus-
ing a global signature, result from atmospheric mass redistributions, ocean circulation, sea level
changes due to polar ice melting or aggregation, and the visco–elastic response of the Earth’s
lithosphere to past and present loads [16].

Gravity Recovery And Climate Experiment

GRACE makes use of satellite–to–satellite tracking between two low–flying satellites. The twin
satellites GRACE–A and GRACE–B fly in formation, about 200 km apart, at an altitude of 400 km.
In addition, both satellites track signals transmitted by the GPS constellation. The goal of the
GRACE mission is to determine both the static as the time–variable components of the Earth’s
gravity field.

The two satellites can be seen as a one component gradiometer with a very long baseline to
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achieve a high accuracy. The distance between the two satellites is constantly communicated via
a microwave K–band ranging instrument. As the gravitational field changes beneath the satellites
- correlating to changes in mass (topography) of the surface beneath - the orbital motion of each
satellite is changed. This change in orbital motion causes the distance between the satellites to ex-
pand or contract and can be measured using the K–band instrument. From this, the fluctuations
in the Earth’s gravitational field can be determined [78].

Gravity field and steady–state Ocean Circulation Explorer

GOCE is one of the core missions of ESAs Living Planet Programme. GOCE will have nominal
mission duration of 20 months. The short mission duration is due to the relatively large atmo-
spheric drag the spacecraft experiences in its, for a satellite, extremely low orbit of 250 km altitude.
The low orbit is needed to receive a as strong a possible measurement of the gravity gradients,
which get weaker with increasing altitude. It uses the combination of high–low SST and SGG,
because it is not possible to map the complete gravity field at all spatial scales with the same
quality only with the gradiometer. The gradiometer is used to measure high resolution features
of the gravity field while GPS is used to obtain low–resolution data. The combination of these
two principles provides the opportunity to derive a global geoid model with a 100 km spatial
resolution and 1–2 cm accuracy. Gravity–field anomalies can be determined with an accuracy of
1 mGal (1 mGal = 10−5 m/s2) [20].

GOCE is equipped with three pairs of 3–axis accelerometers, which by differential measurements
act as a conventional gradiometer. In addition, it has a high quality 12–channel GPS receiver
and a laser retro–reflector enabling tracking by ground–based lasers. The spacecraft has rigid
structure with fixed solar wings and no movable parts single. Its body is octagonal, about five
meters long and one meter in diameter, the cross–section is minimized in the direction of flight to
reduce atmospheric drag and it has tail fins which act as passive stabilizers [10]. All these features
make GOCE look like a spy plane from a movie, see figure 3.2.

Figure 3.2: Artist impression of the GOCE spacecraft [Courtesy: ESA].
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3.2 Balloon–borne gravimetry

Acquiring gravimetric data from airborne platforms is nowadays very common, even commer-
cially exploited in the oil and gas industry to identify pockets of oil and gas within the Earth’s
crust. Balloon–borne gravimetry is, on the contrary, not at all common. A balloon operates in a
dynamic, largely unpredictable environment. To see what the influence on gravimetric measure-
ments is, balloon borne gravimetry on Earth is treated in this section. It is assumed that a balloon
in the atmosphere of Titan behaves in the same way. Though the experimental results are very
limited, a description is given in this section.

On Earth in late September 1983, gravity measurements from a high–altitude balloon, DUCKY Ia,
were made to verify global and upward–continued gravity models. A second flight in DUCKY II
was made in October 1985. The first flight was intended to provide balloon motion and environ-
ment data with a preliminary estimate of the quality of measured gravity values and showed that
tracking was the most difficult problem. Therefore the second flight included differential GPS
tracking, tested the use of differential GPS tracking and measured gravity at altitude [39].

The gravimeter package that is suspended underneath the balloon senses accelerations due to bal-
loon motions as well as gravitational acceleration, therefore these motions must be very accurately
accounted for in gravity estimation. Additional instrumentation is required to measure as many
balloon motions as possible, such as rotation, bobbing and swaying, see figure 3.3. Therefore dur-
ing the DUCKY experiments independent measurements were made of the balloon motions by
an inertial navigation package (three accelerometers, three rate gyros, three–axis magnetometer
and two tiltmeters) combined with ground tracking (X, Y and Z position and velocity). In the
second flight a radar transponder and a GPS receiver was added [38].

For the specified time interval (1 second) during which the measurements were made, the vari-
ation of the balloon accelerations was expected to be significantly greater than the variations ex-
pected in the Earth’s gravity field. According to [39] the independent measurements will allow
for separation of balloon–induced accelerations from gravitational acceleration to 1 mGal, using
tracking data to an accuracy of about 5 cm/s in velocity for Eötvös corrections, and position to
1 m. The results of the first flight were successful [38] and a preliminary look to the raw data for
the entire flight is given in [38], but no conclusion were drawn yet. The second flight was, accord-
ing to [39], a success too, but results of these flight were never published and not accessible.

Later studies by C. Jekeli, [26] and [27], focused on the feasibility of using GPS in conjunction with
an inertial navigation system (INS) to measure the gravity vector on a moving platform, specifi-
cally a high altitude balloon. This studied showed that the the errors, which were dominated by
GPS related errors, needed to be reduced to make the GPS/INS a feasible gravimetry system.

3.3 Theoretical background on gradiometry

State–of–the–art methods for determination of gravitational fields from satellites use two or more
proof masses and measure the relative motion of these proof masses. This can be done by mea-
suring dynamically relative forces or angular momenta [35]. First the general fromulae for gra-
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Figure 3.3: A sketch by A. R. Lazarewicz [38] showing the exaggerated motions of a gondola underneath a
balloon. Each of these motions contribute to the vertical acceleration vector, thus confusing the gradiometer
data.

diometry are derived, then the observation equations for SGG are given.

3.3.1 Theoretical background on gradiometric measurements in general

Figure 3.4: Forces between three bodies, F23 is the force where m2 is attracted m3. Note that F21 = −F12.

Suppose Kij is the force acting on mi in the gravitational field of mj i.e. mi is attracted by mj, see
figure 3.4. The equation of motion of the proof masses m1 and m2 in the gravitational field of m3

can then be written according to Newton’s second law as [35]:

F = ma⇒ m2R̈2 = F12 + F23 and m1R̈1 = F13 + F12 = F13 − F21 (3.5)

where R̈i represents the acceleration of the proof masses i = 1, 2. The relative acceleration vector
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between the proof masses m1 and m2 is defined as R̈12 = R̈2 − R̈1, which using equation 3.5 can
be written as:

R̈12 =
1

m1
F13 +

1
µ12

F21 (3.6)

where µ12 is the reduced mass

µ12 =
m1m2

m1 + m2

Because F23 = m2g3(R2) and F13 = m1g3(R1), using g =∇V, equation 3.6 can be rewritten as [35]:

µ12R̈12 = µ12(g3(R2)− g3(R1)) + F12 (3.7)

where the term

µ12(g3(R2)− g3(R1)) = G(21)3

is a tidal force: it is the difference between the gravitational interaction of proof masses m1 and m2

with body m3. Summarizing, the equation of motion of proof mass m2 relative to proof mass m1,
both under influence of a third body m3 is given as:

µ12R̈12 = G(21)3 + F21 (3.8)

If body m3 is for instance a celestial body, then g3(R) = ∇V(R), where V is the gravitational
potential of that celestial body.

The tidal force G(21)3 can be determined in two different ways: (i) using the kinematic R12(t) of
the relative motion between two satellites m1 and m2 or (ii) by direct measurement. Two different
gradiometer concepts can be used to measure the tidal force directly, namely (a) inline gradiom-
etry or (b) cross–component gradiometry. The concept of inline gradiometry works as follows:
the distance between the two proof masses is kept constant and the relative acceleration vector in
line of the two masses in measured. In cross–component gradiometry the two proof masses are
rigidly connected and the angular momentum generated by the tidal field is measured [35].

3.3.2 Observation equations for SGG

A gradiometer usually measures the force difference with respect to the center of mass (CoM) of
the satellite, point S. Now, g3(Ri), with i = 1, 2, can be expanded in a Taylor series around point
S, where RS = R1+R2

2 [35]:

g3(Ri) = g3(RS) = ∇g3(RS)(Ri − RS) + O(|Ri − RS|2), i = 1, 2.

Because the distance between the two proof masses (R12) is very small, quadratic and higher order
terms can be neglected. Thus the tidal force G(21)3 can be approximated by:

G(21)3 ≈ µ12∇∇V(RS)R12
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The tensor∇∇V is called the gravitational tensor Γ. The elements of Γ are the second derivatives
of the gravitational potential. Equation 3.8, which gives the equation of motion of proof mass m2

relative to proof mass m1, both under influence of a third body (as shown in figure 3.4), can now
be approximated as [35]:

µ12R̈12 ≈ µ12Γ(RS)R12 + F21 (3.9)

When the gravitational interaction between the two proof masses is small (for instance if the
masses m1 and m2 are small) F12 can be neglected. Then the acceleration vector of m2 relative to
m1 is approximated by [35]:

R̈12 ≈ Γ(RS)R12 (3.10)

This equation is used as basic functional model for satellite gravity gradiometry. For instance with
the in–line gradiometer concept, the distance |R12| is kept constant and the relative acceleration
R̈12 is measured.

A gradiometer on board of the satellite, rotates, though slow, in inertial space. The force actually
measured by the gradiometer is gravity and not gravitation. If ri is the vector pointing from the
CoM of the balloon (point S, which is assumed to be identical with the origin of the reference
system of the gradiometer) to a proof mass m located at Oi, then the measurable acceleration of
the proof mass in a rotating reference frame with rotation vector ω can be given as [35]:

ai = (∇Vi −∇Vs)− ω̇× ri −ω× (ω× ri) (3.11)

where Vi and VS are the gravitational potential at Oi and S respectively. The linear acceleration
of the proof mass induced by the gravitational potential is denoted by (∇Vi −∇VS), the linear
acceleration of the proof mass induced by the satellite’s angular accelerations is given by ω̇ × ri

and the centrifugal acceleration of the proof mass induced by the satellite angular rotation is given
by −ω× (ω× ri). Expanding ∇Vi in a Taylor series around the CoM (point S):

∇Vi = ∇VS +∇∇VS ri + O(|ri|2) (3.12)

Since |ri| is very small, equation 3.12 can be approximated by [35]:

∇Vi ≈ ∇VS +∇∇VS ri (3.13)

combining this with equation 3.11:

ai = ∇∇Vs ri − ω̇× ri −ω× (ω× ri) (3.14)

where

∇∇V = Γ =

 Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 , ri =

 rx,i

ry,i

rz,i

 , ω =

 ωx

ωy

ωz

 , ω̇ =

 ω̇x

ω̇y

ω̇z

 (3.15)
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here subscripts x, y and z denote the axis belonging to the reference system fixed to the gradiome-
ter. Evaluating ω̇ × ri and ω × (ω × ri), equation 3.11 can be approximated by (for the complete
derivation see [35]):

ai ≈ (Γ− Ω̇−Ω2)
∣∣∣
S

ri (3.16)

with

Ω2 =

 −(ω2
y + ω2

z) ωxωy ωxωz

ωyωz −(ω2
x + ω2

z) ωyωz

ωzωx ωzωy −(ω2
x + ω2

y)

 , Ω̇ =

 0 −ω̇z −ω̇y

ω̇z 0 −ω̇x

ω̇y ω̇x 0

 (3.17)

From measurements in a rotating frame fixed to the satellite (equation 3.16) the gravitational
tensor (Γ) cannot be measured directly, but only the sum of the gravitational acceleration, the
centrifugal acceleration (the term Ω2) and the angular acceleration (the term Ω̇).

3.4 The specifications of gradiometers

The traditional method of measuring the Earth’s gravity field is based on comparing the differ-
ences in how a ‘test mass’ responds to the gravitational attraction at different locations on the
surface of the Earth. Nowadays gravity can be measured from space using a so–called gradiome-
ter. MEMS technology is used to develop a micro–gradiometer, since the now existing technology,
used in the GOCE satellite, is far too heavy and big to implement in a mission to (the moons of)
outer planets.

This section describes first the values used to indicate the performance of a gradiometer in gen-
eral, then gives characteristics of the gradiometer on board of GOCE and concludes with MEMS,
the technology used to miniaturize gradiometers.

3.4.1 The performance of a gradiometer

There are several values that indicate the performance of an accelerometer or gravimeter: the
sensitivity of the instrument, Total Noise Equivalent Acceleration (TNEA), the Power Spectral
Density (PSD) and the Signal-to-Noise Ratio (SNR).

Sensitivity

The sensitivity of a gradiometer is proportional to the mass, m, over the spring constant, k, [13]:

sensitivity ∝
m
k

=
1

ω2
d

(3.18)

where ωd is a mechanical self resonance factor.
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Total Noise Equivalent Acceleration

The TNEA is defined by the total mass, if the output signals are simply averaged and noise is not
correlated [92]:

TNEA =
√

4kBTc
m

=

√
4kBTωd

Qm
(3.19)

with kB the Boltzmann constant, T the temperature in Kelvin, c the damping factor, Q a qual-
ity factor, m the mass of the proof mass and ωd the mechanical self resonance factor. Equation
3.19 shows that mechanical noise can be reduced by increasing the proof mass size and reducing
damping. A combination of N accelerometers improves the TNEA by a factor of N−1/2, hence it
is defined by total mass, if output signals are simply averaged and noise is not correlated [13].

Power Spectral Density

Power spectral density function (PSD) shows the strength of the variations (energy) as a function
of frequency. In other words, it shows at which frequencies variations are strong and at which
frequencies variations are weak. The unit of PSD is energy per frequency (width) and one can
obtain energy within a specific frequency range by integrating PSD within that frequency range.
Computation of PSD is done directly by a method called the Fast Fourier Transform (FFT) or
by computing the autocorrelation function and then transforming it [6]. The PSD for all gravity
gradiometers is given by [13]:

SΓ = Γ2
n =

8
mb2

(
kBTωd
Q( f )

+
ω2

d
2αe

ε( f )

)
(3.20)

where:

- Γn the gravity gradient noise

- b is the base line of the two test masses

- m the mass of one of the test masses

- kB the Boltzmann constant

- T the temperature in Kelvin

- ωd = 2π f is the mechanical resonance frequency of the differential mode

- Q the quality factor of the resonance mode, in the case of a differential gradiometer the
damping coefficient for the differential mode Q = τ−1

d

- αe the energy coupling coefficient of the mechanical to electrical conversion

- ε is the sensor noise energy

The first term in the expression represents the mechanical and thermal noise, the second term the
sensor noise energy. The mechanical noise, which is known as the Brownian noise, is thus given
as [13]:

SΓ =
8

mb2

(
kBTωd
Q( f )

)
(3.21)
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Signal–to–Noise Ratio

The SNR is defined as the detected signal in the measurement (the signal current or voltage,
Sdetected) to the noise (noise current or voltage, N) in that same measurement [31]:

SNR =
Sdetected

N
(3.22)

3.4.2 GOCE gradiometer

On board of the GOCE satellite will be the first gradiometer flown into space. It is a three–axis
electrostatic gradiometer, that will measure gravity gradients in all spatial directions and specif-
ically designed to measure the stationary gravity field. The main characteristics of the GOCE
gradiometer are given in table 3.1 below.

Table 3.1: Characteristics of the GOCE three–axis diagonal gradiometer [Courtesy: ESA].

Design Measurement Bandwidth (MBW) 5× 10−3 to 10−1 Hz
Baseline length 0.5 m
gravity gradient resolution 10 mE/

√
Hz

Sensitivity (detection noise)
Measurement bandwidth < 10−12 m/s2

√
Hz

Extended bandwidth (10−5 to 1 Hz) < 10−10 m/s2
√

Hz
Proof-mass positioning error 6× 10−8 m

√
Hz

Absolute / relative scale factors 10−3 / 10−5

Absolute / relative misalignment 10−3 rad / 10−5 rad

Because of launch delays, no actual data on the performance of GOCE can be given yet and the
question remains if GOCE will meet the expectations set.

3.4.3 MEMS–technology used for miniaturize instruments

Figure 3.5: The MEMS market in 2005 [67].

MEMS is short for Micro–Electro–Mechanical Systems.
Micro, since these systems have static or movable com-
ponents with dimensions on the scale of a micrometer.
MEMS combine the mechanical and electrical function
in micro–devices, think of pressure sensors, accelerom-
eters, gyroscopes and optical devices as well as chem-
ical, biomedical and fluidic applications. Mechanical
and electrical components are integrated within a sin-
gle silicon chip, which creates the possibility of complete
systems–on–a–chip. MEMS will allow the development
of smart products, it will be able to increase the compu-
tational ability and thereby increase the possible appli-

cations. When thinking of space applications, reliability, power consumption and size are critical
criteria. Keeping this in mind, possible applications in the future, which rely on the same critical
criteria, could even be as advanced as implantable sensors for medical applications.
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MEMS are already widely used on Earth in a lot of different applications. Looking at the MEMS
market of 2005 (figure 3.5), there are two major applications for MEMS devices: as active device
for ink jet printer heads or micro mirror device for projectors or as passive device such as a sensor.
Although the general applications are starting to expand, the market is still fairly small [67].

Gradiometers are mainly accelerometers confined in different directions, between which the dif-
ference in acceleration is measured. MEMS accelerometers are used on Earth in the automotive
industry, among others as sensors for the airbag defolding mechanisms. Therefore it is more than
logical to first look at the possibilities and operation of a MEMS accelerometer.

MEMS accelerometers

Most MEMS accelerometers consist of a suspended seismic mass that is displaced and measured,
see figure 3.6. Thus the position of the seismic mass depends on the momentary acceleration
sensed by the device. This displacement is then translated into for instance, a resistance in piezo-
electric accelerometers or into capacitance in capacitive accelerometers [79]. State of the art read–
out mechanisms in low–noise MEMS accelerometers are, including the two examples given above
[13]:

- Piezoresistive

- Piezoelectric

- Resonant

- Thermal

- Electron tunneling

- Optical

- Capacitive

Capacitive, electron tunneling and optical read–outs have demonstrated displacement resolu-
tions in the order of 10−13 m/

√
Hz. Electronic feedback and spring constant tuning are already

standard techniques in MEMS accelerometers. A disadvantage regarding the standard MEMS
techniques used is that silicon is not a good material for obtaining large proof mass. It has a
low density compared to other materials that could be used, such as titanium (Ti, 4507 kg/m3),
chromium (Cr, 7140 kg/m3), nickel (Ni, 8909 kg/m3), tantalum (Ta, 16 650 kg/m3) or platinum
(Pt, 21 090 kg/m3). Next to that, the thickness is limited to wafer thickness, which typically is 0.5
or 0.8 mm. On the other hand, silicon is a very good material to make suspension springs, quality
factors between 104 and 105 have been demonstrated in industry. Micro–machining techniques
do offer high precision during fabrication, which can be very advantageous in realizing reliable
read–out structures [13].

Possible approaches to get to a precision of 10−13 g/
√

Hz using MEMS technology for accelerom-
etry are [13]:

- A hybrid solution, e.g. to combine MEMS suspension/sensing/actuation with a large ex-
ternal proof mass
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- To use the mass of entire wafers, by using a dense array of sensors such that the noise level
is defined by the total mass: a 10 mm wafer weighs 10 grammes and a 30 mm wafer weighs
already as much as 130 grammes. Other solutions are all wafer gradiometers or by using an
array of accelerometers

- To use a free hanging electrostatically suspended proof mass to eliminate all damping. A
side note is that MEMS accelerometers with electrostatic elevation are still in an infant state
of development, but that there might be possibilities in the future

MEMS micro–gradiometer

It has been noted several times already that the GOCE–gradiometer is far to bulky to use for a a
mission to the (moons of) the outer planets. In the Netherlands, research is done at the University
of Twente, MESA+ Institute of technology and SRON for gravity gradient sensor technology for
future space missions. The concept design, see figure 3.7, is a single–axis micro–gradiometer
etched from one silicon wafer. A sensitivity of 1 E/

√
Hz is needed for planetary mission, see [13].

Table 3.2: Specifications of a micro–gravity gradiometer [13].

Low mass m = 1− 3 kg
Low baseline b = 0.1 m
Mechanical quality factor Q = 105

Lower operation temperature T = 77 K
Resonance frequency f = 1 Hz
Displacement resolution ∆x = 10−11 m
Energy–coupling efficiency αe ∼= 1
Silicon wafer 0.3 m diameter, 0.8 mm thick

The noise level is an indication of accuracy and sensitivity of the instrument, given by equation
3.20 in units of E/

√
Hz. Normally the exact values of the noise level of an instrument are known

after several tests done after fabrication. In this case, since the gradiometer is still in the design
phase, the noise level for computational purposes is assumed to be 0.1 E/

√
Hz for frequencies of

10−3 Hz and higher. For the lower frequencies the noise level is assumed to be 1/ f noise [23].

