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Abstract

Floating wind turbines are becoming fashionable within the Renewable Energy world. In the
last years MARIN has been involved in an increasing number of projects for the offshore wind
industry. Model tests are often used for validating and optimizing the floater design before
construction starts. A key point of model testing floating wind turbines is that wind and
waves are presented simultaneously in the basin. This makes it possible to study the complex
motions and interactions between the rotating turbine and the moving platform.

However the experiments are done using smaller scaled models. While for the underwater
loads Froude scaling laws are used successfully in the Offshore industry, the same should
not be done for the aerodynamic loads. Due to the strong Reynolds scale effects, the flow
regime on the blades is critical or even sub-critical, and therefore laminar-turbulent transition
and flow-separation effects play an important role. The traditional potential-flow based tools
used for design and analysis of turbines (Blade-Element-Momentum-Theory BEMT) were
not intended to work in these regimes, nor the inviscid-viscous (Boundary-Element-Method
BEM) tools, like XFOIL, used to obtain the turbine sections Cl/Cd/Cm input for the BEMT
calculations.

The complete simulation of a full-scale free-floating wind turbine under waves and winds
using viscous-flow (Unsteady-Reynolds-Averaged-Navier-Stokes URANS) CFD codes is still
nowadays very costly, if not impossible. However these CFD theoretically more accurate
methods, can be used in an efficient way for aerodynamic analysis. And they can be used
rather to generate 2D input for the BEMT design tools or for the real complete analysis of the
wind turbine. In the present work CFD URANS code ReFRESCO is used for both purposes,
having in mind the design of the new MARIN Stock (not Floating) Wind Turbine (MSWT),
based on the 5MW NREL full-scale turbine. Only open-water constant wind, fixed platform
conditions are considered here.

The objectives of the work presented are therefore threefold: 1) the NREL 5MW baseline
turbine is calculated using ReFRESCO both in full-scale and model-scale (Froude-scaling)
conditions and the scale-effects studied and quantified; 2) the MSWT designed for thrust
and performance-scaling is analyzed using CFD and validation against available MARIN
experimental data is done; 3) in order to possibly further improve the MSWT design, the
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aerodynamic characteristics of its sections/foils are scrutinized by means of a full numerical
study using ReFRESCO.

The poor performance of the NREL 5MW turbine is due to a fully separated flow over the full
range of tip speed ratios. Additionally decambering laminar separation bubbles are observed
at the pressures side of the blades, further decreasing the aerodynamic performance of the
turbine. Although laminar separation bubbles are not observed for the model-scale MSWT,
separation does occur over the full span of the suction side of the blades. For the performance-
scaled MSWT, however, an attached flow region is observed at the blade tips for the higher
tip speed ratios, resulting in increased CP /CT values and performance. Flow separation
at full-scale conditions is present only for the heavily loaded operating conditions. These
separated regions show large radial velocity components, which contradict the assumed 2D
flow in BEMT models.

The separated flow is also observed for the flow over the 2D airfoil sections of the MSWT. Even
for small angles of attack at model-scale Reynolds numbers, separation occurs and URANS
computations are necessary for larger angles of attack. For the full-scale Reynolds number
regime the flow remains attached up to larger angles of attack and URANS computations are
needed only for the extreme angles of attack (AoA > 14deg). The 2D flow phenomena at
model- and full-scale are in line with those observed for the flow over the 3D turbine.

Although the MSWT has already greatly improved model-scale performance characteristics,
the present research indicate that more improvements are perhaps possible. An alternative
pitch angle distribution can be considered in order to reduce flow separation for even lower
TSRs. Furthermore the present work showed the challenge of obtaining accurate numerical
solutions for the complex unsteady flow over a wind turbine at these critical Reynolds num-
bers, which requires: domain studies, grid and time-step studies, good iterative convergence
and an adequate turbulence model. All of these aspects were studied in this thesis.

M.K.P. Make Master of Science Thesis



Table of Contents

Acknowledgements xiii

1 Introduction 1
1-1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1-3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1-4 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theoretical Background 9
2-1 Geometry and Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2-1-1 Three-Dimensional Wind Turbine . . . . . . . . . . . . . . . . . . . . . . 9
2-1-2 Two-Dimensional Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-2 Scaling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-3 Wind Turbine Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2-3-1 Theory of Wing Sections . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-3-2 Blade Element Momentum Theory . . . . . . . . . . . . . . . . . . . . . 20

2-4 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2-4-1 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2-4-2 Reynolds-Averaged Navier-Stokes (RANS) Equations . . . . . . . . . . . 31

2-4-3 Unsteady Reynolds-Averaged Navier-Stokes (URANS) Equations . . . . . 32

2-4-4 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2-5 Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2-5-1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2-5-2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Master of Science Thesis M.K.P. Make



iv Table of Contents

3 Numerical Background 45
3-1 Numerical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-1-1 HEXPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3-1-2 ReFRESCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3-2 Discrete Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3-2-1 Discretization of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3-2-2 Defining the Cell Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 48
3-2-3 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3-2-4 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3-2-5 Convective Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3-2-6 Diffusive Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3-2-7 Source Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3-2-8 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3-3 Solution Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3-3-1 Under-Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3-3-2 Pressure Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-4 Note on Unsteady Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Numerical Setup 59
4-1 Two-Dimensional Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-1-1 Domain Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4-1-2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4-1-3 Grid Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4-1-4 Calculation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4-1-5 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4-2 Three-Dimensional Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4-2-1 Domain Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4-2-2 Turbine motion modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4-2-3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4-2-4 Grid Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4-2-5 Calculation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4-2-6 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Numerical Study on a Two-Dimensional Wing Section 77
5-1 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5-2 Domain Size Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5-2-1 Steady Flow Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5-2-2 Unsteady Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5-2-3 Final Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5-3 Numerical Uncertainty Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5-3-1 Geometric Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5-3-2 Grid Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5-3-3 Iterative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5-3-4 Discretization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5-3-5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5-4 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5-4-1 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

M.K.P. Make Master of Science Thesis



Table of Contents v

6 Numerical Study on MARIN Stock Wind Turbine (MSWT) at Model-Scale 117
6-1 Domain Size Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6-2 Numerical Uncertainty Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6-2-1 Iterative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6-2-2 Discretization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6-2-3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6-3 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6-3-1 Result Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6-4 Validation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6-5 General Flow Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Comparison of NREL 5MW and MSWT Scaling Effects 143
7-1 Scaling Effects on the NREL 5MW Baseline Turbine . . . . . . . . . . . . . . . . 143
7-2 Scaling Effects on the MARIN Stock Wind Turbine . . . . . . . . . . . . . . . . 145
7-3 Comparing the overall performance of the model-scale MSWT and full-scale NREL

5MW baseline turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7-4 Comparing the full-scale BEMT and RANS results . . . . . . . . . . . . . . . . . 155

8 Conclusions and Recommendations 157
8-1 Two-dimensional study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8-2 Three-dimensional study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8-3 Scaling effects of the MSWT and NREL 5MW . . . . . . . . . . . . . . . . . . . 160
8-4 Wind Turbine Analysis Using CFD . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 163

Glossary 169
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Master of Science Thesis M.K.P. Make



vi Table of Contents

M.K.P. Make Master of Science Thesis



List of Figures

1-1 Three Floating Offshore Wind Turbine (FOWT) design concepts. . . . . . . . . . 3
1-2 Environmental loads working on FOWTs. . . . . . . . . . . . . . . . . . . . . . 3
1-3 Effect of change in lift and drag on thrust and torque. . . . . . . . . . . . . . . 5
1-4 Foil sections of both Drela AG04 and Drela AG04-Modified (double thickness). . 6

2-1 Drela AG04 foil sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-2 Coordinate system for the 3D wind turbine. . . . . . . . . . . . . . . . . . . . . 11
2-3 Pressure, shear stress, resulting force, and moment on the airfoil. . . . . . . . . . 14
2-4 Resultant force decomposed in lift and drag. . . . . . . . . . . . . . . . . . . . . 15
2-5 Velocity profiles for laminar and turbulent boundary layers . . . . . . . . . . . . 16
2-6 Effects of a negative and positive pressure gradient on a boundary flow. . . . . . 18
2-7 Reynolds number effects on laminar boundary layer. . . . . . . . . . . . . . . . . 19
2-8 Lift curves for varying airfoil geometries obtained using XFOIL at Re = 5 · 106. . 20
2-9 Energy extraction over the stream-tube of an actuator disc. . . . . . . . . . . . . 21
2-10 Trajectory of an air particle in a wake-field. . . . . . . . . . . . . . . . . . . . . 24
2-11 Blade element swept area and airflow over rotor blade. . . . . . . . . . . . . . . 25
2-12 Blade element velocities and forces. . . . . . . . . . . . . . . . . . . . . . . . . 26
2-13 Reynold decomposition of a time fluctuating velocity signal. . . . . . . . . . . . 31
2-14 Time averaging for non stationary turbulence. . . . . . . . . . . . . . . . . . . . 33

3-1 Hanging nodes at boundary of grid refinement region . . . . . . . . . . . . . . . 46
3-2 Unit vectors used for determination of orthogonality. . . . . . . . . . . . . . . . 46
3-3 Geometric representation of volume element and volume face. . . . . . . . . . . 49
3-4 Schematic overview of two-dimensional structured grid. . . . . . . . . . . . . . . 52
3-5 Schematic of solution process used by ReFRESCO. . . . . . . . . . . . . . . . . 56

Master of Science Thesis M.K.P. Make



viii List of Figures

4-1 Coordinate system for the 2D airfoil computations . . . . . . . . . . . . . . . . . 59
4-2 Boundary conditions on the airfoil domain . . . . . . . . . . . . . . . . . . . . . 60
4-3 XY -plane view of the airfoil domain . . . . . . . . . . . . . . . . . . . . . . . . 61
4-4 Autodetect geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4-5 Refinement box around airfoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4-6 Viscous layer refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4-7 Dimensions of the hub at model-scale. . . . . . . . . . . . . . . . . . . . . . . . 69
4-8 Dimensions of the 3D domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4-9 Boundary conditions on the 3D turbine domain. . . . . . . . . . . . . . . . . . . 72
4-10 Detail of the 3D grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5-1 Flow field characteristics for MS Reynolds number regime. Re = 104, AoA = 0 deg 79
5-2 Flow field characteristics for FS Reynolds number regime. Re = 106, AoA = 6 deg 80
5-3 Convergence history of L∞ residual norms and Cl and Cd. . . . . . . . . . . . . 81
5-4 Vorticity ω for Re = 104, AoA = 20 deg, for different time instants. . . . . . . . 82
5-5 Vorticity ω for Re = 106, AoA = 20 deg, for for different time instants. . . . . . 83
5-6 Time trace of lift, drag and moment coefficients for model- and full-scale. . . . . 84
5-7 Time trace of lift, drag and moment coefficients for model-scale at AoA = 20 deg. 85
5-8 Cl and Cd for varying domain size. . . . . . . . . . . . . . . . . . . . . . . . . . 86
5-9 Domain dependence Cl and Cd for varying Re and AoA. . . . . . . . . . . . . . 87
5-10 Domain dependence drag components for various flows. . . . . . . . . . . . . . . 90
5-11 Development of lift, drag and moment coefficients for Re = 106, AoA = 20 deg. 92
5-12 Domain dependence of Cl and Cd for unsteady computations with AoA = 20. . . 93
5-13 Coarse and fine grid at the airfoil trailing edge (TE). . . . . . . . . . . . . . . . 94
5-14 Coarse and fine grid at the viscous layer refinement. . . . . . . . . . . . . . . . . 94
5-15 y+ of the grid set for Re = 106. . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5-16 Grid uncertainty for Cl , Cd and Cm at AoA = 0 deg, Re = 104, 106. . . . . . . 100
5-17 Grid uncertainty for Cl , Cd and Cm at AoA = 4 deg, Re = 104, 106. . . . . . . 101
5-18 Distribution of cell volumes and typical grid cell size based on various methods. . 102
5-19 Numerical uncertainty estimation for unsteady flow AoA = 20 deg Re = 104. . . 104
5-20 Pressure coefficient along the surface of the airfoil . . . . . . . . . . . . . . . . . 107
5-21 Cl and Cd curves of the AG04 modified foil for various turbulence models (Re = 106).108
5-22 Normalized turbulence viscosity µt = µt/µ for AoA = 4, 104. . . . . . . . . . . 109
5-23 Flow field and shear stress over an airfoil for various turbulence models. . . . . . 111
5-24 Trailing edge detail of the normalized turbulence viscosity. . . . . . . . . . . . . 112
5-25 Effect of turbulence model choice on CP in the flow domain. . . . . . . . . . . . 113
5-26 Effect of turbulence model choice on CP in the flow domain. . . . . . . . . . . . 113
5-27 Normalized turbulence viscosity µ̄t = µt/µfor AoA = 4, 106. . . . . . . . . . . . 114

M.K.P. Make Master of Science Thesis



List of Figures ix

6-1 Normalized velocity fields, slice at z = 0. . . . . . . . . . . . . . . . . . . . . . . 119
6-2 Domain size dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6-3 Iterative convergence plots of the L2-norm and CT and CP for grid 5. . . . . . . 121
6-4 Pressure residuals in the wake of the blade root and root vortex. . . . . . . . . . 122
6-5 Numerical uncertainty for Vwind = 2.47 m/s and TSR = 7.0. . . . . . . . . . . 124
6-6 Power and thrust coefficient as percentage of finest grid. . . . . . . . . . . . . . 124
6-7 Limiting streamlines for model-scale MSWT for various grid refinements. . . . . . 125
6-8 Limiting streamlines for two turbulence models . . . . . . . . . . . . . . . . . . 128
6-9 Turbulence viscosity over the turbine blade using two turbulence models. . . . . . 129
6-10 Iso-surface of the turbulence viscosity in the wake-field of the turbine. . . . . . . 130
6-11 CT curves of model-scale MSWT including uncertainties. . . . . . . . . . . . . . 133
6-12 CP curves of model-scale MSWT including uncertainties. . . . . . . . . . . . . . 134
6-13 Limiting streamlines for model-scale MSWT at various TSR. . . . . . . . . . . . 136
6-14 Pressure distribution on a turbine blade and in the domain at TSR = 7.0. . . . . 137
6-15 Normalized velocities over the tubine at TSR = 7.0. . . . . . . . . . . . . . . . 139
6-16 Normalized Q-factor and vorticity ωy in the wake-field at TSR = 7.0. . . . . . . 140
6-17 CT and CP curve of MSWT experiments and numerical simulations at model-scale.141

7-1 Turbulence viscosity along the blade for NREL 5MW baseline turbine at MS/FS. 144
7-2 Limiting streamlines for MS/FS scale NREL 5MW wind turbine at various TSR. . 146
7-3 Radial velocity and limiting streamlines at the turbine blade for TSR = 7.0. . . . 147
7-4 CT and CP as function of TSR for MS/FS NREL 5MW baseline wind turbine. . 148
7-5 Turbulence viscosity at various sections along the blade span for MSWT at MS/FS.150
7-6 Limiting streamlines for model-scale and full scale MSWT at various TSR. . . . . 151
7-7 CT and CP as function of TSR for MS/FS MARIN stock wind turbine. . . . . . 152
7-8 Limiting streamlines for MS MSWT and FS NREL 5MW turbine at various TSR. 153
7-9 CT and CP as function of TSR for FS NREL 5MW and MS MSWT. . . . . . . . 154
7-10 CT and CP as function of TSR for FS NREL 5MW BEMT and RANS results. . . 156

Master of Science Thesis M.K.P. Make



x List of Figures

M.K.P. Make Master of Science Thesis



List of Tables

2-1 Properties of the full scale and model scale NREL 5MW Baseline Wind Turbine. 10

4-1 MSWT flow properties at model-scale operating condition, TSR = 7.0. . . . . . 65
4-2 Overview of performed computations on 2D airfoil. . . . . . . . . . . . . . . . . 66
4-3 Non-dimensional geometry of the MARIN Stock Wind Turbine 5MW turbine. . . 67
4-4 Non-dimensional geometry of the NREL 5MW turbine. . . . . . . . . . . . . . . 68
4-5 Overview of performed computations on the MS/FS MSWT and NREL 5MW turbine. 75

5-1 Periodic characteristics at AoA = 20 deg. . . . . . . . . . . . . . . . . . . . . . 84
5-2 Domain size variation for various angles of attack and Reynolds number. . . . . . 88
5-3 Lift components for domain size variation. . . . . . . . . . . . . . . . . . . . . . 90
5-4 Drag components for domain size variation. . . . . . . . . . . . . . . . . . . . . 91
5-5 2D unsteady domain size computations. . . . . . . . . . . . . . . . . . . . . . . 91
5-6 Average lift, drag and moment coefficients for the computed unsteady flow. . . . 92
5-7 Grid properties of grid refinement study. . . . . . . . . . . . . . . . . . . . . . . 96
5-8 Iterative convergence and error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5-9 Average lift of the final 5 cycles for AoA = 20 deg and Re = 104. . . . . . . . . 98
5-10 lift drag and moment coefficients for analyzed flow cases . . . . . . . . . . . . . 99
5-11 Typical grid cell size hi/h1 obtained using alternative methods. . . . . . . . . . . 103
5-12 Uncertainty estimation for various typical grid cell size definitions. . . . . . . . . 103
5-13 Grid set and timesteps used for unsteady uncertainty study. . . . . . . . . . . . . 105
5-14 Uncertainty estimation for AoA = 20 deg, Re = 104 case. . . . . . . . . . . . . 105
5-15 Lift drag and moment coefficients for three turbulence models . . . . . . . . . . 107

6-1 Overview domains used and corresponding dimensions. . . . . . . . . . . . . . . 118
6-2 CT and CP for varying domain size. . . . . . . . . . . . . . . . . . . . . . . . . 118

Master of Science Thesis M.K.P. Make



xii List of Tables

6-3 Grid properties of grid refinement study. . . . . . . . . . . . . . . . . . . . . . . 120
6-4 Iterative convergence and error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6-5 Numerical uncertainty estimation for the MSWT model-scale computations. . . . 123
6-6 Power and thrust coefficients for two turbulence models . . . . . . . . . . . . . . 126
6-7 MSWT MS experimental results including 2.5% uncertainty . . . . . . . . . . . . 131
6-8 MSWT MS Uφ using relative difference of two finest grids and LS method. . . . 132
6-9 MSWT MS Uval using relative difference of two finest grids and LS method. . . 132
6-10 Absolute comparison error |E| for both CT and CP . . . . . . . . . . . . . . . . . 135
6-11 CT and CP of experiments and ReFRESCO calculations of the MSWT at MS . . 138

M.K.P. Make Master of Science Thesis



Acknowledgements

The work presented in this thesis is the final task in achieving a Master’s degree in Ship Hy-
dromechanics at the Technical University of Delft. It is the result of a study performed at the
Maritime Research Institute Netherlands (MARIN) in Wageningen. Without the availability
of proper guidance and tools, performing this study would have been impossible. Therefore I
would like to express my gratitude towards the following people.

Dr.ir. Guilherme Vaz, who guided me during my stay at MARIN. Whenever needed, I could
always count on his support both professional and personal. Prof.dr.ir Tom van Terwisga,
who gave me the opportunity to perform my thesis work at MARIN in the first place and
was always willing to give advice regarding my research topic.

I would like to thank MARIN in general for providing me with the proper tools, expertise,
a pleasant working atmosphere, not to mention the endless amounts of computer power. I
consider the time I spend at both MARIN and Wageningen as very satisfying.

Finally I would like to thank my girlfriend, parents and friends for their support during this
period.

Wageningen, MARIN M.K.P. Make
April 28, 2014

Master of Science Thesis M.K.P. Make



xiv Acknowledgements

M.K.P. Make Master of Science Thesis



“In the future, airplanes will be flown by a dog and a pilot. And the dog’s job will
be to make sure that if the pilot tries to touch any of the buttons, the dog bites
him.”
— Scott Adams





Chapter 1

Introduction

In this chapter a general introduction related to floating offshore wind turbines is given. In
section 1-1 a motivation is given which includes a description of previous and future develop-
ments in the wind energy market. The relevant developments of previous studies are explained
in section 1-2. In section 1-3 the importance of the continuation of the work and the related
objectives of this thesis is described. Finally an outline of the thesis is given in section 1-4.

1-1 Motivation

The growing demand for energy worldwide and the continuously increasing fossil fuel prices
create a bright future for the development of clean and sustainable alternatives to fossil fuels
[1, 2]. An alternative, both clean and renewable, is wind energy. The global production of
wind energy at the end of 2012 was 282.5 GW, with a growth rate over the last decade of
about 22% [3]. The total amount of potential wind energy generated worldwide is estimated
at 72 TW, more than enough to supply all the world’s energy needs [4].

Onshore wind energy technology has already been used with success over the past decades.
Although this technology is clean and renewable it also has its limitations. Offshore wind
installations are an alternative with a number of advantages.

The size of onshore turbines is constrained by capacity limitations of the available trans-
portation and erection equipment. Transportation and erection problems are mitigated in
offshore, where the size and lifting capacities of marine shipping and handling equipment still
exceeds the installation requirements for multi-megawatt wind turbines. Onshore, particu-
larly in Europe or on the East Coast of the United States, the visual appearance of massive
turbines in populated areas start to be undesirable. At a sufficient distance from the coast,
visual intrusion is minimized and wind turbines can be larger, thus increasing the overall
installed capacity per unit area. Similarly, less attention needs to be devoted to reduce tur-
bine noise emissions offshore, which adds significant costs to onshore wind turbines. Also,
the wind tends to blow faster and more uniformly at sea than on land due to the absence
topographical constraints such as mountains and buildings. A higher, steadier wind means
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less wear on the turbine components and more electricity generated per square meter of swept
rotor area. Onshore turbines are often located in remote areas, where the electricity must be
transmitted by relatively long power lines to densely populated regions, but offshore turbines
can be located close to high-value urban load centers.

The disadvantage of offshore development is that, investment costs are higher and accessibility
is restricted, resulting in higher capital and maintenance costs. Also, environmental conditions
at sea are more severe: more corrosion from salt water and additional loads from waves and
ice. And finally offshore construction is more complicated.

Despite the difficulties of offshore development, it holds great promise for expanding wind
generation capacity, however extracting wind energy offshore still is a daunting challenge [5].

The Floating Offshore Wind Turbine Concept The last decades bottom-founded offshore
wind installations already have been in operation with success. Water depth however is a
limiting factor in the deployment of these systems. One way to tackle this problem is to
install wind turbine installations on top of floating structures.

A recent report by the European Wind Energy Association (EWEA) stated that reliable
offshore wind turbine designs are necessary to unlock the promising offshore market potential
in the Atlantic, Mediterranean and deep North Sea waters. Potentially the energy produced
by wind turbines in deep waters in the North Sea alone could meet the total EU electricity
consumption four times over. Although these statements are very positive, the technology
is still at a very early stage of development, and in order to achieve commercial and large-
scale deployment, the sector must overcome technical, economic and political challenges.
The EWEA estimates that if these challenges are overcome, the first deep sea offshore wind
farms could be installed and grid connected by 2017 [6]. Comparable findings follow from an
assessment done by the National Renewable Energy Lab (NREL) for the United States [7].
Both EWEA and NREL reports also state that reliable modeling tools are key in the future
for further improvement of FOWT designs.

In the past several different FOWT design concepts have been published (see figure Figure 1-
1). Furthermore a number of FOWTs have been deployed with success. In 2009 the first
full-scale FOWT installation called Hywind spar-buoy was deployed with success in Norway
with a 2.3 MW turbine [6]. In 2011 a FOWT called WindFloat was deployed with a 2 MW
turbine in Aguçadoura Portugal. Another one-to-eight scale FOWT named VolturnUS 1:8
was deployed off the coast of Maine (US) in 2013 for data collection. This particular design
was based on the NREL 5 MW baseline turbine, the subject of study in this thesis [8].

With the arrival of FOWTs several technical challenges arose. In addition to the loads to
which land based wind turbine structures are exposed, FOWTs are subject to an even more
complex loading. Additional loads such as irregular wave loads, ice loads, collision impact,
ocean currents and many others (see figure Figure 1-2) are to be dealt with. In addition, fluid
structure interaction has an important role due to the large and slender bodies (blades and
tower) of these installations [10]. Modeling the fully coupled aeroelastic and hydrodynamic
response is therefore highly complex.
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1-1 Motivation 3

Figure 1-1: Three FOWT design concepts from left to right: Left: Ballast stabilized “Spar-
buoy” (Spar), Center: Mooring line stabilized “Tension leg platform” (TLP) Right: Buoyancy
Stabilized “Barge” With catenary mooring lines (BG) [9]

Figure 1-2: Environmental loads working on FOWTs [9].

Master of Science Thesis M.K.P. Make



4 Introduction

1-2 Background

The need for comprehensive modeling tools capable of modeling the fully coupled response
of floating offshore wind turbines led to design tools such as FAST [11]. The aerodynamic
model used by these tools is based on Blade Element Momentum Theory (BEMT) in which it
is assumed that the forces on a blade element can be calculated by means of two dimensional
airfoil characteristics. In addition this model implements empirical knowledge to account for
other effects, not described well by the BEMT, which will be explained in more detail in
chapter 2 [12, 13].

The advantage of using the modified BEMT model instead of more advanced tools such as
CFD codes lies in the fact that it is fast, cheap, and relatively easy to implement, which
makes it ideal for the early stage of concept design. In addition this aerodynamic model is
applied as part of a more complex model in which many factors need to be considered (see
figure 1-2), this would result in very complex calculations when using CFD analysis. Although
these relatively simple BEMT tools show good results for some situations their limitations,
drawbacks, and disadvantages have to be understood. Furthermore validation is needed.

The commercial floating wind turbines deployed today, such as the Hywind spar-buoy, are
equipped with instruments to collect valuable data, unfortunately the collected information
is often not publicly available. Other data for the Hywind spar-buoy platform is available,
however they are derived from wave basin model-scale testing [14].

Model-Scale Testing Proper model testing of FOWTs subject to combined wind and wave
loads is desired for the validation of FOWT design tools and to better understand the complex
underlying physics. Once accurately capturing real data of the rigid body motions and loads
by means of model testing is possible, the data can be compared with numerical model results
coming from the design tools available. These modeling tools can then be used with a much
greater degree of confidence in the design process for commercial development of floating
offshore wind turbines.

Although several model tests have been performed on FOWTs, e.g. [15–17], only one model
experiment to date has made the effort to create the high-quality wind environment required
for simulating proper wind turbine performance in a combined wind/wave test [17].

These model experiments were performed at the MARIN offshore basin where Froude scaling
was applied in order to correctly model the combined loads on these structures (both hydro-
and aerodynamic). The Froude scaling method showed good results for the structure´s re-
sponse. Unfortunately it led to significantly lower wind loads on the model-scale turbine when
compared to both model- and full-scale estimations available from numerical modeling tools
(FAST).

Reynolds Similitude The difference in wind loading was caused by Reynolds dissimilitude
when Froude scaling was applied [17]. While the full-scale Reynolds number for the operating
condition was 11× 106 at 70% blade radius, the model-scale Reynolds number was found to
be 35.7× 103. This difference in Reynolds number resulted in a laminar flow field at model-
scale while the flow was fully turbulent for the full-scale case. In addition wind turbines
and also current turbines are mostly operating at high AoA and therefore high loads, very
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Figure 1-3: Effect of change in lift and drag on thrust and torque. Left: turbulent case Right:
laminar case.

close to stall. Separation occurs often, and for low Reynolds numbers even more often. The
laminar/turbulent difference between model and full-scale in combination with the presence
of flow separation has a major impact on both Cl and Cd (CT and CP ). The effect of Reynolds
dissimilitude has previously been described and studied using CFD for axial marine current
turbines [18].

For the lower Reynolds number regime at model-scale, the Cl values were significantly lower
than for the high Reynolds number full-scale flow. On the contrary Cd was larger for the
low Reynolds numbers at model-scale. The combined effect of the altered Cl and Cd for the
low Reynolds numbers result in significantly lower aerodynamic loading especially the power
coefficient CP as can be seen in figure 1-3. Additionally Reynolds dissimilitude also has an
effect on tower loading where vortex-induced vibration phenomena might occur.

Model-Scale Turbine Improvement Since the aerodynamic loads measured during model
experiments were unsatisfactory, it was decided to improve the turbine aerodynamics while
maintaining all other dynamic loads such as centrifugal forces generated by the turbine rotor.
Several improvements have been proposed each with varying results [17, 19].

A blade section specially designed for low Reynolds numbers was proposed to improve the
model-scale turbine performance i.e. CP and CT . The new rotor blade was designed based
on the Drela AG04 airfoil section [20]. The idea was to obtain similar CT for model- and full-
scale conditions, since this axial force is the most important quantity for the floating behavior
of the turbine and platform construction. The performance of the new turbine design was
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Figure 1-4: Foil sections of both Drela AG04 and Drela AG04-Modified (double thickness).

predicted using the BEMT based turbine dedicated design tool PropID [21] and showed a
significant improvement of both the thrust and power coefficient (CT and CP respectively).
For the performance predictions done using PropID 2D Cl, Cd values coming from XFOIL1

computations were used.

Despite the improved rotor characteristics, manufacturing of such a thin turbine blade at
model scale is not feasible while maintaining adequate structural integrity. As an alternative
an increase in foil thickness was proposed as seen in figure 1-4. The effect of the increased
blade thickness on rotor performance was studied using the BEMT based turbine dedicated
design tool PropID [21] using two-dimensional Cl and Cd values coming from XFOIL. Based
on the PropID results it was decided to further use this geometry for the new model-scale
design [23]. The turbine was built and tested afterwards. This new model was further referred
to as the MARIN Stock Wind Turbine (MSWT) [19].