Figure 3.6: Cross–section of a MEMS accelerometer [67].
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The specifications of this ideal concept design are given in table 3.2. Simulations of this ideal
concept design prove that, if temperature stability can be guaranteed, the sensor noise is most
dominant around one Herz [13]. Moreover the sensor has a low resonance frequency of 1 Hz,
but feedback is needed to make the system fast enough. The springs of the ideal concept are ex-
tremely weak compared to their mass: for a mass of 39 grammes, the spring stiffness is k = 10−6

– 10−1 N/m. Because these springs are designed for a zero gravity environment, they are, com-
pared to the mass, too weak to support on Earth. The springs which are used during production
and lab testing are much stiffer: k = 1.4 N/m. On the ideal concept some more restrictions have
to be made: cubesats, the perfect testbed for MEMS sensors, have size restrictions (8 × 8 cm) to
which the concept gradiometer must stick. To improve the sensitivity of the gradiometer, extra
masses are attached to the structure [13].

Further simulations were done using the more realistic concept design. In the design maximum
length springs which should survive Earth gravity in one axis (3 cm×0.5mm×50µm) were used
and four extra masses (Pyrex block of 1x1x5 cm, 11.2 gram each) were attached to the top and
bottom of the test masses. This resulted in a resonance frequency of 2 Hz. First simulations of the
gradiometer with the attached masses ([5], 2006) showed a total sensitivity of 17 E/

√
Hz, while

later simulations ([13], 2007) give a total sensitivity of 2.6 E/
√

Hz. Still improvements have to be
made to bring the sensitivity below 1 E/

√
Hz.

The final design of the gradiometer will be focused on mission requirements. The design of the
gradiometer however is beyond the scope of this research and will not be treated any further.

Figure 3.7: The proposed micro–gradiometer. The green parts are capacitive read outs and the elements in
red are springs. The figure shows the proof mass (1), the spring (2), and the capacitive read–out (3) [23].
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Chapter 4

The gravity field of a planet

Mapping the gravitational field of a planet or satellite tells something about the interior of that
particular body. Small variations in the gravitational field can be caused by varying densities of
rocks and structures beneath the surface. This chapter will go into more detail on theory of gravi-
tational fields and how the gravity field is determined. Section 4.1 gives the most common way to
represent the gravitational potential, in spherical harmonics, and alternative ways of representing
the gravity field. Section 4.2 describes how the gravity gradients are determined. The theory of
the tidal potential is treated in section 4.3. This chapter concludes with the tidal parameters of
Titan as suggested in literature.

4.1 Gravitational potential

The gravitational potential of a planetary body is, in absence of seismic data, the most powerful
source of information concerning its internal structure [55]. The total perturbing potential, V is
given by the sum of the gravitational potential Vg and the rotational potential Vr [7]:

V = Vg(r, ϑ, λ) + Vr(r, ϑ, λ) (4.1)

where r stands for the radial distance, ϑ the colatitude and λ the longitude of the measurement
point. The gravitational potential which acts on the satellite is given by [7]:

Vg(r, ϑ, λ) = −GM
r

[
1−

∞

∑
n=0

(
Re

r

)n
JnPn(cos ϑ)

]
(4.2)

again r stands for the radial distance, ϑ the colatitude and λ the longitude of the measurement
point, furthermore is G the gravitational constant, M the mass of the planet, Re the equatorial
radius of the planet, Jn the gravitational moments and Pn(cos ϑ) the Legendre polynomials (see
appendix C). The rotational potential is defined as [7]:

Vr(r, ϑ, λ) = −1
2

r2ω2
rot sin2 ϑ (4.3)

with ωrot the rotational period of the planet.

This section will start with an explanation of the terms hydrostatic and isostatic equilibrium and
how they are used in the theory of the gravitational potential. Next, the formulae of the moment
of inertia of a planet are described. The spherical harmonic representation of the gravitational
potential, which is the most widely used method of describing the gravitational potential, is given
and this section concludes with alternative representations of the gravitational potential.
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4.1.1 Hydrostatic and isostatic equilibrium

For rotating bodies, the effective gravity is less than the gravitational attraction calculated for a
non–rotating planet, since the centrifugal force induced by rotation is directed outwards from the
planet. The equipotential surface must thus be derived form the sum of the gravitational potential
(equation 4.2) and the rotational potential (equation 4.3):

Vg(r, ϑ, λ) + Vr(r, ϑ, λ) = constant (4.4)

The equipotential surface of the Earth is called the geoid. For other planets and satellites this name
geoid is used often too. Sometimes other words are used, for instance the equipotential of the
moon is called the luneoid. Deviations in the observed gravity data with respect to (theoretical)
geoid models provide information on the structure of the crust and mantle of a planet. Before the
observed data can be used for comparison to the models, several corrections will have to be made.
The then derived low–degree harmonics are accredited to (large–scale) dynamic processes, like
the sinking of the subducting oceanic slab and post–glacial rebound, and in models described by
dynamic isostasy. The higher degree harmonics are usually well explained by the static isostatic
conditions (like mountains), using Airy’s or Pratt’s hypothesis, see following sections.

Hydrostatic equilibrium

The internal structure of a spherical body is determined by the balance between gravity and pres-
sure. The increase in pressure (∆p), or force per unit area, is given by [7]:

∆p = −gpρ∆z (4.5)

where gp is the gravitational acceleration, ρ the density and ∆z the increase in height. Both the
gravitational acceleration and the density depend on altitude. The balance between temperature,
pressure and density of the planets atmosphere and interior is called hydrostatic equilibrium,
which is given by [7]:

p(r) = −
∫ r1

r0

gp(r̃)ρ(r̃)dr̃ (4.6)

here p is the pressure, r0 and r1 the lower and upper boundary respectively, ρ again the density
and r̃ the radial distance integrated over. Assuming the density of the planet is constant, the
pressure in the center of the planet, pc is given by equation 4.6 as:

pc =
3GM2

8πR4 (4.7)

where G is the gravitational constant, M the mass of the planet and R the radius of the planet. This
value sets the lower limit to the pressure in the center of the planet, since normally the density
increases with radial distance. As equations 4.6 and 4.7 show, the gravity field indirect gives
information on the interior of a planet. The upper limit of the central pressure is given by [60]:

pc =
(

ρc

ρ̄

)4/3
pc,low (4.8)
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where pc,low is the value for the lower limit of the pressure given by equation 4.7, ρ̄ the mean
density of a planet and ρc the density of the planets core.

Isostatic equilibrium

The concept of isostatic equilibrium is based on the theory of hydrostatic equilibrium, as de-
scribed above. On geological time scale, mountains in isostatic equilibrium behave the same as
icebergs float on water; the rigid surface layers (the lithosphere) ‘float’ on the highly viscous ‘fluid’
layers (the asthenosphere). A mountain in isostatic equilibrium is compensated by a deficiency
of mass underneath, since the volume of the mountain submerged in the upper mantle is lighter
than the mantle material displaced. The total mass of the material displaced is equal to the total
mass of the mountain [7]. This does not hold for all mountains on the Earth, certain areas (such
as the Himalayas) are not in isostatic equilibrium, which has forced researchers to identify other
reasons to explain their topographic heights. For instance at the Himalayas it is believed that the
force of the impacting Indian and Eurasian plates forces the mountains upwards ([7] and [80]).

The deficiency or addition of mass at deeper layers of mountains or oceans are computed as-
suming isostatic equilibrium and using Airy’s or Pratt’s hypothesis. Airy’s hypothesis assumes
a constant density for all the crustal layers and a larger value for the fluid mantle material. As
can be seen on the right of figure 4.1, a mountain of height h1 is compensated by the depth of the
continental root, h2. Here the Airy condition applies [80]:

ρCh1 = (ρM − ρC)h2 (4.9)

with ρC the density of the crust and ρM the density of the mantle. Underneath the crust–mantle
boundary (under the dashed line and the mountain in the right figure of figure 4.1) there is hy-
drostatic equilibrium, because the amount of mass above this level is everywhere the same. This
model proves to be a reasonable approximation for mountain ranges. As shown, within one col-
umn the Airy isostatic model can have various densities, whereas the Pratt’s hypothesis assumes
that each column has a uniform density, see the left picture of figure 4.1. The height of the col-
umn above the depth where all columns are in hydrostatic equilibrium, is thus dependent on the
density of the specific column and given by [80]:

ρ1h1 = ρ2h2 = ρ3h3 (4.10)

with ρi the densities and hi the heights above the crust–mantle boundary of the different columns,
i = 1, 2, 3. Pratt’s hypothesis approximates the condition for a continental plateau quite well.

Corrections applied to the observed data

Before gravity measurements can be used to determine if a region is in isostatic equilibrium sev-
eral corrections have to be made on the observed data. The free–air gravity correction projects
the observed data on a reference height, which usually coincides with the reference ellipsoid of
the planet. Above continental areas the Bouguer correction is applied to compensate for the extra
mass between the surface of the Earth and the reference ellipsoid. After these corrections have
been applied and local surface topography has been taken into account, the remaining differences
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Figure 4.1: Static isostatic equilibrium: left Pratt isostasy and right Airy isostasy [80].

are then of geophysical interest [80].

The variation in surface gravity can be found by solving equation 4.4 and is given as function of
latitude, ϕ, by [7]:

g(ϕ) = g0(1 + C1 sin2 ϕ + C2 sin4 ϕ) (4.11)

in which C1 and C2 are constants and g0 the unperturbed surface gravity of a celestial body with
radius R given by [22]:

g0 =
GM
R2 (4.12)

In addition to this, the height at which the measurements are made has to be taken into account.
Assuming that there is only air present above sea level up to an altitude h above the geoid, the
free–air correction is equal to 2h/R (h� R, where R is the radius of the celestial body) [80]:

∆gFAA ≈ −
2g0h

R
(4.13)

On the other hand, if there is a large slab of rock at the latitude of measurement, the free–air
correction should be decreased by the gravitational attraction of rocks. This correction is known
as the Bouguer correction [7]. The Bouguer correction can be found by considering axisymmetric
ring elements, where the symmetry axis is aligned with the point where the gravity is observed.
The ring element between the radial distance from the symmetry axis r and r + dr has a volume
of dV = 2πrdrdz where z is the coordinate in the direction of the symmetry axis. The ring element
is then situated at a distance of

√
r2 + z2 from the point where the gravity is observed, hence the

vertical component of the gravity due to this ring element is given by [80]:

g(dV) =
2πGρrdrdz

r2 + z2 × z√
r2 + z2

(4.14)

When integrating equation 4.14 over a plate with 0 < z < h and 0 < r < ∞ the Bouguer correction
becomes [80]:

∆gB =
∫ 0

h

∫ r

∞
g(dV)drdz = 2πρGh (4.15)
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where ρ is the density of the rocks and h again the height above the geoid. The Bouguer correction
itself can be corrected using terrain correction factor, δgT , which is based on a topografic map.
Combining all these correction factors, the difference between the observed gravity, gp(obs), and
the value expected the point of measurement, known as the Bouguer gravity anomaly, gB, is ([7]
and [80]):

gB = gobs − ∆gFAA − ∆gB + δgT (4.16)

= g(obs) +
2g0h

R
− 2πρGh + δgT

These lateral variations in density distributions result in gravity anomalies, which cause devi-
ations in the measured geoid with respect to a spheroid calculated for a rotating, spherically
symmetric, fluid planet. The geoid height anomaly, ∆hg, which is the geoid radius minus the
spheroid radius, is used to express all these deviations and is related to the measured anomalies
in the gravitational potential [7]:

g(ϕ)∆hg = −∆Vg (4.17)

For an isostatic density distribution this can be approximated by [7]:

∆hg = − 2πG
gp(ϕ)

∫ D

0
∆ρ(z)zdz (4.18)

where ∆ρ(z) is the anomalous density at depth z and D the compensation depth below which
there are no horizontal gradients in density. The depth is measured downwards as positive and
z = 0 corresponds to the geoid surface. The effective gravitational attraction is always normal
to the geoid, so that there is a trough in the geoid where there is a negative gravity anomaly or
positive potential anomaly (mass deficit), and there is a bulge in the geoid if there is a positive
gravity anomaly or a negative potential anomaly (mass excess) [80].

4.1.2 Moment of inertia of a planet

The moment of inertia (MoI) of a planet, Ip, is computed using [24]:

Ip =
8π

3

∫ R

0
ρ(r)r4dr (4.19)

with r radial distance, R is the radius and ρ the density of the planet.

Undifferentiated (see section 2.3) models are characterized by the mass fraction of rock (silicate)
with respect to the total mass of the body. The silicate mass fraction is given by [56]:

fsilicate =
ρsil(ρ̄− ρice)
ρ̄(ρsil − ρice)

(4.20)

or similar the ice mass fraction [63]:

fice = 1− ρsil(ρ̄− ρice)
ρ̄(ρsil − ρice)

= 1− fsilicate (4.21)
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where in both equations ρsil is the density of silicate present in the core, ρice the density of ice
present in the core and ρ̄ the mean density of the planet. Differentiated models are characterized
by the radius of the core (Rc) [56]:

Rc =
(

ρ̄− ρM
ρc − ρM

)1/3
R (4.22)

with ρ̄ again the mean density of the planet, ρc the density of the core, ρm the density of the mantle
and R the radius of the planet.

4.1.3 Spherical harmonic representation of the gravitational potential

The gravitational field can be expressed in terms of a potential Vg(r), which is defined as the
integral over the gravitational force, Fg(r), divided by the mass [7]:

Vg(r) = −
∫ r

∞

Fg(r̃)
M

dr̃ (4.23)

In general Vg(r) satisfies Poisson’s equation [7]:

∇2Vg = 4πρG (4.24)

and, in empty space, where the density ρ = 0, Vg(r) satisfies Laplace’s equation [7]:

∇2Vg = 0 (4.25)

The general solution to Laplace’s equation can be written in spherical coordinates. For a non
rotating fluid body in hydrostatic equilibrium this is given by:

Vg = −GM
r

(r ≥ R) (4.26)

with G the gravitational constant, M the mass of the body in question and r the radial distance.
Equation 4.26 only holds outside the sphere (R represents the radius of the body). In reality
planets are not perfect spheres and there are two general effects that produce these deviations
[22]:

1. An equilibrium response of the planet to perturbing potentials

2. The deviation of the planet from symmetry due to departures from hydrostatic equilibrium

Thus solving Laplace’s equation for an axisymmetric body, the gravitational potential is defined
using a harmonic expansion [49]:

Vg = −GM
r

∞

∑
n=0

n

∑
m=0

(
R
r

)n
Pnm(sin φ) (Cnm cos(mλ) + Snm sin(mλ)) (4.27)
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where [49]:

Cnm =
2− δom

M
(n−m)!
(n + m)!

∫ rn

Rn Pnm(sin φ′) cos(mλ′)ρ(r)dV (4.28)

Snm =
2− δ0m

M
(n−m)!
(n + m)!

∫ rn

Rn Pnm(sin φ′) sin(mλ′)ρ(r)dV (4.29)

Usually the normalized coefficients are used. The most important (numerical) reason is that stable
recursive schemes exist for the normalized Legendre functions whereas this is not necessary the
case for the unormalized Legendre functions. Thus by normalizing the coefficients the Legendre
functions are mathematicallty better manageable. The normalization is defined by [49]:{

C̄nm

S̄nm

}
=

√
(n + m)!

(2− δ0m)(2n + 1)(n−m)!

{
Cnm

Snm

}
(4.30)

The normalized gravitational potential is now defined as [49]:

Vg(r, φ, λ) = −GM
r

∞

∑
n=0

n

∑
m=0

(
Re

r

)n
P̄nm(sin φ) (C̄nm cos(mλ) + S̄nm sin(mλ)) (4.31)

where:

- Vg is the gravitational potential

- G is the universal gravitational constant of 6.673·10−11 m3/kgs2

- M is the mass of the body

- Re is the equatorial radius

- m is the spherical harmonic order, n is the spherical harmonic degree

- r, φ and λ are the distance, latitude and longitude respectively

- P̄nm are the fully normalized Legendre functions, given by [49]:

P̄nm =

√
(2− δ0m)(2n + 1)(n−m)!

(n + m)!
Pnm (4.32)

Pnm(x) = (1− x2)m/2 dm

dxm Pn(x) (4.33)

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n (4.34)

See appendix C too.

- C̄nm and S̄nm are the normalized spherical harmonic coefficients, describing the dependence
of the potential on the internal mass distribution of the body of interest. An approximation
of the size of these two coefficients on Earth is given by the empirical Kaula rule [33]:

C̄nm, S̄nm ≈
10−5

n2 (4.35)
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The geopotential coefficients with m = 0 are called the zonal coefficients, they describe the part of
the potential that does not depend on the longitude. By inspection of equation 4.31 it can be seen
that the terms Sn0 vanish. For simplification the notation:

Jn = −Cn0 (4.36)

for the zonal coefficients is often used. If then the origin of the coordinate system coincides with
the center of mass of the body, the gravitational coefficients C10, C11, S11 are equal to zero. Simi-
larly C21 and S21 vanish as long as the z–axis is aligned with the main axis of inertia of the body.
Rotating fluid bodies in hydrostatic equilibrium have Jn = 0 for all odd n, this has been found to
be a very good approximation for the giant planets [7]. The sectoral harmonics are the terms with
m = n, where the Legendre function reduces to a constant and a (cos φ)m term, this implies that
there is no change of sign when following a certain meridian. The other components (m < n) are
called the tesseral harmonics. The physical meaning of the zonal, sectoral and tesseral harmonics
is illustrated in figure 4.2. Figure 4.3 shows what is this means for the higher order spherical har-
monics.

Figure 4.2: The different types of spherical harmonics [14].

Figure 4.3: The physical interpretation of the higher order coefficients of the spherical harmonics [14].

A rotating planet which consists of an incompressible fluid of uniform density takes the form of a
Maclaurin spheroid. From the solution for the equipotential surface (equation 4.4) it follows that
the second harmonic, J2 is related to the centrifugal and gravitational potentials ([7] and [22]):

J2 =
qr

2
(ρ = constant) (4.37)
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where

qr =
ω2

rotR
3

GM
(4.38)

with again G the gravitational constant, M the mass, R the radius and ωrot the rotational period
of the planet. Usually the density (ρ) increases toward the center, such that J2 < qr/2. The ratio
between J2 and qr is given by the so–called response coefficient Λ2 [7]:

Λ2 =
J2

qr
(4.39)

The coefficient Λ2 contains information on the spatial distribution of the mass in the planet’s
interior. Rotating planets with high–density cores have small values of Λ2, whereas bodies with
a more homogeneous density distribution have large values of Λ2. The oblateness of a planet in
hydrostatic equilibrium is related to the rotation period and the second harmonic [7]:

Re − Rp

Re
≈ 3

2
J2 +

qr

2
(4.40)

Here, Re is the equatorial radius of the body and Rp the polar radius.

4.1.4 Alternative representations of gravitational fields

The standard representation of gravitational fields is in terms of spherical harmonics (SH). When
using spherical harmonics, the only way to improve resolution is to increase the number of terms
in the expansion. The estimation procedure requires matrices of dimension (N+1)2 to be solved
if an expansion complete to degree N is used. These matrices are full because coefficients of the
SH expansion are not associated with any particular spatial location. Thus changes any where
on the globe, change the SH expansion and the other way around: changing even a single coef-
ficient in the model has global effect in terms of mass distribution. It is noted by [36] too that it
is extremely difficult to adjust the spatial frequency content of a spherical harmonic degree locally.

When modeling the gravitational fields of extraterrestrial bodies of very irregular shape, spherical
harmonic expansions may also be a sub–optimal choice and an alternative representation may be
able to describe the field with less parameters. According to [36] there are several possibilities for
an alternative representations of gravitational fields. The most common are:

- Source representation

- Representation by a mass layer on the surface of the body

- Representation by point masses

- Representation by multi quadratic functions

- Representation by radial basis functions

- Representation by integrals
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Source representation

The gravitational potential of a volume mass distribution is given by Newton’s integral [36]:

Vg(x) = G
∫

G

ρ(y)
|x− y|dΩ(y) (4.41)

where ρ is the mass density in kg/m2 and dΩ the volume element. V is valid everywhere in R3,
but it can only be used if the mass density of the sources is available. When a model of the mass
density and geometry of the body is available, a numerical integration can be used to approximate
the gravitational potential given by equation 4.41 at a point x:

Vg(x) = G
I

∑
i=1

J

∑
j=1

wivjr(ϑj, λj) f (ri, ϑj, λj) (4.42)

The complete derivation is given in [36]. In equation 4.42 wi and vj denote the weights at the
nodes ri.

Representation by a mass layer on the surface of the body

The gravitational field of a body outside the masses can be represented by the gravitational poten-
tial of a thin layer of mass on the surface of a body. Alternatively, the mass layer may be located
on a closed surface completely inside the body too. For instance, an internal sphere may be an
appropriate choice for sphere–like bodies. If S is the surface on which the mass layer is defined,
the gravitational potential generated by the mass layer is [36]:

Vg(x) = G
x

S

µ(y)
|x− y|dS(y) (4.43)

where µ is the layer density measured in kg/m2. A mass layer is also a suitable representation
of time–varying gravity fields e.g., caused by mass transport in the atmosphere, on the surface or
the shallow subsurface [36].