Results After MSWT Improvement Next, the new turbine design was tested in MARIN´s
offshore basin, and calculations were done using PropID. Both the experiment and calculation
data showed an improvement in the CT values. The improved turbine also showed a better
match with the estimated full-scale turbine performance. Despite the improvements in CT
(the objective) the results were still unsatisfactory in terms of CP .

Implementing CFD Tools Since PropID makes use of a relatively simple aerodynamic
BEMT model [21], it was desired to compare the results using a more advanced numerical
model.

The use of a Computational Fluid Dynamics (CFD) tool was the next step in validating
the data already obtained. MARIN’s in-house Unsteady Reynolds Averaged Navier Stokes
(URANS) code ReFRESCO was used to validate the previous results. 3D calculations were
performed on the improved design to compare with the model-scale experiments, model-scale
calculations by PropID, and eventually full-scale BEMT (FAST) estimates.

CFD Results The results of PropID and ReFRESCO agreed reasonably well for CT at the
design TSR= 7.0. However, for the lower TSR values the results start to deviate. When CP is
considered, the differences between the two methods (PropID, ReFRESCO) were significant.
Since PropID makes use of 2D section data it might be that the 3D effects are not well
predicted with these type of programs (BEMT) [19, 23].

1XFOIL is an interactive program for the design and analysis of subsonic isolated airfoils. Given the
coordinates specifying the shape of a 2D airfoil, Reynolds and Mach numbers, XFOIL can calculate the
pressure distribution on the airfoil and hence lift and drag characteristics [22].
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The results of the 3D ReFRESCO calculations showed a good agreement with the model
experiments for both CT and CP while the PropID results show larger deviations, again,
especially for CP [19].

Since the full-scale prediction was based on the same modeling tool PropID, a full-scale CFD
ReFRESCO analysis of the NREL 5MW baseline turbine would be of interest. In this way
the full-scale predictions of the NREL wind turbine of both PropID and ReFRESCO can
be compared. It is expected that this also provides better knowledge on the scaling effects
present.

1-3 Objectives

The aim of the present thesis work is to predict the scale-effects on floating offshore wind
turbines by means of a numerical analysis of model- and full-scale wind turbines using a
RANS CFD solver.

Based on the previous work presented, the tasks of the thesis can be summarized as follows:

1. The research previously done by MARIN must be critically evaluated to provide a clear
starting point for the remaining tasks.

2. A numerical study considering the 2D low Reynolds number airfoils, used for the MSWT
design must be performed. This, to check the sensitivity to domain-size and turbulence
model, and to determine the numerical uncertainty. The results can be used to further
improve the turbine design, and to illustrate the scale effects. Furthermore, the results
can be used as a guideline for the generation of BEMT input data by means of 2D low
Reynolds number CFD calculations.

3. A numerical study considering the model-scale MSWT must be performed in order to
check the sensitivity to domain-size and turbulence model. Furthermore a V&V study
is performed to validate the numerical results against experimental measurement data.
The results will provide the following; 1) more insight in the complex physics behind
the observed scale effects, 2) provide a guideline for future wind-turbine analysis using
CFD, 3) depending on the results suggestions can be proposed to further improve the
MSWT design.

4. The MSWT and NREL 5MW baseline turbine must be analyzed for full-scale and model-
scale conditions. The numerical settings for this analysis follow from the numerical
studies on the 2D airfoils and MSWT. The results will provide insight in the scale
effects present for both geometries. Additionally the results can be compared with the
predicted full-scale performance coming from the BEMT-based design tools.

1-4 Report Outline

The remaining chapters of this report will provide a detailed description of the study and the
relevant theory. In chapter 2 the theoretical background applicable to the study is presented.
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Topics such as wind turbine aerodynamics, scaling laws, and the equations governing fluid
flows will be covered.

The numerical theory is discussed in chapter 3. In this chapter more information is given on
the numerical tools used, especially the CFD code ReFRESCO is described in detail.

Chapter 4 is devoted to the numerical setup of both two- and three-dimensional models. The
geometry of the domains, grid topologies, and imposed boundary conditions are discussed in
this chapter.

The results are split into three parts, each presented separately in chapters 5 to 7. First
the study focusing on the numerical computations of the 2D airfoil is discussed in chapter 5.
The study considering the flow over the three-dimensional MSWT at model-scale is given in
chapter 6. The scaling effects for both NREL 5MW baseline turbine and MSWT are discussed
in chapter 7.

An overall conclusion and recommendations regarding the complete study are provided in
chapter 8.
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Chapter 2

Theoretical Background

The required theoretical background necessary for the completion of this research is presented
in this chapter. First the applied coordinate systems are presented in section 2-1. Next
the scaling methodology is discussed in section 2-2. The relevant theory on wind turbine
aerodynamics is presented in section 2-3. Finally the mathematical formulation of the flow is
discussed in section 2-4 followed by an introduction on verification and validation procedures
for numerical computations in section 2-5.

2-1 Geometry and Coordinate System

In this section the geometries of both the two and three-dimensional geometries will be dis-
cussed and additionally the respective coordinate systems will be explained. Since the two-
dimensional model is based on the full three-dimensional wind turbine geometry, the three
dimensional model will be discussed first.

2-1-1 Three-Dimensional Wind Turbine

Within this study two different turbines will be analyzed i.e. the NREL 5MW baseline and
the modified MARIN Stock Wind Turbine (MSWT).

NREL 5MW geometry In support of concept studies which are aimed at assessing offshore
wind technology, NREL developed the specifications of a representative utility-scale multi-
megawatt turbine known as the "NREL offshore 5MW baseline wind turbine". This wind
turbine is a conventional three-bladed upwind variable-speed variable blade-pitch-to-feather-
controlled turbine. To create the model, NREL obtained some broad design information from
the published documents of turbine manufacturers. Because detailed data was unavailable,
the publicly available properties from various projects where also used. From this data a
composite was created by extracting the best available and most representative specifications.
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10 Theoretical Background

The NREL 5MW model is now commonly used as a reference by research teams throughout
the world [24].

The general particulars of the NREL 5MW relevant for this study as given by [24] are pre-
sented in the second column of table 2-1.

Table 2-1: Properties of the full scale and model scale (λ = 50 + Froude scaling) NREL 5MW
Baseline Wind Turbine [24].

Property Full Scale Model Scale Units

Rated Power 5 5.7 [MW ]/[W ]
Rotor Diameter 126 2.52 [m]
Hub Diameter 3 - [m]
Hub Height (above sea level) 90 1.80 [m]
Cut-In Rotor Speed 6.9 48.81 [RPM ]
Rated Rotor Speed 12.1 85.6 [RPM ]
Cut-In Wind Velocity 3 0.42 [m/s]
Rated Wind Velocity 11.4 1.6 [m/s]
Cut-Out Wind Velocity 25 3.54 [m/s]
Rated Tip Speed 80 11.31 [m/s]
Reynolds no. @ 0.7 Radius 11.5× 106 35.7× 103 [−]

To perform experimental measurements at the MARIN offshore basin, the NREL 5MW model
was scaled using Froude scaling and geometric similarity, with a scaling parameter of λ = 50.
More details on the scaling methodology is given in section 2-2. The model scale properties
of the NREL 5MW turbine are presented in the third column of table 2-1.

The rotor blade design of the NREL 5MW turbine consists of a varying section along the
span of the blade. Near the root of the blade cylindrical sections are used, near the blade tip
a NACA 64-618 foil is used and in the intermediate region a series of sections form the DU
series is implemented. A detailed description of the blade geometry can be found in [14, 24],
or in section 4-2 of this thesis.

MARIN Stock Wind Turbine As explained before, a modified wind turbine model was
proposed to improve model-scale turbine performance. A new blade design was obtained
based on a specially designed low Reynolds number foil section i.e. the Drela-AG04. A
graphical presentation of the Drela AG04 airfoil section is given in figure 2-1(a).

Despite the Drela AG04 being suitable for use in sub-critical flow regimes, manufacturing
a wind turbine blade using such thin airfoil sections while maintaining adequate structural
integrity is simply not feasible [14, 23]. To solve this problem the thickness of the Drela AG04
was doubled resulting in a foil section as presented in figure 2-1(b). The modified foil section
will be further referred to as the Drela AG04-Modified.

For the redesign of the turbine blade the Drela AG04-Modified airfoil is employed over the
complete length of the blade, in which the structural twist of the NREL 5MW turbine blade
is mimicked. Furthermore the relative chord distribution is maintained from the NREL 5MW
blade, but the chord length is uniformly increased by 25% in order to compensate for the
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(a) Drela AG04 foil section.

(b) Drela AG04 modified foil section (Double thickness).

Figure 2-1: Drela AG04 foil sections

slightly lower lift coefficient allowing for production of the appropriate thrust forces under
Froude-scaled wind [17]. Furthermore the pitch distribution is altered using large pitch angles.
The redesigned wind turbine is further referred to as MSWT.

Coordinate System The origin of the coordinate system used for both the NREL 5MW and
the MSWT designs is located at the intersection of the rotating axis and the swept plane of the
rotor. From the origin the x-axis is pointing in forward direction, i.e. in opposite direction to
the wind direction. The positive z−axis is pointing in vertical upward direction. Finally the
y−axis is pointing in horizontal direction resulting in a positive Cartesian coordinate system
as presented in figure 2-2. In this figure also the wind velocity and the rotational direction of
the turbine is indicated by vectors Vwind and Ω respectively.

Figure 2-2: Coordinate system for the 3D wind turbine.
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2-1-2 Two-Dimensional Airfoil

The study of the two-dimensional sections are all done on the modified version of the low
Reynolds number Drela-AG04 airfoil as described in the previous section.
For these computations the x-axis is pointing from Leading Edge (LE) to Trailing Edge (TE).
The y-axis is pointing upward perpendicular to the chord line of the foil. The origin of the
coordinate system is located at the LE of the foil. The coordinate system is fixed to the airfoil
geometry and will translate along with the airfoil for different angles of attack. A graphical
presentation of the axis system is also given in figure 4-1 in chapter 4, where the numerical
setup is discussed.

2-2 Scaling Methodology

To perform accurate model-scale experiments it is of importance to properly scale the dy-
namic environment and behavior of the system considered. Within this report the scaling
methodology applied during tests previously performed at MARIN is used. In this section
only a brief description of the method is presented, for a full detailed presentation see e.g.
[14, 17].

Froude Similitude The Froude number, denoted by Fr, is the dimensionless parameter
which quantifies the ratio between gravitational and inertial forces of waves. Froude’s scaling
law in combined with geometric similarity, is the most appropriate scaling method for free
and moored floating structure tests, since the gravitational effect of the water with a free
surface predominates. The effects of other factors, such as viscosity and surface tension are
often small such that they can be neglected [25].
The Froude number is given by equation (2-1) where V represents the characteristic velocity,
g the gravitational constant, and L the characteristic dimension,

Fr = V√
gL

. (2-1)

When Froude-scaling is used, the Froude numbers for both the prototype and the model are
remained, this results in the following relationship,

Vp√
gLp

= Vm√
gLm

, (2-2)

in which the subscripts p and m in equation (2-2) represents the prototype and model respec-
tively. By combining geometric similarity, a scaling factor λ = Lp/Lm, and equation (2-2),
other quantities can be scaled in terms of the scaling factor λ. Note that for the model tests
described by [14, 17] a scaling factor of λ = 50 was used.
By implementing Froude scaling most properties of interest, which influence the global dy-
namic response of the system, are scaled accurately, except for the aerodynamic wind loads,
as will be discussed later [14]. Additional information on Froude-scaling can be found in [26].
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Tip Speed Ratio The Tip Speed Ratio (TSR) is the ratio between the angular velocity
multiplied by the radius of the turbine rotor and the inflow wind velocity [27]. The TSR is
given by equation (2-3), where Ω is the angular velocity, R the blade tip radius of the rotor,
and V the wind inflow velocity,

TSR = ΩR
V
. (2-3)

Maintaining the TSR between prototype and model will ensure that the rotational speed and
the corresponding excitation frequencies caused by aerodynamic effects are scaled correctly.
Other quantities such as the thrust and torque of the turbine are scaled accurately when a
small Reynolds number dependency is assumed for the lift and drag coefficients of the turbine
blades [14].

Reynolds Similitude Although many quantities are scaled correctly when using the Froude
scaling method, there are complications due to Reynolds number effects. The Reynolds
number, often denoted by Re quantifies the ratio between the viscous and inertial forces
of fluid flows and is given by equation (2-4) in which ρ represents the density, V the wind
velocity, L a characteristic dimension and µ the dynamic viscosity.

Re = ρV L

µ
(2-4)

While the Froude number is the primary scaling parameter in hydrodynamic model tests,
the Reynolds number effects are not scaled properly for large scaling factors. The Reynolds
number for a Froude scaled model is in fact smaller then the full-scale Reynolds number by
a factor of λ1.5, which for the experiments here considered result in a model-scale Reynolds
number which is 354 times smaller(!) than the full-scale Reynolds number (for λ = 50) [25].
The consequence of this difference in Reynolds numbers is that if the flow at full scale may
be fully turbulent O(107), at model-scale the flow maybe fully laminar O(104). The effects
of these low Reynolds numbers on aerodynamic performance is discussed in section 2-3-1

Additional Quantities Other quantities not related to the Reynolds number such as gyro-
scopic and mass properties are normally not scaled correctly when Froude scaling is applied,
however these are not relevant to the aerodynamic analysis of the turbine considered in the
present study. Additionally, from the performed experiments it was shown that these quan-
tities where scaled with reasonable accuracy for this specific experiment [14].

2-3 Wind Turbine Aerodynamics

To analyze the performance of wind turbines a good understanding of the relevant concepts
of wind-turbine aerodynamics is desired. In this section the basic required concepts and
terminology are introduced. Additionally the basic theory of both the Blade Element Method
and Blade Element Momentum Theory (BEMT) are presented in section 2-3-2.
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2-3-1 Theory of Wing Sections

Although the airflow around wind turbines is three dimensional, some of the theory to describe
wind-turbine performance relies mainly on two dimensional wing section data. Additionally
the 2D theory is applied in the studies presented in chapter 5. Therefore the main concepts
of 2D wing sections is given in this section.

Non Dimensional Parameters Three important parameters commonly used to describe the
aerodynamic performance of an airfoil section are the lift, drag, and the moment generated
by an airflow around a foil. A flow of air over an airfoil section creates a pressure P working
perpendicular to the airfoil surface. This pressure is generated by the rate of change of
momentum of the air molecules impacting on the airfoil surface. Additionally the frictional
property of the airflow generates a shear stress τ tangential to the surface of the airfoil as can
be seen in figure 2-3(a).

(a) (b)

Figure 2-3: Left Pressure and shear stress on the airfoil surface. Right Resultant aerodynamic
force and moment on the airfoil [28].

The combined net shears-stress and pressure integrated over the airfoil surface result in a
net resultant force R and moment M working in a certain direction as can be seen in figure
2-3(b).

When the resultant force R is decomposed in the direction parallel and perpendicular to
the flow direction, the lift and drag forces are obtained. By definition the lift force L is
working perpendicular to the flow direction and the drag force D is working parallel to the
flow direction. In figure 2-4 a graphical presentation of this decomposition is given where α
represents the angle of attack. The lift force mainly consists of pressure contributions while
the drag is dominated mainly by the frictional forces (i.e. at small angles of attack at which
the flow is fully attached).

Both the lift and drag forces as well as the moment can be non-dimensionalized using a
reference area S, a reference length l, and the free-stream dynamic pressure which is given by

q∞ ≡ 1
2ρ∞V

2
∞, (2-5)

where the subscript ∞ represent the properties of the flow far upstream. The resulting
dimensionless coefficients are the lift, drag, and moment coefficients given by,

M.K.P. Make Master of Science Thesis



2-3 Wind Turbine Aerodynamics 15

Figure 2-4: Resultant force decomposed in lift and drag [28].

CL ≡ L

q∞S
, (2-6)

CD ≡ D

q∞S
, (2-7)

CM ≡ M

q∞Sl
. (2-8)

These expressions are valid for three-dimensional airfoils. For considering two-dimensional
sections the reference area is reduced to only the chord length c of the foil. When the reference
length is also set to the chord length the following expressions will be as follows,

Cl ≡
L′

q∞c
, (2-9)

Cd ≡
D′

q∞c
, (2-10)

Cm ≡ M ′

q∞c2 . (2-11)

Note that the two-dimensional coefficients described by (2-9) to (2-10) are per unit span.
These coefficients describe important characteristics of a wing section and are dependent of
various variables such as Reynolds number and angle of attack.
Commonly the efficiency of an airfoil is described by the lift to drag ratio given by equation
(2-12).

L

D
= q∞SCL

q∞SCD
= CL
CD

. (2-12)
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As an addition to the lift drag and moment coefficients the pressure coefficient Cp is often
used to describe the pressure in a non-dimensional way. This is done by dividing manually
the pressure by the dynamic pressure of the free-stream flow or,

Cp = P − P∞
q∞

, (2-13)

where q∞ is given by equation (2-5).

Boundary Layer The boundary layer is located close to the surface of the body where the
viscous effects of the fluid are significant. The thickness of the boundary layer can vary and
is either laminar or turbulent. Laminar flow is smooth and regular and fluid elements move
smoothly along the steam-lines. In turbulent flow the streamlines break up and fluid elements
move in a random, irregular, and tortuous fashion.

Figure 2-5: Velocity profiles for laminar and turbulent boundary layers. Note the difference in
thickness between the laminar and turbulent layers

The difference between laminar and turbulent flow is dramatic and can have a major impact
on the aerodynamics. From figure 2-5 it can be seen that the turbulent velocity profile is
“fatter’, or fuller, than the laminar profile. For the turbulent profile, from the outer edge to
a point near the surface, the velocity remains reasonably close to the free-stream velocity;
it then rapidly decreases to zero at the surface. In contrast, the laminar velocity profile
gradually decreases to zero from the outer edge to the surface. When the velocity gradients
at the wall for both turbulent and laminar flows are compared in figure 2-5 it follows:

(
dV

dy

)
y=0

laminar <

(
dV

dy

)
y=0

turbulent (2-14)
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Hence it follows from τw = µ(dV/dy) (where τw is the surface shear stress), that the frictional
forces at the surface are larger when the boundary layer is turbulent [28], i.e.,

(τw)laminar < (τw)turbulent (2-15)

The change from a laminar to turbulent flow is called transition. The exact location at which
transition takes place, known as the transition point, depends on a large number of variables
such as the velocity of the flow and the roughness of the surface. The value of x along the
airfoil surface where transition takes place is the critical value Xcr. Additionally the critical
Reynolds number, Rexcr , is given by

ReXcr = ρ∞V∞xcr
µ∞

. (2-16)

Using the Reynolds number and the boundary layer thickness, the skin-friction coefficient can
be estimated based on flat-plate theory for both laminar and turbulent flow as follows [28];

Laminarflow : Cflam ≈
1.328√
Re
, δlam ≈ 5.0x√

Rex
, (2-17)

Turbulentflow : Cfturb ≈
0.074
Re1/5 , δturb ≈ 0.37x

Re
1/5
x

, (2-18)

where δ is the boundary layer thickness at a certain location x along the airfoil surface, Rex
the Reynolds number at location x from the leading edge of the surface.
An adverse pressure gradient i.e. an increasing pressure in the flow direction occurs when
the velocity is decreasing in the flow direction. The magnitude of this gradient has major
influence on the behavior of the boundary layer [29]. An increasing pressure gradient in the
flow direction could, depending on the curvature of the geometry, result in a negative velocity
in the boundary layer which may eventually cause separation as illustrated in figure 2-6.
The state of the boundary layer, whether laminar or turbulent, also has a significant effect on
the performance of an airfoil. The laminar boundary layer for instance is highly sensitive for
separation when adverse pressure gradients are present (typically towards the trailing edge of
an airfoil). It is susceptible to destabilization and transition to turbulent flow. The stability
of a laminar boundary layer is affected by both pressure gradients and Reynolds number [29].
Depending on the Reynolds number the laminar boundary layer reacts to adverse pressure
gradients in three different ways as can be seen in figure 2-7.
The viscous phenomena in the boundary layer work against the development of lift. The
desired lift is obtained only as long as the boundary layer can remain attached when subject
to the lift producing pressure gradients about the airfoil. Once boundary layer separation
occurs, loss of lift results and the loss increases with the extent of separation. The boundary
layer also produces drag through both friction forces and pressure forces when separation
occurs. The Reynold number serves as an indicator of certain boundary layer characteristics.
As mentioned in section 2-2 the Reynolds number regime for the particular problems (tur-
bine/foils) at model-scale is extremely low. As a result the flow around the turbine blades is
likely to be laminar and thus resulting in degraded airfoil performance i.e. decreased Cl and
increased Cd due to early flow separation.
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Figure 2-6: Effects of a negative and positive pressure gradient on a boundary flow [29].

Foil Thickness Within the linear range of a lift curve, the inviscid lift curve slope of an
airfoil will benefit from increased thickness as can be seen in figure 2-8(a). With increasing
section thickness an increase of lift curve slope of 10 percent over the thin airfoil value of 2πα
can be obtained. At high Reynolds numbers (Re ≥ 106) viscous effects will decrease the lift
curve slope, which results in lift curve slopes of typically 5% to 10% below the slope obtained
from thin airfoil theory. This is not the case for the extremely low Reynolds number regime
(typically Re = 104) [30].

For very low Reynolds numbers, where the flow is fully laminar, increasing the maximum
airfoil thickness has a negative effect on both the lift and drag properties of the airfoil.
The drag is increased due to to larger pressure recovery caused by the increased thickness.
Although this negative effect is present for a wide range of Reynolds numbers (both laminar
and turbulent) the order of magnitude is much larger for the low Reynolds number case
(typically Re < 106) resulting in a decrease in lift to drag ratio and hence a lower efficiency
[30].

For these low Reynolds numbers the growth of the boundary layer is dominating the effect
of increasing thickness by a significant decrease in lift curve slope in the linear range of the
lift curve. Additionally, increased boundary layer thickness has a decambering effect on the
effective airfoil geometry, which grows with increasing thickness. The decambering of the
effective geometry will cause a rapid reduction of the lift curve slope in the non-linear region.
The increase of thickness also causes separation to happen for lower angles of attack. The
separated regions will then result in a large displacement of flow within the aft boundary
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Figure 2-7: Reynolds number effects on laminar boundary layer subject to adverse pressure
gradient [29].
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(a) Lift curve for varying airfoil thickness. (b) Lift curve for varying airfoil camber.

Figure 2-8: Lift curves for varying airfoil geometries obtained using XFOIL at Re = 5 · 106.

layer, increasing the decambering effect even more and resulting in larger reductions in lift
compared to fully attached flows [30].

It is obvious that increasing the thickness of airfoil geometries has a great effect on the per-
formance of the foil. Especially for the low Reynolds number regime, increasing the thickness
can have negative effects. Meaning, that for attaining a specific lift at low Reynolds numbers,
it is better to have thinner airfoils with an increased amount of camber, to account for the
decambering effect.

2-3-2 Blade Element Momentum Theory

A common method to predict the performance of wind turbines is the Blade Element Mo-
mentum Theory (BEMT). This method is based on the actuator disc concept which describes
the energy extraction process of the turbine by an energy extracting disc i.e. the “actuator
disc”. The basic BEMT and all the necessary derivations are presented in this section (for a
full detailed derivation see e.g. [27]).

Actuator Disc Theory The actuator concept assumes that the affected mass of air remains
separate from the air which does not pass through the rotor disc and no air flows across the
boundary of the stream-tube (see figure 2-9). From these assumptions it follows that the
mass flow rate of the air flowing along the stream-tube will be constant for all stream-wise
positions along the stream-tube. When the air flows through the rotor disc a drop in static
pressure exists such that the air is below the atmospheric pressure behind the rotor. The
energy extraction and therefore wind-velocity and pressure drop over the actuator disc causes
the stream-tube to expand as can be seen in figure 2-9.

The power of the actuator disc theorem lies in the fact that it does not require any specific
turbine design because only the energy extraction process is considered. As a consequence it
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Figure 2-9: Energy extraction over the stream-tube of an actuator disc [27].

does in no way explain what happens to that energy; it may well be put to useful work but
some may be spilled back into the wind as turbulence and eventually be dissipated as heat.
The mass flow rate must be the same everywhere along the stream-tube and is given by ρAU
where ρ is the air density, A the swept area of the rotor, and U is the inflow velocity of the
wind. Along the stream-tube the mass flow rate can be written as follows,

ρA∞U∞ = ρAdUd = ρAwUw, (2-19)

where the subscripts ∞, d, and w refer to the undisturbed conditions far upstream, the
conditions at the actuator disc, and the conditions in at the wake-field respectively. When
the velocity variation induced by the actuator disc is superimposed on the inflow velocity U∞,
the velocity at the disc can be written in terms of a constant as follows,

Ud = U∞(1− a), (2-20)

where the constant a is known as the axial-flow induction factor.

Momentum Theory The air passing through the actuator disc as discussed previously, un-
dergoes a change in velocity i.e. U∞−Uw, and a rate of change of momentum which is equal
to the change of velocity multiplied by the mass flow rate. This can be written as follows,

Rate of change of momentum = (U∞ − Uw)ρAdU∞(1− a). (2-21)

This change of momentum is caused by the pressure difference across the disc and results in
a net force. When the pressure difference is multiplied by the swept area of the rotor the
following can be written,
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(P+
d − P

−
d )Ad = (U∞ − Uw)ρAdU∞(1− a), (2-22)

where P+
d and P−d represent the up and downstream pressure at the actuator disc respec-

tively. To find the pressure difference between the upstream and downstream flow, Bernoulli’s
equation is used to both the upstream and downstream sections of the stream-tube. Two sep-
arate equations are necessary because the amount of energy upstream of the actuator disc
differs from the amount downstream. Under steady conditions Bernoulli’s equation states the
following,

1
2ρU

2 + P + ρgh = constant, (2-23)

where P is the pressure and h is the height. It then follows from equation (2-23) that,

1
2ρ∞U

2
∞ + p∞ + ρ∞gh∞ = 1

2ρdU
2
d + p+

d + ρdghd. (2-24)

Similarly for the downstream case,

1
2ρwU

2
w + pw + ρwghw = 1

2ρdU
2
d + p−d + ρdghd. (2-25)

When subtracting equation (2-24) and (2-25) and assuming the flow to be incompressible and
horizontal i.e. ρ∞ = ρd = ρw and h∞ = hd = hw then,

(P+
d − P

−
d ) = 1

2ρ(U2
∞ − U2

w). (2-26)

Substitution of this equation into (2-22) will give,

1
2ρ(U2

∞ − U2
w)Ad = (U∞ − Uw)ρAdU∞(1− a), (2-27)

and hence,

Uw = (1− 2a)U∞. (2-28)
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Power and Thrust Coefficients A common method to describe the performance character-
istics of a wind turbine is by the power and thrust coefficients which are derived next.

The force generated by the rotor on the air is given by equation (2-22). Since this force is
working at the actuator disc the rate of work can be expressed using the air velocity at the
location of the actuator disc,

Power = FUd = U∞(1− a)2ρAdU2
∞a(1− a)

= 2ρAdU3
∞a(1− a)2. (2-29)

The power can be made dimensionless by dividing it with the power available in the free-
stream airflow, resulting the in following expression,

CP = Power
1
2ρAdU

3
∞
,

= 2ρAdU3
∞a(1− a)2

1
2ρAdU

3
∞

,

CP = 4a(1− a)2. (2-30)

The thrust coefficient is obtained when the force given by (2-22) is non-dimensionalized by
the thrust available in the free-stream flow and the swept area of the rotor. The resulting
expression for the thrust coefficient is given by,

CT = Thrust
1
2ρU

2
∞Ad

,

= 2ρAdU2
∞a(1− a)

1
2ρU

2
∞Ad

,

CT = 4a(1− a). (2-31)

Betz Limit When the power coefficient is given by (2-30) it follows that the maximum value
of CP occurs when the following is true,

dCP
da

= 4(1− a)2 − 8a(1− a) = 0. (2-32)

This is satisfied when a = 1
3 . Substitution of a = 1

3 back into equation (2-30) will give the
maximum achievable power coefficient,

CPmax = 4 · 1
3(1− 1

3)2 = 16
27 ≈ 0.5926. (2-33)
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This maximum achievable power coefficient is referred to as the Betz limit, named after the
German physicist who published the Betz limit in 1919. Until today no wind turbines have
been designed capable of exceeding this limit [27].

Angular Momentum Theory The exertion of a torque on a rotor disc by the air passing
through it requires an equal and opposite torque to be imposed upon the air. As a consequence
the air in the wake-field will rotate in the opposite direction to that of the rotor. This means
the air behind the rotor gains angular momentum. The angular and axial momentum of the
air in the wake-field result in an air particle trajectory given in figure 2-10

Figure 2-10: Trajectory of an air particle in the wake-field of a rotor disc [27].

The change in tangential velocity is expressed in terms of a tangential flow induction factor
a′. The tangential velocity is assumed to be zero upstream of the rotor and 2Ωra′ downstream
of the rotor opposite to the rotor motion. The tangential induction factor is given by the
following expression [27],

a′ = a(1− a)
γ2
r

, (2-34)

where γr is the local tip speed ratio.

Blade Element Theory The blade element theory assumes that the aerodynamic lift and
drag forces on the span-wise elements of radius r and length δr of the rotor blades are
responsible for the rate of change of both axial, and angular momentum of the air passing
through the annulus swept by these blade elements as can be seen in figure 2-11.