Representation by point masses

The gravitational field of a body outside the masses can be represented by the superposition of
a finite number of point masses. A point mass located at yi of mass mi generates a gravitational
potential at point x of [36]:

Vi(x) =
Gmi
|x− y| (4.44)

The superposition of I point masses located inside the body yields the gravitational potential [36]:

Vg(x) =
I

∑
i=1

Vi(x) = G
I

∑
i=1

mi
|x− y| (4.45)

How close V(x) is to a given gravitational potential depends mainly on the number of point
masses I and the choice of locations yi and masses mi. If the point mass representation should be
harmonic outside the body, then all the point masses must be located inside the body.
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Representation by multi quadratic functions

The multi quadratic method was originally designed to model topography, but can be used to
interpolate gravity field functions. The gravitational potential is represented by a mathematical
surface by superposition of quadratic kernel functions. These functions, denoted as K(x,yi), are
quadratic in the point x and centered at the points yi, which are located on a reference surface.
The coefficients ai are determined from given values of V at a set of points using interpolation or
approximation [36]:

Vg(x) =
I

∑
i=1

aiK(x, yi) (4.46)

Representation by radial basis functions

The gravitational potential of a body outside its masses can be written as a superposition of spher-
ical radial basis functions (SRBF), functions which when restricted to a sphere only depend on the
spherical angle with respect to a fixed point yi [36]:

Vg(x) = G
I

∑
i=1

aiK(x, yi) (4.47)

where K is a SRBF defined as [36]:

K(x, yi) =
∞

∑
n=0

kn

(
|yi|
|x|

)n+1

Pn(x̂ · ŷi) (4.48)

where yi are the nodal points or centers of the SRBF, x̂ = x
|x| , ŷ = y

|y| and kn the Legendre
coefficients. The argument of the Legendre polynomial is given by the cosine of the angle ψ

between x and y:

x̂ · ŷi = cos ψ (4.49)

The quality of the gravitational potential depends on the choice of {kn : n = 1, . . .}, the number I
of SRBF’s used and the location of the centers.

Representation by integrals

The most simple example of representing the gravitational potential by integral is the Poisson
integral [36]:

Vg(x) =
|x|2 − R2

4πR

∫
σR

V(y)|x− y|−3dσR(y) (4.50)

where σR is the surface of a sphere with radius R and dσR = R2 sin ϑdϑdλ a surface element.
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4.2 Gravity gradients

In total nine gravity gradient elements can be derived. These nine gradients together form the
gravity tensor:

Γ =

 Vxx Vyx Vzx

Vxy Vyy Vzy

Vxz Vyz Vzz

 (4.51)

The unit of the gravity gradient tensor is Eötvös, one Eötvös is equal to 10−9 /s2. Only five of the
nine components are independent. This is due to (1) the symmetry of the gravity tensor, because
the gravitational potential is curl–free. This means that the double derivative first taken with
respect to x and then with respect to y ( ∂2

∂x∂y ) is equal to the double derivative first taken with

respect to y and then to x ( ∂2

∂y∂x ), hence Vxy = Vyx, Vxz = Vzx and Vyz = Vzy. The other reason
is that the trace of the gravity tensor is zero, since the gravitational potential is harmonic outside
the masses of the gradiometer [35].

4.2.1 Gravity gradients of point mass

From a large distance, a more or less spherical celestial body can be seen as a point mass. The
gravitational potential of a point mass is defined by:

Vg = −GM
|x| (4.52)

with G the gravitational constant, M the mass of the body under consideration and x the measure-
ment point in a Titan centered reference frame. When defining x in spherical coordinates, |x| = r,
where r represents the radial distance, composed of the radius of the body and the altitude above
the surface of the body: r = R + h. The gravity gradients are given by [33] as:

∂2V
∂x2 = GM

(
1
r3 −

3x2

r5

)
(4.53)

Where x is the x–coordinate of the measurement point xP. Hence to find all the elements of the
gravity tensor the double derivative of equation 4.45 with respect to the x–, y– and z–coordinate
of the measurement point have to be taken:

Vxx = GM
r2 − 3x2

P
r5 (4.54)

Vyy = GM
r2 − 3y2

P
r5 (4.55)

Vzz = GM
r2 − 3z2

P
r5 (4.56)

Vxy = Vyx = −GM
3xPyP

r5 (4.57)

Vxz = Vzx = −GM
3xPzP

r5 (4.58)

Vyz = Vzy = −GM
3yPzP

r5 (4.59)
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4.2.2 Gravity gradients of the single layer method

The gravitational potential as defined in the single layer method is given by equation 4.43. As-
suming the density of the layer of mass, µ, is constant in an area σ, equation 4.43 can be rewritten
as:

Vg(x) = Gµ
x

σ

1
|x− y|dσ(y) (4.60)

Parameterizing equation 4.60 such that it can easily be used for computations:

Vg(x) ∼= Gµ
I

∑
i=1

∆σi
|x− yi|

with ∆σi =
σ

I
(4.61)

To find the elements of equation 4.51 the double derivative w.r.t. x of the gravitational potential
(equation 4.61) is computed:

∂jjVg ∼= Gµ
I

∑
i=1

∂2

∂|x|2
1

|x− yi|

∣∣∣∣
xj

∆σi (4.62)

The vector x indicates the point in the global coordinate system (see figure 4.4) at which the gra-
dient is computed. Vector y indicates the source point or, in other words, the mass anomaly. In
cartesian coordinates the location of these two points are given as x, y, z, with the subscript P to
indicate that the coordinate belongs to the measurement point P and the subscript Q to indicate
that the coordinate belongs to the mass anomaly. Thus measurement point x and source point y
are defined in cartesian coordinates as:

x =

 xP

yP

zP

 y =

 xQ

yQ

zQ

 (4.63)

Now the double derivatives according to equation 4.62 can be computed:

Vxx = Gµ
I

∑
i=1

3(xP − xQ)2 − `2

`5 ∆σi (4.64)

Vyy = Gµ
I

∑
i=1

3(yP − yQ)2 − `2

`5 ∆σi (4.65)

Vzz = Gµ
I

∑
i=1

3(zP − zQ)2 − `2

`5 ∆σi (4.66)

Vxy = Vyx = Gµ
I

∑
i=1

3(xP − xQ)(yP − yQ)
`5 ∆σi (4.67)

Vxz = Vzx = Gµ
I

∑
i=1

3(xP − xQ)(zP − zQ)
`5 ∆σi (4.68)

Vyz = Vzy = Gµ
I

∑
i=1

3(zP − zQ)(yP − yQ)
`5 ∆σi (4.69)

where ` = |x− y| =
√

(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2.
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Figure 4.4: Measurement point P and location of the mass anomaly Q in a Titan centered reference
system.

4.2.3 Gravity gradients of the point mass method

The representation of the gravitational potential by a point mass is given by equation 4.45:

Vg(x) =
I

∑
i=1

Vi(x) = G
I

∑
i=1

mi
|x− y|

Computing the gravity gradients:

∂jjVg(x) = G
I

∑
i=1

∂2

∂|x|2
1

|x− yi|

∣∣∣∣
xj

mi (4.70)

which results, using the same analogy as in the previous section, in:

Vxx = G
I

∑
i=1

3(xP − xQ)2 − `2

`5 mi (4.71)

Vyy = G
I

∑
i=1

3(yP − yQ)2 − `2

`5 mi (4.72)

Vzz = G
I

∑
i=1

3(zP − zQ)2 − `2

`5 mi (4.73)

Vxy = Vyx = G
I

∑
i=1

3(xP − xQ)(yP − yQ)
`5 mi (4.74)

Vxz = Vzx = G
I

∑
i=1

3(xP − xQ)(zP − zQ)
`5 mi (4.75)

Vyz = Vzy = G
I

∑
i=1

3(zP − zQ)(yP − yQ)
`5 mi (4.76)

where again ` = |x− y| =
√

(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2.
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Figure 4.5: The body with mass m is perturbed by a body with mass Mperturber. The local gravity field is
measured at point P(r).

4.3 Tidal potential

Tides on a celestial body are generated by other celestial bodies in the relative vicinity of the body.
The tidal potential is a measure of the gravitational influence of one body on another. This section
will start with the general theory of the tide generating potential, which will be applied to the
Titan–Saturn system later on. Next to that the theory on the tidal Love numbers and the induced
tidal potential is treated.

4.3.1 Background theory on the tidal potential

Consider a celestial body of mass m, which is orbited by a perturbing object of mass Mperturber,
see figure 4.5. The distance between the perturbed mass and the perturbing mass, given in the
reference frame with the origin at the center of mass of the perturbed mass (the celestial body
with mass m), is defined as distance d. Now, the tidal potential can be split into two terms: the
first term is the gravitational potential produced by the perturbing mass. The second term, the
rotational potential, results from the fact that the chosen reference frame is not an inertial one.
The total perturbing potential at measurement point P(r) is now given by [22]:

Vperturbing =
GMperturber

|d− r| −
(GMperturber

d2

)
x (4.77)

If ψ is the angle between the vectors d and r, the expansion in Legendre polynomials can be given
by ([22] and [32]):

Vtidal = Vt(r) =
GMperturber

d

∞

∑
n=2

( r
s

)n
Pn(cos ψ) (4.78)

Considering Titan for the mass being perturbed by Saturn, equation 4.78 can be rewritten for the
Titan–Saturn case as ([32] and [55]):

Vt(r) =
GMS

a

∞

∑
n=2

( r
a

)n
Pn(cos ψ) (4.79)
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Here, MS is the mass of Saturn, Pn the associated Legendre polynomials, r the radial distance
of measurement point P, s = a, the semi–major axis of the orbit of Titan around Saturn and ψ

the angle between the directions to the perturbing body Saturn and to the measurement point P
from the mass center of Titan. The amplitude of the tidal deformation and the associated energy
are determined by the tide–raising potential and by the internal structure of the satellite. For a
synchronous eccentric orbit, the time–dependent part of the tide–raising potential of Saturn on
Titan can be written as [66]:

Vtime = −GMSR2

a3 3e
[

1
2
(3 sin2 ϑ cos2 λ− 1) cos(nt) + sin2 ϑ sin(2λ) sin(nt)

]
(4.80)

where MS is the mass of Saturn, R is the radius from the center of mass of Titan to the measure-
ment point (R = RT at the surface of Titan), a the semi major axis of the orbit of Titan, e = 0.0292
the orbital eccentricity of Titan, ϑ and λ are the co–latitude and longitude (with λ = 0 at the
sub–Saturn longitude) t the time and n is the orbital angular frequency:

n =

√
GM
a3 (4.81)

4.3.2 Tidal Love numbers

A dimensionless number can be defined to give the constant of proportionality between the per-
turbing potential, Vt and the tidal displacement of the surface of the planet, δr [22]:

δr =
hVt

g0
(4.82)

where h is the displacement Love number and g0 the unperturbed surface gravity given by equa-
tion 4.12. For a Maclaurin spheroid the displacement Love number is given by h = 5/2 [22], but
in general the value for h will be smaller. There are two main reasons for this:

1. The planet will generally have some degree of central concentration

2. The planet may not be able to relax to hydrostatic equilibrium over a tidal cycle

If the last is the case and the planet acts as an elastic body over a tidal cycle, with a uniform
density ρ and an elastic shear modulus µ, the displacement Love number is then given by [22]:

h =
5/2

1 + 19µ
2g0ρR

(4.83)

If a body is in hydrostatic equilibrium, the value of the fluid Love number k f will give the moment
of inertia from the Radau equation [22]:

Ip

MR2 =
2
3

1− 2
5

(
4− k f

1 + k f

)1/2
 (4.84)

with Ip the moment of inertia given by equation 4.19. The other way around, the moment of
inertia can be used to estimate the value for k f , after which the value for the quadrupole moment
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C22 is given by [55]:

C22 = −k f
qt

12
(4.85)

where qt is the tidal parameter given by:

qt = −3
Mperturber

m

(
R
d

)3
(4.86)

here, Mperturber is the mass of the perturbing body, m the mass, R the radius of the body being
perturbed and s the distance between the two bodies, see figure 4.5.

4.3.3 Induced tidal potential

The deformation of the surface of a planet in the response to tides are smaller than they would
be if the planet is in hydrostatic equilibrium, because elastic forces tend to maintain the spherical
shape of a planet. The tidal response of a planet affects its own external gravitational field too,
therefore a tidally induced potential (Vtidal,induced) can be defined. This potential up to an order
two is given as [22]:

Vtidal,induced = Vt,i = Jt2 GM
R2

r3 P2(cos ψ) (4.87)

Again a response coefficient can be defined [22]:

J2t,i = Λ2,0qt (4.88)

with the tidal parameter, qt given as in equation 4.86. For a liquid or perfect elastic planet, the
tidal response coefficient Λ2,0 from equation 4.88 would be the same as the rotational response
coefficient as defined in equation 4.39. Of course, a planet is neither fully liquid or a perfect
elastic planet, so the tidal and rotational Λ2,0 are often different. Evaluated at the surface of a
planet, instead of Λ2,0, the Love number of degree 2 is used [22]:

k2 =
Vtidal,induced

Vtidal
=

3/2

1 + 19µ
2g0ρR

(4.89)

this gives the following relation between k2 and h2 for a body in hydrostatic equilibrium:

h2 =
5
3

k2 (4.90)

4.3.4 Tidal dissipation

Following the assumptions that a body is incompressible, the rotation is synchronous and uni-
form and the body is small enough that the displacement Love number satisfies equation 4.90,
the energy dissipation is given as [91]:

dE
dt

=
21
2

k2

Qtidal

GM2nR5e2

a6 (4.91)
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where k2 is the second degree Love number (equation 4.89), Q the effective tidal dissipation fac-
tor, G the gravitational constant, a the orbital semi–major axis, M the mass of the primary body,
n the orbital mean motion (equation 4.81). R the radius of the satellite and e the orbital eccen-
tricity. Equation 4.91 only holds if the eccentricity of the orbit is small, the average rate of energy
dissipation is dependent on the eccentricity and for zero obliquity given as [91]:

dE
dt

=
21
2

k2

Q
GM2nR5e2

a6 ζ(e) (4.92)

where ζ(e) represents the eccentricity dependent factor [91]:

ζ(e) =
2
7

f0(e)
β15 −

4
7

f1(e)
β12 +

2
7

f2(e)
β9 (4.93)

with

f0(e) = 1 +
31
2

e2 +
255

8
e4 +

185
16

e6 +
25
64

e8 (4.94)

f1(e) = 1 +
15
2

e2 +
45
8

e4 +
5

16
e6

f2(e) = 1 + 3e2 +
3
8

e4

and

β =
√

1− e2 (4.95)

For arbitrary obliquity, η, ζ(e) in equation 4.92 can be replaced with ζ(e, η) [91]:

ζ(e, η) =
2
7

f0(e)
β15 −

4
7

f1(e)
β12 cos β +

1
7

f2(e)
β9

(
1 + (cos η)2

)
+

3
14

e2 f3(e)
β13 (sin η)2 cos(2χ) (4.96)

where

f3(e) = 1− 11
6

e2 +
2
3

e4 +
1
6

e6 (4.97)

and χ the measure of the longitude of the node of the equator on the orbit with respect to the
pericenter of the orbit. For a satellite in non–synchronous rotation the rate of dissipation is given
as [91]:

dE
dt

=
21
2

k2

Q
GM2nR5e2

a6 ζns(e, cos η) (4.98)

with ζns(e, cos η) given as:

ζns(e, cos η) =
2
7

[
F0(e)− (F1(e))2

F2(e)
2 cos2 η

1 + cos2 η

]
(4.99)
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where

F0(e) =
f0(e)
β15 (4.100)

F1(e) =
f1(e)
β12

F2(e) =
f2(e)
β9

with f0(e), f1(e) and f2(e) given in equation 4.94 and β in equation 4.95.

4.4 Tidal parameters of Titan

Since the Voyager missions, scientists have tried to solve the mystery of Titan’s relative high ec-
centricity. Different interior models have been set up, in order to compute among other values the
associated tidal dissipation, the decay of the eccentricity over time and the tidal Love numbers.
This section will treat the most important models given in the literature and will summarize the
conclusions drawn with respect to the interior of Titan. A summary of all the models treated is
given in appendix D.

Tidal Love numbers of Titan

Several basic simulations made of the interior of Titan in order to compute Love numbers and
dissipation rates has been described in [63]. Here three models are used, a uniform density model,
a volatile–poor model and a volatile–rich model. Model A is a uniform model, based on the
mean density of Titan of 1881 kg/m3. The ice mass fraction given by equation 4.21 is set to 0.45,
where ρice = 1200 kg/m3 ρrock = 3500 kg/m3. For model B a volatile–poor scenario is chosen,
suggesting a development in analogue of the Jovian satellites Ganymede and Callisto. In this
model the rocky core of 1900 km is overlain with a layer of ice–VI with a thickness of 200 km, an
ice V layer of 75 km, an ice–II layer of 300 km and the outer ice–I is 100 km thick, see figure 4.6. In
the last model, the volatile–rich scenario, the water–ice is replaced with ammonia–ice and instead
of the ice–II layer a subsurface NH3–H2O ocean is included underneath a 150 km thick ice–I shell.
The high–pressure ice between the core and the ocean is assumed to be ice–V [63].

Figure 4.6: The three interior models used in the simulation of [63]. Model A is a homogeneous sphere
of ice and rock, model B based on a differentiated volatile–poor scenario and model C on a volatile–rich
scenario [63].
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To compute the dissipation rates, the model used in [63] requires the Love numbers h2 and k2 and
the mass load coefficients h′2 and k′2. The values used are given in table 4.1 together with the fluid
Love numbers h f and k f .

Table 4.1: Complex Love numbers, mass load coefficients and fluid Love numbers for the three different
models given in figure 4.6 [63].

Model A Model B Model C

< 100 ×= < 100 ×= < 100 ×=

h2 0.1192 -0.3225 0.0587 -0.0796 1.1900 -0.5673
k2 0.0716 -0.1935 0.0263 -0.0288 0.3590 -0.1711

h′2 -0.0795 0.2150 -0.0797 0.1414 -2.7530 1.3130
k′2 -0.0477 0.1290 -0.0325 0.0508 -0.8307 0.3961

h f 2.5000 – 1.9020 – 1.4300 –
k f 1.5000 – 0.9253 – 0.4304 –

Using these values the dissipation rates due to ocean loading are computed, the values are given
in table 4.2. For comparison the background dissipation rates due to the body and loading tides
have been given too. The body dissipation represents the energy dissipation in Titan’s interior
caused by tidal forcing and the load dissipation represents the energy dissipation due to surface
traction caused by tidal forcing. Together these from the global tidal dissipation rate. The figures
and equations used for these computations can be found in [63].

From the values in table 4.2 it can be seen that dissipation due to ocean loading is minor compared
to the tidal background dissipation. The values for the zero–depth ocean are due to atmospheric
load. The influence of different types of oceans, a methane–rich ocean, an ethane–rich ocean and a
sludge ocean, has been incorporated in the simulations. For the computation of the values in table
4.2 an ethane–rich ocean is used. The dissipation values for the more viscous and dense sludge
ocean prove to be a magnitude higher, but not significant. The solid tidal dissipation rates range
from 8.6×109 W up to 5.8×1010 W in the non–ocean case (models A and B) nad for the ocean case
(model C), the total dissipation varies between 5.2×1010 and 7.0×1010 W. This is smaller than the
radiogenic component for which the values are given to be between 4.04×1011 and 5.15×1011 W.
Nonetheless, according to these models the current eccentricity of Titan’s orbit is not consistent
with the dissipation rates computed, which indicates that the orbit should be circular by now
[63]. The models used in [63] do most probably not represent Titan’s interior structure of today, a
global ocean is therefore very unlikely. Only volatile–poor interior and ocean with a depth greater
than 500 m is considered possible in [63], thought this conflicts the theories on the formation and
conservation of the volatile rich atmosphere (see section 2.5). Other possible explanations given
for Titan’s high eccentricity are the the origin of the eccentricity has a more recent past, or that
Titan’s interior has changed significantly over time [63].
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Table 4.2: The dissipation rates for the various interior models of Titan. The loading dissipation for the
zero–depth ocean is due to the atmosphere, fb denotes the bottom friction coefficient [63].