The theory assumes that the forces on a blade element can be calculated by means of two-
dimensional airfoil characteristics such as Cl and Cd using an angle of attack determined from
the incident resultant velocity in the cross-sectional plane of the element. Both the span-wise
velocity component and other three-dimensional effects are ignored within this theory.
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Figure 2-11: Blade element swept area and airflow over rotor blade [27].

The angle of attack used for each blade element follows from the wind speed, the induction
factors a and a′, and the rotational velocity of the rotor. The lift and drag forces can then be
calculated using the two-dimensional lift and drag coefficients, the apparent angle of attack,
and the induction factors.

From the angular velocity Ωr, the tangential velocity in the wake, and the inflow velocity U∞,
the relative velocity at the blade element can be determined. First the angular velocity and
tangential velocity are combined resulting in the tangential flow velocity at the blade given
by (1 + a′)Ωr. The relative velocity W at the blade is then as follows,

W =
√
U2
∞(1− a)2 + Ω2r2(1 + a′)2. (2-35)

This relative velocity acts at an angle φ relative to the rotor plane, as can be seen in figure
2-12. The relative velocity angle φ can be obtained using the following expressions,

sinφ = U∞(1− a)
W

and cosφ = Ωr(1 + a′)
W

. (2-36)

The lift and drag forces on the blade element of length δr relative to the direction of W are
then given by,

δL = 1
2ρW

2cClδr, (2-37)

δD = 1
2ρW

2cCdδr, (2-38)
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Figure 2-12: Blade element velocities and forces [27].

The resulting forces parallel and perpendicular to the rotor plane can then be derived as
shown in figure 2-12.

The magnitude of the relative velocity angle φ greatly influences the effect of lift and drag
(Cl and Cd) on both thrust and torque (CT and CP ). For a large relative velocity angle, the
drag of the foil is the main contributor to the total thrust force, while the lift force is the
main contributor to the torque. When the relative velocity angle is small the opposite is true,
i.e. lift is mainly contributing to the thrust force while drag is mainly contributing to the
total torque. Note that for small φ the drag is contributing negatively to the total amount of
generated torque.

Blade Element Momentum Theory All the previously discussed theorems can be combined
resulting in the Blade Element Momentum Theory (BEMT), which is generally attributed to
Betz and Glauert [12]. The theory assumes that the force of a blade element is only responsible
for the change in momentum of the air passing through the swept area of a blade element. It
is also assumed that there is no interaction between the single blade element flows in radial
direction. Although in theory this is only the case when the axial induction factor is constant
in radial direction this assumption gives good results. Especially for long aspect ratio blades
this is true, which is the case for wind turbine blades (flow is almost two-dimensional) [27].

The aerodynamic force component in axial direction generated by N blade elements is given
by,

δL cosφ+ δD sinφ = 1
2ρW

2Nc(CL cosφ+ Cd sinφ)δr. (2-39)

The rate of change of axial momentum of the air passing through the swept area of a single
blade element is given by,

ρU∞(1− a)2πrδr2aU∞ = 4πρU2
∞a(1− a)rδr. (2-40)

The pressure drop in the wake field caused by the rotational velocity induced by the rotor
generates an additional axial force on the annulus given by
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Fwake = Pwake ·Area

= 1
2ρ(2a′Ωr)22πrδr. (2-41)

Combining the axial force contributions given by equation (2-40) and (2-41) will give the total
axial force generated by N blade elements,

1
2ρW

2Nc(Cl cosφ+ Cd sinφ)δr = 4πρ[U2
∞a(1− a) + (a′Ωr)2]δr, (2-42)

W 2

U2
∞
N
c

R
(Cl cosφ+ Cd sinφ) = 8π(a(1− a) + (a′γζ)2)ζ. (2-43)

where R is the radius of the wind turbine, γ the tip speed ratio, and ζ the non-dimensional
radial position given by ζ = r/R,

The axial rotor torque caused by aerodynamic forces on the rotor blade elements is given by,

(δL sinφ− δD cosφ)r = 1
2ρW

2Nc(Cl sinφ− Cd cosφ)rδr. (2-44)

The rate of change of angular momentum of the air passing trough the swept annulus of the
blade element is

ρU∞(1− a)Ωr2a′r2πrδr = 4πρU∞(Ωr)a′(1− a)r2δr. (2-45)

When combining equation (2-44) and (2-45) the result is as follows,

1
2ρW

2Nc(Cl sinφ− Cd cosφ)rδr = 4πρU∞(Ωr)a′(1− a)r2δr,

W 2

U2
∞
N
c

R
(Cl sinφ− Cd cosφ) = 8πγζ2a′(1− a). (2-46)

The expressions for the angular and axial forces (equations (2-43) and (2-46)) can now be
used to find both the induction factors a and a′. This is an iterative process that makes use
of the following expressions,

a

1− a = σr
4 sin2 φ

[
Cx −

σr
4 sin2 φ

C2
y

]
, (2-47)

a

1− a′ = σrCy
4 sinφ cosφ, (2-48)
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here σ is the total blade area divided by the rotor disc area and is a parameter used to
determine the rotor performance. Chord solidity σr is defined as the chord length divided by
the circumferential length at that radius or,

σr = N

2π
c

r
= N

2πζ
c

R
. (2-49)

The variables Cx and Cy are given by the following expressions,

Cx = Cl cosφ+ Cd sinφ, (2-50)
Cy = Cl sinφ− Cd cosφ. (2-51)

again finding the induction factors is an iterative process. Often an initial value is chosen for
both a and a′ from which the final values will be determined.

Corrections to the Blade Element Momentum Theory In addition to the classic BEMT
several corrections are commonly used to improve the accuracy of this theory. These cor-
rections include tip- and hub-loss models that account for vortices that are shed at these
respective locations, Glauert correction to account for large induced velocities, and a skewed
wake correction model to model air inflow which is non-perpendicular to the rotor plane. The
codes available today can often be distinguished by the difference in implementation of these
corrections.
These models are applied commonly in BEMT-based design-tools. The corrections mentioned
above are described in detail in [12], where a brief description of the BEMT itself is also
included.

Common Codes Used As of today BEMT-tools are being used either commercially or in-
house for a wide range of engineering fields. A number of commonly used BEMT codes
applicable to wind turbine design are listed below,

• FAST This is a widely used wind turbine design tool using BEMT and developed
by National Renewable Energy Lab (NREL). Aside from modeling the aerodynamics,
FAST is also capable of modeling the structure of a wind turbine by a combination of
rigid and flexible bodies [13].

• Propid This is a computer program for the design and analysis of horizontal axis wind
turbines which allows for inverse design. The program varies user specified parameters
to achieve a desired peak rotor power [21].

• Qblade This is an open source, cross-platform simulation software for wind turbine
blade design and aerodynamic simulation. This code was developed at the technical
university of Berlin [31].

• CCBlade This is a blade element momentum code designed for efficient use in op-
timization applications. The solution algorithm is provably convergent, and analytic
gradients are provided for all outputs. Developed by the National Wind Technology
Center [32].
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Blade Element Momentum Theory Limitations As mentioned before, the theory is strictly
only applicable if the circulation of the blades is uniform, i.e., if the induction factor a is
uniform. If a is non-uniform there exists a radial interaction between the elements and an
exchange of momentum is present. This is a three-dimensional effect which is neglected by
the BEMT.

Additionally an important assumption is that the calculations are purely steady, it is assumed
that the flow field around the airfoil is always in equilibrium and the flow passing the airfoil
is accelerated instantaneously.

Another effect not accounted for is the large deflection of the blades when subject to large
aerodynamic loading. BEMT assumes that the momentum is balanced in the rotor plane, any
deflections of the rotor will lead to errors in the aerodynamic model. Heavy blade loading also
effects the amount of span-wise pressure variation which will deteriorate the accuracy of the
theorem since it assumes that there is no span-wise interaction between the two-dimensional
blade elements [12].

Finally, one very important limitation is the fact that BEMT-methods require 2D airfoil
characteristics which are not always available for the desired airfoil geometry or Reynolds
number.

Keeping these limitations in mind, the BEMT can be a powerful tool in wind turbine perfor-
mance prediction, and early stage of turbine design.

2-4 Governing Equations

In this section the equations which govern viscous flows will be presented. The fluid considered
is Newtonian, incompressible and isothermal. The fluid velocity is given by the velocity vector
V= (u, v, w)T in which u, v, and w represent the velocity components in the x, y, and z
direction respectively. The density, static pressure, and dynamic viscosity are denoted ρ, p,
and µ respectively. Additionally a fixed spatial Cartesian coordinate system is assumed in
this chapter.

2-4-1 Navier-Stokes Equations

Only the important equations and derivations of the Navier-Stokes (NS) equations are pre-
sented in this sections, for a full detailed derivation see e.g. [28, 33]. The governing equations
of fluid flows consist of the equations for the conservation of mass and momentum given by
the following expressions respectively,

∂ρ

∂t
+∇ · (ρV) = 0, (2-52)

∂(ρV)
∂t

+∇ · (ρVV) = ∇ ·T + ρB, (2-53)

in which B is the body force vector and T the stress tensor which given by,
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T =
(
p+ 2

3µ∇ ·V
)

I + 2µD, (2-54)

where I is the identity matrix and D the deformation tensor given by,

D = 1
2
(
∇V +∇VT

)
. (2-55)

Equations (2-52) and (2-53) combined are known as the Navier-Stokes equations.

Incompressibility For incompressible flows it is assumed that the fluid density is constant
hence ρ = c. When incompressibility is assumed the mass conservation equation (2-52) can
be written as follows,

∇ ·V = 0. (2-56)

Analogously the conservation of momentum equation can be written as

ρ

(
∂V
∂t

+∇ · (VV)
)

= ∇ ·T + ρB, (2-57)

although air is compressible, in general for aerodynamic problems where the velocities are
much lower then the speed of sound c (typically V < c/3) the fluid is assumed incompressible.
Within this research the problems considered all deal with incompressible flow, following the
incompressibility assumption mentioned above.

Reynolds Decomposition The fluid properties can be split into a mean time independent
value and fluctuating part as shown in figure 2-13. For the velocity component in the x
direction this yields ū and u′, or,

ui = ui(x, y, z) + u′i(x, y, z , t). (2-58)

Note that the over-bar (̄ ) represents the mean value. For the mean and time fluctuating
variables in equation (2-58) the follow must hold:

u′ = 0, u = u, and f̄ ḡ = f̄ ḡ (2-59)

This method of decomposing flow quantities is used in the derivation of the Reynolds Aver-
aged Navier Stokes (RANS) equations and is referred to as Reynolds decomposition. More
information on this matter can be found in [34].
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Figure 2-13: Reynold decomposition of a time fluctuating velocity signal.

Turbulence As mentioned before, the flow around an object can be characterized by two
different flow regimes i.e. laminar and turbulent flow. The laminar regime is characterized
by a steady flow where streamlines are smooth. Perturbations present in laminar flow are
dampened by viscous forces in the fluid.

Turbulent flows can be characterized by a chaotic flow where the fluid particles move randomly.
For turbulent flows the inertia forces present in the fluid dominate, and the viscous forces are
no longer able to dampen perturbations in the fluid flow.

As described in section 2-2 the definition of the Reynold number gives the ratio between
inertia and viscous forces in a fluid. It is therefore an important parameter in describing
laminar, turbulent, and transition in fluid flows.

Two common ways to describe the turbulence in a fluid flow is by the turbulence intensity
and the turbulence kinetic energy per unit mass. Both quantities are given below where Ti
represents the turbulence intensity and k the mean turbulence kinetic energy per unit mass,

Ti =

√
2
3k

V
(2-60)

k = 1
2
(
u′2 + v′2 + w′2

)
(2-61)

The turbulence kinetic energy is associated with eddies in the turbulent flow and characterized
by the RMS of the velocity fluctuations.

2-4-2 Reynolds-Averaged Navier-Stokes (RANS) Equations

Simulating turbulent flow using the full NS equations requires a fine spatial and temporal
discretization to capture the small scales in the turbulent flow and as a consequence very fine
grids and time steps to properly model small perturbations present in the flow. This high
grid resolution and small time-step requires large amounts of CPU power.
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In many practical engineering problems one is only interested in the mean flow phenomena,
therefore a more feasible modeling approach is used in which Reynolds decomposition is used.
When Reynolds decomposition is applied to the NS equations the so-called Reynolds Averaged
Navier Stokes (RANS) can be derived. The mass conservation equation given by (2-56) can
then be written as follows,

∇ ·V = 0, and, (2-62)
∇ ·V′ = 0. (2-63)

Note that both the mean flow and the time fluctuating velocity field are divergence free [35].
Equation (2-62) is known as the mean continuity equation. The momentum conservation
equation given by (2-57) can be rewritten as follows,

ρ
∂V̄i
∂t

+ ρ
∂V̄iV̄j
∂xj

= ρf̄i + ∂

∂xj

[
p̄δij + µ

(
∂V̄i
∂xj

+ ∂V̄j
∂xi

)
− ρV ′i V ′j

]
. (2-64)

Equations given by (2-64) are known as the Reynolds equations and is the same as the NS-
equations given by (2-57) except for an extra set of terms in the Reynolds equation given
by ρV ′i V ′j , which are known as the Reynolds stresses [34, 35]. Note that here the Einstein
notation is used where the indices i, j = 1, 2, 3 refer to the x, y, or z direction.

The Closure Problem For a statistically three-dimensional flow, there are four indepen-
dent governing equations describing the mean velocity field, i.e. the three components of the
Reynolds equations given by (2-64) and the mean continuity equation given by (2-62). How-
ever these four equations combined contain more than four unknowns i.e. the mean velocities
components of V̄ , the mean pressure p̄, and additionally the Reynolds stresses.

When a set of equations contain more unknowns then there are equations it is said to be
unclosed. The Reynolds equations are unclosed i.e. they cannot be solved unless the Reynolds
stresses are somehow determined [34]. The closure problem is where turbulence modeling
comes to play a role. More on turbulence modeling is presented in section 2-4-4.

2-4-3 Unsteady Reynolds-Averaged Navier-Stokes (URANS) Equations

For some types of flows the mean flow contain slow variations with time that are not turbulent
in nature. A good example is vortex shedding of an airfoil in low Reynolds number flows [36],
or flows around rotating machinery (wind turbine), imposed motions, free motions, etc.. The
decomposition of flow properties e.g. given by equation (2-58) is then replaced by the following
expression,

ui = ui(x, y, z, t) + u′i(x, y, z , t). (2-65)
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Figure 2-14: Time averaging for non stationary turbulence [36]

Note that in this expression the mean value is now also time dependent as can be seen in
figure 2-14. In this case the time scale of the cyclic variation is not related to turbulence and
must be significantly larger than the time scale of the turbulence, i.e. T1 � T2 in figure 2-14.
Application of this averaging approach to the RANS equations is sometimes referred to as Un-
steady Reynolds Averaged Navier Stokes (URANS) and in general requires increased amounts
of CPU time when compared to RANS computations. This is due to the inclusion of the vari-
ation of the solution in time.
Equation (2-65) cannot be used when no clear distinction is found between the time scale
of the imposed unsteadiness and the turbulence time scale. That is, when T1 � T2 is not
satisfied.

2-4-4 Turbulence Modeling

In order to solve the RANS equations turbulence models are introduced to “close” the problem.
These models are used to solve the Reynolds equations for the mean velocity field. As of
today numerous models have been proposed with a variety of modeling methods and fields of
application.
One class of turbulence models is based on the turbulence-viscosity hypothesis first introduced
by Boussinesq in 1877. In this approach the Reynolds stresses are related to the mean rate
of strain of a fluid element as follows,

−ρV ′i V ′j = µt

(
∂V̄i
∂xj

+ ∂V̄j
∂xi

)
− 2

3ρkδij , (2-66)

In this expression a new scalar known as the turbulence viscosity, µt is introduced (some-
times referred to as eddy viscosity). Expression (2-66) is analogous to the stress-rate-of-strain
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relation for a Newtonian fluid (see (2-64)) [34].
The models used in this study are based on this hypothesis and are of one-, and two-equation
type. The one-, or two-equation models refer to number of turbulence quantities for which
the model transport equations are solved. A total of three models are used in this research,
i.e. the Spalart-Allmaras model, and two variations of the k − ω shear stress model.

Spalart-Allmaras This one-equation model is specially developed for aerodynamic appli-
cations, and solves a single model transport equation for the turbulence viscosity µt. The
model of Spalart-Allmaras (SA) offers a considerable improvement with respect to the alge-
braic models (i.e. models that do not require the solution of any additional equations, and
are calculated directly from the flow variables) while still being a simple alternative to the
2-equation models [34].
The SA defines the turbulence viscosity by means of an auxiliary viscosity ν̃ and an auxiliary
function fv1 as follows:

νt = ν̃fv1, (2-67)

Note that the turbulence viscosity in this case is given by the kinematic turbulence viscosity,
νt = µt/ρ. The auxiliary viscosity ν̃ obeys the following transport equation,

∂ρν̃

∂t
+ ∂

∂xj
(ρν̃Uj)︸ ︷︷ ︸

Convection

= cb1(1− fv1)ρS̃ν̃︸ ︷︷ ︸
Production

+ · · ·

+ 1
σ

{
∂

∂xj

[
ρ(ν + ν̃) ∂ṽ

∂xj

]
+ cb2ρ

∂ν̃

xj

∂ν̃

xj

}
︸ ︷︷ ︸

Dissipation

+ · · ·

−
(
cw1fw −

cb1
κ2 ft2

)
ρ

(
ν̃

d

)2

︸ ︷︷ ︸
Destruction

. (2-68)

The terms in the right hand side represent the production, the dissipation, and the destruction
related term respectively. The coefficients and auxiliary functions are based on basis models
for shear flows, boundary layer flow models and transition flow models. The coefficients are
as follows:

cb1 = 0.1355, cb2 = 0.622, σ = 2
3 , κ = 0.41,

cw1 = cb1
κ2 + 1 + cb2

σ
, cw2 = 0.3, cw3 = 2,

ft2 = ct3exp(−ct3X 2), ct3 = 1.2, ct4 = 0.5.

r = min

(
10, ν̃

S̃κ2d2

)
, g = r + cw2(r6 − r), fw = g

(
1 + c6

w3
g6 − c6

w3

)1/6
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The auxiliary functions which are related to the flow close to walls are given by,

S̃ = S + ν̃

κ2d2 fv2, S =
√

2SijSji, X = ν̃

ν
,

fv1 = X 3

X 3 + c3
v1
, fv2 = 1− X

1 + Xfv1
, cv1 = 7.1,

A more detailed description of the Spalart-Allmaras model can be found in [37].

k− ω SST (1994) Until today many two-equation models have been proposed, of which
many use the turbulence kinetic energy k as one of the variables while often different choices
are made for the second variable such as the widely used k − ε model [38]. This particular
model makes use of the turbulence dissipation ε. For the k − ω model, first introduced by
Wilcox [36], the turbulence dissipation rate ω is used, which is given by ω = ε/k.

The k − ε model is known to perform well far away from walls, whereas the k − ω model is
more suitable for near boundary modeling. An improved model in which both the k − ε and
k − ω model are combined was introduced by Menter (1994). This model is the k − ω Shear
Stress Transport (SST) model, which is a blend between the k−ω model near walls, and k−ε
model far from walls [34].

For the standard k − ω SST model the turbulent viscosity is given by,

µt = ρk/ω

max(1,ΩF2/(a1ω)) , where a1 = 0.31. (2-69)

In this equation Ω represents the magnitude of the vorticity defined by Ω =
√

2ωijωij . The
auxiliary function F2 is defined by means of the wall distance d as follows,

F2 = tanh


[
max

(
2
√
k

0.09dω ,
500µ
ρd2ω

)]2
 . (2-70)

The transport equations for both the turbulent kinetic energy k and the dissipation rate ω
are then given by the following equations,

∂ρk

∂t
+ ∂

∂xj

[
ρUjk︸ ︷︷ ︸

Convection

−µ+ σkµt)
∂k

∂xj︸ ︷︷ ︸
Dissipation

]
= P̃︸︷︷︸

Production

− β∗ρωk,︸ ︷︷ ︸
Destruction

(2-71)

and,
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∂ωk

∂t
+ ∂

∂xj

[
ρUjω︸ ︷︷ ︸

Convection

− (µ+ σωµt)
∂ω

∂xj︸ ︷︷ ︸
Dissipation

]
= γρP̃︸︷︷︸

Prod.

−βρω2

︸ ︷︷ ︸
Destr.

+ 2(1− F1)ρσω2
ω

∂k

∂xj

∂ω

∂xj︸ ︷︷ ︸
Blending

. (2-72)

The auxiliary function F1 is given by the following expression,

F1 = tanh


[
min

[
max

(
2
√
k

β∗dω
,

500µ
ρd2ω

)
,

4ρσω2κ

CDkωd2

]]4
 , (2-73)

where,

CDkω = max

(
2ρσω2
ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
, (2-74)

and β∗ and κ are given by,

β∗ = 0.09, κ = 0.41.

The production P̃ is limited to prevent the build-up of turbulence in stagnation regions:

P̃ = min(τijSij , 20 · β∗ρkω) (2-75)

The remaining coefficients, i.e. β, γ, σk and σω are defined by a blending between the
coefficients of the original k − ω model and a k − ε transformed model. Both models are
denoted by 1 or 2 respectively. The blending of both constants is defined by,

φ = F1φ1 + (1− F1)φ2, φ = {β, γ, σk, σω}. (2-76)

The values of the coefficients are as follows,

σk1 = 0.85, σω1 = 0.50, β1 = 0.075, γ1 = β1
β∗
− σω1κ

2
√
β∗

= 0.553,

σk2 = 1.00, σω2 = 0.856, β2 = 0.0828, γ2 = β2
β∗
− σω2κ

2
√
β∗

= 0.440.

In the remainder of the thesis this turbulence model is refered to as the k−ω SST (Standard)
model. A more detailed description of the model can be found in [39].
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k− ω SST (2003) The third turbulence model is similar to the k − ω SST (Standard)
model however small modifications are applied based on several years of experience. The
major change in the formulation is that the strain rate , S instead of the vorticity is used in
equation 2-69. Hence Ω =

√
2ωijωij is replaced by S =

√
2SijSij , i.e. the invariant measure

of the strain rate instead of the vorticity. The resulting expression is as follows,

µt = ρk/ω

max(1, SF2/(a1ω)) . (2-77)

Additionally the limiter to prevent the build-up of turbulence in stagnation regions is altered
where a factor 10 instead of 20 is used in 2-71,

P̃ = min(τijSij , 10 · β∗ρkω) (2-78)

A more detailed descriptio of the k − ω SST (2003) model can be found in [40].

2-5 Verification and Validation

In oder to determine whether the results of the numerical computations are accurate (vali-
dation) and reliable (verification), it is necessary to perform both verification and validation
studies. Verification and Validation (V&V) are distinct activities; verification is a purely
mathematical exercise consisting of both code and solution verification while validation is a
science/engineering activity meant to show that the selected model is a good representation
of “reality” [41].

2-5-1 Verification

In any numerical calculation there are errors which have to be controlled, and if possible
quantified. The three errors generally present in numerical calculations are the round-off,
iterative, and discretization error.

The round-off error, sometimes referred to as the truncation error, is due to the finite precision
of computers, and by using double or quadruple precision can be considered low [42]. The
importance of the round-off error tends to increase with grid refinement, however, in this
study all calculations are done in double-precision in order to decrease its influence. Hence it
is assumed that the round-off error is negligibly small and therefore not considered.

The iterative error stems from the non-linearity of the mathematical equations solved by
the CFD solver. In principle the iterative error should be reduced to the same order as the
round-off error. However, for complex CFD calculations this can be very time consuming or
even impossible due to low-quality grids, complex flows or non-robust codes [41, 42].

The discretization error stems from the approximations made within the applied numerical
scheme, which discretize the partial differential RANS equations to a set of algebraic equa-
tions. It is generally the largest source of numerical uncertainty. However refinement of
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the grid or time-step will in theory reduce the discretization error. Performing a refinement
and/or time-step study will provide insight in the discretization error of a specific problem
[43]. The remainder of this section is used to describe the iterative and discretization error
for both steady and unsteady computations.

Iterative Error for Steady Flows A qualitative measure of the iterative error can be obtained
from the convergence history of a specific simulation. In this study the L2- and L∞-norm of
the non-dimensional residuals of the flow quantities are used to analyze the iterative error.
The L2-norm is defined as the RMS over the whole domain of the absolute change of the
residuals of a given variable between successive iterations, or,

L2(resφ) =
√∑np

i=1 (|resφi |2)
np

, (2-79)

where resφ is the non-dimensional change of the residual of a given variable, and np the
total number of grid cells. The L∞-norm of the residuals is defined as the maximum absolute
change in the whole domain of the residuals of a given variable between iterations (L∞(resφ)).

The flow quantities analyzed are the velocity components in the x, y, and z direction, the
pressure p, and the turbulence quantities such as the turbulent kinetic energy k. These
quantities are non-dimensionalized using undisturbed flow properties.

For the iterative error to be negligible the residuals must be two to three orders below the
discretization error, but preferably as low as possible [41, 42].

Other than the convergence of the residuals it is of importance that the integral quantities
such as the monitored lift drag and moment coefficients are converged sufficiently. For the
two-dimensional analysis, the fluctuation of Cl, Cd, and Cm are monitored for the last 200
iterations. These are then quantified as a percentage of the final iterative value,

Uφ = 100×max
( |φi − φend|
|φend|

)
, (2-80)

where φi is a specific local integral quantity at iteration i, e.g. Cl, Cd, and Cm respectively.
The resulting percentage must be at least two to three orders below the discretization un-
certainty which will be discussed next. A similar approach applied to the thrust and power
coefficient, CT and CP , is applied to the turbine cases.

Discretization Error for Steady Flows For steady computations the remaining error, i.e.
the discretization error is due to the finite number of grid cells. The numerical uncertainty
related to this error can be obtained by a so-called verification procedure.

The aim of solution verification is to estimate the numerical uncertainty Uφ of a solution, φi,
for which the exact solution, φexact, is unknown. As of today several methods are available
to determine the numerical uncertainty in CFD [42]. For this study the method described in
[41] will be used.
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The goal of the uncertainty study is to define an interval that contains the exact solution
with a 95% confidence, or,

φi − Uφ ≤ φexact ≤ φi + Uφ. (2-81)

Within this approach the numerical uncertainty for an arbitrary integral flow quantity φ is
described by,

Uφ = Fs|ε|, (2-82)

where Fs represents a safety factor and ε the estimated discretization error. The uncertainty
estimation procedure is based on Richardson extrapolation (RE), and the discretization error
ε is determined by,

ε ' δRE = φi − φ0 = αhpi , (2-83)

where φ0 is the estimate for the exact solution, φi represents any integral of local quantity, α
is a constant, h is the typical cell size, and p is the observed order of accuracy.

The definition of h is a geometrical problem (grid generation problem). A single parameter is
used to define the typical cell size of the grids. This requires that the grids must be geometri-
cally similar, i.e. the grid refinement ratio must be constant in the complete domain and the
grid properties (deviations from orthogonality or skewness) independent of the grid refine-
ment. Unfortunately any small deviation from this constraint may have severe consequences
for the error estimation (and for the estimation of p) [44].

To determine ε, this approach requires the determination of φ0, α, and p, which is done in
the least square sense using the solution from at least four grids. Since the determination of
p is extremely sensitive to perturbations alternative error estimators are being applied, i.e.,

δ02
RE = φi − φ0 = α01h

2, (2-84)
δ12
RE = φi − φ0 = α11h+ α12h

2, (2-85)

and,

δ∆M
= ∆M(

hng
h1

)
− 1

, (2-86)

where the ratio hng/h1 is known as the relative step-size, and ∆M is the data range given by,

∆M = max (|φi − φj |) 1 ≥ i, j ≥ ng, (2-87)
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where ng represents the total number of grids. The relative step size is given by equations
(2-88) and (2-89) for two- and three-dimensional grids respectively.

h1
hi

=
√
ni
n1

(2-88)

h1
hi

= 3

√
ni
n1

(2-89)

Note that for an increase in grid resolution the relative step size will decrease to unity for the
finest grid. As for equation (2-83), the error estimators, δ02

RE and δ12
RE are determined in the

least squares sense.

By using equation (2-82), and the error estimator ε the numerical uncertainty can be obtained.
Depending on the value of p the uncertainty can be determined using the following conditions,

• 0.95 ≤ p ≤ 2.05: Uφ = 1.25δRE + Us,

• p ≤ 0.95: Uφ = min
(
1.25δRE + Us, 3δ12

RE + U12
s

)
,

• p ≥ 2.05: Uφ = max
(
1.25δRE + Us, 3δ02

RE + U02
s

)
,

• For oscillatory convergence: Uφ = 3δ∆M
,

• For anomalous behavior: Uφ = min
(
3δ∆M

, 3δ12
RE + U12

s

)
,

in which Us, U02
s and U12

s are the standard deviations of the least squares fits and 1.25 and
3 represent the safety factors. These safety factors are according to the procedure proposed
by Eça & Hoekstra, who tested several flow problems and manufactured solutions regarding
this matter [44].

Iterative Error for Unsteady Flows In statistically unsteady flows, an extra contribution
for the iterative error, which is related to the influence of the initial conditions is present.
In periodic flows, the solution will only become periodic once the influence of the initial
conditions has become negligible. For quantification of the iterative error for unsteady flows
it is therefore important to monitor both the iterative error per time step and the error due
to the influence of the initial conditions [45]. The iterative error per time step is obtained
in similar way as the iterative error for steady flow problems previously discussed. The
iterative error caused by the influence of the initial condition will be obtained by computing
the averaged value of integral quantities such as the lift and drag coefficients. For this study
the iterative error introduced by the influence of the initial conditions is considered negligible
when the change per period of the averaged integral quantities is two to three orders lower
then the discretization error.
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Discretization Error for Unsteady Flows In statistically periodic flows, time-averaging must
be replaced by ensemble-averaging. In that case, time-derivatives of the mean flow quantities
are included in the RANS equations. Therefore the numerical solution of the RANS equations
requires both time and spatial discretization techniques. In such case the convergence prop-
erties of the discretization error becomes more challenging [45]. The power series expansion
given by (2-90) will now include a term to account for the time discretization present for
unsteady RANS computations.

ε ' δRE = φi − φ0 = αxh
Px
i + αtτ

pt
i (2-90)

In this expression τi is the time step, pt the observed order of accuracy with respect to the
time discretization, and αt is a constant.

Typical Cell Size Definition Implementing the uncertainty analysis described previously
requires a set of geometrically similar grids, a requirement that is hard to satisfy when using
unstructured grids. As an alternative several methods to describe the typical grid cell size
are proposed [46].

As used before the typical cell size hi is defined by the inverse of the number of cells in a grid,

hi =
( 1
Ncells

) 1
n

, (2-91)

where n is the space dimension of the grid (1, 2, or 3). Alternatively hi can be defined by the
average size of the cells (Λ1), the root mean square of the cells (Λ2), or the mode of the cell
size, i.e. the cell size that occurs more often in the cell size distribution (Λm). Λ1 and Λ2 are
expressed as follows,

Λ1 = hi =


Ncells∑
i=1

Λi

Ncells


1
n

, (2-92)

Λ2 = hi =



√√√√√√
Ncells∑
i=1

Λ2
i

Ncells



1
n

. (2-93)

The method using the mode of the cell size requires a number of intervals, which are than
used to generate a cell volume histogram. The choice must be large enough to obtain a good
estimate of the mode.
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The different methods to express hi can be graphed as a function of the grid index (ni).
For geometrically similar grids these graphs should be identical. Additionally a Probability
Density Function (PDF), used to compute the mode of the cell volumes, can be graphed.
For geometrically similar grids the PDFs for different grids in a grid-set must coincide, which
does not have to be the case for non-geometrically similar grids [46].

The implementation of different typical cell size definitions can be a valuable tool in evaluating
the numerical uncertainty for unstructured grids.

2-5-2 Validation

The aim of the verification exercise is to estimate the error/uncertainty of the numerical
calculations for which the exact solution is not known. Validation on the other hand aims
at identifying the modeling error of a given mathematical model in relation to a given set of
experimental data (physical model). The validation procedure used in [42] is discussed next.

This procedure compares the validation uncertainty Uval and the comparison error E given
by equations (2-94) and (2-95) respectively.

Uval =
√
U2
φ + U2

inp + U2
exp (2-94)

E = φi − φexp (2-95)

In these equations Uinp is the input uncertainty, i.e. uncertainties in the fluid properties,
flow geometry and boundary conditions. Uexp is the experimental uncertainty and φexp the
experimental value.

The outcome of the validation exercise is determined from a comparison of |E| and Uval as
follows:

• |E| > Uval, the comparison error is likely to be dominated by the modelling error, hence
the model must be improved.

• |E| < Uval, the modeling error is within the “noise level” imposed by the three uncer-
tainties.

The last case can mean two things, if E is considered sufficiently small, the model and its
solution are validated with Uval precision against the given experiment. When this is not the
case the quality of the numerical solution and/or the experiment should be improved in order
to draw conclusions on the validity of the mathematical model.

Experimental Uncertainty For a proper validation assessment, the experimental uncertainty
Uexp is needed. However this is uncertainty is rarely assessed, and the available experimental
data for model-scale wind turbines is very limited. In this study all experimental data is
subject to an uncertainty of 2.5% in thrust and torque, which is based on in-house stud-
ies taking into account reproducibility for different test runs, manufacturing tolerances and
uncertainties of the measurement hardware.
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Numerical Uncertainty The numerical uncertainty follows from the previously discussed
round-off, iterative, and discretization error. Applying the presented approach, in which
round-off and iterative errors are assumed negligible, the discretization error is the main
contribution of the numerical uncertainty. Note this only holds when the iterative errors are
two to three orders below the discretization error [41, 42]

Input Uncertainty The input uncertainty is caused by assumptions and simplifications made
in the numerical model. The important simplifications for the model are:

• Uniform inflow,

• No blockage effects,

• The flow is quasi-steady, which in a RANS perspective means that the flow is considered
unsteady on a turbulence time scale only.

These simplifications hold for both two- and three-dimensional steady computations. Addi-
tionally there is an uncertainty contribution caused by concessions in model geometry: e.g.
only the turbine rotor, using a simplified hub geometry is considered.

Additionally the numerical computations are performed without taking into account the ef-
fects of surface imperfections and roughness of the turbine geometry used during the experi-
ments. It is expected that these effects could have a significant effect on the separated region
due to the laminar operating conditions.

Master of Science Thesis M.K.P. Make



44 Theoretical Background

M.K.P. Make Master of Science Thesis



Chapter 3

Numerical Background

In this chapter the numerical background of the two- and three-dimensional studies are pre-
sented. First the required tools used to perform the numerical computations are discussed
in section 3-1. A detailed description of the discretization methods used in the CFD code
ReFRESCO is given in section 3-2, and finally the solution procedure is presented in section
3-3.

3-1 Numerical Tools

During the course of this study a number of software tools are used such as HEXPRESS
for grid generation, and ReFRESCO for (U)RANS computations. In this section the basic
concepts of these tools are presented.

3-1-1 HEXPRESS

The grids for this study are generated using HEXPRESS [47]. This is an automatic unstruc-
tured hexahedral mesh generator software. It generates unstructured grids which only contain
hexahedral elements and implements hanging nodes for refinements. The advantage of this
tool is the ease of use for the user. Compared to grid generator tools for structured grids the
amount of working time spent is significantly lower [48]. This is preferred for this study since
numerous grids have to be generated.

As a disadvantage, the grid quality is generally lower, especially when high aspect ratio cells
are required. This implies that a relatively large number of cells is required to obtain an
adequate grid quality [18]. Additionally, grids generated using HEXPRESS contain hanging-
nodes which are commonly located at edges where refinements are implemented as can be
seen in figure 3-1. These hanging-nodes decrease the quality of the grid (and of the numerical
calculations) due to additional geomettric eccentricity (see section 3-2-8).

Master of Science Thesis M.K.P. Make



46 Numerical Background

Figure 3-1: Hanging nodes at boundary of grid refinement region

Grid quality To judge whether the quality of the grid is sufficient, a number of grid character-
istics can be calculated. Two important parameters are the orthogonality and the equi-angular
skewness. These parameters are calculated within HEXPRESS according to the following ex-
pressions,

Equiangular skewness = max

((Tmax − Te)
180− Te

,
(Te − Tmin)

Te

)
, (3-1)

Orthogonality = 90− acos(min(Γijk)), (3-2)

where Tmin and Tmax are the minimum and maximum angle of a face or cell respectively.
Te is the angle of an equiangular face cell, i.e. 60 degrees for a triangular face, and 90 for a
quadrilateral face or hexahedral cell. Γijk is given by equation (3-3) which is the the mixed
product of the unit vectors which link the centroids of two opposite faces of a hexahedral cell,
as presented in figure 3-2.

Γijk = hi · (hj × hk), for i 6= j 6= k. (3-3)

Figure 3-2: Unit vectors used for determination of orthogonality [48].

The grids used within the three-dimensional study have a minimum orthogonality of 10 de-
grees and maximum equiangular skewness of 0.9, whereas for the two-dimensional case a
minimum orthogonality and equiangular skewness of 35 degrees and 0.7 was achieved.
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3-1-2 ReFRESCO

ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompressible
flows with the RANS equations, complemented with turbulence models, cavitation models and
volume-fraction transport equations for different phases [49]. The equations are discretized
using a finite-volume approach with cell-centered collocated variables. The equations are dis-
cretized in strong-conservation form and a pressure-correction equation based on the SIMPLE
algorithm is used to ensure mass conservation [50]. Time integration is performed implicitly
with first or second-order backward schemes. At each implicit time step, the non-linear sys-
tem for velocity and pressure is linearized with Picard’s method and rather a segregated or
coupled approach is used. In the latter, the coupled linear system is solved with a matrix-free
Krylov subspace method using a SIMPLE-type preconditioner [50]. A segregated approach
is always adopted for the solution of all other transport equations. The implementation is
face-based, which permits grids with elements consisting of an arbitrary number of faces (hex-
ahedrals, tetrahedrals, prisms, pyramids, etc.), and if needed h-refinement (hanging nodes).
State-of-the-art CFD features such as moving, sliding and deforming grids, as well automatic
grid refinement are also available in the code. For turbulence modeling, RANS/URANS,
SAS, DES approaches can be used (PANS and LES are being currently studied). The code is
parallelized using MPI and subdomain decomposition, and runs on Linux workstations and
HPC clusters. ReFRESCO is currently being developed, verified and validated at MARIN
(in the Netherlands) [42, 51–56] in collaboration with IST (in Portugal) [57], USP-TPN (Uni-
versity of Sao Paulo, Brasil) [58], TUDelft (Technical University of Delft, the Netherlands)
[50], RuG (University of Groningen, the Netherlands) [59] and recently at UoS (University of
Southampton, UK) [60].

The implemented methods for the discretizing and solving the governing equations are pre-
sented in next.

3-2 Discrete Governing Equations

The general conservation equation for an arbitrary quantity φ in integral form is given by
equation (3-4). All equation (except mass conservation), being the momentum equations
and turbulence equations are solved using this general equation. Replacing the arbitrary
quantity φ with the velocity vector V results in three momentum equations for u, v, and w
(for the three-dimensional case). To solve the turbulence models discussed in section 2-4-4,
φ is replace by either ν̃ (Spalart-Allmaras one-equation model) or k and ω (k − ω SST two-
equation models) solving equation (3-4) eiter one or two times depending on the number of
variables.

∂

∂t

∫
V

ρφdV

︸ ︷︷ ︸
Time dependent term

+
∫
S

ρφV · ndS

︸ ︷︷ ︸
Convective term

=
∫
S

Γ∇φ · ndS

︸ ︷︷ ︸
Dissipation terms

+
∫
V

qφdV

︸ ︷︷ ︸
Source term

. (3-4)

In this equation ρ is the density, n the normal outward unit vector, Γ the diffusive coefficient
(viscosity µ in case of the momentum equation), and qφ represents a source or sink term.

Master of Science Thesis M.K.P. Make



48 Numerical Background

Each of the terms in equation (3-4) can be discretized using different methods. The following
sections are used to present the discretization methods used for all these terms.

3-2-1 Discretization of integrals

Because ReFRESCO allows for general polyhedral grids, the discretization is designed for cells
with an arbitrary number of cell faces. The integral form of the momentum equations given
by equation (3-4) contains volume and surface integrals. For the approximation of the volume
integrals, the variable values at the cell centers are considered as a proper average of the cell
volume. The volume integral is therefore approximated using a second-order mid-point rule,

∫
V

φ dV ≈ φc∆V, (3-5)

where φc is the integrand value at the cell center and ∆V is the cell volume. Accordingly the
surface integrals are approximated using the following expression,

∫
S

φ dS ≈
Nf∑
i=1

φfiSfi , (3-6)

where φfi is the integrand value at the surface obtained by interpolation of the neighboring
cell center values. Sfi is the surface area of the respective cell face and Nf is the number of
cell faces of the cell considered. The method used to obtain the cell volume and face surface
areas are presented next.

3-2-2 Defining the Cell Geometry

As explained, for each cell the volume, the location of the center, and the face surfaces are
needed. In this section the method to obtain these quantities is explained. Consider an
arbitrary three-dimensional polyhedral volume element with Nf cell faces (see figure 3-3(a)).

Each cell face Sf is generated by v line segments Nv that connect the vertices. The face
center xf is defined by dividing the face surface in p = Nv − 2 triangles (see figure 3-3(b)).
Each triangle denoted by kp, consists of three vertices i.e. x1, xi and xi−1 (with i = 3, ..., Nv

and Nv ≥ 3). The area and the area centroid are calculated using equations (3-7) and (3-8).

Ak = 1
2 |(xi − x1)× (xi−1 − x1)| (3-7)

xk = 1
3(x1 + xi + xi−1) (3-8)

The face center can now be obtained as the average of the centers of each triangle weighted
by the area of the triangle:

M.K.P. Make Master of Science Thesis



3-2 Discrete Governing Equations 49

(a) Volume element with faces Si and nor-
mal vectors ni

(b) Cell face S with division into tri-angles
marked by dotted lines

Figure 3-3: Geometric representation of volume element (left) and its face (right) [61].

xf =
∑Nk
k=1Akxk∑Nk
k=1Ak

= 1
3

∑Nv
i=3 |(xi − x1)× (xi−1 − x1)|(x1 + xi + xi−1)∑Nv

i=3 |(xi − x1)× (xi−1 − x1)|
. (3-9)

Additionally the surface vector of the cell faces is given by the sum of the triangle areas Ak
or,

Sf = 1
2

Nv∑
i=3
|(xi − x1)× (xi−1 − x1)|. (3-10)

The Magnitude and the location of the surface vector can be used to define the face unit
normal vector as given in equation (3-11). The volume of a cell can than be calculated using
the divergence theorem given by (3-12), which results in equation (3-13).

nf = Sf
|Sf |

, Sf = nf |Sf | (3-11)

∆V =
∫
V

dV = 1
3

∫
V

∇ · xdV = 1
3

∫
S

x · ndS (3-12)

∆V ≈ 1
3

Nf∑
i=1

xfi · Sfi , (3-13)

Finally the location of the cell center is determined as the average of the face centers weighted
by the area of each face or:

xc ≈
∑Nf
i=1 xfiSfi∑Nf
i=1 Sfi

. (3-14)
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Now the expressions for the cell characteristics such as volume and cell-center, and the ex-
pressions for surface and volume integrals from section 3-2-1 are known. The next step is
to discretize the terms in the integral equation (3-4)which will be presented in the following
sections.

3-2-3 Time Discretization

ReFRESCO allows for a number of discretization methods to discretize the time derivative
in the time dependent term. The time derivative term for a control volume V is given by,

∂

∂t

∫
S

ρφdV, (3-15)

where the control volume V is assumed constant in time. The discretization method applied
is known as the implicit backward approximation scheme given by:

∂

∂t

∫
S

ρφdV ≈
[
c1(ρcφc∆V)n + c2(ρcφc∆V)n−1c3(ρcφc∆V)n−2]

∆t , (3-16)

where n represents the time level and ∆t the time step. Note that the subscript c represents
the value at the cell center. The choice of the coefficients c1, c2, and c3 determine the
discretization method to be used, where choosing,

c1 = 1.0; c2 = −1.0; c3 = 0.0, (3-17)

will result in the first-order backward Euler scheme, and,

c1 = 1.5; c2 = −2.0; c3 = 0.5, (3-18)

will result in the second-order backward scheme. Note that for the first and second order
schemes the choice of coefficients result in two or three time steps in the discretization re-
spectively. In this study all unsteady calculations are done using the second order backward
scheme.

3-2-4 Gradients

For the spatial discretization of equation (3-4) we will need to refer not only to the variable
quantities at the cell centers, but also to the gradients of these quantities. The gradients
of an arbitrary quantity φ can be determined from the cell surfaces by using the divergence
theorem given by:
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∫
V

∇φ dV =
∫
S

φ · n dS, (3-19)

this results in equation (3-20), where φfi is an arbitrary quantity at a cell face.

(∇φ)c ≈
1

∆V

Nf∑
i=1

φfiSfi . (3-20)

3-2-5 Convective Terms

The convective term from equation (3-4) is given below, which describes the convection of
flow property φ. For high Reynolds number flows the convective term is much more dominant
than the diffusive term, therefore it is of importance that discretization of this term is done
while keeping the discretization error as small as possible.

To discretize the convective term the flow property φ and the velocity V are needed at the
cell faces as well as the areas of the cell faces Sfi . Before continuing it must be noted that
although the grids used in this study contain hanging-nodes, for simplicity the discretizations
presented in the present work are all for structured grids. The discretization of the convective
term in equation (3-4) can be written as follows,

∫
S

ρφV · ndS ≈
Nf∑
i=1

ρφfi(Vfi · Sfi), (3-21)

where fi denotes the specific value at the cell faces i. Note that n included in Sfi according
to equation (3-11). Since the flow variables are defined at the cell centers an interpolation
must be performed to obtain the flow variables at the cell faces; in this context this is called
a “convection scheme”.

Various convection schemes are available, each with a different level of accuracy, stability
conditions and computational efficiency. The four interpolation methods commonly used in
CFD codes will be discussed here, i.e. the central difference scheme, the upwind difference
scheme, the blending scheme, and the Quadratic Upstream Interpolation for Convective Ki-
netics (QUICK) scheme.

Convection Schemes In the following paragraphs the four interpolation schemes will be
demonstrated using a two-dimensional structured grid given in figure 3-4, where Cuu rep-
resents the second upstream cell centroid, Cu the first upstream cell centroid, and Cd the
downstream cell centroid. The distance from the cell-centers to the face f is given by S.

The Central Difference Scheme (CDS) makes use of the flow variable upwind and downwind
from the respective cell-face. To do so first an interpolation coefficient λ is defined as follows,
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fi

V

S1
S2

Cu

Cd

~e

fi−1

Cuu

Figure 3-4: Non-uniform structured grid with flux from left to right where Cuu reprecents the
second upstream cell centroid, Cu the first upstream cell centroid, and Cd the downstream cell
centroid.

λ = S2
S1 + S2

. (3-22)

The variable value φfi at the face centroid, using CDS is then given by,

φfi = λφu + (1− λ)φd. (3-23)

CDS is based on Taylor series expansion and is second order accurate [62]. The Upwind
Difference Scheme (UDS) given next is less involved than the CDS and is of first order
accuracy. The face value of the variable is given by the value upwind from the face as follows,

φfi = φu. (3-24)

In order for this method to work, first the flow direction needs to be found to determine which
of the neighboring cells is the upwind cell.

The blending scheme, as the name suggests, is a blending of two schemes i.e. CDS and UDS.
A linear combination is constructed of both methods in order to express the flow properties
at the cell face. The blending scheme is described as follows,

φfi = βφCDSfi + (1− β)φUDSfi , (3-25)
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in which β is the blending coefficient which can be chosen between 0 and 1. β, in this case,
is nothing more then a coefficient which describes the blending between both methods. For
β = 0 the CDS term will vanish resulting in a fully upwind discretization. Accordingly if β is
chosen 1, the discretization is of the CDS type. The blending scheme is of first order accuracy
unless β is chosen one (in which case the central differencing scheme results).

The last convection scheme to be discussed is the QUICK scheme, which is a parabolic
interpolation method. This convection scheme is given by,

φfi = φuλ
[
S2
f (φd − φu) + Sf (1− Sf )∇φu · ddu

]
. (3-26)

The four methods discussed are discussed extensively in [63].

3-2-6 Diffusive Terms

The diffusive term presented in equation (3-4) will be discretized next. This term is a surface
integral describing the gradient at the surface i.e. face of the cells. The gradient is discretized
analogous to the method used in section 3-2-4, where a linear interpolation using the two
neighboring cell center values is applied. This results in the following discretization,

∫
S

Γ∇φ · ndS ≈
Nf∑
i=1

Γfi(∇φ · n)fiSfi ≈
Nf∑
i=1

Γfi(∇φfi · Sfi). (3-27)

As can be seen from equation (3-27) the gradients at the face-centers are needed. ReFRESCO
can calculate the gradients either by interpolation of the gradients at the neighboring cell-
centers (equation (3-28)), or by dividing the difference of the variable values at the neighboring
cell-centers by their distance |df | (equation (3-29)).

(∇φ)fi = αf (∇φ)Cu + (1− αf )(∇φ)Cd , (3-28)

(∇φ)fi = φCd − φCu
|df |

. (3-29)

Note that equation (3-28) must be solved iteratively due to the face based data structure
of ReFRESCO. In non-orthogonal grids, the above approaches may compute the gradients
in a direction which deviates from the unit normal vector of the cell-face. This difference
introduces a constant error which will not vanish with grid refinements. Extra measures have
to be taken to reduce this error. ReFRESCO has two types of correction methods which are
not discussed here. More information on the correction methods can be found in [63]
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3-2-7 Source Terms

The final term in (3-4) describes the effect of a source qφ in integral form. The source is
working on the volume of the cell considered. The integral can therefore be expressed as the
source at the cell center multiplied by the volume of the specific cell as follows,

∫
V

qφdV ≈ qφc∆V. (3-30)

3-2-8 Eccentricity

The discretization of the governing equations, implemented in ReFRESCO uses the second-
order mid-point rule, which for the surface integrals requires the integrand values at the cell
faces φf . In addition, variable values at the cell faces are needed to compute gradients at
the cell centroid (see section 3-2-4). In general φf is computed using linear interpolation
between two neighboring cell centers. However, for non-orthogonal grids the position of the
computed face variable deviates from the location of the face centroid (see figure 3-4. This
deviation is the so-called eccentricity, which, if not corrected, affects the numerical solution
by introducing a constant numerical error.

The error introduced by the eccentricity can be corrected for by moving the point of the
interpolated value xe to the location of the face centroid xf . This results in an extra term to
the linear interpolation of φf ,

φf = φe + (∇φe · ef ), (3-31)

where ef is the eccentricity vector defined by,

ef = xf − [αfxu + (1− αf )xd] = xf − xe, (3-32)

and αf is the interpolation factor. Note that when applied to the calculation of gradients at
the cell center, the eccentricity correction is an iterative process. Since the gradient depends
on the variable at the face centroid, which in turn depends on the gradient at the cell center.

Although not discussed in the present work, the interpolation factor αf can be determined in
several ways. More information on determining the interpolation factor is given in [63].

3-3 Solution Process

The flow problem to be solved is described by a coupled system of equations, i.e. the dominant
variable of each equation occurs in some of the other equations. ReFRESCO allows for two
methods to solve these systems of equation in discrete form, i.e. a coupled and segregated
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method. The coupled method solves the system of equations for all variables simultaneously,
the segregated approach solves each equation for its dominant variable, treating the other
variables as known. An iterative procedure is then used until the solution of the coupled
system is obtained. In this study only the segregated method is used and therefore the
coupled solver will not be treated here.

The non-linearities and higher-order corrections, e.g. the discretized convective term of the
momentum equation given by,

Nf∑
i=1

ρVfi(Vfi · Sfi), (3-33)

needs to be solved iteratively. This iterative process is performed within the so-called outer-
loop (see figure 3-5), which for equation 3-33 results in,

Nf∑
i=1

ρV k
fi(Vfi · Sfi)k−1, (3-34)

where the subscripts k and k − 1 represent the current and previous outer-loop iteration
respectively. Higher-order corrections such as the eccentricity correction discussed in 3-2-8
are also solved within the outer-loop.

Next a linear system of equations for each variable, i.e. u, v, w, and the required variables
of the turbulence model are solved in a number of so-called inner-loops. The three velocity
components are first obtained after which the pressure is corrected (see section 3-3-2). After
the pressure correction procedure the turbulence quantities are solved. Depending on the
number of quantities used within the turbulence model, this is done in one or two extra
inner-loops. After solving the turbulence model transport equations the whole process is
repeated (outer-loop).

Both the inner- and outer-loops are stopped when a user defined maximum number of itera-
tions is reached, or when the solution reached the required level of convergence. Convergence
criteria are based on the L2- or L∞-norm of the residuals (see e.g. section 2-5). A schematic
presentation of the solution process is given in figure 3-5. More information on the applied
solution methods can be found in [64].

3-3-1 Under-Relaxation

To improve the convergence stability of the solution it is necessary to limit the change in
each variable from one outer iteration to the next. This is because a change in one variable
changes the coefficients in the next equations to be solved, which may slow down or prevent
convergence. Controlling the change in variables from on iteration to the next is done by
implementing under-relaxation. This can be done either explicit or implicit. By implementing
explicit under-relaxation a flow variable to be solved is expressed as a function of both the
old and new solution given by,
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Initial Values
u0, v0, w0, P0, T0, µt0

Start Time Loop

Start Outer Loop

Solve Momentum
Equations

(inner loops 1-3)

Pressure Correction

Solve Turbu-
lence Model

(inner loop 4,(5))

Update Flow Field

Converged Outer loop/
Maximum Iterations

n = n + 1

Maximum
Timestep Reached? t = t + ∆t

Final Solution

Pn−1, Vn−1, µn−1
t V∗

V∗ Pn, Vn

ωn−1, kn−1, µn−1
t , Vn ωn, kn, µnt

ωn, kn, µnt , Vn, Pn

No

No

Yes

Yes

Figure 3-5: Schematic of solution process used by ReFRESCO.
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φ = φold + β(φnew − φold) (3-35)

In which the variable β can be chosen 0 ≤ β ≤ 1. When β = 1 the solution consists of only the
new solution φnew, hence no under-relaxation is implemented. On the other hand when β = 0
the solution consists of only the old solution, which results in no progress towards convergence.
Selecting the correct value for β and thus the amount under-relaxation is largely empirical,
however it is obvious that choosing β = 1 or β = 0 is somewhat useless [64]. Choosing β close
to zero results in steady convergence but decreased convergence rate.

3-3-2 Pressure Correction

When the momentum equations are solved sequentially, i.e. using the decoupled approach,
the set of algebraic equations for each component of the momentum is solved in turn, treating
the grid point values of its dominant velocity component as the sole set of unknowns. The
pressure field used in these iterations is obtained from the previous outer-loop iteration (see
figure 3-5), hence the velocities computed do not normally satisfy the discretized continuity
equation. To ensure the continuity condition, the velocities need to be corrected, i.e. the
pressure field needs to be modified. This is done using the so-called Semi Implicit Method
for Pressure Linked Equation (SIMPLE) method, which is an iterative method designed for
a "collocated" variable arrangement.

This method makes use of the Poisson equation for the pressure given by,

∂2P

∂x2
i

= −ρ ∂

∂xi

[
∂VjVi

∂xj

]
, ⇒ . (3-36)

The sequence of steps of the SIMPLE method, which are performed each outer-loop, is three-
fold:

• Step A: Solve momentum equations using an initial ( P0 at the first step) or a previously
computed pressure field Pn−1. This results in an initial prediction of the velocity field
V∗

• Step B: Solve the Poisson equation (3-36) using V∗ to compute the pressure correction
P′ at the new iteration step.

• Step C: Correct the velocity field using the corrected pressure (P = Pn−1 + P′).

3-4 Note on Unsteady Computations

When performing unsteady computations the time step size ∆t needs to be defined. For
the two-dimensional computations the time step is based on the shedding frequency of the
airfoil and constraints regarding the CFL number. A Strouhal number of St = 0.20 is used to
estimate the shedding frequency, following the theory on flow around circular cylinders [65].
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The corresponding shedding period T is used to obtain an initial value for ∆t by choosing
∆t = T/100. Additionally the CFL number must be kept around 100. Both the choice of
∆t = T/100 and CFL = 100 are based on previous studies [58, 66] and result in sufficient
resolution to properly capture the flow.

Note that considering the CFL number only by itself is not sufficient in choosing the time-
step, since it only describes the ratio between the time-step and grid-cell size.
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Chapter 4

Numerical Setup

In this chapter the numerical setup used all computations is presented. The chapter is split
into two sections: first a section on the two-dimensional setup used for the calculations on
the 2D foils, followed by a section on the three-dimensional setup used for the computations
on the turbine rotor (section 4-1 and 4-2 respectively).

4-1 Two-Dimensional Airfoil

4-1-1 Domain Dimensions

The two-dimensional computational domain consists of the airfoil geometry located at the
center of a circular domain. The origin of the coordinate system is located at the Leading
Edge (LE) of the airfoil (see figure 4-1).

Figure 4-1: Coordinate system for the 2D airfoil computations
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The choice for the circular domain follows from the various angles of attack to be analyzed.
By correctly altering the boundary condition a single grid can be used for different angles of
attack.
Even though the analysis of the airfoil is two-dimensional the domain is modeled with a finite
thickness in the third (z) dimension (see figure 4-2). The NS-equations however are only
solved in the x-, and y-direction. This is required since the discretization is face based as
explained in section 3-2-2.

Figure 4-2: Boundary conditions on the airfoil domain

Because of this finite thickness in the z-direction the airfoil has a non-zero span. For simplicity
both the chord and the span of the airfoil are unity. By doing so quantities such as the lift
and drag coefficients, given by equations (2-9) and (2-11), remain unchanged (hence two-
dimensional). The diameter D of circular boundary of the domain is be expressed in terms
of the airfoil chord, i.e. D = 2×R/c. Figure 4-3 shows an xy-plane section of the domain.
To assure that the influence of the outer wall on the solution is negligibly small, an optimum
domain diameter study is presented in section 5-2.

4-1-2 Boundary Conditions

In order to obtain a numerical solution a number of boundary conditions need to be imposed at
the domain walls. In figure 4-2 the names of the imposed boundary conditions are presented.
When a solid surface is subject to a flow it is impossible for the flow to penetrate the surface.
Additionally, when the flow is viscous, the interaction between the surface and the flow
creates a zero velocity at the surface as can be seen from figure 2-5. Mathematically this can
be imposed onto the airfoil wing by prescribing the normal and tangential velocities to be
zero or V = ~0 at the airfoil surface. Furthermore the turbulence variables for the Spalart-
Allmaras and k−ω SST models are given by, ν̃wall = 0, kwall = 0, and ωwall = 60·µ/ρβ1(∆d)2.
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Figure 4-3: XY -plane view of the airfoil domain

These boundary conditions combined are referred to as the BCWALL boundary condition within
ReFRESCO.