Tidal dissipation rates [W]
Ocean Dissipation due to tidal Dissipation due to Dissipation due to Total dissipation

depth [m] forcing in the interior surface traction an internal ocean

Model A ( fb = 0.0042)
0 5.8×1010 6.9×104 – 5.8×1010

100 5.8×1010 1.0×109 2.1×1012 2.2×1012

400 5.8×1010 1.0×109 3.3×1010 9.2×1010

600 5.8×1010 1.0×109 9.8×109 6.9×1010

1000 5.8×1010 1.0×109 2.1×109 6.1×1010

Model B ( fb = 0.0042)

0 8.6×109 7.5×104 – 8.6×1010

100 8.6×109 1.1×109 2.2×1012 2.2×1012

400 8.6×109 1.1×109 3.5×1010 4.4×1010

600 8.6×109 1.1×109 1.0×1010 2.0×1010

1000 8.6×109 1.1×109 2.2×109 1.2×1010

Model C ( fb = 0.0065)

0 5.1×1010 2.3×104 – 5.1×1010

100 5.1×1010 3.4×108 1.8×1010 7.0×1012

400 5.1×1010 3.4×108 2.9×108 5.2×1010

600 5.1×1010 3.4×108 8.5×107 5.2×1010

1000 5.1×1010 3.4×108 1.8×107 5.2×1010

Influence of a dense atmosphere on the Love numbers

The induced potential that will perturb the Cassini spacecraft during the Titan flybys represents
the tidal response of the solid body (assuming no global ocean the loading tide defined previously
is zero, see [63]) and the atmosphere. Equation 4.89 can then be rewritten as [32]:

Vt,i(n=2)(r = Re) = (ks
2 + ka

2) V2(r = Re) (4.101)

ks
2 is the Love number due to the solid body and ka

2 the Love number due to the atmosphere. The
effect of a dense atmosphere can be two–fold, it contributes directly to the tidal potential and it
induces a load on the body under consideration. Assuming that the atmosphere is in hydrostatic
equilibrium and that it can be approximated by a thin layer, the degree–two tidal potential Love
number induced by the atmosphere, from now on referred to as the atmospheric Love number ka

2,
can be written as [32]:

ka
2 = (1 + kl

2)
4π

5
R2

T
g0MS

(
a

RT

)3
p̃S2 (4.102)

where g0 is the surface gravity (equation 4.12), RT the radius of Titan, MS the mass of Saturn
and a the semi–major axis of the orbit of Titan around Saturn. The solid body deformation as
result of the atmospheric loading is represented by a load Love number, kl

2, and the tidal forcing
is represented by the amplitude p̃S2 of the degree–two atmospheric tide exerted by Saturn. The
value of p̃S2 is only known by modeling, the most recent, time–dependent numerical simulations
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[75] show that at the sub–Saturn point (SP) the surface pressure varies by 1.5 hPa throughout the
orbit. The likely effect of topography was not implemented in the simulations of [32] and it was
assumed that the atmosphere was locally in hydrostatic equilibrium.

Using three different interior models as proposed in [63] and described above, models A, B and
C, and the according parameters, the load Love numbers , kl

2, solid body Love numbers, ks
2, and

atmospheric Love numbers, ka
2, are computed and given in table 4.3. As can be seen, for all three

interior models, the atmospheric Love number is less than 2% of the total Love number, and
according atmospheric effect can most likely be neglected when studying the interior structure of
Titan from the Love number measurments [32].

Table 4.3: Love numbers as a function of three interior models [32].

Love number Model A Model B Model C

ks
2 7.16×10−2 2.63×10−2 3.590×10−1

kl
2 -4.77×10−2 -3.25×10−2 -8.307×10−1

ka
2 4.04×10−4 4.10×10−4 7.18×10−5

ka
2

k2
×100 0.561 1.537 0.020

k2 0.072004 0.02671 0.3590718

Determining the tidal Love number from Cassini radio tracking data

As the previous sections have shown, a model with internal ocean gives significantly larger val-
ues for the Love numbers k and h than the models without. According to the research presented
in [72], when the Love number k2 is larger than 0.3 an internal ocean exists, since the low degree
harmonics of Titan’s gravity field reflect the response of the body to perturbing potentials due
to Titan’s rotation, Saturn’s tides and to internal stresses. The quadrupole moments of Titan can
be measured by the Cassini Radio Science Subsystem (RSS) and will be used to determine the
degree–two Love numbers of Titan. If this can be done with sufficient accuracy, this will pose re-
strictions on the possibilities for the interior structure. How this is done and with what accuracy
is presented in [57] and in short described here.

The total perturbing potential is the sum of a static, denoted by lowercase s, and a periodic,
denoted by a lower case p, part [55]:

V = Vs + Vp (4.103)

The secular part of the perturbing potential Vs is responsible for permanent deformation of the
planet. The induced potential at the surface of Titan is proportional to this, with a coefficient of
proportionality given by the fluid Love number k f . The periodic term, Vp, changes over the or-
bital period of Titan. The induced potential at the surface of Titan is therefore proportional to Vp,
with a coefficient of proportionality of the second degree Love number, k2, see equation 4.89 [55].
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At the surface of Titan, the induced tidal potential is described by the dimensionless coefficients
[57]:

J2 = J2,s + J2,p (4.104)

= k f
(2qr − qt)

6
− k2

qt

2
e cos(M− δ)

C22,s = C22,s + C22,p (4.105)

= −k f
qt

12
− k2

qt

4
e cos(M− δ)

S22,s = S22,s + S22p (4.106)

= S22,s −
1
3

k2qte sin(M− δ)

Here, qt is the tidal parameter given by equation 4.86, M is the mean anomaly of Titan at the time
of the Cassini encounter and δ accounts for a possible lag of the tidal bulge [57]. The Love number
is defined as complex number as [57]:

k2 = <(k2) +=(k2) (4.107)

= k2 cos δ− (k2 sin δ)i

From the assumption that Titan is in hydrostatic equilibrium, a priori values of the coefficients J2,
C22 and S22 can be computed and are given in [57] as:

J2 = 4.93× 10−5 + 4.84× 10−7 cos(M− δ) (4.108)

C22 = 1.48× 10−5 + 2.42× 10−7 cos(M− δ) (4.109)

S22 = 3.23× 10−7 sin(M− δ) (4.110)

where the a priori Love number is assumed to be k2 = 0.3 (following [72]) . When Titan has an
internal ocean, covered by a high viscosity ice–I layer, the phase lag angle δ = 0◦. In the oceanless
case, hence only an outer shell of low–viscosity ice–I, the values for the possible phase lag angles
used in [57] are δ = 5◦, 10◦, 15◦, 20◦, 25◦ and 30◦. Figure 4.7 shows how the a priori value of J2

behaves for the different phase lag angles, along a complete orbit (mean anomaly 0 ≤ E ≤ 360),
the figures for C22 and S22 can be found in appendix D.

To determine k2, [57] uses the JPL Orbit Determination Program, in which k2 will follow from the
determination of the static parts of J2, C22 and S22 for a number of N flybys. A direct estimation of
k2 is not possible due to the lack of satellite tide modes in this program. The method this program
uses a weighted least squares procedure to minimalize the penalty function F [57]:

F =
N

∑
j=1

[
(J2j − J2s − ajkre − ājkim)

σJ2j

]2

(4.111)

+

[
(C22j − C22s − bjkre − b̄jkim)

σC22j

]2

+

[
(S22j − S22s − cjkre − c̄jkim)

σS22j

]2

where J2j, C22j and S22j are the estimated values of the quadrupole coefficients for the j–flyby and
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Figure 4.7: A priori values of J2 for differet phase lag angles δ, given by equation 4.108 [57].

σJ2j , σC22j and σS22j are the corresponding uncertainties. The parameters aj, āj, bj, b̄j, cj and c̄j are
known geometrical quantities. The flybys the Cassini orbiter hads made untill now do not pro-
vide a high enough accuracy in the determination of k2. Therefore future flybys are needed to
make a better estimation of the second–degree Love number [57].

Nevertheless some estimations are made by [57] regarding the interior of Titan. Two interior cases
are distinguished: the (a) elastic and (b) viscoelastic case. Both cases are characterized by the vis-
cosity of the mantle. If the viscosity of the mantle is large enough, an elastic model can be used
(case (a)). Assuming the tidal response is instantaneous, the corresponding Love number will be
a real value. Considering then an internal ocean underneath an 100 km thick shell, the value for
k2 will lie between 0.42 and 0.48. If no sub–surface ocean is present the Love number is expected
to be approximately 0.03. According to [57], taking the probabilities into account, if the observed
Love number kobs

2 > 0.225 an internal ocean is present, is the value of kobs
2 < 0.225, Titan has no

internal ocean.

In the viscoelastic case (case (b)) it is assumed that both the high–pressure ices and the ice–I shell
have equal viscosities, estimated between 5×1013 Pa s and 1×1016 Pa s, having equal probabilities.
Consider again a sub–surface ocean with an ice–I shell thickness of 20–100 km (having equal
probabilities too), then a range of possible values for the true (complex) Love number can be
found. The same can be done when considering an oceanless Titan, with an ice–I shell of 160 km
and high–pressure ice with a thickness of 745 km. In [57] the results are given in two figures,
shown here in figure 4.8. The white dots illustrate the possible values for the Love number k2,
the black line represents the points where the probability distributions in the ocean and oceanless
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cases are equal. Using this line as a decision marker, [57] claims that a successful prediction of the
presence or absence of an ocean can be made with a 93% certainty. Thus the (still) expected data
from the Cassini orbiter will allow to test the hypothesis of an interior liquid water ocean on Titan
with a high degree of confidence.

Figure 4.8: Picture (a) (left) shows the expected probability distribution of the observed values for the
(complex) Love number, for the case of an ocean with a viscoelastic ice layer between 20 and 100 km thick.
The underlying high–pressure ice is assumed to be viscoelastic too. The cluster of white dots illustrate the
range of possible real values. Picture (b) (right) shows the same, but then for an oceanless case. The black
line marks the points where the probability distributions in the ocean and oceanless cases are equal [57].

Tidal dissipation of Titan

For any planet or moon, the global tidal dissipation rate due to the body tide, Ėdiss, is proportional
to the imaginary part of the second degree Love number (=(k2)) [73] and given for Titan as:

Ėdiss =
dE
dt

= −21
2

R5(n)5e2

G
=(k2) (4.112)

where G is the gravitational constant, R is the radius of Titan, n is the orbital angular frequency
and e the orbital eccentricity of Titan. Tidal dissipation tends to make the orbit of satellites circular
and their rotation synchronous with their revolution. The change in eccentricity due to the tidal
dissipation is given as [71]:

de
dt

e
1− e2 =

−a
GMS MT

dE
dt

(4.113)

where MS is the mass of Saturn, MT the mass for Titan, G the gravitational constant, e the orbital
eccentricity and a the semi–major axis of the orbit of Titan around Saturn. Equation 4.113 does
not take the expansion of Titan’s orbit due to dissipation of tides raised by Titan on Saturn into
account. However according to [71], the effect of dissipation within Saturn corresponds to less
than 2% of the effect of dissipation within Titan on the eccentricity variation and therefore it can
be neglected.

Orbital resonance of Galilean satellites forces Io’s and Europa’s orbit to be eccentric, despite their
strong tidal dissipation. The eccentricity of Titan’s orbit is relatively high (e = 0.0292), but for
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Titan no such orbital resonance is known and the tidal dissipation within Titan’s interior is ex-
pected to be large enough to circularize its orbit [63]. Tidal heating within a decoupled ice shell
contributes less than 10% to the total heat production and is more than ten times lower than ra-
diogenic heating, for the models investigated. The interior and ocean models tested in [63] are
given in figure 4.6. The dissipation rates for the various interior models found by [63] range in
value from 8.6·109 up to 5.8·1010 W in the absence of a global ocean.

According to [73] a liquid water layer has a very strong influence on the distribution of dissipation
within both the deep interior of the satellite and the outer ice–I layer. This is concluded from the
generic model for large icy satellites that was set up, by using a new method of tidal dissipation
computations, where the tidal dissipation rate is related to the radial distribution of the rigidity.
The model uses a generic approach and does not reproduce the dissipation for each individual
satellite, but it identifies the influence of each internal layer. This model is, according to [73], a
useful tool to study the coupled thermal–orbital evolution of satellites, which for Titan has been
done in [71]. The global model shows, in analogy to other studies like [62], that the primary effect
of a sub–surface ocean on the tidal deformation is mainly controlled by the radial displacement
of this subsurface ocean. The tidal strain rate is almost constant with depth, its maximum at the
poles and minimum at the equator. These characteristics seem not to be sensitive to variations
of ice rheology parameters within the outer ice–I layer. Next to that in [71] the effect of different
amount of radiogenic heating in the silicate core and a range of values for viscosity of the high–
pressure phases of ice is investigated. It is concluded there that these effects are of second order
compared to the effect of ammonia.

The effect of ammonia is presented and discussed in [62]. Several simulations are made, among
other things the temperature of a convective sublayer and subsurface ocean, surface heat flow,
core density, MoI factor, radial displacement Love number h2 and potential Love number k2 as
function the ice thickness of the upper ice–I shell. All simulations are done for a subsurface ocean
containing 5% and 15% ammonia and for different core heat production rates. In these simula-
tions it is assumed that Titan is fully differentiated, the effects of pressure and temperature on the
density can be neglected and that the specific heat production rate is twice as large as the chon-
dritic value. It is shown that the Love numbers depend linearly on the ice shell thickness, but it
is commented that the data will not be unambiguous. The Love numbers do not only depend on
chemistry, but on the rheological properties of the Titan too. The MoI factor for a differentiated Ti-
tan will be smaller than 0.38, the value if Titan would be undifferentiated. Once the Love numbers
are determined using the Cassini fly–bys, additional constraints can be set to reduce uncertainties
in the model used [62]. The most important figures and values presented in [62] can be found in
appendix D.

Depending on the composition of the subsurface ocean, ammonia can strongly depress the melt-
ing temperature of water ice. So as the ice–I shell thickens the ocean thins, the ammonia in the
ocean becomes more concentrated and the melting temperature declines even more. This would
make the melting temperature at the base of the ice shell drop too. On the other hand for a given
change in the thickness of the ice–I shell the resulting change in the oceanic ammonia concentra-
tion depends on whether a silicate mantle or high–pressure ices underlie the ocean. One of the
determined radial structures is shown in figure 4.9. An ocean composition of 15% is assumed and
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Figure 4.9: Radial structure and density distribution of Titan according to [62]. A primordial ammonia–
water ocean composition of 15 wt.% NH3 is assumed. The interior structure model is optimized for a
rock–to–ice ratio of 55:45. The ice–I layer is 69 km thick and entirely conductive. The subsurface ocean
extends over a depth of 224 km and is underlain by a high–pressure ice layer of 612 km thickness. The
rocky core has a radius of 1671 km and a mean density of 3800 kg/m3. The satellite’s density distribution is
associated with a MoI factor of 0.304 and the radiogenic heat flow amount to 3.35×1011 W, corresponding
to a total surface heat flow per unit area of about 4 mW/m2 [62].

the model is optimized for a rock–to–ice ratio of 55:45.
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Chapter 5

Modeling the gravity field of the
lakes on the surface of Titan

It is chosen to model the gravity field using the single layer method, which approximates the
lakes on the surface of Titan as a thin mass layer. The gradients of Titan are modeled under the
assumption that Titan is a spherical symmetrical, which will be explained in section 5.1. Here it
is not chosen to make a model using SH, because this representation has some drawbacks. To
get a better resolution, the coefficients in the expansion have to be increased. Next to that the SH
representation is not connected to a particular spatial location. Thus changing one of the many
coefficients has global effect, which makes it extremely difficult to adjust the spatial frequency
content of a spherical harmonic degree locally [36]. Another major drawback is the oscillatory
character of the SH functions. This has as a consequence that in a border area, for instance be-
tween a lake and the solid surface, the functions will oscillate continuously to find the appropriate
approximation, which will result in many unknowns. These reasons make the SH representataion
not a very efficient method to solve for a model of the lakes.

Section 5.1 shows how the modeling of the gravitational potential and the gravity gradients is
done. Defining the reference frame and selecting the lakes for the computations is described in
section 5.2. Finally the tidal potential caused by Saturn is resolved in section 5.3.

5.1 Modeling the gravity field

The gravity field is modeled to resolve the signal the gradiometer will receive when floating over
a lake. To do this, Titan is modeled under the assumption the moon is spherical symmetrical
and the lakes are modeled using the single mass layer method as explained in section 4.1 and the
corresponding gravity gradients as explained in section 4.2.

5.1.1 Modeling the gravity field of Titan

Assuming that Titan is spherical symmetrical, having a constant density (ρ̄ = 1881 kg/m3) the
gravitational potential is thus given by equation 4.52:

V =
GM

r
(5.1)

with r = R + h, R the radius of Titan and h the measurement altitude. A positive sign convention
is used in equation 5.1, because this is more convinient when using this representation together
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with the single layer method.

Considering the possible interior build up of Titan (see figure 2.6) and given the different pos-
sibilities given by several models (see table D.1), one could approximate the layers by several
spherical shells on top of each other. In [34] the derivation for the gravitational field of a homo-
geneous spherical shell is given, hence for an arbitrary point on the the z–axis the gravitational
potential of a spherical shell with constant density (ρ) is given by [34]:

V(0, 0, z) = 2πGρ


(

R2
2 −

2
3z R3

1 −
z2

3

)
for R1 < |z| < R2

2
3z
(

R3
2 − R3

1
)

for |z| > R2(
R2

2 − R2
1
)

for |z| < R1

(5.2)

To see if this approximation is valid, the gravitational potential of the different models, assuming
the interior is build up from homogeneous spherical, are compared to the point mass approxima-
tion. The result of this comparison is given in figure 5.1.

As can be seen in figure 5.1, the differences are not very large. Therefore it is assumed that the
gravitational potential of Titan can be approximated with equation 5.1. Thus the gradients are
given as (in analogy of equations 4.54 through 4.59):

Vxx = GM
3x2

P − r2

r5

Vyy = GM
3y2

P − r2

r5

Vzz = GM
3z2

P − r2

r5

Vxy = Vyx = GM
3xPyP

r5

Vxz = Vzx = GM
3xPzP

r5

Vyz = Vzy = GM
3yPzP

r5

5.1.2 Modeling the lakes as a single mass layer

The gravitational potential and gravity gradients of the lakes selected are modeled using the sin-
gle layer method, given in equation 4.43 and equations 4.64 to 4.69 respectively. In these equa-
tions the point Q represents the source point, in this case the raster points of the lakes. This will
be explained in more detail in section 5.2. The lakes can be seen as a thin layer of mass, with a
homogeneous density. It is assumed that the lakes have the density of the hydrocarbon mixture
I, given in table 2.4. The single layer method assumes that the lakes are located in a thin layer
of mass, it uses the density per unit thickness and therefore the densities used have the unit of
kg/m2. As shown in figure 5.1 all layers are of influence on the total gravitational potential, but
that the difference is not significant, thus Titan can be represented by the equations given in the
previous section. As consequence of this the surrounding of the lakes will be modeled using a
density of ρ̄model = 1881 kg/m2. Because the density of the hydrocarbon mixture is less than the
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Figure 5.1: Gravitational potential for an arbitrary point on the z–axis computed for the different interior
models given in table D.1.

mean density of Titan, ρlake < ρ̄Titan, the lake can be treated as extra mass on top of the homoge-
neous sphere that represents Titan, see figure 5.2. In this case though, there is no surplus of mass,
but a mass deficit. To superimpose the outcome of the single layer computations of the lakes
upon the point mass approximation of Titan, the density used in the single layer computations is
negative and given as:

∆µ = µlake − µ̄Titan (5.3)

If the density of the lakes would be larger than that of Titan, equation 5.3 can be used too (e.g. a
mass surplus). Only then the value for ∆µ used in the computations would be positive.

Figure 5.2: The lake can be seen as a ‘hole’ in the homogeneous sphere, because the density of the hydro-
carbon mixture, ρlake = 547 kg/m3, is less that the mean density of Titan, ρ̄ = 1881 kg/m3.
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5.2 Initial conditions: reference system and source points

Before setting up a model it is important to decide about the reference system in which the com-
putations are done. One reference system has to be chosen, measurements done in different ref-
erence systems are hard to compare. The lakes at the northern hemisphere of Titan are used as
source points for the models. How that is done is explained in this section too.

5.2.1 Reference coordinate system

Figure 5.3: The global Titan reference system (XT , YT , ZT) and the local north–oriented reference system
(x,y,z).

Figure 5.3 shows a schematic representation of Titan and the position of the gradiometer, point
P, above the surface of Titan. Attached to Titan is a global cartesian coordinate system, indicated
by the axes XT , YT and ZT , in which the signals of the gravity gradients are computed. The
origin of this system is located at Titan’s geometrical center and the Z–axis coincides with the
mean rotational axis of Titan. The mean equatorial plane perpendicular to this axis forms the XY–
plane and the XZ–plane is generated by the mean meridian plane of Titan’s ‘Greenwich’ [77], i.e.
‘zero–degree longitude’ at Titan. The results of the modeling, however, are presented in a local
astronomical reference system attached to the gradiometer. This system has its origin located
at observation point P, the z–axis directed to the astronomical zenith, the x–axis directed to the
north and the y–axis directed to the east. The local north–oriented reference system is indicated
in figure 5.3 by small x, y, z. The transformation of the global Titan coordinate system to the local
north–oriented reference system is given by [61] as:

R =

 − sin ϕ cos λ − sin ϕ cos λ cos ϕ

− sin λ cos λ 0
cos ϕ cos λ cos ϕ sin λ sin ϕ

 (5.4)

with the angles ϕ and λ as indicated in figure 5.3. The output of the measured gradients are
collected in gradient tensor Γ0, measured in the global Titan reference system. The transformation
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of this matrix into the final gradient tensor Γ, in the local north–oriented reference system is
defined by:

Γ = RΓ0RT (5.5)

where the subscript T indicates the transpose of the rotation matrix R (equation 5.4).

Following the assumption that Titan is spherical symmetrical, the gradient tensor at the surface
of the Titan (r = RT) can be rewritten, in the local–north oriented reference system, as:

Γ =
GM
R3

T

 −1 0 0
0 −1 0
0 0 2

 (5.6)

Figure 5.4 shows the gradients in the local north–oriented reference system. For comparison,
figure 5.5 shows the gradients in the Titan–centered reference frame. The difference between the
two figures is obvious. The values of the gradients in the Titan–centered reference frame differ
from the values given in the local north–oriented reference system, this stresses the importance
of choosing one reference frame to present the results. The results in this thesis research are all
given in the local north–oriented reference system.