Since the problem to be solved is two-dimensional the sides of the domain are treated sepa-
rately. A slip wall boundary condition is imposed at the sides of the domain to maintain the
2D character of the flow. Mathematically this is obtained by setting the velocity normal to
the boundary to zero,

V · ~n = ∂V
∂~n

= 0, (4-1)

where is the normal unit vector. Although the normal velocity components are set to zero it
has no influence on the solution since the RANS equations are not solved in the z-direction.
Note however that by implementing this boundary condition the tangential velocity is not
prescribed at the wall. This boundary condition is prescribed by implementing BCSLIPWALL
within ReFRESCO.

The third boundary condition is imposed at the outer circular wall and is known as the
BCAUTODETECT boundary conditions (see figure 4-2). This boundary condition automatically
prescribes the inflow, outflow, and pressure boundary regions by means of a prescribed velocity
vector and two angles α and β. The velocity vector is used to determine the in and outflow
regions and α and β are used to determine the size of the pressure boundary. This method
is a “trick” of ReFRESCO that permits to save a lot of computational time. A graphical
presentation of the BCAUTODETECT boundary condition is given in figure 4-4. The effect of α
and β on the numerical solution is outside the scope of the work presented in this report,
however a detailed study previously performed is presented in [67]. For this study, α and β
were set to the default values of 75 and 105 degrees respectively.
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Figure 4-4: Geometry of the autodetect boundary conditions [67].

At the inflow boundary region determined by BCAUTODETECT the velocity is prescribed by
means of the velocity vector V. The pressure regions are prescribed be means of setting the
pressure at these boundaries to atmospheric pressure. At the remaining boundary region an
outflow condition is prescribed, for which Neumann boundary conditions are applied to the
flow variables, i.e. the normal gradients are zero for,

∂V
∂~n

= ∂P

∂~n
= ∂ν̃

∂~n
= ∂k

∂~n
= ∂ω

∂~n
= 0, (4-2)

where ~n is the outward normal unit vector. Having boundaries close to the airfoil or turbine
will influence the solution, e.g. blockage-effects due to the imposed boundary conditions can
alter the airfoil or turbine performance. To study the effect of the boundary conditions on
the numerical solution a domain study must be performed, which is part of the present study
(for both 2D and 3D turbine).

Additionally the turbulence variables of the turbulence models need to be prescribed at the
inflow boundary, which will determine the level of turbulence entering the domain. The
choice of the inflow turbulence variables is especially important for the unsteady low Reynolds
number flows considered in this thesis. The values of the turbulence variables at the inflow
are equal for all computations, and set such that a laminar inflow is obtained.
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4-1-3 Grid Topology

The domain, as previously discussed, is discretized using HEXPRESS. Since the calculations
are two-dimensional only one cell is modeled in the z-direction. In the xy-plane a uniform
mesh is generated as a starting point for the grid generation process.

Figure 4-5: Refinement box around airfoil.

To avoid hanging nodes in the vicinity of the airfoil a refinement box is introduced in which
the airfoil geometry is contained as shown in figure 4-5. The refinement of the cells within
refinement box is such that the desired grid resolution at the airfoil is obtained. The size and
location of the refinement-box is given in figure 4-5 and is chosen such that the important
flow phenomena e.g. flow separation are captured within the refined area. Note that the
refinement box dimensions are such that the flow phenomena are captured for the full range
of angles of attack considered, as will be discussed later.
Because the calculations are executed without the use of wall functions, an additional re-
finement, called “viscous layer”, has to be imposed near the airfoil surface. This is done to
guarantee sufficient grid resolution to accurately compute the large gradients present in the
boundary layer. The resolution of this refinement is based on the dimensionless wall dis-
tance y+. y+ < 1 refers to the viscous sublayer where the Reynolds shear stress is negligible
compared to the viscous stress. Based on this y+ the initial cell size at the airfoil surface is
determined using the following expression,

∆S = y+µ

ρVfric
. (4-3)

∆S and a stretching ratio can than be used as input for HEXPRESS to determine the amount
of refinements needed. Figure 4-6 shows the viscous layer refinements around the airfoil surface
with a detailed view at the bottom right corner. These refinements follow directly from ∆S
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Figure 4-6: Viscous layer refinement with detailed view of TE.

4-1-4 Calculation Overview

The analysis for the two dimensional study consists of computations where both angle of
attack and Reynolds number are varied. The range of these parameters follow from a number
of reasons. First; the local tip speed ratio (γr = Ωr/Vwind) is non uniform in radial direction,
causing the radial velocity Ωr to vary with increasing radius r. As a result the direction
of the relative velocity, and therefore the angle of attack, varies over the span of the blade
(see equations (2-35) and (2-36)). A non-uniform pitch angle of the rotor blade in radial
direction also contributes to the need for a wide range of angles of attack to be computed.
Second; the turbine is analyzed using two different scales, hence different wind velocities. As
a consequence the Reynolds number will vary.

The final reason follows directly from the range of tip speed ratios to be analyzed. Despite
the fact that the operating condition of the NREL 5MW turbine is at a tip speed ratio of
7 (see table 2-1), a range of various tip speed ratios is analyzed. By doing so the overall
performance of the turbine is obtained. The range of TSRs to be analyzed also requires
numerous computations in which Reynolds number and angles of attack are varied.

The local angle of attack and Reynolds number along the radius of the MSWT and NREL
5MW turbine are presented in table 4-1. Note that the data for the MSWT is presented
for model-scale conditions while the data for the NREL 5MW turbine is presented for full-
scale conditions. The data presented in these tables correspond to the operating conditions
specified in table 2-1.

From the given data the flow properties for the initial studies (i.e. domain size and grid
refinement study) are as follows:

• 2x Reynolds numbers; 104, 106;

• 2x Angles of attack; 0 and 20 degrees.

Based on the above, a number of computations are performed, as presented in table4-2.
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Table 4-1: MSWT flow properties at model-scale operating condition, TSR = 7.0.

Radius Chord Length Pitch Angular Local Apparent Relocal
r/R c/r Angle β vel. Ωr AoA Velocity
[−] [−] [deg] [m/s] [deg] [m/s] [−]

Marin Stock Wind Turbine at model-scale (Vwind = 2.0 [m/s])
0.1 0.076 31.18 1.13 23.60 1.96 12.1 · 103

0.2 0.090 16.39 2.26 18.92 2.77 20.3 · 103

0.3 0.088 8.50 3.39 16.78 3.75 26.9 · 103

0.4 0.082 5.50 4.52 14.00 4.79 32.0 · 103

0.5 0.074 3.80 5.65 12.02 5.87 35.4 · 103

0.6 0.068 2.50 6.78 10.78 6.96 38.6 · 103

0.7 0.060 1.67 7.91 9.77 8.07 39.5 · 103

0.8 0.052 1.00 9.04 9.04 9.18 38.9 · 103

0.9 0.046 0.40 10.16 8.54 10.29 38.6 · 103

1 0.028 0.05 11.29 8.01 11.41 26.0 · 103

NREL 5MW Turbine at full-scale (Vwind = 11.4 [m/s])
0.05 0.056 13.26 3.99 57.45 12.08 27.7 · 105

0.15 0.069 13.26 11.97 30.33 16.53 46.3 · 105

0.25 0.073 11.70 19.96 18.04 22.98 68.0 · 105

0.35 0.070 9.66 27.94 12.53 30.18 86.2 · 105

0.45 0.064 7.65 35.92 9.96 37.69 98.2 · 105

0.55 0.057 5.79 43.91 8.76 45.36 10.5 · 106

0.65 0.050 4.11 51.89 8.28 53.13 10.9 · 106

0.75 0.046 2.60 59.87 8.18 60.95 11.3 · 106

0.85 0.040 1.31 67.85 8.23 68.80 11.3 · 106

0.95 0.029 0.31 75.84 8.24 76.69 90.4 · 105
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Table 4-2: Overview of performed computations on 2D airfoil.

AoA Re no. Std./Unstd. Radius (r/R) Ncells Turbulence model
[deg] [−] [−] [−] [−] [−]

Domain Size Study
0 104 Steady 10 - 200 22.3k k − ω SST (2003)
4 104 Steady 10 - 200 22.3k k − ω SST (2003)
0 106 Steady 10 - 200 22.3k k − ω SST (2003)
4 106 Steady 10 - 200 22.3k k − ω SST (2003)
20 104 Unsteady 10 - 100 22.3k k − ω SST (2003)
20 106 Unsteady 10 - 100 22.3k k − ω SST (2003)

Refinement Size Study
0 104 Steady 100 36.3k - 1.4M k − ω SST (2003)
4 104 Steady 100 36.3k - 1.4M k − ω SST (2003)
0 106 Steady 100 36.3k - 1.4M k − ω SST (2003)
4 106 Steady 100 36.3k - 1.4M k − ω SST (2003)
20 104 Unsteady 100 36.3k - 739.4k k − ω SST (2003)
20 106 Unsteady 100 36.3k - 739.4k k − ω SST (2003)

Turbulence modeling Study
0 104 Steady 100 739.4k Spalart-Allmaras
0 104 Steady 100 739.4k k − ω SST (Standard)
0 104 Steady 100 739.4k k − ω SST (2003)
4 104 Steady 100 739.4k Spalart-Allmaras
4 104 Steady 100 739.4k k − ω SST (Standard)
4 104 Steady 100 739.4k k − ω SST (2003)
0 106 Steady 100 739.4k Spalart-Allmaras
0 106 Steady 100 739.4k k − ω SST (Standard)
0 106 Steady 100 739.4k k − ω SST (2003)
4 106 Steady 100 739.4k Spalart-Allmaras
4 106 Steady 100 739.4k k − ω SST (Standard)
4 106 Steady 100 739.4k k − ω SST (2003)
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4-1-5 Post-Processing

From the results the correct data needs to be generated. From the two-dimensional compu-
tations the total forces on the airfoil in x- and y-direction relative to the coordinate system
explained previously (see figure 4-1) are obtained. Additionally the total moment about the
origin of the coordinate system is generated. The total x and y forces can be decomposed
into a drag an lift component using the following expression,

L = Fy cosα− Fx sinα (4-4)
D = Fy sinα− Fx cosα (4-5)

Where L and D are the lift and drag force respectively, and α is the angle of attack. The lift,
drag, and moment coefficients are made non-dimensional using equations (2-9) to (2-11) from
chapter 2. Note that the moment coefficient Cm is defined at the leading edge i.e. CmLE .

4-2 Three-Dimensional Turbine

In this section the numerical setup is presented for the full 3D turbine as used in the numerical
computation. First the geometry of the rotor blades, and the geometry of the complete domain
will be discussed. Next the applied boundary conditions and flow characteristics used as input
for the calculations will be described. At the end of this section the topology of the grid will
be explained followed by the methods to post-process the required data.

The geometry of both the NREL 5MW and the MSWT blades, as discussed in section 2-1
are constructed from a series of foil sections. The exact non-dimensional geometry of both
blade designs is presented in tables 4-3 and 4-4, where the xp represents the location of the
pitch axis, and β the pitch angle.

Table 4-3: Non-dimensional geometry of the MARIN Stock Wind Turbine 5MW turbine.

Section no. Airfoil r/R c/D β t/c xp/c

1 Drela AG-04 0.046 0.035 42.712 0.128 0.375
2 Drela AG-04 0.132 0.041 23.109 0.128 0.375
3 Drela AG-04 0.252 0.046 11.475 0.128 0.375
4 Drela AG-04 0.382 0.042 6.523 0.128 0.375
5 Drela AG-04 0.512 0.037 3.878 0.128 0.375
6 Drela AG-04 0.642 0.032 2.216 0.128 0.375
7 Drela AG-04 0.772 0.027 1.245 0.128 0.375
8 Drela AG-04 0.892 0.023 0.497 0.128 0.375
9 Drela AG-04 0.978 0.014 0.064 0.128 0.375

During the model-scale experiments performed at MARIN, no hub was modeled for both
the MSWT and NREL 5MW baseline turbine. For the numerical computations however a
standard hub was modeled for both turbine geometries. The dimensions and geometry of
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Table 4-4: Non-dimensional geometry of the NREL 5MW turbine.

Section no. Airfoil r/R c/D β t/c xp/c

1 Cylinder1 0.024 0.028 13.308 1 0.5
2 Cylinder1 0.031 0.028 13.308 1 0.5
3 Cylinder2 0.054 0.029 13.302 0.93 0.478
4 Cylinder3 0.088 0.031 13.308 0.78 0.449
5 Cylinder4 0.137 0.033 13.308 0.61 0.423
6 DU-40 0.187 0.036 13.308 0.477 0.375
7 DU-35 0.252 0.037 11.48 0.383 0.375
8 DU-35 0.317 0.035 10.162 0.331 0.375
9 DU-30 0.382 0.034 9.011 0.29 0.375
10 DU-25 0.447 0.032 7.795 0.26 0.375
11 DU-25 0.512 0.03 6.544 0.238 0.375
12 DU-21 0.577 0.028 5.361 0.219 0.375
13 DU-21 0.642 0.026 4.188 0.202 0.375
14 NACA 64-618 0.707 0.024 3.125 0.18 0.375
15 NACA 64-618 0.772 0.022 2.319 0.18 0.375
16 NACA 64-618 0.837 0.02 1.526 0.18 0.375
17 NACA 64-618 0.892 0.018 0.863 0.18 0.375
18 NACA 64-618 0.935 0.017 0.37 0.18 0.375
19 NACA 64-618 0.978 0.011 0.106 0.18 0.375
20 NACA 64-618 0.983 0.01 0.082 0.18 0.375
21 NACA 64-618 0.988 0.009 0.06 0.18 0.375
22 NACA 64-618 0.992 0.008 0.04 0.18 0.375
23 NACA 64-618 0.995 0.006 0.023 0.18 0.375
24 NACA 64-618 0.998 0.005 0.01 0.18 0.375
25 NACA 64-618 0.999 0.003 0.003 0.18 0.375
26 NACA 64-618 1 0.002 0 0.18 0.375
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the hub are presented in figure 4-7. The hub geometry is cylindrical shaped with spherically
blunted tangent ogive shaped ends, in order to minimize the curvature variation which may
induce flow separation.

Figure 4-7: Dimensions of the hub at model-scale.

4-2-1 Domain Dimensions

The computational domain as used for the three-dimensional computations consists of a
cylindrical volume in which the turbine is placed, as can be seen in figure 4-8.

The total length of the cylindrical domain, and its radius are defined by a multiple of the
turbine diameter. The origin of the coordinate system and the location of the turbine is at
1/5 the length of the cylinder as shown in figure 4-8.

4-2-2 Turbine motion modeling

Consider the origin x0 of a non-inertial body-fixed reference frame in which a particle position
X is given by,

X = x + x0, (4-6)
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Figure 4-8: Dimensions of the 3D turbine domain.

where x is the position of the particle in the body-fixed frame. By differentiation the velocities
can be obtained,

V = U + dx0
dt

+ Ω× x = U + Vg, (4-7)

Where U represents the particle velocity relative to the body-fixed reference frame, dx0
dt and

Ω × x the translation and rotation velocity of the body-fixed reference frame itself. The
acceleration is given by the total derivative,

DV
Dt

= U
Dt

+ d2x0
dt2

+ dΩ
dt
× x + 2ΩU + Ω× (Ω× x), . (4-8)

Here four additional terms appear that now has to be accounted for in the conservation
equations when a non-inertial reference frame is used. These terms represent the accelera-
tion of origin of the non-inertial reference frame, the angular acceleration effect, the Coriolis
acceleration, and the centripetal acceleration respectively [68].

To account for the rotative motion of the turbine several methods are available, based on
either inertial or non-inertial reference frames [68];

• Relative-Formulation (RFM) or body-forces-approach: the RANS equations are written
and solved in the moving or relative reference frame. Extra volumic terms, or body-
forces, have to be considered,
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• Absolute-Formulation (AFM): the RANS equations are solved in the moving reference
frame but written in terms of absolute or inertial reference frame quantities,

• Moving-Grid-Formulation (MVG): the RANS equations are written and solved in the
earth-fixed reference frame. Due to the motion of the objects, the equations are inher-
ently unsteady, even for steady motions.

In this study the AFM formulation is used, therefore the additional velocity terms have to
be included as well in the governing equations. The integral form of the mass conservation
equation than becomes,

∫
S

(V−Vx0) · ndS = 0, (4-9)

and the momentum equation,

∫
S

∂V
∂t

dV +
∫
S

[ρV(V−Vx0) · n]dS =
∫
S

(ν + νt)[(∇V +∇VT )] · ndS + · · · (4-10)

−
∫
V
∇
(
p+ 2

3ρk
)
dV + · · · (4-11)

−
∫
V
ρ(Ω×V)dV + · · · (4-12)

+
∫
V
ρBdV, (4-13)

Since all terms are expressed in the inertial reference frame, the boundary conditions are
expressed in the inertial reference frame. E.g. for the no-slip condition at the moving body
when using AFM is given by V = Vx0 . By using this method, the flow can be solved, in
principle, using steady RANS. More information regarding this matter can be found in [68].

4-2-3 Boundary Conditions

For the three-dimensional computations a total of four boundary conditions are applied. At
the surface of the turbine a wall boundary conditions (BCWALL) is applied, which is identical
to the boundary condition applied at the surface of the two-dimensional airfoil (see section
4-1-2).

At the inflow region of the domain (A in figure 4-8) the velocity is prescribed as being the
wind velocity, hence V = (vwind, 0, 0)T . The inflow boundary conditions for the turbulence
model variables are chosen similar to those of the two-dimensional computations.

At the outflow boundary (region C in figure 4-8) Neumann boundary conditions are applied,
where the normal gradients for all quantities are zero, or;

∂V
∂~n

= ∂P

∂~n
= ∂ν̃

∂~n
= ∂k

∂~n
= ∂ω

∂~n
= 0, (4-14)

Master of Science Thesis M.K.P. Make



72 Numerical Setup

where ~n is the outward normal unit vector. Finally a boundary condition needs to be assigned
at the wall of the cylindrical domain (region B in figure 4-8). At this wall a so-called pressure
boundary condition is applied (BCPRESSURE), which requires the pressure to be constant at the
boundary. For these computations the pressure at these boundaries is equal to the reference
pressure as defined by the user, or;

PBC = Pref . (4-15)

Additionally figure 4-9 shows the regions and their applied boundary conditions.

Figure 4-9: Boundary conditions on the 3D turbine domain.

4-2-4 Grid Topology

As for the two-dimensional grid previously discussed, an initial cell size is defined based on
the chord length. For the three-dimensional grid the initial cell size is defined by the turbine
diameter. Next the initial grid is refined toward the geometry of the turbine until a sufficiently
refined cell size is obtained at the surface of the turbine blade.

Additionally refinements are used near the surface of the turbine in order to properly model
the viscous layer. The resolution of this refinement is based on the dimensionless wall distance
y+, which is obtained according to the method described in section 4-1-3. To properly model
the flow near the wall y+ typically needs to be below one. In figure 4-10(a) the grid near the
wall of the turbine blade is presented and a slice of the grid over the centerline of the turbine
is shown in figure 4-10(b).
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(a) Grid refinement near the wall of a turbine blade.

(b) Computational grid around the MSWT rotor at model-scale.

Figure 4-10: Detail of the 3D grid.
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4-2-5 Calculation Overview

The performed calculations for the numerical study on the model- and full-scale MSWT and
NREL 5MW baseline turbine are presented in table 4-5.

4-2-6 Post-Processing

The results of the three-dimensional computations consist of the flow field around the turbine
including quantities such as velocity and pressure. In addition to these quantities both the
forces and moments acting on the turbine blades are calculated. Both the thrust and power
coefficients of the turbine can be computed by use of these forces and moments as follows:

CT = Fx
1
2ρV

2A
, (4-16)

CP = MxΩ
1
2ρV

3A
, (4-17)

where Ω is the angular velocity and A the swept area of the turbine given by A = D2π/4.

The pressure distribution is expressed by means of the pressure coefficient Cpn given by,

Cpn = P − P∞
1
2ρ(nD)2 , (4-18)

in which D is the diameter of the turbine and n the angular velocity of the turbine given in
revolutions per second. Another useful derived quantity is the so-called Q-factor, which is
used as an indication of the presence of vortices in the domain. The Q-factor is defined by
[42],

Q = 1
2
(
‖Ω‖2 − ‖S‖2

)
; Q = 1

2

(
‖Ω‖2
‖S‖2 − 1

)
; where, (4-19)

Ωij = 1
2

(
∂vi
∂xj
− ∂vj
∂xi

)
; Sij = 1

2

(
∂vi
∂xj

+ ∂vj
∂xi

)
. (4-20)

In these equations Ω and S denote the anti- and symmetric part of the velocity gradient
tensor ∇V respectively.
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Table 4-5: Overview of performed computations for the numerical study on the model- and
full-scale MSWT and NREL 5MW baseline turbine.

Vwind(MS) Vwind(FS) TSR Domain Ncells Turbulence model
[m/s] [m/s] [−] [-] [−] [−]

Domain size study MSWT
2.00 14.1 7.0 A 13.1M k − ω SST (Standard)
2.00 14.1 7.0 B 13.3M k − ω SST (Standard)
2.00 14.1 7.0 C 13.4M k − ω SST (Standard)

Refinement size study MSWT
2.47 17.4 7.0 C 8.4M k − ω SST (Standard)
2.47 17.4 7.0 C 13.4M k − ω SST (Standard)
2.47 17.4 7.0 C 18.6M k − ω SST (Standard)
2.47 17.4 7.0 C 23.9M k − ω SST (Standard)
2.47 17.4 7.0 C 29.6M k − ω SST (Standard)

Turbulence modeling study MSWT
2.00 14.1 7 C 29.6M k − ω SST (Standard)
2.00 14.1 7 C 29.6M k − ω SST (Standard)

MSWT full-scale
1.61 11.4 3 C 51.9M k − ω SST (Standard)
1.61 11.4 4 C 51.9M k − ω SST (Standard)
1.61 11.4 5 C 51.9M k − ω SST (Standard)
1.61 11.4 6 C 51.9M k − ω SST (Standard)
1.61 11.4 7 C 51.9M k − ω SST (Standard)
1.61 11.4 8 C 51.9M k − ω SST (Standard)

NREL 5MW model-scale
2.00 14.1 3 C 51.9M k − ω SST (Standard)
2.00 14.1 4 C 51.9M k − ω SST (Standard)
2.00 14.1 5 C 51.9M k − ω SST (Standard)
2.00 14.1 6 C 51.9M k − ω SST (Standard)
2.00 14.1 7 C 51.9M k − ω SST (Standard)
2.00 14.1 8 C 51.9M k − ω SST (Standard)

NREL 5MW full-scale
1.61 11.4 3 C 46.6M k − ω SST (Standard)
1.61 11.4 4 C 46.6M k − ω SST (Standard)
1.61 11.4 5 C 46.6M k − ω SST (Standard)
1.61 11.4 6 C 46.6M k − ω SST (Standard)
1.61 11.4 7 C 46.6M k − ω SST (Standard)
1.61 11.4 8 C 46.6M k − ω SST (Standard)

Unsteady computation
2.00 14.1 7 C 54.5M k − ω SST (Standard)
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Chapter 5

Numerical Study on a
Two-Dimensional Wing Section

In this chapter the findings from all the numerical studies performed on the two-dimensional
flow over the Drela-AG04 are presented. The general flow field is discussed in section 5-1.
Next, the optimum dimensions of the computational domain is determined in section 5-2.
Section 5-3 is devoted to the uncertainty studies on both the steady and unsteady flows. In
section 5-4, a study is presented in which three turbulence models are compared for various
flow cases.

5-1 General Results

In this section the main features of the flow are illustrated, the computations performed show
a number of interesting phenomena. For the model-scale Reynolds number regime in the
order of Re = 104, the flow field for zero angle of attack is presented in figure 5-1(a). It can
be observed that for this Reynolds number regime there is a large amount of flow separation,
even at zero angle of attack. Reynolds dissimilitude (see section 2-2) results in extremely low
Reynolds numbers at model scale i.e. Re = 104. As explained in section 2-3-1 a consequence
of the model-scale Reynolds number flows is a laminar character of the boundary layer which
is less susceptible to turbulent transition.

In figure 5-1(b) the normalized turbulence viscosity µt given by equation (5-1) is graphed
for µt ≥ 1, indicating the region in which eddy viscosity is dominant and the flow can be
considered turbulent [18]. The magnitude of µt in the wake-field is small relative to the
magnitude present in the full-scale Reynolds number flow presented in figure 5-2(b).

µt = µt
µlam

(5-1)
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Flow separation occurring at the pressure side of the airfoil as presented in figure 5-1(a), is
recurring in figure 5-1(d) in terms of a negative wall shear stress (indicated by the letter A).
At this point the negative wall shear stress indicates a negative flow velocity along the airfoil
wall. This is in line with the recirculating streamlines in figure 5-1(a), indicating a separated
flow region.
The wall shear stress for the full-scale Reynolds number flow is presented in figure 5-2(d). This
graph shows a local minimum in the wall shear stress for both the pressure and suction side of
the airfoil (indicated byD). The magnitude of wall shear stresses increase rapidly downstream
of the location where these minima occur, which due to laminar/turbulent transition as seen
in figure 5-2(b), indicating that there is a non-negligible laminar part even at Re = 106. Also
note that the wall shear stress remains positive over the whole airfoil surface, indicating that
no flow separation occurs, which is in line with the flow presented in figure 5-1(a).
The findings previously discussed on turbulence viscosity and wall shear stress (no local
minima) show that the model-scale Reynolds number flow case is fully laminar, while for the
full-scale Reynolds number case turbulence transition occurs near the leading edge of the foil.
For the full-scale Reynolds number case the turbulent boundary layer will increase the ability
of the flow to remain attached which is analogous to the theory presented in section 2-3-1.
Finally when the angle of attack is further increased, separation occurs for both full- and
model-scale Reynolds numbers. The convergence pots of the L∞ residual norms and Cl and
Cd are presented for model- and full-scale computations in figure 5-3, which are representative
for all two-dimensional calculations.
At these large angles of attack the flow is no longer able to stay attached to the foil surface,
vortices start to shed at the suction side of the airfoil and unsteady RANS computations are
needed.
The computed results for an angle of attack of 20 degrees are presented next, at which the
flow is highly unsteady for both the full- and model-scale Reynolds number regimes. In figures
5-4 and 5-5 several snapshots are presented of roughly one shedding cycle for both Re = 104

and Re = 106. In these figures the non-dimensional vorticity ω̄z given by equation (5-2) is
plotted.

ω̄z = ωzc

V∞
(5-2)

The shedding of vortices is clearly visible in the wake-field for both the full- and model-scale
Reynolds number flows. For Re = 104 a region of strong vorticity i.e. a vortex is located near
the trailing edge at T = 70.4 sec , indicated by the letter A. Consecutively the vortices are
transported in flow direction as can be seen for the successive time steps in figures 5-4(b) to
5-4(h). Similar phenomena are observed for the full-scale Reynolds number Regime.
Additionally a time-trace is presented of the lift, drag and moment coefficient for both
Reynolds number regimes in figures 5-6(a) and 5-6(b). These figures clearly show the cyclic
behavior of cl, cd, and cm caused by vortex shedding. The characteristics of the cyclic behavior
for both Reynolds number regimes are presented in table 5-1.
The Strouhal numbers in this table are based on the projected frontal dimension of the airfoil
given by equation (5-3), as used in [69–71]. In this equation f is the vortex shedding frequency
of the airfoil, c the chord of the airfoil, and α the angle of attack.
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(a) Stream lines and normalized pressure Cp.

(b) Normalized turbulence viscosity µt = µt/µlam.

(c) Normalized pressure distribution Cp.

(d) Normalized wall shear stress τ = τwall/q∞.

Figure 5-1: Flow field characteristics for model-scale Reynolds number regime. Re = 104, AoA =
0 deg.
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(a) Stream lines and normalized pressure Cp.

(b) Normalized turbulence viscosity µt = µt/µlam.

(c) Normalized pressure distribution Cp.

(d) Normalized wall shear stress τ = τwall/q∞.

Figure 5-2: Flow field characteristics for model-scale Reynolds number regime. Re = 106, AoA =
0 deg.
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(a) Re = 104, AoA = 0 deg, case.

(b) Re = 104, AoA = 0 deg, case.

Figure 5-3: TL∞ residual norms and Cl and Cd.
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(a) T = 70.4 sec. (b) T = 76.8 sec.

(c) T = 72.0 sec. (d) T = 78.4 sec.

(e) T = 73.6 sec. (f) T = 80.0 sec.

(g) T = 75.2 sec. (h) T = 81.6 sec.

Figure 5-4: Vorticity ω for Re = 104, AoA = 20 deg, for for different time instants.
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(a) T = 1.60 sec. (b) T = 1.66 sec.

(c) T = 1.62 sec. (d) T = 1.68 sec.

(e) T = 1.64 sec. (f) T = 1.70 sec.

Figure 5-5: Vorticity ω for Re = 106, AoA = 20 deg, for different time instants.
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St = fc sin(α)
U∞

. (5-3)

Table 5-1: Periodic characteristics at AoA = 20 deg.

Frequency Period Strouhal no.
[rad/s] [s] [−]

Re = 104 0.087 11.44 0.198
Re = 106 11.00 0.09 0.251

For vortex shedding of cylinders Strouhal numbers (St) of St = 0.20 and St = 0.267 were
found for Reynolds number regimes Re < 105 and 106 < Re < 3.5 · 106 respectively in [72].
Since these Strouhal numbers are not directly representative for airfoils, they are only used
indicatively. Hence the results presented in table 5-1 are in reasonable agreement with these
values (i.e. within 1.0 % and 6.5% for the Re = 104 and Re = 106 case respectively).