Figure 5.4: The gravity gradients at the surface of Titan, shown in the local north–oriented reference
system. The dark red areas (maximum) in the plots have a value of 1049 E, the dark blue areas (minimum)
a value of -525 E.
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Figure 5.5: The gravity gradients at the surface of Titan shown in the Titan centered reference system.
The dark red areas (maximum) in the plots have a value of 1049 E, the dark blue areas (minimum) a value
of -525 E.

Figure 5.6: The gradients plotted in the local north–oriented reference system. The amplitude of the noise
seen is of the order of 10−23 Eötvös.
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By inspecting the gradients in the local north–oriented reference system (figure 5.6) more closely,
noise features are visible. The amplitude of these features is of the order of 10−23 Eötvös. It is clear
that these features are due to round off errors. MATLAB uses numerical methods to approximate
analytical formulae, such as sine and cosine. The noise seen is a result of these approximations. It
will be shown that this noise is of no influence on the simulations of the measurements done later
on.

5.2.2 Selecting and discretizing the lakes from the northern hemisphere

In order to use lakes as source points for the computations in the single layer method, they have
to be discretized. From the lakes seen in figure 2.8, two large lakes are selected. A raster is drawn
over the lakes using squares of 1◦by 1◦. The coordinates of these squares are written down in a
text–file, which can be read by the different MATLAB–files. Figure 5.7 shows the SAR image of
the lakes on the left–hand side and the rasterized lakes using dots to signify the source points on
the right–hand side. Each dot represents a square of 1◦by 1◦, corresponding to the area used per
measurement point.

Figure 5.7: SAR image of the lakes at the northern hemisphere (left) and the discretization of the two
largest lakes. Note that the reference system used is different in both pictures.

5.3 The tidal potential at the surface of Titan

The tidal potential of Titan can be split up in a static and a time–varying part. First the influence
of several celestial bodies is simulated, to resolve if these bodies have a significant influence on
Titan. Afterwards the time–varying part of the tidal potential caused by Saturn is investigated.

5.3.1 The tidal potential at the surface of Titan

The tidal potential at the surface of Titan due to the gravitational attraction of Saturn is given by
equation 4.79:

Vt =
GMS

a

∞

∑
n=2

(
RT
a

)n
Pn(cos ϑ)

where MS is the mass of Saturn, a the semi–major axis of the orbit of Titan around Saturn, RT is
the radius of Titan and ϑ is the colatitude of the measurement location. According to [55], as the
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Table 5.1: Estimation of the values for the tidal potential Vt, degree two and three, at the surface of Titan
induced by several celestial bodies.

Celestial body GM [km3/s2] Distance [km] Vt(n=2) [m2/s2] Vt(n=3) [m2/s2]

Sun 1.327 · 1011 1.4276·109 1.2559 · 10−4 6.6243 · 10−11

Saturn 3.7928 · 107 1221000 57.371 3.5380 · 10−2

Mimas 2.503 1035460 6.2079 · 10−6 4.5143 · 10−9

Enceladus 7.206 982960 2.0891 · 10−5 1.6003 · 10−8

Tethys 41.21 926330 1.4275 · 10−4 1.1604 · 10−7

Dione 73.113 843580 3.3535 · 10−4 2.9933 · 10−7

Rhea 153.94 693930 1.2685 · 10−3 1.3764 · 10−6

Iapetus 120.51 2339840 2.5903 · 10−5 8.3356 · 10−6

Hyperion 0.37 279880 4.6469 · 10−5 1.2502 · 10−7

distance between Saturn and Titan is far larger than the radius of Titan (a � RT), the Legendre
polynomials only need to be expanded up to degree–two terms giving:

Vt(n=2) =
GMSR2

T
a3 P2(cos ϑ) (5.7)

To verify if the third order influences can really be neglected, these are estimated too:

Vt(n=3) =
GMSR3

T
a4 P3(cos ϑ) (5.8)

A complete overview of the Legendre polynomials up to order and degree three is given in ap-
pendix C. The Legendre functions needed in this case are P2 and P3 (second and third order)
defined as [34]:

P2(cos ϑ) =
1
4

(1 + 3 cos(2ϑ)) (5.9)

P3(cos ϑ) =
1
8

(3 cos ϑ + 5 cos(3ϑ))

The results of the estimations for the Titan–Saturn system are given in table 5.1. The distance
between Titan and Saturn is approximated by the semi–major axis of the orbit of Titan and as-
suming Titan is located at the pericentre of its orbit. The formulae for the tidal influence of other
celestial bodies can be constructed in the same way. Next to Saturn the tidal influence of the Sun,
the Saturnian regular satellites and Hyperion are estimated and the results of these estimations
are given in table 5.1 too. The distance between Titan and the Sun is given by the semi–major axis
of the Saturnian system, the distances of the larger satellites of Saturn is approximated by the dif-
ference between the semi–major axes of Titan and the other satellite in orbit around Saturn. The
GM values and the values for semi–major axes of the satellites are given by the JPL HORIZONS

website [29], which has the most up–to–date values. If the tidal potential at balloon or satellite
altitude h is to be estimated, RT in equation 5.7 can be replaced by r = RT + h. Since the balloon
will be flying at a height between two and ten kilometers, the estimations at these heights will not
deviate much from the estimations given in table 5.1.

As can be seen from table 5.1 tides generated on Titan by the other moons orbiting Saturn are
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negligible. The influence of Saturn is significant, the minimum and maximum values of the
tidal potential are around −8.58 m2/s2 and 138.15 m2/s2 respectively for degree two and around
−0.12 m2/s2 and 0.29 m2/s2 respectively for degree three. The third order influences are indeed
making a small difference and are thus negligible.

5.3.2 The time–varying part of the tidal potential

According to [75] the tidal potential varies due to the radial tide, caused by the varying Saturn–
Titan distance and the librational tide, caused by the libration of the sub–Saturn point. The am-
plitude of this libration is tan−1(2E) = 3.35◦along the equator, which corresponds to 150.5 km at
Titan’s surface. The time–dependent part of the tide–raising potential of Saturn on Titan is given
by equation 4.80:

Vtime = −GMSR2

a3 3e
[

1
2
(3 sin2 ϑ cos2 λ− 1) cos(nt) + sin2 ϑ sin(2λ) sin(nt)

]
where MS is the mass of Saturn, R is the radius from the center of mass of Titan to the measure-
ment point (R = RT at the surface of Titan), a the semi major axis of the orbit of Titan, n is the
orbital angular frequency, e = 0.0292 the orbital eccentricity of Titan, ϑ and λ are the co–latitude
and longitude (with λ = 0 at the sub–Saturn longitude), and t the time. Due to the eccentricity
of the orbit of Titan tidal flow occurs, if the orbit of Titan were completely circular there would
be none. This can be clearly illustrated by plotting this time–varying part. Figure 5.8 shows this
time–varying part of the tidal potential, starting at the position where Titan is at peri–saturnian at
day 1, and subsequently day 4, day 8 and day 12 of the orbit of Titan around Saturn, but seen from
a Titan centered reference system. From that point of view it looks as if Saturn orbits Titan, clearly
indicated by the shift the tidal bulge makes. This tidal bulge, as consequence of the tidal forces
introduced by Saturn, remains pointed to Saturn since the orbital and rotational period of Titan
are equal to each other (see table 2.2): 15.946 Earth days. Appendix E gives the time–varying
part for every day, during one orbit of Titan around Saturn. The dark blue areas in the figures
correspond to the minimum value of −12.868 m2/s2 and the darkest red areas correspond to the
maximum value of 12.872 m2/s2.

The time–varying part of the gravitational potential is of an order less than the static part, thus of
almost no influence on the total potential. Comparing these values with, for instance, Europa, the
differences are of an order of magnitude lower and therefore the tidal potential has no significant
influence on Titan.

Recent publications in Science ([43] and [64]) show that Titan spins approximately 0.36◦per year
faster than synchronous spin and that it appears to be accelerating, relative to synchronous spin,
by 0.05◦per day every 100 years [43]. This observed drift indicates that motion of the crust relative
to the Titan centered reference system is permitted, which would not be the case for highly viscous
ice. This means that the viscosity of the crust must be low enough for the tidal bulge to remain
pointed to Saturn whereas the entire crust drifts eastward or westward depending on the season.
This strongly suggests that there is an internal ocean on Titan and it is already believed that the
anticipated determination of the tidal Love number k2, as explained in section 4.3, will confirm
an internal liquid ocean [64].
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Figure 5.8: The time–dependent part of the tide–raising potential at days one, four, eight and twelve of an
orbit of Titan around Saturn.
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Chapter 6

Analysis of the gradients measured
in the vicinity of lakes on Titan

The gradiometer measures the gradients of the gravity field, therefore the analysis will focus on
the gravity gradients of the gravitational field, and not on the gravitational potential. An analysis
is made of the results of different scenarios, generated by the model that was explained in detail
in section 5.1. First the gravitational potential and gravity gradients of the area surrounding the
two selected lakes is simulated in section 6.1. Section 6.2 explains the layout of the problem and
states the assumptions taken. The strength of the gradients against the measurement altitude
will be investigated in section 6.3. Section 6.4 will look at the difference in measuring one or two
lakes and section 6.5 shows the difference in measuring along different trajectories. Hereafter the
density of the lakes and depth of the lakes are varied in sections 6.6 and 6.7 respectively. Section
6.8 finishes this chapter by looking with what accuracy the density of the lakes can be retrieved
using the least–squares technique.

6.1 Gravitational potential and gravity gradients of the lake area

In previous sections it is stated that the gravitational potential is very sensitive to mass differences.
To show this, a closer look is taken at the gravitational potential of the lakes and the influence of
increasing depth underneath the surface of Titan. The gradiometer, however, does not measure
the gravitational potential directly, but the gravity gradients. A first glance is taken at the gravity
gradients in this section too.

6.1.1 Gravitational potential of the lakes

After computation of the gravitational potential for the two lakes that were selected in section 5.1,
in a 1◦by 1◦grid and using a measurement altitude of 2 km, nice contour plots of the lakes are
created, see figures 6.1 and 6.2. Figure 6.1 shows the gravitational potential of the smaller lake
(lake 01), figure 6.2 of the larger lake (lake 02). The gravitational potential of Titan has not been
added in these two pictures. The gravitational potential of the lakes are simulated separately in
these two figures, figure F.2 in appendix F shows the gravitational potential of the two lakes and
Titan, superimposed on each other.

To see the effect of sub–surface lakes on the gravitational potential, the depth of the lake under-
neath the surface of Titan is increased. The gravitational potential is used for this, because it
clearly shows where the lakes are located. Figures 6.3 and 6.4 show the gravitational potential of
both lakes combined, for a depth of 20 km underneath the surface of Titan and the right figure
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for a depth of 100 km underneath the surface of Titan respectively. In appendix F the figures for a
depth of 10, 30 and 40 km underneath the surface are given. It is clearly shown that the potential
decreases as the depth of the lakes beneath the surface increases, clearly seen from the difference
in shade of blue at the tip of the lakes, since the color bar of both the figures is the same. Note that
the axes of both figures are different in scale. This is a good indication that the gravity gradients
as a result of the subsurface lakes will be weaker.

Figure 6.1: The gravitational potential [m2/s2] of lake 01 at a measurement altitude of 2 km.

Figure 6.2: The gravitational potential [m2/s2] of lake 02 at a measurement altitude of 2 km.
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Figure 6.3: The gravitational potential [m2/s2] of the lakes 01 and 02 combined, located at a depth of
20 km underneath the surface of Titan. The values for Titan are not superimposed in this figure.

Figure 6.4: The gravitational potential [m2/s2] of the lakes 01 and 02 combined, located at a depth of
100 km underneath the surface of Titan. The values for Titan are not superimposed in this figure.
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6.1.2 Gravity gradients of the lakes

The gravity gradients are modeled according to equations 4.64 to 4.69, as explained in section 5.1,
in a 1◦by 1◦grid. Figure 6.5 and figure 6.6 give the results at a measurement altitude of 2 km, for
lake 01 and lake 02 respectively. The values for Titan are not superimposed in this figure. En-
largement of all figures separately can be found in appendix F, only here the gradients of the two
lakes are combined in one figure.

A few distinctive features can be seen directly. First of all the assumption that Vxy = Vyx, Vxz =
Vzx and Vyz = Vzy is immediately clear in the results, the symmetry is seen in both figures. When
looking more closely, it can be seen that the signal of the diagonal components is far stronger than
that of the off–diagonal components. Next to that the values for Vzz are approximately twice as
large as the value for Vxx and Vyy which was to be expected. Equation 5.6 already showed that
the gradient Vzz of the spherical symmetrical model in the local north–oriented reference system
is twice as large as the gradients Vxx and Vyy. The gradients of the lakes can be inspected in more
detail in appendix F. In these figures the values for the two lakes and Titan are superimposed.
Besides that, the figures in the appendix show two different ways of plotting the gradients. The
left figure is a surface plot where the different colours represent the different values for the gradi-
ents and the right plot shows the same figure only in a 3D plot, where next to the colour the peaks
represent the values of the gradients.

When having a closer look at the gradients, in figures F.6 to F.14 in appendix F, it can clearly
be seen that the difference in gradients is not very large. The value for the gradient Vxx varies
approximately 0.6 Eötvös between its constant value and the maximum. The other variations
are given in table 6.1. In order to measure variations in the gradients in the diagonal direction,
the gradiometer must be able to measure small differences, of approximately 0.1 Eötvös. The
off–diagonal gradients have even smaller variations, the gradiometer must be ables to sense dif-
ferences in the gravity gradient of the order of 0.01 Eötvös for Vyz. The differences in Vxy are so
small, that these might not be measured at all.

Table 6.1: The maximum difference in magnitude of the gravity gradients measured over the lakes.

Gradient Maximum variation Gradient Maximum variation
[Eötvös] [Eötvös]

∆Vxx 0.6 ∆Vxy = ∆Vyx 8 · 10−4

∆Vyy 0.6 ∆Vxz = ∆Vzx 0.35
∆Vzz 0.5 ∆Vyz = ∆Vzy 0.015

6.2 Simulation of a passive balloon in the atmosphere of Titan

Assume a passive balloon, with in its gondola a gravity gradiometer, is safely released in the at-
mosphere of Titan. The trajectory such a balloon might follow is briefly touched in section 2.2,
and more in depth discussed in [74]. Due to the prevailing zonal winds (section 2.5) a trajectory
of a passive balloon will not vary in latitude very much. For more possible trajectories of passive
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Figure 6.5: The gravity gradients of lake 01.

Figure 6.6: The gravity gradients of lake 02.
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balloons see [74], keep in mind that these trajectories are only an indication and are based on a
model of Titan’s atmosphere. Based on these models, the trajectories chosen for the simulation
will not change in latitude, only in longitude. Figure 6.7 shows an example of a trajectory simu-
lated. The trajectory follows a latitude of 79◦N, crossing both lakes. It is assumed that a passive
balloon follows this trajectory, in the picture from left to right. Section 6.5 will look at other pos-
sible trajectories and make a comparison between them.

Figure 6.7: The trajectory along 79◦N crossing both lakes selected in section 5.1.

Several important assumptions are made before starting the simulations:

- The gradiometer is oriented along the axis of the local north–oriented reference system

- The exact location of the balloon, and thus the gradiometer, is known

- The gradiometer is perfect, i.e. measurements are done instantaneously

- All gradients are measurable

The gradients are given in Eötvös.

6.3 Gradients measured at different altitudes throughout the at-

mosphere of Titan

The value for the gravitational potential decreases with altitude, as shown in figure 5.1. Conse-
quently the gravity gradients decline with increasing altitude, thus it is interesting to see until
which altitude the gradient is strong enough to be measured by the gradiometer. To simulate
these measurements, the measurement point (i.e. the balloon with the gradiometer) is located in
the middle of both lakes, see table 6.2 and figure 6.8, and the measurements are taken upwards.
The red dot in figure 6.8 represents the location of the balloon, from where it is assumed to in-
crease in altitude in a straight line upwards. The gradients of both lakes are simulated separately
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to see if the size of the lakes have an influence on the strength of the gradients. The area of the
lakes as used for the simulations is given in table 6.2 too.

Table 6.2: The location of the measurement point and the area of the lakes.

Colatitude (ϑ) Longitude (λ) Area [km2]

Lake 01 11◦ 245◦ 12 050
Lake 02 17◦ 308◦ 17 497

Figure 6.8: Schematic representation of the location of the measurements. The red dot represents the
balloon with in its gondola the micro–gravity gradiometer. The simulation is done by varying the altitude
of the balloon, assuming it does not drift sideways.

The first simulations (figure F.15 and F.16) are done up to an altitude of 1000 km, the approxi-
mate height of Titan’s atmosphere. The diagonal gradients (Vxx, Vyy and Vzz) look more or less
constant, while the off–diagonal gradients (Vxy, Vyz and Vxz) rapidly become very small. After
zooming in to measurements up to an altitude of 100 km (figures F.17 and F.18), the same de-
crease is seen in general. It is thus more promising to look at the first tens of kilometers. Section
2.2 shows that simulations of possible paths of passive balloons were made up to an altitude of
20 km, therefore the last simulations of a balloon floating in the middle of a lake, are zoomed in
on the altitude range from 0 to 20 km.

The results up to an altitude of 20 km are given in figure 6.9 for the diagonal gradients and in
figure 6.10 for the off–diagonal gradients. The decrease of the signal looks very steep, but note
that the y–axis has a logarithmic scale. The gradients for both lakes are plotted next to each other,
such that they can be easily compared. It is to be expected that the gradients from lake 02 is
stronger, because the area of the lake is larger (more mass). Comparing the figures, the gradients
from lake 02 is slightly stronger, but not significantly. Very clear from both figures is that the
gradients are the strongest the first few kilometers and decrease with increasing altitude.
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Figure 6.9: Diagonal gradients up to an altitude of 20 km, measured at the middle of lake 01 (left) and
lake 02 (right). Note that the scale of the y–axis is logarithmic.

Figure 6.10: Off–diagonal gradients up to an altitude op 20 km, measured at the middle of lake 01 (left)
and lake 02 (right). Note that the scale of the y–axis is logarithmic.
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6.3.1 Gradients measured at different balloon altitudes

To show the difference between the strength of a gradient compared to the measurement altitude
more precisely, a balloon trajectory is chosen as explained in section 6.2. The path chosen follows
79◦N latitude, from 200◦to 300◦longitude, see figure 6.7, taking only lake 01 into account. The
simulations are done at an altitude of 2, 6 and 10 km. The diagonal gradients (figure 6.11) de-
crease visibly with altitude, at an altitude of 10 km the signal of the lake is so small that it cannot
be distinguished from the gradient that Titan produces. For the off–diagonal gradients (figure
6.12) this is less clear. Vxz decreases wit altitude, while Vyz has the strongest signal at an altitude
of 6 km, the weakest at 10 km and the strength of the gradient at an altitude of 2 km is in between
both. The shape of the plot of Vxy is more or less the same every time, but at the crossing of the
border of the lake the height of the smaller bump decreases with increasing altitude.

Figure 6.11: The diagonal gradients along a trajectory following 79◦N at a measurement altitude of 2, 6
and 10 km, lake 01 only. The density of the lake is 547 kg/m3.

When looking at the same gradients at a measurement altitude of 10 km only (figures F.19 and
F.20), variations, though relatively small when compared to the gradients at a measurement alti-
tude of 2 km, can be seen. The difference seen in figure F.19 is∼0.011 Eötvös for Vxx,∼0.005 Eötvös
for Vyy and ∼0.0015 Eötvös for Vzz. This would mean that to measure these differences the gra-
diometer at least should have a sensitivity of ∼0.001 Eötvös, which is very small compared to the
∼1 Eötvös the industry want to achieve at the moment.

It is clear that it would be most preferable to fly a balloon at the lowest possible altitude. The
variations in gradients are the largest and best visible at a measurement altitude of 2 km. On
Titan, the highest features found until now are mountain ranges, see section 2.4, with a maximum
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Figure 6.12: The off–diagonal gradients along a trajectory following 79◦N at a measurement altitude of
2, 6 and 10 km, lake 01 only. The density of the lake is 547 kg/m3.

height of 2 km. Considering the balloon trajectories described in [74], the lowest possible mea-
surement altitude that seems feasible to fly the balloon is 2 km. Therefore the simulations will be
done using this altitude as measurement altitude.

The balloon is assumed to float at a constant altitude, because when changing the altitude, the
value of the gradients changes. Thus a change in observed gradient could not only be because of
the crossing of the border of a lake, but because of an in- or decrease in balloon altitude too. The
gradient tensor is related to this increase in altitude (equation 5.6):

Γ ∼ GM
(R + h)3

hence a change in gradient corresponds to a change in altitude (J. M. Smit, personal communica-
tion):

∆Γ ∼ 3Γ
∆h
R

(6.1)

Table 6.1 in section 6.1 gives the maximum differences of the gradients. At a measurement altitude
of 2 km the maximum difference in the gradients Vxx and Vyy is 0.6 Eötvös. Computing the
change in altitude according to equation 6.1, a change in gradients of 0.6 Eötvös corresponds with
a change in altitude of 0.98 km. Thus when observing a change in gradient of 0.1 Eötvös, this
could correspond with a change of balloon altitude of 0.16 km.
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6.3.2 Fluctuation in the gradients of Titan

As mentioned in section 5.2, features with an amplitude of 10−23 Eötvös were visible in the simu-
lation of the gradients of Titan after the transformation of the Titan–centered reference system to
the local north–oriented reference system. To show that these features are of no influence on the
measurements at 2 km altitude, the gradients of Titan are compared to the total gradients (that of
lake 01 and Titan combined). Again the trajectory along 79◦N is chosen, with left of figure 6.13 the
simulated off–diagonal gradients of Titan only and right of figure 6.13 the simulated off-diagonal
gradients of lake 01 with the gradients of Titan superimposed. The left figures clearly show fluc-
tuations in the simulated trajectory, while the diagonal gradients show almost no variation, see
figure F.21 in appendix F. When superimposing the gradients of Titan to the measurements of
the lake, these fluctuations completely disappear. This proves that these fluctuations are of no
influence in the simulations of the total gradients.

Figure 6.13: The off–diagonal gradients of Titan (left) and superimposed with the gradients of lake 01
(right) along a trajectory at 79◦N, a measurement altitude of 2 km above the surface and a lake density of
547 kg/m3.

6.4 Combining the gradients of multiple lakes

Until now the simulations are focused on the first of the two lakes along a trajectory following
79◦N latitude (see figure 6.7 again). Even if lake 02 is not crossed it still has a small influence on the
measured gradients. This can be seen in figure 6.14, where the black line represents the measured
gradients form lake 01 and the red line the measured gradients from lake 02. Combining both
these measurements, which is a more closer approach to reality, the figure on the right of figure
6.14 is created. Here one can see that the measurements are influenced by both lakes. Looking
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at the diagonal gradients (figure 6.14), lake 01 and lake 02 can be identified separately from each
other, the first larger bump belongs to lake 01, while the second smaller bump belongs to lake
02. This bump is smaller, since the trajectory passes lake 02 very closely and crosses lake 01
completely. When looking at the off–diagonal gradients, figure 6.15, Vxz behaves the same as the
diagonal gradients, where Vyz shows clearly separated bumps when crossing the borders of lake
01 and lake 02. Looking at the separate measurement of Vxy the borders of both lakes can clearly
be distinguished, but when combining both measured gradients, this is not so well seen anymore.
These figures show that for some measurements lake 01 cannot be distinguished from lake 02 and
show the importance of having images of the area which is being observed and of knowing the
location of the gradiometer during measurements.

Figure 6.14: The diagonal gradients of lake 01 and lake 02 separately (left) and combined (right), both
superimposed on Titan. The measurements are taken along a trajectory at 79◦N, an altitude of 2 km above
the surface and a lake density of 547 kg/m3.

6.5 Gradients along different trajectories of the balloon

The trajectory of the balloon is of importance to the measurements, the previous section showed
that when crossing a second lake, measurements belonging to two different lakes might be hard
to distinguish from each other. To see which trajectory can be used best for further simulations,
i.e. which trajectory gives the most information, nine trajectories are selected and simulated.
The trajectories used are: 85◦N, 82◦N, 79◦N, 77◦N, 74◦N, 72◦N, 69◦N, 66◦N, and 63◦N, varying
between flying past the lakes, crossing only one of the two lakes or crossing both. Figure 6.16
gives a visual representation of these trajectories, the flight direction is from left to right.
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Figure 6.15: The off–diagonal gradients of lake 01 and lake 02 separately (left) and combined (right), both
superimposed on Titan. The measurements are taken along a trajectory at 79◦N, an altitude of 2 km above
the surface and a lake density of 547 kg/m3.

Figure 6.16: The different trajectories of the balloon as used in the simulations. The flight direction is
from left to right and the thick red line represents the trajectory along 79◦N, which is chosen for most the
simulations.
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6.5.1 The trajectories plotted in 2D

The trajectories are only plotted along varying longitude. To reduce the amount of information,
two different plots are made, one of the trajectories from 63◦to 72◦and one of the trajectories from
74◦to 85◦. Figure 6.17 shows the gradient Vxx along the trajectories 63◦till 72◦(upper picture) and
74◦–85◦(lower picture). The figures of the trajectories for the gradients Vyy and Vzz and the off–
diagonal gradients can be found in appendix F.

The diagonal gradients, Vxz and Vxy, all show more or less the same variations along longitude
as the diagonal gradients. Figure 6.18 shows that along the trajectory of 85◦N only the gradient
of Titan is found. Along 82◦N only a gradient due to lake 01 (first bump) is found; the same
holds for a trajectory along 74◦N: then the gradients belongs to lake 02 (second bump). Both the
trajectories along 79◦N and 77◦N show two and three bumps respectively, representing gradients
caused by lake 01 and lake 02. These two trajectories clearly give the most information, both on
lake 01 and lake 02. To see which of the two trajectories will be used for further simulations,
the off–diagonal gradients are inspected. Vxy (figure F.24) does not give a lot of information on
its own, the lakes cannot be clearly distinguished in these measurements. In combination with
the other two off–diagonal gradients, Vxz and Vyz, this information can be deduced and certain
features in the Vxy plot can be assigned to lake borders, which will be shown later. On the other
hand, looking at Vyz (figure 6.18), the lake borders can clearly be distinguished. The figure shows
bumps at the border of each lake, inbound and outbound. The bumps are higher, representing a
higher value for the gradient, along the trajectory of 79◦N. Therefore the trajectory along 79◦N is
used for further simulations.

Figure 6.17: The gradient Vxx along different trajectories from 63◦to 85◦N plotted in a two dimensional
way, at a measurement altitude of 2 km above the surface and a lake density of 547 kg/m3.
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Figure 6.18: Vyz along different trajectories from 63◦to 85◦N plotted in a two dimensional way, at a
measurement altitude of 2 km above the surface and a lake density of 547 kg/m3.
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6.5.2 The trajectories plotted in 3D

The reason so many trajectories are chosen to be simulated is to see whether different trajectories
together can provide extra information. The measurements described above are combined in a
three dimensional plot, see figure 6.19 for the gradient Vxx. The figures for the other gradients
can be found in appendix F.

When a measurement is taken very nearby or above the lake, a different gradient is measured
than further away from the lake. Thus with very precise measurements, the contour of the lake,
and maybe even the size, can be extracted from the measurements, as can be seen in figure 6.19.
The only problem is that every mass difference gives a different value for the gradients. It could
therefore be quite difficult to, with scattered measurements only, determine what physically is
present at the measurement area. If a very dense network of measurements is available, it could
give a very nice picture on the features present at the measurement area. A good example for this
is figure F.6, which show the gravity gradient Vxx with a grid of 1◦by 1◦.

Depending on the mass differences, a mountain might for instance not be separated from a lake,
which is located directly at the bottom of that mountain. The measurements might only reveal
a very large mountain. Or when the lake is filled with a very dense fluid, it might look in the
measurements as a small mountain. Thus to give a more precise geophysical interpretation, it
would be useful to have (visual) information of the observed area. This was already emphasized
in the previous section, where in some measurements the difference between lake 01 and lake 02
could not be distinguished.

Figure 6.19: The gradient Vxx along different trajectories plotted in a three dimensional way, at a mea-
surement altitude of 2 km above the surface and a lake density of 547 kg/m3.
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6.6 Influence of different lake densities

One of the questions on the lakes of Titan is what the composition of the lakes is. Is it methane?
Or a hydrocarbon mixture? A way to resolve this is looking at the density of the liquid in the
lake. To show the influence of different densities on the measurements, different lake–densities
are used in the simulation. The lake densities used are given in table 2.4, which are the density
and composition of the two mixtures as suggested in [48], the density of pure methane and the
density of pure ethane.

The densities range from 448.9 kg/m3 to 649.43 kg/m3 and as figure 6.20 shows, the difference
between the plotted gradients is very small. It is therefore very hard to extract a very precise
density of the fluid in the lake from the measurements and only when the lake area is known an
estimation can be made. Even when using non–realistic values for the lake density, to enlarge the
range of the plots, see figure 6.21, the differences stay within one Eötvös. It will be very hard to
assign different densities to the measurements from these plots.

Figure 6.20: The diagonal gradients for different lake–densities. The measurements are taken along a
trajectory at 79◦N, an altitude of 2 km above the surface. The figures for the off–diagonal gradients can be
found in appendix F.
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Figure 6.21: The diagonal gradients for different lake–densities. The measurements are taken along a
trajectory at 79◦N, an altitude of 2 km above the surface. The figures for the off–diagonal gradients can be
found in appendix F.

6.7 Gradients due to subsurface lakes

Figure 6.22 shows that the gradients measured at an altitude of 2 km quickly decrease when the
lake is located under the surface of Titan. Already at a distance of five kilometer below the sur-
face almost nothing can be measured anymore, the only exception being Vyz (figure 6.23). The
values for Vyz are, though very small, very close to each other, but still distinguishable. Thus, to
be able to measure sub–surface lakes, the lakes should be located less deep than those simulated
here, or have a higher density than simulated here (which would suggest a different composition
than that of the surface lakes). Inspection of Vyz to find sub–surface lakes could be possible, but
it should be known then whether the observed region is fairly flat, thus that it is certain that the
measurements inspected do not belong to other surface features.

Figures 6.22 and 6.23 compare the gradients from deeper located lakes with the gradients of a
surface lake at a measurement altitude of 2 km. When plotting the gradients due to a lake located
at a depth of 10 km, still a small variation can be seen, see figures F.33 and F.34 in appendix F.
The off–diagonal gradients show a much smaller difference than the diagonal gradients and will
be harder to measure. Thus the variations in the gradients are present, but will only be detected
if the gradiometer is able to sense variations of at least 0.001 Eötvös.
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Figure 6.22: The diagonal gradients for sub–surface lakes at different depths. The measurements are taken
along a trajectory at 79◦N, an altitude of 2 km above the surface and using a density of 547 kg/m3.

Figure 6.23: The off–diagonal gradients for sub–surface lakes at different depths. The measurements are
taken along a trajectory at 79◦N, an altitude of 2 km and using a density of 547 kg/m3.
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6.8 Determining the lake density using the least–squares method

The least squares method is an analytical method widely used to retrieve data from satellite ob-
servations using a simple linear model. Using this method, the variance of the density of the lakes
is computed from the simulations along different trajectories. First the theoretical background on
the least–squares method is explained, next it is applied to the system of gradient equations of
the single layer method. Next the density is retrieved from the simulations and the variance of
different observations sets is computed.

6.8.1 Theoretical background on the least–squares method

The least squares method is an analytical method widely used to retrieve data from satellite ob-
servations using a simple linear model. In general, a system can be described by a simple linear
model:

y + ε = Ax (6.2)

where y is the observation vector, A the design matrix, x the parameter vector and ε the residual
vector. The classical formula for least–squares adjustment with regularization is given as [8]:

x̂ =
(

ATC−1
y A + C−1

x

)−1 (
ATC−1

y y
)

(6.3)

Assuming that the covariance matrix for the data noise Cy is pre–defined and uncorrelated, it is
given as [8]:

Cy = σ2
y I (6.4)

where σ stands for the variance of the data. A similar representation holds for the covariance
matrix of the model (x) ([8]):

Cx = σ2
x I (6.5)

In most cases the covariance matrix is a diagonal matrix, the diagonals consisting of the variances.
Inserting equations 6.4 and 6.5 into equation 6.3 results in:

x̂ =
(

ATC−1
y A + αI

)−1
ATC−1

y y (6.6)

where the so–called regularization parameter, α is defined by [8]:

α =
σ2

y

σ2
x

(6.7)

Considering the data noise non–correlated and stationary (‘white noise’) and a priori knowledge
about the unknown parameters x is totally absent, this equation reduces to:

x̂ =
(

AT A + αI
)−1

ATy (6.8)
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When the matrix A is ill–conditioned, regularization has to be applied. To check this, the con-
dition number of the matrix can be computed. The condition number of a matrix measures the
sensitivity of the solution of a system of linear equations to errors in the data. It gives an indica-
tion of the accuracy of the results from matrix inversion and the linear equation solution. Values
near one indicate a well–conditioned matrix.

A priori knowledge about the unknown parameters is assumed to be totally absent. In this case
σ2

x → ∞, hence α→ 0. Then the least–squares adjustment formula reduces further to [8]:

x̂ =
(

AT A
)−1

ATy (6.9)

The variance of the parameter vector, i.e. the bounds in which the solution is given, can be com-
puted by:

Cx̂ =
(

XTC−1X
)−1

= σ2
x̂ (6.10)

The residual vector is found when comparing the observations with the approximation of the
observations. The approximation of the observations is found by multiplying the least–squares
solution x̂ with the original design matrix A. Hence, the residual vector is given by:

ε = y− Ax̂ (6.11)

The least–squares error of the observations is the length of this vector and thus given by [37]:

LS error = ||y− Ax̂|| (6.12)

The root mean square (rms) or quadratic mean is a statistical measure of the magnitude of a
varying quantity. The rms for a set of n values {x1, x2, . . . , xn} is defined as:

rms =

√
1
n

n

∑
i=1

x2
i (6.13)

6.8.2 The least–squares method applied to the system of gradient equations

In order to retrieve the density, the system of gravity gradients described by equation 4.62 will be
described by a simple linear model (equation 6.2):

y + ε = Xµ

where ȳ is the observation vector, composed of the measurements of the gradients, µ the param-
eter vector, which in this case is the difference in density between the lake density and the mean
density of Titan in kg/m2 as explained in section 5.1. Keep in mind that the single layer method
uses the density per unit area, thus given in kg/m2. The design matrix, X, consists of all param-
eters, except the density µ at the right hand side of equation 4.62. The solution to this system is
given as (following equation 6.6, no regularization needed (α = 1)):

µ̂ =
(

XTC−1
y X

)−1 (
XTC−1

y y
)

(6.14)
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In order to compute this solution, the covariance matrix of the measurements has to be given. The
covariance matrix consists of the variances on the diagonal of the matrix and the co–variances on
the off–diagonals of the matrix. The variance with which the density is computed is given by
equation 6.10:

Cµ̂ =
(

XTC−1
y X

)−1
= σ2

µ̂ (6.15)

A simple rule of thumb is used in order to see if the measurements done have a high enough
accuracy. This rule of thumb gives that the density computed using the least–squares method is
larger than three times the variance found:

µ̂ ≥ 3σµ̂ ⇒
3σµ̂

µ̂
≤ 1 (6.16)

6.8.3 Variance of the computed lake density for different observation sets

The computations as explained previously are done for four different observation sets and com-
binations of these sets. All these observations have a surface lake, that is the distance of the lake
underneath the surface of Titan is equal to zero. The observation sets used are:

- Measurements along a trajectory of 79◦N and a measurement altitude of 2 km

- Measurements along a trajectory of 79◦N and a measurement altitude of 6 km

- Measurements along a trajectory of 77◦N and a measurement altitude of 2 km

- Measurements along a trajectory of 77◦N and a measurement altitude of 6 km

Each observation set contains the measurements of all the gradients (the complete tensor), but it
can be imagined that during a measurement campaign not all gradients are available. Therefore
the density of the lake is computed using different configurations: (i) using the full gradient
tensor, (ii) using half the tensor (diagonals and three of the off-diagonals) (iii) using the diagonals
only (Vxx, Vyy and Vzz) (iv) using only Vxx, (v) using only Vyy, and (vi) using only Vzz. The results

of the computations are given in figure 6.24. The y–axis represents
3σµ̂

µ̂ . The red line is the ’border’
set at one, as given in equation 6.16. All the measurements below this line thus give a sufficiently
enough accuracy. On the x–axis the measurements are represented by a number. The numbers 1
to 9 represent the following observation sets and combinations of the four sets, described above:

1. 79◦N, h = 2 km

2. 79◦N, h = 6 km

3. 77◦N, h = 2 km

4. 77◦N, h = 6 km

5. a combination of 79◦N, h = 2 km and 79◦N, h = 6 km

6. a combination of 79◦N, h = 2 km and 77◦N, h = 2 km

7. a combination of 79◦N, h = 2 km and 77◦N, h = 6 km

8. a combination of 79◦N, h = 2 km and 79◦N, h = 6 km and 77◦N, h = 2 km
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9. a combination of all four: 79◦N, h = 2 km and h = 6 km and 77◦N, h = 2 km and h = 6 km

The different configurations ((i) to (vi)) for all nine observation sets are computed. Three different
values for the resolution will be used: (1) a study at SRON showed that in an ideal setup a resolu-
tion of 0.17 Eötvös rms could be reached (J. M Smit, personal communication), (2) the minimum
value needed for planetary missions, 1 Eötvös rms (section 3.4) and (3) a resolution of 2.6 Eötvös
rms (section 3.4).

Figure 6.24 shows the results for σij = 0.17 Eötvös rms. The figures for the other two values can
be found in appendix G. Figure 6.24 directly shows that two measurement combinations have a
too large value for

3σµ̂

µ̂ : 2 and 4. Both measurement set 2 and 4 represent the measurements along
a single trajectory at a measurement altitude of 6 km. This indicates that when only having one
set of measurements at higher altitude, the density cannot be computed with enough accuracy.
The values accompanying these measurements can be found in table G.1 in appendix G. Figure
6.25 zooms in on the region below 1 (indicated by the red line), to get a closer look at the other
datasets. For all sets hold that when resolving the density using the gradient Vzz only (indicated
by the cross: ×) the accuracy with which the measurements are resolved is the lowest, for instance
measurement set 1 (79◦N, h = 2 km) resolves the density as µ̂ = 547± 351 kg/m2. Using only
Vxx or Vyy, regarding computing the density using the least–squares technique, gives more or
less the same accuracy: µ̂ = 547± 65 kg/m2. Using the diagonal gradients, half the tensor or
the full gradient tensor to compute the density, do not give a significant difference in accuracy,
µ̂ = 547± 41.5 kg/m2. Again, all these results can be found in table G.1 in appendix G.

Figure 6.24: The results of the least–squares estimation for nine different observation sets, σij =
0.17 Eötvös. The configurations indicated below the red line comply with the rule of thumb given by
equation 6.16.
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Figure 6.25: The results of the least–squares estimation zoomed in on the part below the red line, σij =
0.17 Eötvös.

Measurements sets 6, 8 and 9 give the highest accuracy. Table 6.3 shows the part of the table
presented in appendix G, consisting only of these three measurement sets. Comparing the values
belonging to each configuration between the measurement sets, it can be seen that these values
are very similar to each other. Two things can be concluded from this: (1) using the observations
made at the lowest measurement altitude (in this case 2 km), the same accuracy is reached as when
combining these with observations at higher measurement altitudes and (2) the same accuracy is
reached when using the full tensor or the diagonals only, thus the off–diagonal measurements are
not necessary.
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Table 6.3: The density and variance [kg/m2] computed for measurement sets 6,8 and 9 using the least–
squares technique.

Observations used Computed density Variance
µ̂ [kg/m2] σµ̂ [kg/m2]

Measurement set 6 79◦N and 77◦N, 2 km
Full tensor 547 25.9
Half tensor 547 26.6
Diagonals only 547 27.5
Vxx only 547 36.9
Vyy only 547 42.3
Vzz only 547 186.3

Measurement set 8 79◦N, 2 km, 6 km and 77◦N, 2 km
Full tensor 547 25.8
Half tensor 547 26.6
Diagonals only 547 27.5
Vxx only 547 36.9
Vyy only 547 42.3
Vzz only 547 186.2

Measurement set 9 79◦N, 2 km, 6 km and 77◦N, 2 km, 6 km
Full tensor 547 25.8
Half tensor 547 26.6
Diagonals only 547 27.5
Vxx only 547 36.9
Vyy only 547 42.3
Vzz only 547 186.1
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Chapter 7

Discussion

The goal of this thesis work was to investigate if a perfect MEMS micro–gradiometer on board a
hot air balloon floating in the atmosphere of Titan can detect (sub–) surface lakes. Furthermore it
is investigated if the density of those lakes can be resolved from the observed gradients using the
least–squares technique and consequently what accuracy is of the computed density is. Regarding
to these goals first several conclusions are given and this chapter finishes with recommendations
for future work.

7.1 Conclusions

This thesis work has focused on the gradients of the gravitational potential as consequence of two
large lakes found on the Northern polar region of Titan. It is assumed that a perfect gradiometer
is placed in a gondola underneath a balloon in the atmosphere of Titan. The influence of swing-
ing and rotating balloon motions have been omitted, since this is beyond the scope of this project.
The gravity gradients, i.e. the second derivative of the gravitational potential, were modeled us-
ing two superimposed methods: a spherical symmetrical model representing Titan and the mass
layer method representing the lakes. The mass layer method assumes that the gravitational po-
tential of the lakes can be represented by a single mass layer on the surface of Titan.

The gradiometer is oriented along the axes of the local north–oriented reference system and it is
assumed that the exact location of the gradiometer with respect to the Titan–centered reference
system is known. The gradients are given in Eötvös units and the gradiometer is assumed to make
perfect measurements, without any noise sources. The density of the lakes is computed from the
observations using the least–squares technique. To account for the noise in the gradiometer mea-
surements, the least–squares computations are done using different values of the resolution of all
components of the gradient tensor: σij = 0.17 Eötvös rms, σij = 1 Eötvös rms and σij = 2.6 Eötvös
rms.