(a) Re = 104, AoA = 20 deg, case.

(b) Re = 106, AoA = 20 deg, case.

Figure 5-6: Time trace of lift, drag and moment coefficients for model- and full-scale Reynolds
numbers.

A time-trace of Cl and Cd and a convergence plot of the L∞ residual norms, both represen-
tative for the unsteady computations are presented in figure 5-7
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Figure 5-7: Time trace of lift, drag and moment coefficients for model-scale Reynolds number
at AoA = 20 deg for ∆t = 1/6 sec, and the L∞ residual norms.

5-2 Domain Size Variation

After having shown the main characteristics of the flow field, a domain size study is performed
in which various domain dimensions are compared in order to minimize the influence of the
non-physical boundaries A set of 15 domains have been analyzed with a radius ranging from
10 to 200 times the chord length. The following flow parameters have been analyzed for the
set of domains,

• Reynolds numbers; 104 and 106.

• Angles of attack; 0, 4, and 20 degrees.

For the extreme angles of attack, i.e. 20 degrees, the flow is fully separated and hence the
Unsteady Reynolds Averaged Navier Stokes (URANS) solver of ReFRESCO is used. As a
consequence of using the unsteady solver, the computations require large amounts of CPU
power. Due to this requirement only three domains were analyzed for the 20 degree angle of
attack case, i.e. domain radii of 10, 50 and 200 chord lengths.
The results of the steady computations will be discussed in section 5-2-1 followed by the
unsteady results in section 5-2-2.

5-2-1 Steady Flow Calculations

The results of all the steady flow computations show a convergence of both Cl and Cd when
the domain size is increased. An example is given for AoA = 0 degrees, Re = 104 in figure
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5-8. The asymptotic behavior of the results for increasing domain radii presented in these
graphs are representative for all cases analyzed.

(a) Cl. AoA = 0 deg, Re = 104. (b) Cd. AoA = 0 deg, Re = 104.

Figure 5-8: Cl and Cd for varying domain size and angle of attack.

The quantitative values (Cl and Cd) are presented in table 5-2. From this data it can be
concluded that for the model-scale Reynolds number regime it is the lift coefficient that
shows a high dependency on domain size, while for the full-scale Reynolds number it is the
drag coefficient. This is also shown in figure 5-9, where Cl and Cd are plotted as a percentage
of the Cl and Cd obtained for the largest domain.

The trend for the full-scale Reynolds number case is analogous to previous work presented in
[67], where for a comparable Reynolds number a large domain dependence was found for Cd.
This previous [67] work however does not cover model-scale Reynolds numbers used in the
present study.

Cl at Model-Scale Reynolds Number (Re = 104) As observed before the flow at model-
scale Reynolds numbers is sensitive to the size of the domain. This indicates that boundary
conditions applied to the outer walls of the domain have a large influence on the solution.

For the flow at model-scale the influence of the boundary conditions is strongest for Cl (see
table 5-2). To understand where this sensitivity originates from the lift coefficient is decom-
posed into a frictional and pressure part, Clfrict and Clpress .

The result is presented in table 5-3. The decomposition in Clfrict and Clpress shows that
the sensitivity in Cl is more severe at Re = 104 and originates mainly from the pressure
component Clpress , obviously. This can be explained by the more diffusive character at model-
scale Reynolds numbers, which follows directly from the non-dimensional NS-equations (the
diffusion terms contain Re−1). As a consequence the flow disturbances are transported in all
directions rather than in one main direction. The upper and lower pressure boundary will
therefore have a larger influence on the airfoil surface when compared to the higher full-scale
Reynolds number case.
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(a) Domain dependence of Cl for Re = 104. (b) Domain dependence of Cd for Re = 104.

(c) Domain dependence of Cl for Re = 106. (d) Domain dependence of Cd for Re = 106.

Figure 5-9: Domain dependence of Cl and Cd for varying Reynolds numbers and angles of
attack.
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Table 5-2: Domain size variation for various angles of attack and Reynolds number.

Domain Cl Cd
R
c [−] [%] [−] [%]

Flow case: AoA = 0 deg Re = 104

10 -0.0436 14.68 0.0438 1.00
20 -0.0359 9.39 0.0436 0.59
30 -0.0477 6.73 0.0435 0.41
40 -0.0485 5.16 0.0435 0.31
60 -0.0494 3.27 0.0434 0.19
80 -0.0500 2.18 0.0434 0.13

100 -0.0504 1.48 0.0434 0.08
120 -0.0506 1.00 0.0434 0.06
160 -0.0509 0.38 0.0433 0.02
200 -0.0511 - 0.0433 -
Flow case: AoA = 4 deg Re = 104

10 0.1791 2.58 0.0656 0.61
20 0.1782 2.09 0.0655 0.44
30 0.1774 1.62 0.0655 0.33
40 0.1768 1.27 0.0654 0.26
60 0.1760 0.80 0.0654 0.16
80 0.1755 0.53 0.0653 0.11

100 0.1759 0.35 0.0653 0.07
120 0.1748 0.25 0.0653 0.04
160 0.1747 0.09 0.0653 0.01
200 0.1746 - 0.0652 -

Domain Cl Cd
R
c [−] [%] [−] [%]

Flow case: AoA = 0 deg Re = 106

10 0.3263 5.30 0.0117 9.05
20 0.3356 2.63 0.0112 4.69
30 0.3390 1.62 0.0110 2.96
40 0.3406 1.16 0.0109 2.16
60 0.3422 0.69 0.0108 1.32
80 0.3431 0.45 0.0108 0.87

100 0.3436 0.30 0.0107 0.59
120 0.3439 0.20 0.0107 0.40
160 0.3444 0.07 0.0107 0.15
200 0.3446 - 0.0107 -
Flow case: AoA = 4 deg Re = 106

10 0.7352 4.98 0.0169 36.83
20 0.7552 2.40 0.0146 18.17
30 0.7618 1.55 0.0138 11.83
40 0.7652 1.11 0.0134 8.51
60 0.7687 0.65 0.0129 5.00
80 0.7705 0.42 0.0127 3.26

100 0.7716 0.28 0.0126 2.18
120 0.7723 0.19 0.0124 1.48
160 0.7732 0.07 0.0124 0.56
200 0.7738 - 0.0123 -
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As explained in section 2-3-1 the pressure over the airfoil surface is the main contribution to
the lift. A slight change in pressure at the airfoil surface can therefore have a significant effect
on the lift and thus Cl. Additionally this pressure change will alter the pressure gradient along
the airfoil wall, which in turn can have a major effect on flow separation and the location of
the separation point and therefore the lift coefficient.
The increased influence of the pressure boundary for model-scale Reynolds numbers results
in a high domain size sensitivity for the lift coefficient, especially for separated flows.
Furthermore it must be noted that the magnitude of Cl is very small at these model-scale
Reynolds numbers. A small variation in CP will therefore result in a relatively large variation
of Cl. This can also be observed in figure 5-9(a), where the dependence of Cl on the domain
size will decrease for an increase in angle of attack.
This reduced dependence is a result of higher airfoil loadings and thus larger pressures. These
large pressures at the airfoil are less sensitive to slight changes of the pressure due to the
boundaries when changing the size of the domain.

Cd at Full-Scale Reynolds Number (Re = 106) Other than for the model-scale Reynolds
number case, it is the drag coefficient that shows a strong dependence to domain size at higher
Reynolds numbers. To get a better understanding of this sensitivity, the drag components i.e.
frictional and pressure drag are presented non-dimensionally by, Cdfrict and Cdpress in table
5-4, as previously done in [67].
These results show that it is the frictional drag that is largely depending on domain size. This
is also shown in figure 5-10, where the drag components are plotted as a function of domain
size. In these graphs a large variation in Cdfrict is only observed for the Re = 106 case.
For this condition there is no flow separation, the Cl values are larger, and for the larger
Reynolds number convection becomes more important and therefore the the character of the
equations become less elliptical. Having in mind that Cdpress barely changes with the domain
size, the influence of the domain is mainly due to increase of the flow velocity V due to
blockage: smaller domains, local V ↑⇒ Cdfrict ↑.

5-2-2 Unsteady Flow

For the unsteady computations a suitable time step is chosen using the method described in
section 3-4. In table 5-5 all the performed unsteady computations and corresponding flow
characteristics are presented. In this table ∆t represents the dimensionless time-step given by
∆t = ∆tV/c From these computations the time-averaged lift, drag and moment coefficients
are obtained and compared.
As a result of the unsteady vortex shedding flow Cl, Cd, and Cm vary in time. In figure 5-11
the development in time of Cl, Cd, and Cm is presented. In this graph the effect of the initial
conditions are clearly visible in the region indicated by A. In this region the flow field is
developing until a steady cyclic behavior is reached (region B).
To make sure that the effects of the initial conditions have disappeared, several cycles are
computed within region B. For the calculations used in this study a minimum of ten cycles
in the cyclic region are computed. The final cycle is then used to compute the time average
of the coefficients C l, Cd, and Cm.
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Table 5-3: Lift components for domain size variation.

Domain Cl Clfrict Clpress
R
c [−] [%] [−] [%] [−] [%]

AoA = 0 deg Re = 104

10 −4.36 · 10−2 14.68 3.58 · 10−4 19.24 −4.4 · 10−2 14.8
20 −3.59 · 10−2 9.39 3.36 · 10−4 11.88 −4.67 · 10−2 9.26
30 −4.77 · 10−2 6.73 3.25 · 10−4 8.37 −4.80 · 10−2 6.65
40 −4.85 · 10−2 5.16 3.19 · 10−4 6.38 −4.88 · 10−2 5.10
60 −4.94 · 10−2 3.27 3.12 · 10−4 4.01 −4.98 · 10−2 3.23
80 −5.00 · 10−2 2.18 3.08 · 10−4 2.66 −5.03 · 10−2 2.15

100 −5.04 · 10−2 1.48 3.07 · 10−4 2.19 −5.05 · 10−2 1.71
120 −5.06 · 10−2 1.00 3.04 · 10−4 1.22 −5.09 · 10−2 0.98
160 −5.09 · 10−2 0.38 3.01 · 10−4 0.46 −5.12 · 10−2 0.38
200 −5.11 · 10−2 - 3.00 · 10−4 - −5.14 · 10−2 -

AoA = 4 deg Re = 106

10 7.35 · 10−1 4.98 1.86 · 10−4 19.86 7.35 · 10−1 4.98
20 7.55 · 10−1 2.40 2.13 · 10−4 7.99 7.55 · 10−1 2.40
30 7.62 · 10−1 1.55 2.22 · 10−4 4.42 7.62 · 10−1 1.55
40 7.65 · 10−1 1.11 2.26 · 10−4 2.74 7.65 · 10−1 1.11
60 7.69 · 10−1 0.65 2.29 · 10−4 1.15 7.69 · 10−1 0.65
80 7.70 · 10−1 0.42 2.31 · 10−4 0.50 7.70 · 10−1 0.42

100 7.72 · 10−2 0.28 2.31 · 10−4 0.22 7.71 · 10−1 0.28
120 7.72 · 10−1 0.19 2.32 · 10−4 0.10 7.72 · 10−1 0.19
160 7.73 · 10−1 0.07 2.32 · 10−4 0.01 7.73 · 10−1 0.07
200 7.74 · 10−1 - 2.32 · 10−4 - 7.74 · 10−1 -

(a) Domain dependence of drag components for
AoA = 0, Re = 104.

(b) Domain dependence of drag components for
AoA = 4, Re = 106.

Figure 5-10: Domain dependence drag components for various flows.
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Table 5-4: Drag components for domain size variation.

Domain Cd Cdfrict Cdpress
R
c [−] [%] [−] [%] [−] [%]

AoA = 0 deg Re = 104

10 0.0438 1.00 0.0177 1.23 0.0261 0.85
20 0.0436 0.59 0.0176 0.73 0.0260 0.49
30 0.0435 0.41 0.0176 0.51 0.0259 0.34
40 0.0435 0.31 0.0176 0.39 0.0259 0.26
60 0.0434 0.19 0.0175 0.25 0.0259 0.16
80 0.0434 0.13 0.0175 0.16 0.0259 0.11

100 0.0434 0.08 0.0175 0.18 0.0259 0.07
120 0.0434 0.06 0.0175 0.08 0.0259 0.05
160 0.0433 0.02 0.0175 0.03 0.0258 0.02
200 0.0433 - 0.0175 - 0.0258 -

AoA = 4 deg Re = 106

10 0.0169 36.83 0.0087 107.17 0.0082 0.66
20 0.0146 18.17 0.0064 52.71 0.0082 0.39
30 0.0138 11.83 0.0053 27.09 0.0082 0.29
40 0.0134 8.51 0.0052 24.58 0.0082 0.23
60 0.0129 5.00 0.0048 14.40 0.0081 0.16
80 0.0127 3.26 0.0046 9.35 0.0081 0.12

100 0.0126 2.18 0.0044 6.24 0.0081 0.09
120 0.0124 1.48 0.0044 4.23 0.0081 0.06
160 0.0124 0.56 0.0043 1.59 0.0081 0.03
200 0.0123 - 0.0042 - 0.0081 -

Table 5-5: 2D unsteady domain size computations.

Domain size AoA Reynolds ∆t ∆t CFL
R
c [deg] number [s] [−] [−]

10 20, 104 2.5 · 10−1 0.0375 130
50 20, 104 2.5 · 10−1 0.0375 160
100 20, 104 2.5 · 10−1 0.0375 128
10 20, 106 2 · 10−4 0.003 54
50 20, 106 2 · 10−4 0.003 57
200 20, 106 2 · 10−4 0.003 57
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Figure 5-11: Development of lift, drag and moment coefficients for Re = 106, AoA =
20 deg, ∆t = 2 · 10−4 s.

Results The results for the unsteady domain size study are presented in table 5-6, where
the average lift, drag and moment coefficients are given for three domains. These results
show very little domain dependence, i.e. the results of the smallest domain differs from the
R = 200c results by a maximum of 3.13%. The trend of reduced domain size dependency for
unsteady results presented in table 5-6 is in accordance with the steady computations, where
the domain dependency is reduced for increasing angles of attack. Furthermore there are no
extra dependency issues due to the unsteadiness of the flow.

Table 5-6: Average lift, drag and moment coefficients for the computed unsteady flow.

Domain Size C l Cd Cm
R
c [-] [%] [-] [%] [-] [%]

Flow Case AoA = 20 deg and Re = 104

10 1.236 0.53 0.457 1.37 0.556 1.19
50 1.235 0.41 0.454 0.77 0.555 1.00
200 1.230 - 0.450 - 0.550 -

Flow Case AoA = 20 deg and Re = 106

10 1.401 0.38 0.319 -3.13 0.547 -1.32
50 1.400 0.25 0.332 0.97 0.559 0.85
200 1.396 - 0.329 - 0.554 -

Additionally the lift, and drag coefficients for both the full- and model-scale Reynolds number
regime are presented graphically in figure 5-12.

5-2-3 Final Remark

When the results of the domain size study are reviewed, it can be concluded that the influence
of the domain size is most dominant for the steady flow computations.

The boundary conditions at model-scale Reynolds numbers mainly affect Cl of the airfoil,
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(a) Domain dependence of Cl and Cd for Re = 104. (b) Domain dependence of Cl and Cd for Re = 106.

Figure 5-12: Domain dependence of Cl and Cd for unsteady computations.

while at full-scale Reynolds numbers it is mainly Cd that is affected, which was also shown
in a previous study [67].

Following the observations a domain size of 100 c/R is selected for the remainder of this
thesis. For this domain Cl and Cd typically differ less then 2.2 percent from the coefficients
found for the 200 c/R domain for all conditions and the influence of the boundary conditions
is considered negligible.

5-3 Numerical Uncertainty Study

In this study a set of seven grids are analyzed with a total number of cells varying between
363K and 1.43M . The grids are analyzed using the following flow parameters,

• Reynolds numbers; 104 and 106.

• Angles of attack; 0, 4, and 20 degrees.

Analogously to the domain size study, the 20 degree angle of attack case for the model-scale
Reynolds numbers were computed using the URANS solver of ReFRESCO. For the unsteady
calculations only four grids where computed due to the required CPU time for unsteady
calculations.

5-3-1 Geometric Similarity

As explained in section 2-5 the grid uncertainty study requires geometrically similar grids.
Generating a set of grids using HEXPRESS while maintaining geometric similarity is com-
plicated, if not impossible. HEXPRESS implements a grid optimization procedure which
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alters the grid geometry near domain walls to enhance the grid quality. As a consequence the
geometric similarity between consecutive grid refinements is not maintained. In figures 5-13
and 5-14, a fine and coarse grid near the trailing edge of the airfoil section are presented. It
can be seen from these figures that the grids are non-geometrically similar especially near the
airfoil wall. Far away from the airfoil surface, e.g. at the top right corner of figure 5-13, both
grids present better geometric similarity.

Figure 5-13: Coarse and fine grid at the airfoil trailing edge (TE).

Figure 5-14: Coarse and fine grid at the viscous layer refinement.
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5-3-2 Grid Characteristics

In table 5-7 the characteristics of the grid set is presented. Refining the grid is accomplished
by increasing the initial cell size within HEXPRESS. The refinement zones located near
the airfoil section as described in section 4-1 will automatically be refined according to the
expressions,

ci = Ci
2ni ,

Ci
ci

= 2ni , ni = ln(Ci/ci)
ln(2) , (5-4)

where Ci is the initial cell size, ci the refined cell size, and ni the number of refinements
applied to obtain the refined cells.

When refining the grids the viscous layer near the airfoil surface is also reduced in size, while
maintaining the ratio between the initial cell size and the wall cell height. By doing so the
geometric similarity between the grids is maintained "as much as possible". As a consequence
the y+ will, as expected, decrease when the grid is refined, as can be seen in figure 5-15, where
the y+ values of all grids are presented for Re = 106.

Figure 5-15: y+ of the grid set for Re = 106.

As expected, the orthogonality and skewness properties presented in table 5-7 are improving
when the grid resolution is increased (i.e. orthogonality → 90 and skewness→ 0).
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Table 5-7: Grid properties of grid refinement study.

Grid refinement 1 2 3 4 5 6 7

Total no. Cells 36339 128064 276016 479686 739454 1055265 1427023
Min. Orthogonality 37.938 36.247 38.718 39.248 39.347 37.212 37.812
Avg Orthogonality 89.199 89.616 89.733 89.805 89.845 89.866 89.887
Max. Skewness 0.6844 0.682 0.649 0.642 0.638 0.654 0.646

Ref. ratio 6.27 3.34 2.27 1.72 1.39 1.16 1.00

5-3-3 Iterative Error

Before starting with the analysis of the discretization error the iterative error is studied. For
this study the method presented in section 2-5 is applied for all the grids presented in table
5-7. First the steady case is discussed followed by the unsteady case.

Steady computations The fluctuations of the lift, drag and moment coefficients of the last
200 iterations as well as the L∞-norm of the residuals are presented in table 5-8. Other
than the computations marked in red the solutions are sufficiently converged such that the
fluctuations of the integral quantities and the L∞-norm of the residuals are small. For the
integral quantities the fluctuations are less than 10−3 percent, given by equation (2-80).
The computations marked in red did not converge to a steady solution. This is due to the fact
that for finer grids highly separated flow tries to shed vortices and unsteady computations
are needed. The computations for which convergence is not reached are for the least steady
case i.e. AoA = 4 deg at Re = 104.
According to the theory, iterative errors can be neglected when they are at least two to
three orders below the discretization error. This means that the iterative error for the data
presented in table 5-8 can be assumed negligible when the numerical uncertainty is at least
one percent. If this is does not hold the maximum number of iterations must be increased.

Unsteady computations For the unsteady computations the integral quantities such as Cl,
Cd, and Cm are varying in time. In this case the average values of these integral quantities need
to be monitored. To make sure that the influence of the initial condition is negligibly small,
a minimum of ten cycles in the cyclic range (indicated by B in figure 5-11) are computed.
For the finest grid the average lift drag and moment coefficients of the last five cycles in the
cyclic range are presented in table 5-9. The difference between the last 5 cycles is typically
below one percent. The differences presented in 5-9 are representative for all computed grids.
Other than the cyclic behavior of Cl , Cd , and Cm the iterative errors need to be minimized.
For the unsteady case the L∞ norm of the residuals are all below 10−6, for which the iterative
error per time step can be assumed negligible.

5-3-4 Discretization Error

As previously mentioned an effort is made to generate a set of grids which resemble geometric
similarity as much as possible. This is done in an attempt to use the numerical uncertainty
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Table 5-8: Iterative convergence and error.

Grid Grid ref. niter L2 residuals L∞ residuals Fluctuations, last 200 iters
no. hi

h1
max(u.v, p) max(u.v, p) 100×max(|φi − φend|/|φend|)

Cl Cd Cm

Flow Case AoA = 0 deg and Re = 104

1 6.27 1286 1.5 · 10−11 9.9 · 10−10 0.001 0.001 0.001
2 3.34 1200 1.9 · 10−10 9.8 · 10−9 0.001 0.001 0.001
3 2.27 1414 4.5 · 10−10 9.9 · 10−9 0.001 0.001 0.001
4 1.72 1872 3.8 · 10−10 9.8 · 10−9 0.001 0.001 0.001
5 1.39 2247 3.9 · 10−10 9.9 · 10−9 0.001 0.001 0.001
6 1.16 2766 3.9 · 10−10 9.8 · 10−9 0.001 0.001 0.001
7 1.00 3496 2.8 · 10−10 9.9 · 10−9 0.001 0.001 0.001

Flow Case AoA = 4 deg and Re = 104

1 6.27 1861 2.7 · 10−11 3.6 · 10−9 0.001 0.001 0.001
2 3.34 1421 1.6 · 10−8 9.8 · 10−7 0.001 0.001 0.001
3 2.27 3823 1.7 · 10−8 9.9 · 10−7 0.001 0.001 0.001
4 1.72 2762 4.3 · 10−9 9.9 · 10−8 0.001 0.001 0.001
5 1.39 5000 5.2 · 10−10 1.1 · 10−8 0.001 0.001 0.001
6 1.16 8953 1.0 · 10−4 1.6 · 10−3 14.03 0.35 6.00
7 1.00 898 1.7 · 101 7.9 · 103 278.54 66.14 214.93

Flow Case AoA = 0 deg and Re = 106

1 6.27 2236 2.5 · 10−10 9.9 · 10−9 0.001 0.001 0.001
2 3.34 2064 7.6 · 10−9 9.9 · 10−7 0.001 0.001 0.001
3 2.27 2687 8.3 · 10−9 9.6 · 10−7 0.001 0.001 0.001
4 1.72 2063 8.0 · 10−9 9.9 · 10−7 0.001 0.001 0.001
5 1.39 2126 1.6 · 10−10 9.9 · 10−9 0.001 0.001 0.001
6 1.16 2249 1.2 · 10−10 1.1 · 10−8 0.001 0.001 0.001
7 1.00 1994 2.0 · 10−9 9.8 · 10−8 0.001 0.001 0.001

Flow Case AoA = 4 deg and Re = 106

1 6.27 1926 4.0 · 10−11 3.6 · 10−9 0.001 0.001 0.001
2 3.34 1841 1.1 · 10−8 9.9 · 10−7 0.001 0.001 0.001
3 2.27 2368 8.5 · 10−9 9.9 · 10−7 0.001 0.001 0.001
4 1.72 1521 9.7 · 10−11 9.9 · 10−9 0.001 0.001 0.001
5 1.39 1982 9.4 · 10−10 9.8 · 10−8 0.001 0.001 0.001
6 1.16 2316 1.2 · 10−10 9.8 · 10−9 0.001 0.001 0.001
7 1.00 2279 4.5 · 10−10 2.2 · 10−8 0.001 0.001 0.001
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Table 5-9: Average lift of the final 5 cycles for AoA = 20 deg and Re = 104.

Shedding C l % Of last
Cycle [−]

Grid 5, ∆t = 0.08333 sec, ∆t = 0.0125
1 (5th to last) 1.23998 -0.624
2 1.21924 1.059
3 1.23021 0.169
4 1.23684 -0.369
5 (Last) 1.23229 -

theory presented in section 2-5. First, the standard definition for the typical grid cell size
is used followed by the alternative methods, as presented in section 2-5. As explained the
numerical uncertainty contains the round-off, iterative, and discretization error. In the two-
dimensional case however the round-off and iterative errors are reduced such that they can
be assumed negligible. The uncertainties presented in the following section are therefore only
due to the discretization error.

Standard Method First the standard description for the typical cell size given by equation
(2-88) is used. The numerical uncertainty is estimated for the lift, drag and moment coeffi-
cients. The resulting numerical uncertainty graphs for all steady computations are presented
in figures 5-16 and 5-17. As expected for a set of unstructured grids the results of the uncer-
tainty analysis show large variations in the numerical uncertainty of the specific flow cases.
The following trends can be seen:

• The numerical uncertainty of Cl for the AoA = 0 deg, Re = 104 flow case is 18.62%
as compared to an uncertainty of only 6.64% for the AoA = 4 deg, Re = 104 case.
Furthermore large differences are observed for the uncertainty estimation of different
quantities for a single flow case. For example the uncertainty of Cl for the AoA = 0 deg,
Re = 104 flow case is 18.62%, whereas 1.35% for Cd .

• To further investigate the effect of grid refinements on the Cl, Cd, and Cm, the mag-
nitudes of these quantities are compared and presented in table 5-10 as the difference
in percentage between the solution of the respective grid and the solution of the finest
grid. Note that for the two finest grids no steady converged solution is obtained for the
AoA = 4 deg, Re = 104 flow case.

• The magnitude of all flow quantities show a converging trend when refining the grid.
This is true for all flow cases. When the differences in Cl, Cd and Cm for the two finest
grids are compared a maximum difference of less then 2% is found.

• Since the differences of Cl, Cd, and Cm are converging to a constant value, and the
iterative errors being of small order (10−8 and below), it is expected that the large
uncertainty estimations previously mentioned are caused by the implementation of un-
structured grids combined with the unsteady separated flows, making the uncertainty
estimation challenging. This is also observed in previous studies by others, e.g. [42].
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• In addition, for the AoA = 4deg, Re = 104 flow case, convergence is not reached for the
two finest grids. As a consequence the uncertainty estimation for this flow case is based
on the five coarsest grids only, which affects the uncertainty estimation negatively.

• The general trend observed for all flow cases show the largest estimated uncertainty for
integral quantity Cm, followed by Cl and finally the smallest uncertainties are estimated
for Cd. Note however that this trend was not observed for the AoA = 4deg, Re = 104,
which is likely caused by the unsteady, largely separated flow as previously explained.

Table 5-10: lift drag and moment coefficients for analyzed flow cases

Grid hi

h1
Cl Uφ Cd Uφ Cm Uφ

no. [−] [%] [%] [−] [%] [%] [−] [%] [%]

Flow Case AoA = 0 deg and Re = 104

1 6.27 -0.0363 23.01 - 0.0445 3.10 - 0.0147 27.19 -
2 3.34 -0.0343 27.35 128.32 0.0431 0.15 2.51 0.0154 32.70 82.19
3 2.27 -0.0446 5.42 49.19 0.0432 0.08 1.45 0.0122 5.32 53.27
4 1.72 -0.0472 0.19 29.10 0.0433 0.26 2.08 0.0116 0.62 33.99
5 1.39 -0.0467 0.87 18.62 0.0433 0.26 1.35 0.0120 3.85 23.34
6 1.16 -0.0479 1.67 13.45 0.0432 0.17 1.05 0.0113 1.98 17.48
7 1.00 -0.0472 - 12.73 0.0431 - 1.82 0.0116 - 14.77

Flow Case AoA = 0 deg and Re = 106

1 6.27 0.5066 47.26 - 0.0104 6.85 - 0.2274 51.78 -
2 3.34 0.3542 2.96 18.58 0.0116 3.99 12.67 0.1544 3.05 19.05
3 2.27 0.3519 2.30 17.47 0.0113 1.29 6.27 0.1533 2.35 17.81
4 1.72 0.3502 1.79 15.15 0.0112 0.64 3.59 0.1525 1.81 15.43
5 1.39 0.3476 1.04 13.17 0.0112 0.26 2.40 0.1514 1.05 13.41
6 1.16 0.3451 0.32 11.67 0.0112 0.13 1.75 0.1503 0.30 11.89
7 1.00 0.3440 - 10.33 0.0112 - 1.35 0.1498 - 10.52

Flow Case AoA = 4 deg and Re = 104

1 4.51 0.2290 28.82 - 0.0677 5.16 - 0.1026 24.81 -
2 2.40 0.1850 4.04 16.5 0.0641 0.44 15.51 0.0832 1.18 30.33
3 1.64 0.1783 0.32 8.76 0.0637 1.10 17.44 0.0806 1.94 40.95
4 1.24 0.1769 0.48 5.38 0.0641 0.42 15.83 0.0811 1.27 38.5
5 1.00 0.1778 - 4.17 0.0644 - 13.97 0.0822 - 34.31
6 - - - - - - - - - -
7 - - - - - - - - - -

Flow Case AoA = 4 deg and Re = 106

1 6.27 0.7972 2.82 - 0.0148 13.13 - 0.2653 4.45 -
2 3.34 0.7899 1.88 10.46 0.0136 3.46 11.42 0.2609 2.72 14.35
3 2.27 0.7854 1.30 9.18 0.0133 1.06 5.61 0.2585 1.79 12.22
4 1.72 0.7827 0.95 7.75 0.0132 0.36 3.34 0.2573 1.29 10.22
5 1.39 0.7796 0.55 6.64 0.0131 0.04 2.24 0.2553 0.51 8.7
6 1.16 0.7769 0.21 5.79 0.0131 0.05 1.56 0.2547 0.26 7.59
7 1.00 0.7753 - 5.12 0.0131 - 1.36 0.2540 - 6.67

Alternative Methods In an effort to improve the uncertainty estimation, the uncertainty
analysis is performed using alternative methods to describe the typical grid cell size, as pre-
sented in section 2-5.
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(a) Grid uncertainty Cl, AoA = 0 deg, Re = 104. (b) Grid uncertainty Cl, AoA = 0 deg, Re = 106.