Different simulations were done in order to see what the effect is of altitude, of different trajec-
tories along which measurements can be done, of different measurement step sizes, of different
densities of the lakes and of the location of the lakes with respect to the surface of Titan. Next to
that the influence of noise on the measurements was investigated and it was computed with what
accuracy the density can be retrieved from the observations, using the least–squares technique.

First of all it can be concluded that the diagonal gradients give a larger difference in magnitude
than the off–diagonal gradients, and are thus better measurable. Especially the gradient Vxy (and
Vyx) is very weak, the difference in magnitude is of the order of 10−4 Eötvös which is too small to
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be measured by the gradiometer. The maximum difference in magnitude of the diagonal gradi-
ents is 0.5–0.6 Eötvös. This is measurable by the gradiometer, because the target resolution of the
gradiometer is 0.1 Eötvös.

The strength of the gravity gradients decreases with altitude and it was shown that the measure-
ments at higher altitudes do not give a sufficiently enough accuracy. The accuracy reached at a
measurement altitude of 2 km, using only one set of observations, is 547±42.6 kg/m3, while at
a measurement altitude of 6 km this is 547±1075 kg/m3. The observations at 6 km altitude do
not satisfy µ ≥ 3σµ, which is used to verify if the accuracy is good enough, too. Thus it can be
concluded that for accurate measurements it is desirable that the balloon should fly at the lowest
altitude possible.

The trajectory chosen is of great influence on the measurements. Not only the altitude, as men-
tioned above, is of importance, but the path chosen (latitude, longitude) has influence The hot–air
balloon will be a passive balloon, therefore the trajectory of the balloon is completely dependent
on the winds that are present on Titan and the location where the balloon will be released. Due
to the prevailing zonal winds the trajcectories will most probably not vary along latitude very
much. If a trajectory could be set on beforehand, the trajectoris along 76◦N to 79◦N will give the
most information regarding the two lakes selected for observation in this thesis work.

Every mass difference is measured by the gradiometer and gives different values for the gradi-
ents. It could therefore be quite difficult to, with scattered measurements only, determine what
physically is present at the measurement area. The simulations were done for the two lakes com-
bined and separately and show that, depending on the trajectory chosen, the two lakes cannot
always be separated in the measurement plots. Even when having measurements along more dif-
ferent trajectories this proves to be quite difficult. Ideally, visual information on the location of the
balloon should be available, thus measurements could be linked to the images to give a correct
geophysical interpretation. This can be seen back in the least–squares computations for the den-
sity too, in comparing two trajectories, 79◦N and 77◦N, both measuring at an altitude of 2 km. The
trajectory along 77◦N crosses a larger part of both lakes compared to the trajectory along 79◦N,
which can directly be seen in the accuracy reached for the density computed: 547±36.0 Eötvös
against 547±42.6 Eötvös respectively. Concluding, if visual information is available, the chance
that the interpretation of the results is correct is higher and it gives the possibility to determine
on beforehand where the balloon should fly to make more useful measurements.

The simulations are done with a one degree stepsize, i.e. the gradients are computed with inter-
vals of one degree. This corresponds to one measurement approximately every 45 kilometers. To
detect both lakes a step size between 1◦and 5◦is needed in the simulations. A gradiometer sam-
pling speed of 10 Hz and a balloon speed computed according to the simulations done in [74] of
0.3–1 m/s the gradiometer will be able to detect both lakes used in the simulations.

Changing the density of the lakes did not have a significant influence on the values for the grav-
ity gradients. The differences in magnitude found were not larger than one Eötvös and it will be
very hard to exactly determine the composition of the lake since all values used for the simulation
have similar effects. But, if the composition of the lake is the expected ethane mixed with other
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hydrocarbons, the gradients do show enough variation to determine the presence of the lake.

The deeper the lake is located underneath the surface of Titan, the smaller the difference in gradi-
ents will be. The simulations show that a lake located 10 km underneath the surface of Titan has a
maximum difference of 0.006 Eötvös. Concluding from the simulations done in this study, it will
not be possible to detect lakes with a density of 547 kg/m3 below 5 km underneath the surface of
Titan with the micro–gradiometer.

A last conclusion can be made regarding the least–squares technique. This study shows that when
computing the density of the lake using the least–squares method, it does not matter whether the
full gravity tensor is used or only the diagonals of the tensor, both give the same variances. If only
one of the diagonal gradients is used, the best result is achieved when using Vxx or Vyy. Less ac-
curate results are achieved when using Vzz only. This is rather counter intuitive: the gradient Vzz

is twice as large in magnitude as the gradients Vxx and Vyy, thus a smaller variance is expected.
The computations do show that when combining more sets of observations, for instance along
different trajectories and at different measurement altitudes, the accuracy can be increased too.

7.2 Recommendations

Following this research several recommendations can be made. The recommendations made are
separated into two parts: (1) on the simulations and modeling done and (2) concerning the feasi-
bility of the gradiometer measurements.

To simulate the gravity gradients of the lakes, the mass layer method is used. A comparison to
other alternative methods, for instance the point mass method, has not been made. At the mo-
ment there is no comparison whatsoever, to indicate what the performance is of the single layer
method. Gravitational data (Love number k2 and gravitational moments C22 and S22) are antic-
ipated in the near future, which will limit the possibilities for Titan’s interior structure. When
this data is available a comparison should be made between the spherical harmonic representa-
tion and the mass layer method. Next to that the relations between the two methods need to be
worked out more specifically.

Only two large lakes have been implemented. The choice was made on basis of the images avail-
able by Cassini–Huygens. The smaller lakes seen on these images have not been considered, but
it is not investigated if the gradients of these separate small lakes can be distinguished from each
other or if they show up as a large lake. It is recommended to investigate whether the gradiometer
is sensitive enough to distinguish the smaller lakes from their surroundings and what the mini-
mum area of the lakes is to create measurable gradients.

All motions of the balloon have been omitted. Of course these motions will have a large influence
on the accuracy of the measurements if not corrected for. It is recommended to model these mo-
tions, including swinging and rotations of the gondola as well as variations in altitude, to see if
these motions do not disturb the gradiometer measurements too much. The balloon trajectory is
geometry based, it is a straight line at constant altitude and constant latitude measuring at regular
intervals. The speed of the balloon and deviations from this straight line have not been imple-
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mented. This could be done by coupling the data obtained by the balloon trajectory simulations
made by Tokano and Lorenz [74] using the GCM model and a timewise measurement interval to
the gravitational models used in this study. The observation sets created using such a model will
allow for a more realistic approximation of the gravity gradients as measured by a gradiometer
in the gondola of the balloon.

It was assumed that the gradiometer is perfect and measures instantaneously, but noise can be
of a considerable influence on the measurements. To improve modeling, the noise sources of the
gradiometer have to be considered.

Recent research has shown that Titan does not rotate synchronously with respect to Titan. What
this will implicate for the tidal potential and body tides has not been investigated in this study.
Combining this with the anticipated gravitational data, research could be done on the tidally in-
duced stresses in the interior of Titan.

The research on balloon–borne gradiometry is very limited. Only a few tests have been done in
the past to verify the feasibility of a gradiometer on board the gondola of a balloon. The motions
the balloon undergoes, and especially their influence on the gradiometer measurements, have not
been well characterized and documented. It is therefore recommended that more experience with
balloon–borne gradiometry is gained and studies are done to the feasibility of balloon–borne gra-
diometry, before sending the micro–gradiometer with the balloon to Titan.

The micro–gradiometer is still in the development phase. During the development it should be
aimed to make the gradiometer as sensitive as possible and reduce the gradiometer noise to a
minimum. If a high sensitivity can be achieved, the balloon will be able to fly higher than the
recommended 2 km, which might be preferable for other (atmospheric) measurement equipment
on board of the gondola of the balloon. Next to that the gradiometer might be able to detect
sub–surface lakes below the in this study limited 5 km.
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Appendix A

Definitions

Chondrite Chondrites are stones of meteoric origin, characterized by the small round granules
called chondrules. Chondrites are divided into about fifteen distinct groups on the basis of
their mineralogy, bulk chemical and oxygen isotopic compositions. Each chondrite group
has a distinctive mixture of chondrules, refractory inclusions, matrix (dust), other compo-
nents and a characteristic grain size. The various chondrite groups likely originated on sep-
arate asteroids or groups of related asteroids. The groups are divided into four categories:
ordinary, carbonaceous, enstatite and other chondrites [87].

Ordinary chondrites Ordinary chondrites are the most common type of meteorite that fall
on Earth, about 80% of all meteorites and over 90% of chondrites are ordinary chon-
drites.

Carbonaceous chondrites Carbonaceous chondrites make up less than 5% of the chon-
drites that fall on Earth. There are many groups of carbonaceous chondrites, but most
of them are distinguished chemically and isotopically. CI (Ivuna type) chondrites en-
tirely lack chondrules, but are mostly composed of fine–grained material that is al-
tered largely by water on the parent asteroid. The CI chondrites are highly oxidized,
brecciated (type of rock structure) rocks, containing abundant magnetite and sulfate
minerals, but lacking metallic Fe.

Enstatite chondrites Only 2% of the chondrites that fall on Earth are enstatite chondrites
and are among the most chemically reduced rocks known. Unlike in most other chon-
drites, the minerals in enstatite chondrites contain almost no iron oxide; metallic Fe–Ni
and Fe–bearing sulfide minerals contain nearly all of the Fe. Enstatite chondrites con-
tain a variety of unusual minerals that can only form in extremely reducing conditions,
including oldhamite (CaS), niningerite (MgS), perryite (Fe–Ni silicide), and alkali sul-
fides. Enstatite chondrites can be divided into two groups: EH (high metal) and EL
(low metal).
The EH chondrites contain small chondrules (∼0.2 mm) and high ratios of siderophile
(iron loving) elements to Silicate. Somewhat more than 10% of the rock is composed of
metal grains and a diagnostic feature of EH chondrites is that the Fe–Ni metal contains
∼3 wt% elemental silicon. The EL chondrites contain larger chondrules (≥0.5 mm) and
low ratios of siderophile elements to Si. The Fe–Ni metal contains ∼1 wt% Si.

Other chondrites This category contains the R (Rumuruti type) chondrites, a very rare
group and the K (Kakangari type) grouplet.

Chondrule The small round granules found in chondrites are called chondrules. Chondrules are
formed as molten or partially molten droplets in space, before being accreted to their parent
asteroids. Chondrites represent the oldest solid material within the solar system and are
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believed to be the building blocks of the planetary system. Most chondrules are composed
primarily of the silicate minerals olivine and pyroxene, surrounded by material composed
of feldspar, that may either be glassy or crystalline. Small amounts of other minerals are
often present, including Fe sulfide (troilite), metallic Fe–Ni, oxides such as chromite, and
phosphates such as merrillite [88].

Clathrate A type of chemical substance where a guest molecule is trapped or contained in an-
other type of lattice, for example a clathrate hydrate has a lattice of water molecules which
encloses molecules of a trapped gas.

Equinox One of the two moments of the year when the Sun is directly above a planets equator.
On Earth the vernal equinox occurs on March 20 or 21, marking the beginning of spring,
and the autumnal equinox on September 22 or 23, marking the beginning of autumn in the
Northern Hemisphere (and the reverse in the Southern Hemisphere). The days on which an
equinox falls have about equal periods of sunlight and darkness [12].

Gravitational wave Einsteins general theory of relativity predicts that two stars revolving
around each other in a bound orbit suffer accelerations, and as a result generate gravita-
tional radiation. Gravitational waves carry away energy and momentum at the expense of
the orbital decay of two stars, thereby causing the stars to gradually spiral towards each
other and giving rise to shorter and shorter periods. This anticipated decrease of the orbital
period of a binary pulsar was first observed in PSR 1913+16 by Taylor and Weisberg [3].

Gravity assist A planetary gravity assist or swing–by is the use of the relative movement and
gravity of a planet to change the plane and/or velocity of the spacecraft’s trajectory. With
respect to the planet, the spacecraft approaches on a hyperbolic trajectory. It swings by the
planet at ‘periplanet’ and leaves on the other leg of the hyperbolic trajectory at the same
velocity with respect to the planet at which it came in [83].

Isostasy Isostasy is a term used in geology to refer to the state of gravitational equilibrium be-
tween the Earth’s lithosphere and asthenosphere such that the tectonic plates ‘float’ at an
elevation which depends on their thickness and density. It is invoked to explain how differ-
ent topographic heights can exist at the Earth’s surface [84].

Lithophile Lithophiles are micro–organisms that can live within the pore spaces of sedimentary
and in cracked igneous (formed by the cooling and hardening of magma or molten lava)
rocks to depths down to nearly three kilometers, where the temperature is approximately
75◦C. The lithophiles that live in surface rocks make use of photosynthesis for energy, the
lithophiles that live in deeper rocks extract energy from the minerals around them and ex-
tract carbon dioxide from water that seeps down the cracks they live in [89].

Orbital resonance In celestial mechanics, an orbital resonance occurs when two orbiting bodies
exert a regular, periodic gravitational influence on each other, usually due to their orbital
periods being related by a ratio of two small integers. Orbital resonances greatly enhance
the mutual gravitational influence of the bodies. In most cases, this results in an unstable
interaction, in which the bodies exchange momentum and shift orbits until the resonance
no longer exists. Under some circumstances, a resonant system can be stable and self cor-
recting, so that the bodies remain in resonance [85].
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Prograde In the direction that the planet rotates.

Roche limit The Roche limit is the distance within which a celestial body, held together only by
its own gravity, will disintegrate due to a second celestial body’s tidal forces. Inside the
Roche limit, orbiting material will tend to be pulled apart and form rings, while outside
the limit, material will tend to accrete. The term is named after Édouard Roche, the French
astronomer who first calculated this theoretical limit in 1848 [90] and given as [7]:

aR
Rp

= 2.456
(

ρp

ρs

) 1
3

(A.1)

where aR is the Roche limit for tidal disruption, Rp and ρp the radius and density of the
planet in question respectively, and ρs the density of the satellite in question.

Serpentinization A geological low–temperature and metamorphic (physical and/or chemical
changes caused temperatures greater than 150 to 200 C and pressures of 1500 bars) pro-
cess involving heat and water in which low–silica mafic (silicate mineral or rock that is rich
in magnesium and iron) and ultramafic (igneous rocks with very low silica content) rocks
are oxidized and hydrolyzed with water into serpentinite (a type of rock).
Peridotite, a dense, coarse-grained igneous rock, consisting mostly of the minerals olivine
and pyroxene, at and near the sea floor and in mountain belts is converted to serpentine,
brucite, magnetite, and other minerals – some rare, such as awaruite (Ni3Fe), and even na-
tive iron. In the process large amounts of water are absorbed into the rock increasing the
volume and destroying the structure.
The reaction is exothermic and large amounts of heat energy are produced in the process.
Rock temperatures can be raised by about 260◦C, providing an energy source for formation
of non–volcanic hydrothermal vents. The magnetite–forming chemical reactions produce
hydrogen gas and combined with the sulfates and carbonates methane and hydrogen sul-
fide is formed [86].

Sideral day The interval between two successive passages of the vernal equinox across the ob-
server’s meridian [81].

Synchronous An orbit is called synchronous when the orbital period of the satellite is equal to
its rotational period. As result the satellite is always in the same position w.r.t the celestial
body it is orbiting.

Tidal Love number The measure of elastic deformation of a body in response to tidal perturba-
tions [7].
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Appendix B

Properties of methane and ethane

Properties of methane and ethane computed at a pressure of 1.5 bar, the surface pressure of Titan.
More details can be found in the NIST Chemistry–WebBook [82].

Table B.1: Properties of methane (CH4) at a pressure of 1.5 bar [82].

Temperature Density Volume Viscosity Phase Sound Spd.
[K] [kg/m3] [m3/kg] [uPa*s] [m/s]

91.694 450.23 0.0022211 198.49 liquid 1530.5
92.694 448.90 0.0022277 192.44 liquid 1521.3
93.694 447.56 0.0022344 186.68 liquid 1512.1
94.694 446.21 0.0022411 181.19 liquid 1502.9
95.694 444.86 0.0022479 175.97 liquid 1493.6
96.694 443.50 0.0022548 170.98 liquid 1484.2
97.694 442.14 0.0022617 166.21 liquid 1474.8
98.694 440.77 0.0022688 161.66 liquid 1465.4
99.694 439.40 0.0022759 157.30 liquid 1455.9

Table B.2: Properties of ethane (C2H6) at a pressure of 1.5 bar [82].

Temperature Density Volume Viscosity Phase Sound Spd.
[K] [kg/m3] [m3/kg] [uPa*s] [m/s]

91.352 650.47 0.0015373 1226.6 liquid 1990.9
92.352 649.43 0.0015398 1176.8 liquid 1985.8
93.352 648.38 0.0015423 1129.9 liquid 1980.3
94.352 647.33 0.0015448 1085.7 liquid 1974.6
95.352 646.27 0.0015473 1044.1 liquid 1968.7
96.352 645.21 0.0015499 1004.8 liquid 1962.6
97.352 644.14 0.0015525 967.68 liquid 1956.3
98.352 643.07 0.0015550 932.64 liquid 1949.8
99.352 641.99 0.0015576 899.53 liquid 1943.2
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Table B.3: Additional data methane (CH4) and ethane (C2H6) [82].

Methane
Critical temperature (Tc) 190.564 K
Critical pressure (Pc) 45.992 bar
Critical density (ρc) 162.66 kg/m3

A centric factor 0.01142
Normal boiling point 111.667 K

Ethane
Critical temperature (Tc) 305.33 K
Critical pressure (Pc) 48.718 bar
Critical density (ρc) 207. kg/m3

A centric factor 0.0993
Normal boiling point 184.552 K
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Appendix C

Legendre polynomials

The Legendre functions are given by ([34]):

Pnm(x) = (1− x2)m/2 dm

dxm Pn(x)

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n

Pnm(cos ϕ) = sinm ϕ
dmPn(cos ϕ)

d(cos ϕ)m

Which gives up to degree and order three:

n m Pnm(x) Pnm(sin ϕ)

0 0 1 1

1 0 x sin ϕ

1 1
(
1− x2)1/2 cos ϕ

2 0 1
2
(
3x2 − 1

) 1
4 (1 + 3 cos 2ϕ)

2 1 3x
(
1− x2)1/2 3

2 sin 2ϕ

2 2 3
(
1− x2) 3

2 (1− cos 2ϕ)

3 0 1
2 x
(
5x2 − 3

) 1
8 (3 cos ϕ + 5 cos 3ϕ)

3 1 3
2
(
5x2 − 1

) (
1− x2)1/2 3

8 (sin ϕ− 5 sin 3ϕ)

3 2 15
(
1− x2) x 15

4 (cos ϕ− cos 3ϕ)

3 3 15
(
1− x2)3/2 15

4 (3 sin ϕ− sin 3ϕ)
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Appendix D

Tidal parameters of Titan

Interior models of Titan

Since the Voyager missions, scientists have tried to solve the mystery of Titan’s relative high ec-
centricity. Different interior models have been set up, in order to compute among other values the
associated tidal dissipation, the decay of the eccentricity over time and the tidal Love numbers.
Here an overview of all the interior models encountered in literature.

Table D.1: Different interior models of Titan.

Layer Density Thickness Reference

[kg/m3] [km]

Model A [63]
uniform fice = 0.45 1881

ρice = 1200
ρrock = 3500

Model B [63]
Core Silicate/iron 2990 1900
High–pressure ice Ice VI 1430 200
High–pressure ice Ice V 1280 75
Mantle Ice II 1180 300
Crust Ice I 930 100

Model C [63]
Core Silicate/iron 2990 1900
High–pressure ice Ice VI 1430 225
Subsurface ocean Ammonia water 950 300
Mantle/crust Ice I 930 150

Model D [62]
Core rock–to–ice ratio of 55:45 3800 1671
High–pressure ice Ice V 1310 612
Subsurface ocean Ammonia–water 950 224

15 wt.% NH3

Mantle/crust Ice I 917 69

Continued on the next page
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TableD.1 – continued from previous page

Layer Density Thickness Reference

[kg/m3] [km]

Model E [58]
Core type 1 CI chondrite 3300 1875

High–pressure ice Ice V 1310 500
Core type 2 liquid iron 8000 910

EH enstatite 3300 800
High–pressure ice Ice V 1310 665
Subsurface ocean Ammonia water 1000 74

5 wt.% NH3

Mantle/crust Ice I 917 126
Model F [58]

Core type 1 CI chondrite 1875
High–pressure ice Ice V 1310 425

Core type 2 liquid iron 8000 910
EH enstatite 3300 800

High–pressure ice Ice V 1310 590
Subsurface ocean Ammonia water 1000 208

15 wt.% NH3

Mantle/crust Ice I 917 67
Model G [55]

Core Silicate/iron 3300 1875
High–pressure ice Ice VI 1310 510
Mantle/crust Ice I 920 190

Determining the tidal Love number from Cassini radio tracking

data

From the assumption that Titan is in hydrostatic equilibrium, a priori values of the coefficients J2,
C22 and S22 can be computed and are given in [57] as:

J2 = 4.93× 10−5 + 4.84× 10−7 cos(M− δ)

C22 = 1.48× 10−5 + 2.42× 10−7 cos(M− δ)

S22 = 3.23× 10−7 sin(M− δ)

where the a priori Love number is assumed to be k2 = 0.3 (following [72]) . When Titan has an
internal ocean, covered by a high viscosity ice–I layer, the phase lag angle δ = 0◦. In the oceanless
case, hence only an outer shell of low–viscosity ice I, the values for the possible phase lag angles
used in [57] are δ = 5◦, 10◦, 15◦, 20◦, 25◦ and 30◦. Figures D.1 and D.2 show how the a priori value
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of C22 and S22 behave for the different phase lag angles, along a complete orbit (mean anomaly
0 ≤ E ≤ 360).

Figure D.1: A priori values of C22 for differet phase lag angles δ, given by equation 4.109 [57].

Figure D.2: A priori values of S22 for differet phase lag angles δ, given by equation 4.110 [57].

131



Effect of ammonia on tidal parameters of Titan

The effect of ammonia is presented and discussed in [62]. The most important figures and values
presented in [62] can be found here.

Figure D.3: Summary of the model results for a primordal ammonia–water ocean composition of 5 wt.%
NH3 and different core heat production rates H as a function of ice–I layer thickness: (a) Temperatures
of the convective sublayer Tint and subsurface ocean Tocean, (b) surface heat flow, (c) core density, (d)
MoI factor, (e) radial displacement Love number h2, (f) potential Love number k2. From left to right,
there are four partly overlapping sets of curves in each figure that correspond to H = 9× 10−12 W/kg,
H = 5× 10−12 W/kg, H = 4.5× 10−12 W/kg, and H = 4× 10−12 W/kg. Solid curve branches indicate
model results consistent with core densities of anhydrous rock and iron between 3500 and 4500 k/m3 [62].
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Figure D.4: Summary of the model results for a primordal ammonia–water ocean composition of 15 wt.%
NH3 and different core heat production rates H as a function of ice–I layer thickness: (a) Temperatures
of the convective sublayer Tint and subsurface ocean Tocean, (b) surface heat flow, (c) core density, (d)
MoI factor, (e) radial displacement Love number h2, (f) potential Love number k2. From left to right,
there are four partly overlapping sets of curves in each figure that correspond to H = 9× 10−12 W/kg,
H = 5× 10−12 W/kg, H = 4.5× 10−12 W/kg, and H = 4× 10−12 W/kg. Solid curve branches indicate
model results consistent with core densities of anhydrous rock and iron between 3500 and 4500 k/m3 [62].
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Figure D.5: Mass fractions of rock/iron and ice plus subsurface ocean for various core heat production
rates H as a function of ice–I layer thickness. From left to right, there are four sets of curves in each
figure that correspond to H = 9× 10−12 W/kg, H = 5× 10−12 W/kg, H = 4.5× 10−12 W/kg, and
H = 4× 10−12 W/kg, respectively: (a) primordial ammonia–water ocean composition of 5 wt.% NH3,
(b) 15 wt.% NH3. Solid curve branches indicate model results consistent with core densities of anhydrous
rock and iron between 3500 and 4500 kg/m3 [62].
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Appendix E

Time–dependent part of the
tide–raising potential

The time–dependent part of the tide–raising potential of Saturn on Titan can be written as [66]:

Vtime = −GMSR2

a3 3e
[

1
2
(3 sin2 ϑ cos2 λ− 1) cos(nt) + sin2 ϑ sin(2λ) sin(nt)

]
where MS is the mass of Saturn, R is the radius from the center of mass of Titan to the measure-
ment point (R = RT at the surface of Titan), a the semi–major axis of the orbit of Titan, n is the
orbital angular frequency, e = 0.0292 the orbital eccentricity of Titan, ϑ and λ are the co–latitude
and longitude (with λ = 0 at the sub–Saturn longitude) and, t the time. An orbit of Titan around
Saturn corresponds to 15.95 Earth days and is synchronous with respect to Saturn.
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Figure E.1: The time–dependent part of the tide–raising potential on day one and day two of the orbit of
Titan around Saturn.

Figure E.2: The time–dependent part of the tide–raising potential on day one and day two of the orbit of
Titan around Saturn.
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Figure E.3: The time–dependent part of the tide–raising potential on day five and day six of the orbit of
Titan around Saturn.

Figure E.4: The time–dependent part of the tide–raising potential on day seven and day eight of the orbit
of Titan around Saturn.
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Figure E.5: The time–dependent part of the tide–raising potential on day nine and day ten of the orbit of
Titan around Saturn.

Figure E.6: Time–dependent part of the tide–raising potential on day eleven and day twelve of the orbit of
Titan around Saturn.
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Figure E.7: The time–dependent part of the tide–raising potential on day thirteen and day fourteen of the
orbit of Titan around Saturn.

Figure E.8: The time–dependent part of the tide–raising potential on day fifteen and day sixteen of the
orbit of Titan around Saturn.
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Appendix F

Miscellaneous figures belonging to
chapter 6

Gravitational potential of the lakes

The gravitational field of a body outside the masses can be represented by the gravitational po-
tential of a thin layer of mass on the surface of a body and is given by equation 4.43:

V(x) = G
x

S

µ(y)
|x− y|dS(y)

where µ is the layer density measured in kg/m2. The left picture of figure F.1 shows the gravita-
tional potential of the smaller lake (lake 01), the right of the larger lake (lake 02) with the gravita-
tional potential superimposed on each other and the gravitational potential of the sphere. Figure
F.2 shows the same, only the two lakes combined in one figure.

Figure F.1: The gravitational potential of lake 01 (left) and lake 02 (right).

To see the effect of sub–surface lakes on the gravitational potential, the distance of the lake un-
derneath the surface of Titan is increased. The gravitational potential is used for this, because it
clearly shows where the lakes would be. Note that the axes of the figures are different in scale, a
good indication that the gravity gradients as a result of the subsurface lakes will be weaker too.
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Figure F.2: The gravitational potential of lake 01 and lake 02 combined in one figure. The gravitational
potential of the sphere Titan is superimposed to that of both the lakes in this figure.

Figure F.3: The gravitational potential [m2/s2] of the lakes 01 and 02 combined, 10 km underneath the
surface of Titan. The values for the sphere Titan are not superimposed in this figure.
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Figure F.4: The gravitational potential [m2/s2] of the lakes 01 and 02 combined, 30 km underneath the
surface of Titan. The values for the sphere Titan are not superimposed in this figure.

Figure F.5: The gravitational potential [m2/s2] of the lakes 01 and 02 combined, 40 km underneath the
surface of Titan. The values for the sphere Titan are not superimposed in this figure.
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Gravity gradients of the lakes

The gravity gradients are modeled according to equations 4.64 to 4.69:

Vxx = Gµ
I

∑
i=1

3(xP − xQ)2 − `2

`5 ∆σi

Vyy = Gµ
I

∑
i=1

3(yP − yQ)2 − `2

`5 ∆σi

Vzz = Gµ
I

∑
i=1

3(zP − zQ)2 − `2

`5 ∆σi

Vxy = Vyx = Gµ
I

∑
i=1

3(xP − xQ)(yP − yQ)
`5 ∆σi

Vxz = Vzx = Gµ
I

∑
i=1

3(xP − xQ)(zP − zQ)
`5 ∆σi

Vyz = Vzy = Gµ
I

∑
i=1

3(zP − zQ)(yP − yQ)
`5 ∆σi

where ` = |x − y| =
√

(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2. The figures give the results at a
measurement height of 2 km. The values for the two lakes and the sphere are superimposed,
the left figure is a surface plot where the different colours represent the different values for the
gradients and the right plot shows the same figure only in a 3D plot, where next to the colour the
peaks represent the values of the gradients.

Figure F.6: The gravity gradient Vxx of lake 01 and lake 02 combined in one figure. The gradients of the
sphere Titan are superimposed to that of both the lakes in this figure.
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Figure F.7: The gravity gradient Vxy of lake 01 and lake 02 combined in one figure. The gradients of Titan
are superimposed to that of both the lakes in this figure.

Figure F.8: The gravity gradient Vxz of lake 01 and lake 02 combined in one figure. The values for
gradients of Titan are superimposed to that of both the lakes in this figure.
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Figure F.9: The gravity gradient Vyx of lake 01 and lake 02 combined in one figure. The values for
gradients of Titan are superimposed to that of both the lakes in this figure.

Figure F.10: The gravity gradient Vyy of lake 01 and lake 02 combined in one figure. The values for
gradients of Titan are superimposed to that of both the lakes in this figure.
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Figure F.11: The gravity gradient Vyz of lake 01 and lake 02 combined in one figure. The values for
gradients of Titan are superimposed to that of both the lakes in this figure.

Figure F.12: The gravity gradient Vzx of lake 01 and lake 02 combined in one figure. The values for
gradients of Titan are superimposed to that of both the lakes in this figure.
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Figure F.13: The gravity gradient Vzy of lake 01 and lake 02 combined in one figure. The values for
gradients of Titan are superimposed to that of both the lakes in this figure.

Figure F.14: The gravity gradient Vzz of lake 01 and lake 02 combined in one figure. The values for
gradients of Titan are superimposed to that of both the lakes in this figure.
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Gradients measured at different altitudes throughout the atmo-

sphere of Titan

The gravity gradients decline with increasing height, thus it is interesting to see until which height
the gradient is strong enough to be measured by the gradiometer. The measurement point (e.g.
the balloon) is located in the middle of both lakes, see table F.1 and the measurement are taken
upwards. The following figures show the diagonal and off–diagonal gradients up to an height of
1000 km, followed by the figures up to a height of 100 km.

Table F.1: The location of the measurement point and the area of the lakes.

Colatitude (ϑ) Longitude (λ) Area [km2]

Lake 01 11◦ 245◦ 12 050
Lake 02 17◦ 308◦ 17 497

Figure F.15: Diagonal gradients up to an altitude of 1000 km, measured at the middle of lake 01 (left) and
lake 02 (right).
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Figure F.16: Off–diagonal gradients up to an altitude of 1000 km, measured at the middle of lake 01 (left)
and lake 02 (right).

Figure F.17: Diagonal gradients up to an altitude of 100 km, measured at the middle of lake 01 (left) and
lake 02 (right).

150



Figure F.18: Off–diagonal gradients up to an altitude of 100 km, measured at the middle of lake 01 (left)
and lake 02 (right).
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Gradients measured at different balloon altitudes

When looking at the same gradients at a measurement altitude of 10 km only, variations, though
relatively small when compared to the gradients at a measurement altitude of 2 km, can be
seen. The difference seen in figure F.19 is ∼0.011 Eötvös for Vxx, ∼0.005 Eötvös for Vyy and
∼0.0015 Eötvös for Vzz.

Figure F.19: The diagonal gradients along a trajectory following 79◦N at a measurement altitude of 10 km,
lake 01 only. The density of the lake is 547 kg/m3.

Figure F.20: The off–diagonal gradients along a trajectory following 79◦N at a measurement altitude of
10 km, lake 01 only. The density of the lake is 547 kg/m3.
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Fluctuations in the gradients of Titan

Features with an amplitude of 10−23 Eötvös were visible in the simulation of the gradients of
Titan after the transformation of the Titan–centered reference system to the local north–oriented
reference system. Here it is shown that these fluctuations have no influence on the simulated total
diagonal gradients of lake 01.

Figure F.21: The diagonal gradients of Titan (left) and superimposed with the gradients of lake 01 (right)
along a trajectory at 79◦N, an altitude of 2 km above the surface and a lake density of 547 kg/m3.
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The trajectories plotted in 2D

The trajectories are plotted along longitude. To reduce the amount of information, two different
plots are made, one of 63◦–72◦and one of 74◦–85◦.

Figure F.22: The gradient Vyy along different trajectories from 63◦to 85◦N plotted in a two dimensional
way, at a measurement altitude of 2 km above the surface and a lake density of 547 kg/m3.

Figure F.23: The gradient Vzz along different trajectories from 63◦to 85◦N plotted in a two dimensional
way, at a measurement altitude of 2 km above the surface and a lake density of 547 kg/m3.
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Figure F.24: The gradient Vxy along different trajectories from 63◦to 85◦N plotted in a two dimensional
way, at a measurement altitude of 2 km above the surface and a lake density of 547 kg/m3.

Figure F.25: The gradient Vxz along different trajectories from 63◦to 85◦N plotted in a two dimensional
way, at a measurement altitude of 2 km above the surface and a lake density of 547 kg/m3.
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The trajectories plotted in 3D

The measurements done for the two dimensional case are combined in a three dimensional plot.

Figure F.26: The measured gradient Vyy along nine different trajectories plotted in a three dimensional
way, at a measurement altitude of 2 km above the surface and a density of 547 kg/m3.

Figure F.27: The measured gradient Vzz along nine different trajectories plotted in a three dimensional
way, at a measurement altitude of 2 km above the surface and a density of 547 kg/m3.
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Figure F.28: The measured gradient Vxy along nine different trajectories plotted in a three dimensional
way, at a measurement altitude of 2 km above the surface and a density of 547 kg/m3.

Figure F.29: The measured gradient Vxz along nine different trajectories plotted in a three dimensional
way, at a measurement altitude of 2 km above the surface and a density of 547 kg/m3.
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Figure F.30: The measured gradient Vyz along nine different trajectories plotted in a three dimensional
way, at a measurement altitude of 2 km above the surface and a density of 547 kg/m3.
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Influence of different densities

To show the influence of different densities on the measurements, different lake–densities are
used in the simulation. The lake densities used are given in table 2.4, which are the density and
composition of the two mixtures as suggested in [48], the density of pure methane and the density
of pure ethane.

Figure F.31: The off–diagonal gradients for different lake–densities. The measurements are taken along a
trajectory at 79◦N, an altitude of 2 km above the surface.

Figure F.32: The off–diagonal gradients for different lake–densities. The measurements are taken along a
trajectory at 79◦N, an altitude of 2 km above the surface.
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Gradients due to subsurface lakes

Figures 6.22 and 6.23 compare the gradients from deeper located lakes with the gradients of a
surface lake at a measurement altitude of 2 km. When plotting the gradients due to a lake located
at a depth of 10 km, still a small variation can be seen, see figures F.33 and F.34.

Figure F.33: The diagonal gradients for sub–surface lakes at a distance of 10 km underneath the surface of
Titan. The measurements are taken along a trajectory at 79◦N, an altitude of 2 km above the surface and
using a density of 547 kg/m3.

Figure F.34: The off–diagonal gradients for sub–surface lakes at a distance of 10 km underneath the surface
of Titan. The measurements are taken along a trajectory at 79◦N, an altitude of 2 km above the surface and
using a density of 547 kg/m3.
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Appendix G

Computed layer density of the lakes
and variance of the observations

Least squares solution for the niine observation sets

A simple rule of thumb is used in order see if the measurements done have a high enough accu-
racy. This rule of thumb gives that the density computed using the least–squares method is larger
than three times the variance found:

µ ≥ 3σµ ⇒
3σµ

µ
≤ 1

The result which is computed using the least–squares method (equation 6.14) is the difference in
density (∆µ) as explained in equation 5.3. Thus the density of the lake is computed as:

µlake = ∆µ + µ̄Titan

Table G.1: The density and variance [kg/m2] computed using the least–squares technique. A total gravity
gradient noise of 0.17 E/

√
Hz, 1 E/

√
Hz and 2.6 E/

√
Hz are used for the computations.

Observation sets Computed σij = 0.17 E σij = 1 E σij = 2.6 E
used density µ̂ σµ̂ 3σµ̂ σµ̂ 3σµ̂ σµ̂ 3σµ̂

[kg/m2] [kg/m2] µ̂ [kg/m2] µ̂ [kg/m2] µ̂

Measurement set 1: 79◦N, 2 km

Full tensor 547 40.4 0.091 238 0.534 618 1.39
Half tensor 547 41.5 0.093 244 0.549 634 1.43
Diagonals only 547 42.6 0.096 251 0.564 652 1.47
Vxx only 547 57.0 0.128 335 0.753 871 1.96
Vyy only 547 65.4 0.147 385 0.866 1001 2.25
Vzz only 547 351 0.790 2065 4.64 5370 12.1

Measurement set 2: 79◦N, 6 km

Full tensor 547 1021 2.30 6007 13.5 15617 35.1
Half tensor 547 1047 2.35 6158 13.8 16011 36.0
Diagonals only 547 1075 2.42 6321 14.2 16435 37.0

Continued on next page
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TableG.1 – continued from previous page

Observation sets Computed σij = 0.17 E σij = 1 E σij = 2.6 E
used density µ̂ σµ̂ 3σµ̂ σµ̂ 3σµ̂ σµ̂ 3σµ̂

[kg/m2] [kg/m2] µ̂ [kg/m2] µ̂ [kg/m2] µ̂

Vxx only 547 1139 2.56 6700 15.0 17419 39.2
Vyy only 547 3473 7.81 20429 45.9 53116 119.5
Vzz only 547 9059 20.4 53288 120 138550 311.6

Measurement set 3: 77◦N, 2 km

Full tensor 547 33.7 0.076 198 0.445 515 1.16
Half tensor 547 34.8 0.078 205 0.46 532 1.20
Diagonals only 547 36.0 0.081 212 0.476 551 1.24
Vxx only 547 48.5 0.109 285 0.642 742 1.67
Vyy only 547 55.4 0.125 326 0.733 848 1.91
Vzz only 547 220 0.494 1292 2.91 3360 7.56

Measurement set 4: 77◦N, 6 km

Full tensor 547 903 2.03 5312 11.9 13811 31.1
Half tensor 547 931 2.09 5475 12.3 14235 32.0
Diagonals only 547 961 2.16 5654 12.7 14699 33.1
Vxx only 547 1062 2.39 6250 14.1 16251 36.5
Vyy only 547 2440 5.49 14355 32.3 37322 83.9
Vzz only 547 5882 13.2 34598 77.8 89955 202

Measurement set 5: 79◦N, 2 and 6 km

Full tensor 547 40.4 0.091 237 0.534 617 1.39
Half tensor 547 41.4 0.093 244 0.548 634 1.43
Diagonals only 547 42.6 0.096 251 0.564 652 1.47
Vxx only 547 56.9 0.128 335 0.753 870 1.96
Vyy only 547 65.4 0.127 385 0.866 1001 2.25
Vzz only 547 351 0.789 2064 2.46 5366 12.1

Measurement set 6: 79◦N and 77◦N, 2 km

Full tensor 547 25.9 0.058 152 0.342 396 0.889
Half tensor 547 26.6 0.060 157 0.353 407 0.916
Diagonals only 547 27.5 0.062 162 0.364 421 0.946
Vxx only 547 36.9 0.083 217 0.489 565 1.27
Vyy only 547 42.3 0.095 249 0.560 647 1.45
Vzz only 547 186 0.419 1096 2.46 2849 6.41

Measurement set 7: 79◦N, 2 km and 77◦N, 6 km

Full tensor 547 40.3 0.091 237 0.534 618 1.39
Half tensor 547 41.4 0.093 244 0.548 634 1.42
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TableG.1 – continued from previous page

Observation sets Computed σij = 0.17 E σij = 1 E σij = 2.6 E
used density µ̂ σµ̂ 3σµ̂ σµ̂ 3σµ̂ σµ̂ 3σµ̂

[kg/m2] [kg/m2] µ̂ [kg/m2] µ̂ [kg/m2] µ̂

Diagonals only 547 42.6 0.096 251 0.564 652 1.47
Vxx only 547 56.9 0.128 335 0.752 870 1.96
Vyy only 547 65.4 0.147 385 0.865 1000 2.25
Vzz only 547 351 0.788 2062 4.637 5360 12.1

Measurement set 8: 79◦N, 2 km, 6 km and 77◦N, 2 km

Full tensor 547 25.8 0.058 152 0.342 395 0.889
Half tensor 547 26.6 0.060 157 0.352 407 0.916
Diagonals only 547 27.5 0.062 162 0.364 421 0.946
Vxx only 547 36.9 0.083 217 0.488 564 1.27
Vyy only 547 42.3 0.095 249 0.560 647 1.45
Vzz only 547 186 0.419 1095 2.46 2848 6.40

Measurement set 9: 79◦N, 2 km, 6 km and 77◦N, 2 km, 6 km

Full tensor 547 25.8 0.058 152 0.342 395 0.889
Half tensor 547 26.6 0.060 157 0.352 407 0.916
Diagonals only 547 27.5 0.062 162 0.364 420 0.946
Vxx only 547 36.9 0.083 217 0.488 564 1.27
Vyy only 547 42.3 0.095 249 0.559 647 1.45
Vzz only 547 186 0.419 1095 2.46 2847 6.40
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Figure G.1: The results of the least–squares estimation for nine different observation sets, σij = 1 Eötvös.
The configurations indicated below the red line comply with the rule of thumb given by equation 6.16.

Figure G.2: The results of the least–squares estimation zoomed in on the part below the red line, σij =
1 Eötvös.
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Figure G.3: The results of the least–squares estimation for nine different observation sets, σij =
2.6 Eötvös. The configurations indicated below the red line comply with the rule of thumb given by
equation 6.16.

Figure G.4: The results of the least–squares estimation zoomed in on the part below the red line, σij =
2.6 Eötvös.
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