(c) Grid uncertainty Cd, AoA = 0 deg, Re = 104. (d) Grid uncertainty Cd, AoA = 0 deg, Re = 106.

(e) Grid uncertainty Cl, AoA = 0 deg, Re = 104. (f) Grid uncertainty Cl, AoA = 0 deg, Re = 106.

Figure 5-16: Grid uncertainty for the lift, drag, and moment coefficients, AoA = 0 deg, Re =
104, 106.
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(a) Grid uncertainty Cl, AoA = 4 deg, Re = 104. (b) Grid uncertainty Cl, AoA = 4 deg, Re = 106.

(c) Grid uncertainty Cd, AoA = 4 deg, Re = 104. (d) Grid uncertainty Cd, AoA = 4 deg, Re = 106.

(e) Grid uncertainty Cl, AoA = 4 deg, Re = 104. (f) Grid uncertainty Cl, AoA = 4 deg, Re = 106.

Figure 5-17: Grid uncertainty for the lift, drag, and moment coefficients, AoA = 4 deg, Re =
104, 106.
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The first two methods given by equations (2-92) and (2-93), are straight forward and not
further discussed, the third method is based on the mode of the cell volumes and first requires
an analysis of the grid cell volumes.

In figure 5-18(a) the cell volume distribution is presented for the complete set of grids. The
graphs are obtained by subdividing the volume interval between the maximum and minimum
cell volume (∆Vmax, ∆Vmin) into 20 equidistant intervals. Subsequently the number of cells
of the grid contained within the respective volume interval N∆V is plotted as a fraction of
the total number of cells NTotal.

(a) Distribution of cell volume (20 intervals). (b) Normalized typical grid cell size hi/h1 for various
methods.

Figure 5-18: Left: Distributions of cell volumes in the computational domain. Right: Typical
grid cell size based on various methods.

The distributions in 5-18(a) show three distinct regions for all grids, indicated by A, B, or C.
The peaks at A indicate the presence of a large number cells with a cell volume equal or close
to the smallest cell volume present in the domain. This peak represents the large number of
cells located in the refinement box and near wall refinement region (see figure 4-5 and 5-13).

Furthermore the peaks marked by C indicate a large number of grid cells with a large cell
volume. These peaks represent the large number of cells located outside the refinement box.

Finally region B contains a much smaller number of grid cells, having a volume larger then
those in the refinement box yet smaller than the cells outside the refinement box, hence B
represents the cells in the transition region between the refinement box and the unrefined
region.

When the distributions of cell volumes for the various refinements given by figure 5-18(a) are
compared, the modes are all within the smallest volume interval. This implies that the cells
within the refinement box are representative for the typical grid cell size.

The effect of implementing the different methods of describing hi is presented in figure 5-
18(b), where hi/h1 is plotted for all grids. ni = 1 and ni = 7 represent the finest and coarsest
grid respectively. The differences of hi/h1 between different methods, as presented in figure

M.K.P. Make Master of Science Thesis



5-3 Numerical Uncertainty Study 103

5-18(b), are only small. The typical grid cell size ratio for various methods is also given in
table 5-11.

Table 5-11: Typical grid cell size hi/h1 obtained using alternative methods.

Grid no. Standard Average RMS Mode

1 6.267 6.269 6.603 6.856
2 3.338 3.332 3.406 3.421
3 2.274 2.274 2.302 2.309
4 1.725 1.723 1.738 1.752
5 1.389 1.389 1.393 1.396
6 1.163 1.162 1.166 1.166
7 1.000 1.000 1.000 1.000

The corresponding uncertainty estimations for AoA = 4 deg Re = 106, using the alternative
descriptions of hi/h1 are given in table 5-12. It can be seen that for the grid set considered
the alternative definitions of the typical grid cell size result in uncertainty estimations close
to the standard method. This trend is representative for all flow cases.

Despite the small differences between the proposed methods this approach could be useful for
uncertainty estimations when using unstructured grids. The difference in estimated uncer-
tainties between the various methods could perhaps be used in future studies as an indication
of the geometric similarity of the computed grids.

Additionally the number of volume intervals used in the determination of the cell volume mode
could have an influence on the uncertainty estimation when using this particular method.
More research on this specific topic is however needed.

Table 5-12: Uncertainty estimation for various typical grid cell size definitions.

Standard Average RMS Mode

UCl 8.31% 8.31% 8.21% 8.03%
UCd 1.76% 1.76% 1.72% 1.70%
UCm 10.87% 10.87% 10.74% 10.50%

Unsteady computations For the unsteady computations an uncertainty estimation is per-
formed according to the method described in section 2-5. In this case not only grid resolution
but also the time-step size is varied. In total, 4 different grids and six time steps are used to
compute the lift, drag, and moment coefficient for AoA = 20 deg, Re = 104 (see table 5-13).

The uncertainty estimation is determined using both errors. The uncertainty plots corre-
sponding to the unsteady calculations given in table 5-13 are presented in figure 5-19 for the
lift, drag, and moment coefficients for the AoA = 20 deg, Re = 104, flow case, with corre-
sponding uncertainty estimations as given in table 5-14. Note that these uncertainties are for
grid number five, as presented in table 5-7.

In this table φ0 is the estimate of the exact solution (if hi/h1, τi/τ1 → 0). φ1 is the solution
of the finest grid and time step considered, in this case grid 5 in table 5-7 and ∆t = 1/50.
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(a) Numerical uncertainty Uφ for Cl. (b) Numerical uncertainty Uφ for Cd.

(c) Numerical uncertainty Uφ for Cm.

Figure 5-19: Numerical uncertainty extimation for unsteady flow AoA = 20 deg Re = 104 for
grid 5 (see table 5-7).
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Table 5-13: Grid set and timesteps used for unsteady uncertainty study.

Grid hi/h1 ∆x/c τi/τ1 ∆t [s] ∆t [−] CFL [−]

2 2.403 1 12.500 1/4 0.0375 123
2 2.403 1 5.000 1/10 0.015 50
2 2.403 1 4.167 1/12 0.0125 42
3 1.637 2/3 8.333 1/6 0.025 81
4 1.412 1/2 8.333 1/6 0.025 90
4 1.412 1/2 6.250 1/8 0.01875 68
4 1.412 1/2 5.000 1/10 0.015 54
5 1.0 2/5 1.000 1/50 0.003 14

Table 5-14: Uncertainty estimation for AoA = 20 deg, Re = 104 case.

φ0 φ1 Uφ

Cl 1.176 1.148 9.6%
Cd 0.430 0.424 7.5%
Cm 0.511 0.499 10.2%

The unsteady uncertainty estimations given in table 5-14 show a similar trend when compar-
ing with the steady results presented in table 5-10: integral quantity Cm shows the largest
uncertainty followed by Cl, and finally the smallest uncertainty is found for Cd.

Although the inclusion of the time discretization error increases the complexity of the uncer-
tainty estimation, for this particular flow problem the trend is in line with the uncertainty
estimations presented previously for the steady flow cases studied. Note also that the uncer-
tainties are overall smaller.

5-3-5 Final Remarks

As explained in section 2-5 the uncertainty estimation are very sensitive to perturbations
in hi, hence the results obtained from a set of non-geometrically similar grids must be used
with great care. Additionally when unsteady computations are needed the estimation of the
uncertainty becomes even more complicated because of the time discretization error that has
to be considered. Despite the complexity the attempt made in this study to generate a grid set
that resembles geometric similarity, and the implementation of an alternative description for
the typical grid cell size can be valuable in analyzing the discretization error for unstructured
grids. E.g. the graphs presented in figure 5-18 give insight in the geometric similarity of a grid
set. This in turn could give some sort of degree of confidence for the uncertainty estimation.

The results presented in this section show that an uncertainty estimation of unsteady sepa-
rated flows using unstructured grids is highly complex. Alternative methods have been applied
to give more insight in the effect of the unstructured grid on the uncertainty estimation.

For both steady and unsteady flow, the uncertainty estimations and additionally the alter-
native methods applied, all show similar trends regarding the uncertainty estimation for the
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various integral quantities. For this particular case this trend shows Cm having the largest
uncertainty followed by Cl and finally the smallest uncertainty is found for Cd.

Based on all the results of the grid refinement study, grid number five was chosen for the
remainder of the computations. For this grid the differences in Cl, Cd and Cm with the
finest grid are less than four percent with a maximum uncertainty of 23.34 percent for the
model-scale Reynolds number case at AoA = 0 deg, and much less for all other cases.

Finally it must be mentioned that often the discretization error is analyzed solely by com-
paring the relative difference of the integral quantities obtained from a set of refined grids.
In the present study an alternative method is used (least-squares based, see section 2-5) to
asses the numerical uncertainty due to the discretization error.

5-4 Turbulence Modeling

In this section, three different turbulence models are use and compared: the Spalart-Allmaras
one-equation model and the k − ω SST (Standard), and k − ω SST (2003) two-equation
models. A detailed mathematical description of the three models is given in section 2-4-4.
The computations are done for the full- and model-scale Reynolds numbers Re = 106 and
Re = 104 respectively, as used in the previous studies.

Lift, drag, and moment coefficient The resulting Cl, Cd, and Cm for the analyzed turbu-
lence models are presented quantitatively and as a percentage of the k−ω-SST (2003) solution
in table 5-15. A clear distinction is made between the model-scale and full-scale Reynolds
numbers.

For the model-scale Reynolds number case the Cl and Cm show a large difference of 650%
between the one-equation Spalart-Allmaras model and both the two-equation k − ω SST
models. This large difference is not observed for Cd, where a variation of only 1.6 % is
observed between the one- and two-equation models. Furthermore the differences between
the k − ω SST models are small, with a maximum difference of 0.19 % for Cm .

The large difference in lift coefficient between the Spalart-Allmaras and k − ω SST models
reoccurs in the distribution of CP over the airfoil as shown in figure 5-20. In this figure
the computed pressures using the Spalart-Allmaras model are lower at the suction side while
higher at the pressure side when compared to the k − ω SST models.

In the domain size study it is observed that the AoA = 0 deg and Re = 104 flow case is
sensitive to small changes in the flow field by means of large domain size dependency. Similar
trend is observed in this study, where the difference in flow quantities due to the applied
turbulence models results in large variation of Cl and Cm. Additionally the magnitudes of
Cl, Cd, and Cm are only small for this particular flow case, small changes in magnitude of the
coefficients therefore results in large relative differences. Hence also the reduced difference of
these quantities for the heavier loaded airfoil at AoA = 4 deg.

For the full-scale Reynolds number regime the differences are much smaller compared to the
model-scale case. Here a maximum difference between the one- and two-equation models of
1.45 % is observed for Cd. The difference between the k − ω-SST-Standard and k − ω-SST
(2003) model is only 0.35 %.
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Table 5-15: Lift drag and moment coefficients for three turbulence models

Turbulence model Cl [%] Cd [%] Cm [%]

Flow Case AoA = 0 deg and Re = 104

Spalart-Allmaras 0.164349 451.41 0.043950 1.60 0.089965 649.34
k − ω SST (Standard) -0.046824 0.12 0.043260 0.00 0.011983 0.19
k − ω SST (2003) -0.046769 - 0.043258 - 0.012006 -

Flow Case AoA = 4 deg and Re = 104

Spalart-Allmaras 0.482293 171.29 0.064533 0.23 0.184860 124.94
k − ω SST (Standard) 0.177139 0.36 0.064342 0.07 0.081910 0.33
k − ω SST (2003) 0.177775 - 0.064385 - 0.082183 -

Flow Case AoA = 0 deg and Re = 106

Spalart-Allmaras 0.348169 0.16 0.011357 1.45 0.151660 0.18
k − ω SST (Standard) 0.347931 0.09 0.011167 0.25 0.151536 0.10
k − ω SST (2003) 0.347607 - 0.011195 - 0.151391 -

Flow Case AoA = 4 deg and Re = 106

Spalart-Allmaras 0.783902 0.55 0.013263 1.06 0.257734 0.74
k − ω SST (Standard) 0.780397 0.10 0.013078 0.35 0.256191 0.13
k − ω SST (2003) 0.779613 - 0.013124 - 0.255853 -

Figure 5-20: Pressure coefficient along the surface of the airfoil at AoA = 0deg, Re = 104.
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In addition to table 5-15 the lift and drag curves for the full-scale Reynolds number flow case
are presented in figure 5-21.

Figure 5-21: Lift and drag curves of the AG04 modified foil for various turbulence models
(Re = 106).

In these graphs the resulting Cl and Cd using the three turbulence models are plotted against
the angle of attack. The models all show similar results for angles of attack between −6 <
α < 6. For larger angles of attack, i.e. |α| > 6, the Spalart-Allmaras model over predicts Cl,
and under predicts Cd when compared to the k − ω-SST models.
Furthermore the stall angle for the Spalart-Allmaras model is at α = 15 deg while for the
k−ω models a stall angle of α = 14 deg is observed, indicating that the flow is able to remain
attached longer for the Spalart-Allmaras model.

Flow characteristics Next the flow fields for the different turbulence models are compared.
For the model-scale Reynolds number at α = 4 deg the flow fields are presented in figure
5-22. In these figures the normalized turbulence viscosity and the streamlines are plotted.
Note that blanking is applied in these figures for values µt < 1, indicating the region where
turbulence viscosity is dominant and hence the flow can be considered turbulent.
In these plots a separation region is clearly visible at the trailing edge of the foil. It is known
from previous studies that the Spalart-Allmaras model does not perform well for separated
flows when compared to the k−ω-SST models [73]. Which could explain the large difference
between the applied models.
In this particular case where separation is present, the difference between both the one- and
two-equation models is significant. The region computed using the Spalart-Allmaras model
is significantly smaller than the region obtained using the k − ω SST (Standard) and the
k−ω SST (2003) model. Since flow separation has a major effect on airfoil performance, the
difference in separation region between the two models explains the large differences in Cl
and Cm observed in table 5-15 for the separated flow case. But contrary to what could be
expected, the differences in Cd are minimal. This is the same trend as for the domain size
study.
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(a) Spalart-Allmaras.

(b) k − ω SST (Standard).

(c) k − ω SST (2003).

Figure 5-22: Normalized turbulence viscosity µt = µt/µ for AoA = 4deg, Re = 104.
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The effect is even larger for the zero angle of attack flow, as presented for the Spalart-Allmaras
and k−ω SST (Standard) model in figures 5-23(a) and 5-23(b). In these figures the difference
in separation zones is clearly visible. Additionally the shear stress over the foil is given in
figure 5-23(c), this figure clearly shows the difference in location of the separation point. The
location of the separation point has in turn a major effect on the lift performance of the
airfoil, i.e. a separation point close to the leading edge results in a reduction of the produced
lift whereas more lift is produced when the separation point is close to the trailing edge.

Note that the difference in drag coefficients observed in table 5-15 is also present in figure
5-23(c) by a difference in shear stress.

The differences between the turbulence models where also checked for the turbulence viscosity
in the wake-field. The turbulence dominated regions in the wake obtained using the Spalart-
Allmaras model, differ from the regions obtained using the k−ω SST models. When looking
at the detailed view of the trailing edge in figure 5-24 it is observed that transition occurs
further upstream for the Spalart-Allmaras model. Additionally the pressure coefficients in
the flow domain are compared. Figure 5-25 shows the iso-curves of the pressure coefficient
CP in the flow domain for both the Spalart-Allmaras and the k − ω SST (2003) model. The
differences between the latter are clearly visible. It must be mentioned that only one of the
k − ω SST models is plotted since the differences between these models is negligible. This is
in line with the results presented in table 5-15 for Cl, Cd, and Cm.

The normalized turbulence viscosity and the streamlines for the full-scale Reynolds number
case are plotted in figure 5-27. Other than for the model-scale Reynolds number case presented
in figure 5-22, the differences are small.

The streamlines for this case stay attached to the foil surface and no separation occurs. When
looking at the normalize turbulence viscosity no significant difference is observed between the
models. These observations are in accordance with the data presented in table 5-15, where a
maximum difference of less than 1.6% between the two models is observed for the full-scale
Reynolds number flow.

Figure 5-26 shows the iso-curves of CP for both the Spalart-Allmaras and the k − ω SST
(2003) model. When compared to the model-scale case the difference in the pressure field
between the two models is small, which corroborates the data in table 5-15.

5-4-1 Final Remarks

The data presented in table 5-15 and figure 5-20 to 5-26 are all in agreement. For separated
flow large differences between the Spalart-Allmaras and k − ω SST models is observed. For
the fully attached flow at full-scale conditions the differences are small for both the flow field
and for Cl, Cd, and Cm. The data presented are all in line with the work previously done in
[73], where a comparison is made between the one- and two-equation models for a 2D-flow
over various airfoils.

Since no experimental data is available for the modified Drela AG04 airfoil, a validation
study can not be performed. However the work presented shows the importance of selecting
a suitable turbulence model.
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(a) Normalized turbulence viscosity µt = µt/µ for AoA = 0, 104 using the Spalart-
Allmaras model.

(b) Normalized turbulence viscosity µt = µt/µ for AoA = 0, 104 using the k − ω
SST (Standard) model.

(c) Normalized shear stress over the airfoil for AoA = 0, 104. The wiggles present
in this graphs are caused by the unstructured type grid, generated using Hexpress.

Figure 5-23: Flow field and shear stress over an airfoil for various turbulence models at AoA =
0deg, 104.
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(a) Spalart-Allmaras.

(b) k − ω SST (Standard).

(c) k − ω SST (2003).

Figure 5-24: Trailing edge detail of the normalized turbulence viscosity µ̄t = µt/µ for AoA =
4, Re = 104.
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Figure 5-25: Effect of turbulence model choice on CP in the flow domain for AoA = 4, Re =
104.

Figure 5-26: Effect of turbulence model choice on CP in the flow domain for AoA = 4, Re =
106.
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(a) Spalart-Allmaras.

(b) k − ω SST (Standard).

(c) k − ω SST (2003).

Figure 5-27: Normalized turbulence viscosity µ̄t = µt/µ for AoA = 4, Re = 106.
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To gain more insight into where the differences between the three models originate from, a
more in-depth study of the considered models is required. This is outside the scope of the
present thesis work.
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Chapter 6

Numerical Study on MARIN Stock
Wind Turbine (MSWT) at

Model-Scale

This chapter is devoted to several numerical studies focusing on the model-scale MARIN
Stock Wind Turbine (MSWT). The knowledge here obtained will provide a solid foundation
for the computations performed on the MSWT and NREL 5MW turbine in chapter 7. The
present chapter starts with a domain size dependence study in section 6-1. Section 6-2 is
devoted to a numerical uncertainty study, in which both the iterative and discretization error
will be discussed. Two turbulence models are compared in section 6-3. In section 6-4 the
MSWT model-scale computations are validated against experiments and finally in section 6-
5, the general flow characteristics of the considered turbine will be discussed in detail. The
calculations of the turbine are all done using the steady RANS solver ReFRESCO. Since the
Absolute-Formulation (AFM) approach is used to model the turbine motion (see 4-2-2), steady
RANS computations suffice.

6-1 Domain Size Variation

In order to obtain reliable flow data of the MSWT geometry it must be ensured that the
influence of the domain on the solution is negligible. To do so a number of computations are
performed in which the dimensions of the computational domain are varied (see section 4-2).
In total three domains are analyzed, of which the dimensions are presented in table 6-1. Note
that the dimensions are given as a multiple of the turbine diameter.
For each domain in table 6-1 a solution is obtain for a tip speed ratio of TSR = 7 and an
inflow velocity of Vwind = 2 m/s, which represents a full-scale wind speed of Vwind = 14.1 m/s
for which model-scale experimental data is available.
In figure 6-1 the normalized axial velocity field for the computed domains and TSRs are
presented. The velocities in this figure are normalized using the inflow velocity Vwind. The
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Table 6-1: Overview domains used and corresponding dimensions.

Identifier Upstream Wake Diameter
length: nD length: nD nD

Domain A 5 20 10
Domain B 10 40 20
Domain C 15 60 30

region affected by the presence of the turbine is visualized by blanking the axial velocities
which deviate less than 0.1% from the inflow velocity.

For the smallest domain A the affected axial velocity spreads outwards up to the boundaries
of the domain (figure 6-1(a)). For both domain B and C the axial velocity is decelerated less
than 0.1% of the inflow velocity near the external boundary. In this case it is assumed that
the influence of the boundary conditions is negligible.

Note that at the region where the edges of the outflow and external domain boundary connect,
the axial velocity differs more than 0.1% from the inflow velocity. This is caused by the
interaction between the different boundary conditions imposed on the external and outflow
boundary respectively. Since these corners of the domain are located in the far wake-field,
they are assumed to have no influence on the solution in the vicinity of the turbine.

The thrust and power coefficients computed for the three domains are presented in table 6-2
and figure 6-2, in which the differences in CP and CT are presented relative to the largest
domain (C).

Table 6-2: CT and CP for varying domain size.

Identifier CT CP
[−] [%] [−] [%]

Domain A 0.7017 0.66 0.3026 2.77
Domain B 0.6975 0.05 0.2966 0.73
Domain C 0.6971 - 0.2944 -

For domain B the influence of the boundaries results in a difference of CT and CP less than
one percent of the largest domain C. However it is expected that for lower tip speed ratios
i.e. higher blade loading, the affected wake-field is larger and the dependency of the domain
will increase. Additionally the increase of computation time between domain B and C is only
10 percent. Note also that domain dependence for the three-dimensional flow considered here
is much smaller than previously observed for the two-dimensional flow (see section 5-2). The
trends observed in this study are in line with previous studies regarding current turbines [18].

Considering the above results the dimensions of domain C are used for the remainder of the
computations. For these domain dimensions the influence of the boundary conditions on the
solutions are considered negligible.

M.K.P. Make Master of Science Thesis



6-1 Domain Size Variation 119

(a) Domain A

(b) Domain B

(c) Domain C

Figure 6-1: Normalized velocity fields for TSR = 7.0 at the z = 0 horizontal plane. Contour
indicates the axial velocity, where values that differ less than 0.1% from the inflow velocity are
blanked. The iso-curve indicates Vx/Vwind = 1, indicating the border of accelerated/decelerated
flow.

Master of Science Thesis M.K.P. Make



120 Numerical Study on MSWT at Model-Scale

Figure 6-2: Domain size dependency of the model-scale MSWT at TSR = 7.

6-2 Numerical Uncertainty Study

To determine the numerical uncertainty of the considered computations, five grids are ana-
lyzed with a total number of cells varying between 8.4M and 29.5M. The properties of the
grids are presented in table 6-3. The same method as for the two-dimensional study is used
to generate the grids in an attempt to maintain geometric similarity as much as possible (see
chapter 5).

Because of the laminar character of the flow at model-scale conditions combined with unex-
pected large amounts of flow separation and heavy blade loading, an iteratively converged
numerical solution is not easily obtained. This is especially true for the finest grids, where
vortices are trying to shed from the blade, as observed for the two-dimensional study.

To improve the convergence of the numerical solution, the wind speed is increased from
Vwind = 2.0 m/s to Vwind = 2.47 m/s, which resembles a full-scale wind speed of Vwind =
17.4 m/s. By doing so the the flow around the turbine is expected to be more stable
with improved convergence characteristics as a result. Experimental data for the Vwind =
17.4 m/s, TSR = 7.0 case is available for comparison.

Table 6-3: Grid properties of grid refinement study.

Grid refinement 1 2 3 4 5

Total no. Cells 8371928 13406225 18559122 23907087 29558234
Minimum Orthogonality 10.34 13.74 15.406 12.541 11.726
Average Orthogonality 77.871 78.197 78.420 78.157 77.966
Maximum Skewness 0.903 0.877 0.874 0.864 0.879

Grid ref. ratio 1.52 1.30 1.17 1.07 1.00
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6-2-1 Iterative Error

Table 6-4 shows the iterative convergence obtained for the grid-set considered. The L2-norm
of the residuals are of the order 10−5, whereas a maximum order of 10−8 was previously shown
for the two-dimensional case. The L∞-norm of the residuals are of the order 10−2. For a
verification study a minimal L2- and L∞-norm of the residuals of typically 10−6 and 10−3 is
desirable.

The convergence plots of the L2-norms of the residuals and CT /CP , corresponding to the
finest grid, are presented in figure 6-3. These convergence plots are representative for all
computations performed in this chapter.

Figure 6-3: Iterative convergence plots of the L2-norm of the residuals and CT and CP for finest
grid. Vwind = 2.47 m/s and TSR = 7.0.

The maximum residuals of the pressure are plotted in the flow domain of the finest grid in
figure 6-4(a) for |resp| > 1 · 10−6. It is clear that these residuals are a result of the unsteady
flow present in the vortex of the blade root as can be observed in figure 6-4(b). In this figure
the iso-surface of the dimensionless Q-factor is plotted. This unsteady flow is caused by the
cylinder-like cross section of the turbine blade near the root. This effect is also observed
previously by others [18]. Furthermore the local nature of the large residuals can also be
explained by the difference between the L2- and L∞-norm of the residuals presented in table
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6-4. A large difference in the latter, indicate that the residuals are large only locally.

(a) Pressure residuals in the flow domain.
)

(b) Iso-surface of dimensionless Q factor at the blade
root(Q = 100).

Figure 6-4: Pressure residuals in the wake of the blade root and root vortex.

Obtaining lower values for the residuals is challenging due to this unsteady behavior of the
flow at the low model-scale Reynolds numbers. This is especially true for the low tip speed
ratios, at which blade loading is high and the flow is fully separated.
When looking at the change of the integral quantities CT and CP of the last 200 iterations,
the changes are all below 10−3 percent as shown in table 6-4, indicating that despite the
relatively large values of the residuals the integral quantities do converge to a constant value.
Note however that this does not mean the solution is converging to the correct values.
To be able to neglect the iterative error, the order of convergence must be two to three orders
below the discretization error. The relatively large iterative error for this flow case (typically
an L∞ residual norm of 10−3) must be kept in mind when evaluating the discretization error:
it can be that the iterative error is too large to be neglected according to the theory presented
in section 2-5.
Although not considered due to the required computational time, unsteady RANS computa-
tions would be desirable at model-scale conditions due to the unsteady behavior.

6-2-2 Discretization Error

Here the numerical uncertainty is estimated using the numerical uncertainty theory (see
section 2-5). For this study a wind speed of Vwind = 2.47 m/s at TSR = 7, is used as
explained before.
The resulting numerical uncertainty estimations are presented in table 6-5 for all grids at
the specified flow condition. When looking at the estimated uncertainties presented, a large
difference is observed between CT and CP . For CT the estimated uncertainty of all grids is
below 3.0 %, while for CP the finest grid will obtain an uncertainty of 32.31 %.
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Table 6-4: Iterative convergence and error.

Grid Grid ref. niter L2 residuals L∞ residuals Fluct. last 200 iters
no. hi

h1
max(u.v, w, p) max(u.v, w, p) 100×max(|φi − φend|/|φend|)

CT CP

Flow Case Vwind = 2.47 m/s and TSR = 7.0
1 1.52 8283 1.4 · 10−5 1.24 · 10−2 0.001 0.001
2 1.30 15000 3.4 · 10−5 2.8 · 10−2 0.001 0.001
3 1.17 15000 7.9 · 10−7 1.6 · 10−3 0.001 0.001
4 1.07 15000 1.7 · 10−5 9.0 · 10−3 0.001 0.001
5 1.00 15000 1.7 · 10−5 9.1 · 10−3 0.001 0.001

Table 6-5: Numerical uncertainty estimation for the MSWT model-scale computations.

Grid Grid ref. CT Uφ CP Uφ
no. hi

h1
[−] [%] [−] [−] [%] [−]

Flow Case Vwind = 2.47 m/s and TSR = 7.0
1 1.52 0.7416 0.37 2.78% 0.3170 -14.27 86.18%
2 1.30 0.7406 0.23 2.15% 0.3426 -7.37 58.53%
3 1.17 0.7384 -0.06 1.78% 0.3551 -3.99 45.92%
4 1.07 0.7375 -0.18 1.56% 0.3608 -2.44 38.37%
5 1.00 0.7388 - 1.39% 0.3698 - 32.31%

In addition to table 6-5, the graphs corresponding to the uncertainty estimation are shown in
figure 6-5.

When only looking at magnitude of CT and CP , and the difference of these quantities for
various grids, a similar trend is observed. The differences in CT and CP expressed as a
percentage of the solution for the finest grid show a maximum difference in CT of less than
one percent, while for CP a maximum difference of less than 15 percent for the coarsest grid.

The relative difference in CT and CP is also shown in figure 6-6. This figure clearly shows that
the values of CP converge to a constant value, while for CT convergence is already reached.

The difference in CT and CP for the relative difference can be explained by the fact that CP
is much more sensitive to the change in attached flow region between the computed grids (see
figure 6-7). This is due to the fact that CP is computed by means of the moment about the
rotating axis of the turbine. As a result of changes in Cl/Cd at the blade tip, CP is altered
significantly due to the incorporated distance from the rotating axis. CT on the other hand
is computed by means of the axial thrust force, hence changes in Cl/Cd along the blade-span
contribute equally.

The even larger differences in the uncertainties between CT and CP are also partially caused
by this phenomenon. Additionally the complex highly separated flow, the use of unstructured
grids and, to some extend, the iterative error contribute to this observed difference.
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(a) Uncertainty estimation CT (b) Uncertainty estimation CP

Figure 6-5: Numerical uncertainty estimation for flow case Vwind = 2.47 m/s and TSR = 7.0.

Figure 6-6: Power and thrust coefficient as percentage of the finest grid solution, at Vwind =
2.47 m/s and TSR = 7.0.

M.K.P. Make Master of Science Thesis



6-2 Numerical Uncertainty Study 125

Figure 6-7: Limiting streamlines for model-scale MSWT at TSR = 7.0 for various grid refine-
ments.
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6-2-3 Final Remarks

From the previous studies it follows that obtaining a sufficiently iteratively converged so-
lution is challenging when doing steady calculations. This, in combination with the use of
unstructured grids, result in large uncertainties especially for the power coefficient CP .

When looking at the differences in CT and CP between the grids and the estimated uncer-
tainties, the finest grid is chosen for the remainder of the computations. For this grid an
uncertainty of 1.39 and 32.31 percent is found for CT and CP . While the difference between
CT and CP for the two finest grids are 0.18 and 2.44 percent respectively. It must be kept in
mind however that the iterative error may have an effect on the uncertainty estimation and
the obtained solution.

6-3 Turbulence Modeling

In this section two different turbulence models are used and compared. Since both k−ω-SST
turbulence models show very comparable results for the two-dimensional flow problem, only
the k − ω-SST-Standard and the Spalart-Allmaras model are used. A detailed description of
the latter models can be found in section 2-4-4.

Power and thrust coefficient The numerical solutions using the two models are compared
for a wind speed and tip speed ratio of Vwind = 2.0 m/s and TSR = 7.0. The resulting
integral quantities CT and CP are presented in table 6-6.

Table 6-6: Power and thrust coefficients for two turbulence models

Turbulence model CT [%] CP [%]

Flow Case Vwind = 2.0 m/s and TSR = 7.0
Spalart-Allmaras 0.7798 8.75 0.4048 28.22
k − ω-SST-Standard 0.7170 - 0.3157 -

Analogous to the refinement study the large differences in CP can be explained to the sensi-
tivity of this quantity with respect to the attached flow region, as it is shown next.

Flow characteristics In figure 6-8, the limiting streamlines over the suction side of the blades
are presented for the Spalart-Allmaras and k − ω SST (Standard) model.

For both models the flow in the region near the blade tip remains attached. In this region
the apparent angle of attack is much smaller than near the root of the blade and the local
velocities are higher. As a result the flow is able to remain attached to the surface.

In the region of the blade near the root the apparent angle of attack is much larger and
the flow is no longer able to stay attached to the blade surface. As a result the flow will
separate from the blade surface, drastically degrading the performance of the blade locally.
This phenomenon is clearly visible for both models. However, the size of the attached region
is significantly smaller for the k − ω SST (Standard) model.
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As explained in the grid refinement study, the size of this attached region has a significant
effect on the performance of the turbine, especially when looking at CP . For computing CP
the torque about the rotating x-axis is used, as can be seen in equation (4-17). A large
attached flow region located near the blade tip will therefore contribute significantly to the
total moment about the x-axis due to the large amount of lift generated in this region of the
blade. Hence the large differences in CP between the models, where the the Spalart-Allmaras
model show a larger attached flow region (figure 6-8), and CP value (table 6-6) when compared
to the k − ω SST model.

CT on the other hand is computed by means of the axial force working on the turbine. As a
result, the lift and drag coefficients over the complete turbine blade span contribute equally,
in contrary to the increased contribution of the blade tip with regard to CP . This leads to a
reduction of the sensitivity to the size of the attached flow at the blade tip.

In figure 6-9 the normalized turbulence viscosity in the wake-field of the turbine blade at
various radii is presented for both models. In this figure an iso-curve of the turbulence viscosity
is shown for µt = 1, indicating the region where the turbulence viscosity is dominant and the
flow can be considered turbulent. For all sections along the turbine blade the production
of turbulence viscosity is much higher for the k − ω SST (Standard) model. Additionally
it spreads out further away from the airfoil surface when compared to the wake-field of the
Spalart-Allmaras solution. This is also shown in figure 6-10, where the turbulence viscosity
is visualized by means of an iso-surface. Note that in this figure different levels are used for
the iso-surfaces.

When looking at the wake-field of the two sections close to the hub (r/R = 0.3, 0.5) the
separated region in which high values of turbulence viscosity is present is much larger for
the K − ω-SST-Standard model. Clearly indicating the difference in turbulence viscosity
production between the two models.

6-3-1 Result Summary

It is shown in this study that the Spalart-Allmaras and K − ω-SST-Standard model perform
differently at model scale conditions. The size of the separated region at the suction side
of the blade is sensitive to choice in turbulence model. The size of this region is in turn
greatly affecting CP . Hence large differences between the models is observed for CP , while
the differences are much smaller for CT .

6-4 Validation procedure

In this section the numerical results are validated against the experimental data using the
procedure presented in section 2-5. Following this procedure the validation uncertainty Uval
is computed using equation (2-94), which is given again below for convenience ,

Uval =
√
U2
φ + U2

inp + U2
exp. (2-94)

The numerical, input, and experimental uncertainties regarding the flow problem at hand are
discussed next.
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(a) Spalart-Allmaras model (b) k − ω SST (Standard) model

Figure 6-8: Limiting streamlines over the suction side of the turbine blades for two turbulence
models at Vwind = 2.0 m/s and TSR = 7.0.
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Figure 6-9: Normalized turbulence viscosity (µt = µt/µlam)in the wake-field of a turbine blade
using Spalart-Allmaras and K − ω-SST-Standard turbulence models. Note that values below
µt < 1 are blanked.
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(a) Spalart-Allmaras model

(b) k − ω SST (Standard) model

Figure 6-10: Iso-surface of the turbulence viscosity in the wakefield of the turbine for two
turbulence models at Vwind = 2.0 m/s and TSR = 7.0.
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Experimental Uncertainty As explained before the experimental uncertainty Uexp is set
to 2.5% for both CT and CP over the full range of considered TSRs, taking into account
reproducibility for different test runs, manufacturing tolerances and uncertainties of the mea-
surement hardware. The experimental data and the absolute uncertainties are presented in
table 6-7..

Table 6-7: MSWT model-scale experimental results including 2.5% uncertainty.

TSR CT ±Uexp CP ±Uexp
[−] [−] [−] [−] [−]

Flow Case Vwind = 2.0 m/s
1.32 0.124 3.11E-3 0.007 1.70E-4
2.64 0.214 5.35E-3 0.016 4.03E-4
3.96 0.320 8.01E-3 0.030 7.48E-4
5.28 0.437 1.09E-2 0.050 1.26E-3
6.60 0.636 1.59E-2 0.191 4.78E-3
7.92 0.787 1.97E-2 0.306 7.66E-3
9.24 0.850 2.13E-2 0.269 6.72E-3

Input Uncertainty The input uncertainty originates from a number of assumptions and
simplifications made in the numerical model (see section 2-5). Blockage effects caused by
the imposed boundary conditions are neglected, following the domain size study described in
section 6-1. Furthermore, setting regarding initial turbulence, surface roughness and pitch
angle accuracy are of great importance, especially for the unsteady low Reynolds number flow
considered here. The remaining uncertainty due to simplifications such as the applied hub
geometry and neglected turbine tower are extremely difficult to quantify. For simplicity the
input uncertainty of Uinp = 0 is assumed.

Numerical Uncertainty The numerical uncertainty estimation presented in section 6-2 shows
a large difference between the uncertainties of CT and CP , which are caused by a combination
of the complex highly separated flow, the application of unstructured grids and, to some ex-
tend, the iterative convergence. Nevertheless the relative difference of the considered integral
quantities show a converging trend when refining the grid.

To provide the best possible insight in the validity of the performed computations the vali-
dation procedure is performed using the estimated numerical uncertainty based on the least-
squares method as proposed, as well as the uncertainty based on the relative difference between
the two finest grids considered. For the relative difference method a safety factor of 3.0 is
used, as suggested in [41].

Furthermore it must be noted that only one flow condition is used for the uncertainty estima-
tion, i.e. TSR = 7.0. In principle, when following the validation procedure, only this specific
flow conditions can be validated. Strictly speaking when a validation for all TSRs is desired
the uncertainty study presented in section 6-2 must be performed for all TSRs separately. In
this study however a uniform numerical uncertainty is assumed over the full range of TSRs.
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The resulting numerical uncertainties are presented in table 6-8, where UφLS and Uφrel rep-
resent the numerical uncertainty based on the least-squares method and relative difference
of the finest grids respectively. Note that for Uφrel the safety factor of Fs = 3.0 is already
included.

Table 6-8: MSWT model-scale numerical uncertainty obtained using relative difference of two
finest grids and uncertainty estimation based on least-squares method.

CT CP

UφLS 1.39% 32.31%
Uφrel (Fs = 3.0) 0.54% 7.32%

Validation uncertainty Using equation (2-94) and considering the assumptions mentioned
above, the validation uncertainty Uval can be computed. The resulting values of Uval are
presented in table 6-9, where Uval(LS) represents the uncertainty based on the method using
a least-squares fit of an error power law and Uval(rel) the uncertainty based on the relative
difference of the two finest grids.

Table 6-9: MSWT model-scale validation uncertainty obtained using relative difference of two
finest grids and uncertainty estimation based on least-squares method.

CT CP

Uval(LS) 2.86 % 32.41 %
Uval(rel) 2.56 % 7.74 %

The CT and CP curves of both the experiments and numerical computations are presented in
figures 6-11 and 6-12, in which the uncertainties presented in table 6-9 are also given. Both
methods show similar uncertainties for CT , while the differences for CP are much larger.

Comparison Error and Validation The comparison error given by equation 2-95 can now be
computed and compared with the validation uncertainties. The absolute comparison errors
E and the validation uncertainties are given in table 6-10 for CT and CP . The comparison
errors marked green are validated whereas the errors marked in red are not.

Although a large difference in validation uncertainty is observed between the two methods
proposed (least-squares and relative difference), the validation results presented in table 6-10
are the same. Only the tip speed ratios 3 to 5 are validated with the experimental results
whereas the tip speed ratios ranging from 6 to 8 are not.

The results which do not comply with the validation constraints are all for large TSRs, at
which the numerical solutions are depending heavily on the numerical setup (grid resolutions
and turbulence model). This is a direct result of the unsteady and partially separated flow
regime in which the turbine is operating.

It must be mentioned that the experimental and numerical data used in this study are for
different tip speed ratios, linear interpolation is used to obtain the intermediate values of CT
and CP . Additionally the numerical and experimental uncertainties are assumed uniform for
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(a) Uncertainties based on relative difference between the two finest grids
(Uφrel).

(b) Uncertainties based on least-squares approach (UφLS ).

Figure 6-11: CT curves of model-scale MSWT including uncertainties (Vwind = 2.0 m/s).
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(a) Uncertainties based on relative difference between the two finest grids
(Uφrel).

(b) Uncertainties based on least-squares approach (UφLS ).

Figure 6-12: CP curves of model-scale MSWT including uncertainties (Vwind = 2.0 m/s).
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Table 6-10: Absolute comparison error |E| for both CT and CP .

TSR |E|CT |E|CP Uval (CT ) Uval (CP )

least-squares based numerical uncertainty Uval(LS)
3 1.35 3.41 2.86% 32.41%
4 0.03 2.97 2.86% 32.41%
5 0.62 4.09 2.86% 32.41%
6 5.70 28.19 2.86% 32.41%
7 5.30 44.47 2.86% 32.41%
8 6.13 30.43 2.86% 32.41%

relative difference based numerical uncertainty Uval(rel)
3 1.35 3.41 2.56% 7.74%
4 0.03 2.97 2.56% 7.74%
5 0.62 4.09 2.56% 7.74%
6 5.70 28.19 2.56% 7.74%
7 5.30 44.47 2.56% 7.74%
8 6.13 30.43 2.56% 7.74%

the full range of TSRs. In order to improve the validation study, numerical and experimental
uncertainties need to be determined over the full range of TSRs. Furthermore the tip speed
ratios of the experimental and numerical results need to be matched such that interpolation
is not needed.

6-5 General Flow Characteristics

The findings of the previous sections are now further analyzed for a range of tip speed ratios
varying from TSR = 3.0 to TSR = 8.0. This range of TSRs is based on the condition close to
the cut-in and operating condition of the turbine, at TSR = 1.65 and TSR = 7.0 respectively.

The wind speed is set to a constant value of Vwind = 2.0 m/s for which experimental data
is available. The limiting streamlines over the suction side of the turbine blades are given in
figure 6-13. TSR = 3.0 to TSR = 6.0 in this figure show a fully separated flow over the whole
span of the blade. At this TSRs the turbine blades are subject to a large apparent angle of
attack over the full radius, resulting in large adverse pressure gradients at the suction side of
the blade near the trailing edge. Since the turbine at model-scale operates in the sub critical
regime, the flow is not able to withstand these pressure gradients without separating from
the blade surface, hence the turbine is fully stalled.

Although the apparent angle of attack is not directly computed, the geometrical angle of
attack is a good alternative indicator for the exact apparent angle of attack. The geometrical
angles of attack along the MSWT are given for the operating condition in table 4-1.

When the tip speed ratio is increased the apparent angle of attack over the foil is reduced,
with the smallest angle of attack located at the tip of the blades, as shown in table 4-1. This
is a direct result of the high radial velocity at the tip and the twist of the turbine blade.

Near the blade tip at these higher TSRs the angle of attack is small enough for the flow to
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Figure 6-13: Limiting streamlines for model-scale MSWT at various TSR.

remain attached. This is also observed in 6-13, where the limiting streamlines show a fully
attached region near the tip at TSR = 7.0 and TSR = 8.0.

The pressure distribution over the turbine blades at the design condition is given for both the
pressure and suction side in figure 6-14(a) by means of Cpn.

The region near the blade tips, where the flow is fully attached, show the largest difference
between the pressure and suction side. It is this region where a large portion of the torque
about the x−axis is generated. This is due to the attached flow which generates large amounts
of lift, combined with a large distance from the center of rotation.

Near the blade roots the pressure difference between the pressure and suction side of the
turbine is much smaller due to the separated flow in this region. As a result the lift generated
in this stalled region is only small. The combination of a stalled condition and a small radial
distance result in the fact that the torque contribution of the region near the root is only
small.

Since torque is directly related to the production of power by means of equation (4-17), a fully
attached flow over the full turbine blade is desirable. However a fully attached flow near the
blade tip is crucial since its significant contribution to the total amount of torque produced.

The pressure field in the domain is presented in figure 6-14(b) by means of Cp. Here an
iso-curve indicates the difference between the region with positive and negative pressure coef-
ficients. In this figure the effect of the increased velocities in the tip vortices is clearly visible
by means of a locally reduced Cp.
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(a) Normalize pressure distribution on a turbine blade.

(b) Normalize pressure distribution in the domain.

Figure 6-14: Pressure distribution on a turbine blade and in the domain at TSR = 7.0.
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The flow in the domain further away from the turbine is presented in figure 6-15, here the
normalized axial and radial velocities V x,y = Vx,y/Vwind are plotted in the xy-plane at the
rotating axis of the turbine.

The iso-curves in figure 6-15(a) are set to one, representing the boundary between decelerated
and undisturbed flow. The flow in the region directly in front and aft of the turbine are
decelerated due to the energy being extracted from the wind by the turbine. This is also in
line with the actuator disc theory discussed in section 2-3-2 (see figure 2-9).

Finally the deceleration of the flow in the wake-field is dissipated due to the reduction of
the grid resolution in this region, as can be seen in figure 4-10(b). The the wake-field of the
turbine blades is clearly visible in figure 6-15(b) by the increased velocity magnitudes in the
wake-field. To further visualize the vortices generated by the turbine, the normalized Q-factor
and the normalized vorticity ωy = ωD/Vwind are plotted in figure 6-16.

In these figures the tip vortex and root vortex are clearly visible. Due to the reduced grid
resolution away from the turbine blade the vortices are dissipated, which is causing the iso-
surface of the Q-factor to vanish in these regions.

When analysis of the wake-field is required a higher grid resolution is needed in this region
to prevent the perturbations in the wake-field to dissipate due to poor grid resolution. This
dissipating effect was also demonstrated in [42].

Finally the numerical results are compared to the experimental results in table 6-11, where
CT and CP are given for the full range of TSRs.

Table 6-11: Thrust and power coefficients of both experiments and ReFRESCO calculations of
the MSWT at model-scale

Experiments ReFRESCO
TSR CT CP CT CP

MSWT at model-scale Vwind = 2.0 m/s
3.0 0.2432 0.0199 0.2399 0.0192
4.0 0.3241 0.0306 0.3242 0.0297
5.0 0.4124 0.0460 0.4098 0.0441
6.0 0.5460 0.1274 0.5149 0.0915
7.0 0.6823 0.2263 0.7185 0.3270
8.0 0.7911 0.3041 0.8396 0.3966

Note that for this table linear interpolation is used to match the experimental and numerical
data for the desired TSRs. In addition to table 6-11, the results are plotted in figure 6-17

The numerical results presented in figure 6-17 show a good agreement with the experiments
for CT . The results of CP show a good agreement in the low TSR range, however larger
differences are found in the higher TSR range.

Above a TSR of 6.0 the flow is no longer fully separated and an attached region at the blade
tip starts to develop, which will grow for an increasing TSR (see figure 6-13). As explained,
the power coefficient is highly sensitive to the size of the attached flow region, since the
majority of the power is produced in this region.
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(a) Normalized axial velocity.

(b) Normalized radial velocity.

Figure 6-15: Normalized velocities over the tubine at TSR = 7.0.
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(a) Normalized Q-factor in the wake-field

(b) Normalized vorticity about the y-axis in the wake-field

Figure 6-16: Normalized Q-factor and vorticity ωy in the wake-field at TSR = 7.0.
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Figure 6-17: Thrust and power coefficient of MSWT experiments and numerical simulations at
model-scale conditions as function of tip speed ratio (Vwind = 2.0 m/s).
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It can be concluded that there is a good match between numerically and experimentally ob-
tained CT and CP curves, especially considering the unsteady highly separated low Reynolds
number flow. Although the increased sensitivity of CP results in a larger difference in the
higher TSR-range, CT shows good result over the full range of TSRs, which was the main
goal of the performance-scaled turbine geometry.
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Chapter 7

Comparison of NREL 5MW and
MARIN Stock Wind Turbine (MSWT)

Scaling Effects

In this chapter a comparison is made between the model-scale and full-scale NREL 5MW
baseline turbine and the MSWT. First in section 7-1 the flow over the NREL 5MW baseline
turbine is discussed and the relevant scaling effects presented. Similar topics concerning the
MSWT are covered in section 7-2. In section 7-3 comparison is made between the flow over the
full-scale NREL 5MW baseline turbine and the model-scale MSWT. Finally the CT and CP
curves obtained from the RANS computations for the full-scale NREL 5MW baseline turbine
are compared with the BEMT tool data in section 7-4.

7-1 Scaling Effects on the NREL 5MW Baseline Turbine

In this section the RANS computations on the model- and full-scale flow over the NREL
5MW baseline turbine are presented. As discussed the Froude-based scaling method is used
to scale the wind velocity and the geometry is kept the same. For the model-scale conditions
an inflow velocity of Vwind = 2.0 m/s is used whereas an inflow velocity of Vwind = 11.4 m/s
is used to represent the full-scale conditions.

In figure 7-1 the turbulence viscosity is plotted at several sections along the blade span for
both model- and full-scale conditions. This figure clearly shows the difference in turbulence
intensity between the latter. At full-scale conditions transition occurs close to the leading
edge, which enables the flow to remain attached to the surface when subject to large adverse
pressure gradients. The opposite is true for the model-scale flow, hence the adverse pressure
gradients cause the flow to separate after which transition occurs due to the unsteady nature of
the flow in the wake-field, as can be seen in figure 7-1(a) by means of an increased production
of turbulence viscosity.
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The limiting streamlines at the suction side of the blades are presented in figure 7-2 for model-
and full-scale. Due to the laminar character of the flow at model-scale the foil is in stalled
condition over the full range of TSRs, as can be seen in figures 7-2(a) to 7-2(f).

For the full-scale condition at which the flow can be considered fully turbulent, separation
occurs at low TSRs only due to heavily loaded blades and large local angles of attack. In
the separated regions the local flow has a large radial velocity component, which contradicts
the 2D flow assumption made in the previously discussed Blade Element Momentum Theory
(BEMT). On the contrary for larger TSRs the radial velocity components at the blades are
indeed small, which justifies the BEMT assumptions (see figures 7-2(g) to 7-2(l)).

In addition to flow separation at the suction side of the thick cambered airfoil sections, a
laminar separation bubble is observed at the pressure side of the blades at model-scale. The
limiting streamlines in figure 7-3(b) clearly show the presence of this separation bubble near
the trailing edge. Note that the bubble does not reach to the blade tip region, where the local
velocities are higher and airfoil sections are much thinner.

The separation bubble can also be seen in figure 7-3(a) at r = 0.3 and r = 0.5. The separation
bubble alters the local displacement thickness, reducing the effective camber of the airfoil.
Which, as explained in section 2-3-1, has a negative influence on the amount of produced lift.

The fully separated flow in combination with the decambering effect of the separation bubble
result in very poor CT and CP characteristics at model scale, which justifies the previous
observations in [14, 17].

The CT and CP curves of the full-scale and model-scale RANS computations and the model-
scale experiments are presented in figure 7-4. The experimental data published by H. R.
Martin of the University of Maine [17] is presented in figure 7-4, along with the numerical
RANS data of the model- and full-scale NREL 5MW turbine.

The experimental data available, uses a pitch angle of 6.4 degrees and a wind velocity of
Vwind = 2.94 m/s. Whereas for the RANS computations zero pitch angle was applied similar
to the full-scale setup. This is done to avoid the need for an extra numerical grid to compute
the 6.4 degrees pitch angle case. Additionally a model-scale wind velocity of Vwind = 2.0 m/s
was used similar to that of the MSWT measurements. Although requested, by the time this
thesis is written, only the measurement data above was provided, hence the presented model-
scale measurement data is indicative only. The difference in the applied pitch angle and wind
velocity results in the observed difference between the experimental and RANS data in figure
7-4.

7-2 Scaling Effects on the MARIN Stock Wind Turbine

Following the poor model-scale performance of the NREL 5MW baseline turbine [14, 17],
the new low Reynolds-number MSWT was designed, built and tested. In this section the
numerically obtained flow over the redesigned turbine is presented and discussed. For the
model-scale conditions an inflow velocity of Vwind = 2.0 m/s is used whereas an inflow velocity
of Vwind = 11.4 m/s is used to represent the full-scale conditions.

In figure 7-5 the turbulence viscosity is plotted at several sections along the blade span for
both model- and full-scale conditions. This figure clearly shows the difference in turbulence
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7-2: Limiting streamlines over the suction side of a turbine blade for model-scale (top)
and full-scale (bottom) NREL 5MW wind turbine at various TSR.
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(a) Radial velocity component. (b) Limiting stream-
lines at the pressure
side.

Figure 7-3: Radial velocity and limiting streamlines at the turbine blade for TSR = 7.0. Reynolds
numbers presented are based on local chord length and velocity.
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(a) Thrust coefficient

(b) Power coefficient

Figure 7-4: Thrust and power coefficient as function of TSR for both model- and full-scale NREL
5MW baseline wind turbine.
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intensity between the model- and full-scale flow. At full-scale conditions transition occurs
close to the leading edge, which enables the flow to remain attached to the surface when
subject to large adverse pressure gradients. The opposite is true for the model-scale flow,
where the adverse pressure gradients cause the flow to separate. After the flow has separated
transition occurs due to the unsteady nature of the flow in the wake-field, as can be seen in
figure 7-5(a) by means of an increased production of turbulence viscosity.

The limiting streamlines at the suction side of the blades are presented in figure 7-2 for model-
and full-scale. Due to the laminar character of the flow at model-scale the foil is in stalled
condition for TSR = 3.0 to TSR = 6.0, as can be seen in figures 7-6(a) to 7-6(d). For
higher TSRs an attached region is located at the blade tip which will grow in size when the
TSR is increased, as can be seen in figures 7-6(e) and 7-6(f). This is a direct result of the
reduced angle of attack and increased local velocity when the TSR is increased. Furthermore,
in addition to the improved aerodynamics by means of an attached flow region, a separation
bubble does not exist and hence no decambering effects occur.

The separated region at the suction side of the blades have large radial velocity components,
which contradicts the 2D-flow assumption made withing the BEMT. At the attached flow
regions for model- and full-scale, the radial velocity components along the blades are indeed
small, justifying the BEMT assumed 2D flow (see figures 7-2(g) to 7-2(l)).

In figure 7-7 the thrust and power coefficients for the MSWT are plotted as a function of
TSR. Here both model- and full-scale results are presented as obtained from experiments and
RANS calculations. In these graphs the uncertainties for the model-scale MSWT are also
plotted, in which the least-squares method was used for the numerical uncertainties.

Since both model- and full-scale turbines are in stalled condition at low TSRs, differences in
CT and CP are only small. In the mid range TSRs an attached flow region starts to develop
at full-scale while the flow remains separated at model-scale. As a result, the differences in
CT and CP are larger. Finally when the attached region starts to develop at model-scale for
the high TSRs, the differences are reduced.

7-3 Comparing the overall performance of the model-scale MSWT
and full-scale NREL 5MW baseline turbine

Since the main goal of the MSWT design is to mimic the full-scale performance (CT ) of
the NREL 5MW baseline turbine, a comparison is made between these two. In figure 7-
8 the limiting streamlines over the suction side of both turbine geometries are presented.
Furthermore the CT and CP curves of the latter models are presented in figure 7-9.

At low TSRs the flow over both turbines is fully separated as shown in figures 7-8(a) and
7-8(g). In the range of TSR 4.0 to 6.0 an attached flow region starts to develop over the
blades of the NREL 5MW turbine whereas the flow over the model-scale MSWT is still fully
separated, hence the increasing difference between the two flow cases. Finally for TSR 7.0
and above, an attached region is developing over the MSWT (figures 7-8(e) and 7-8(f)), which
greatly increases the turbine’s performance. This increased performance is also present in the
figure 7-9 especially for CP .
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7-6: Limiting streamlines over the suction side of a turbine blade for model-scale (top)
and full-scale (bottom) MSWT at various TSR.
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(a) Thrust coefficient

(b) Power coefficient

Figure 7-7: Thrust and power coefficient as function of TSR for both model- and full-scale
MARIN stock wind turbine.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7-8: Limiting streamlines over the suction side of a turbine blade for model-scale MSWT
(top) and full-scale NREL 5MW wind turbine (bottom) at various TSR.

Master of Science Thesis M.K.P. Make



154 Comparison of NREL 5MW and MSWT Scaling Effects

(a) Thrust coefficient

(b) Power coefficient

Figure 7-9: CT and CP as function of TSR for FS NREL 5MW baseline and MS MSWT.
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According to the numerical results the CT performance of the model-scale MSWT is differ-
ent than that of the full-scale NREL 5MW. This difference was previously observed for the
full-scale NREL 5MW BEMT results and the model-scale MSWT model experiments [19].
The differences however, are bigger according to the CFD computations. A similar trend is
observed for the CP values.

7-4 Comparing the full-scale BEMT and RANS results

The full-scale wind turbine performance data available in [14, 17], other than the RANS result
presented in this study, are computed by BEMT-tools. In this section the BEMT tool data
for the NREL 5MW baseline turbine are compared with the data obtained from the RANS
computations as presented in section 7-1.

Both the CT and CP curve for the NREL 5MW baseline turbine are presented in figure 7-10.
The BEMT results in this plot are taken from a publication by H. R. Martin of the University
of Maine on the design of a similar scale model rotor [17]. These data were obtained using
NREL’s coupled aero-hydro-servo-elastic wind turbine simulator FAST (e.g. see [13]), in
which the aerodynamics are computed by means of BEMT. Input coefficients needed for this
tool are obtained from XFOIL computations, where a standard laminar to transition effect
log factor, Ncrit, of 9 was used [14, 17].

It is observed that over the full TSR range the ReFRESCO data predicts larger CP and CT
values when compared to the BEMT data. The differences between both numerical tools
increase for increasing TSR, especially for CP . The BEMT tool predicts the maximum power
coefficient to be at TSR = 7.25 while for the RANS computations the maximum is not yet
reached.

Since no full-scale experimental data is available it is not possible to conclude which of the
above methods predicts the turbine performance most accurately. Additionally it must be
noted that the uncertainties of both the full-scale BEMT and RANS data are needed for
proper judgment of the data presented. However it must be kept in mind that the BEMT-
based modeling approach presented here, assumes a 2D flow over the blades with no radial
interaction, which does not always hold. Especially for the heavily loaded turbine at low
TSRs, where large amounts of separation occurs the radial components are large.
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(a) Thrust coefficient

(b) Power coefficient

Figure 7-10: Thrust and power coefficient as function of TSR for full-scale NREL 5MW based
on BEMT and RANS results.
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Chapter 8

Conclusions and Recommendations

In this chapter the work presented in the previous chapters is summarized and recommenda-
tions are given regarding improvements of the study and future work. In section 8-1 and 8-2
the conclusions and recommendations of the two- and three-dimensional studies are presented.
Section 8-3 is devoted to the scaling effects observed for the two analyzed turbine geometries.

8-1 Two-dimensional study

To improve input data for BEMT based tools, numerical simulations have been performed
on 2D airfoils to study the Reynolds number effect due to Froude-scaled winds. Prior to
these computations the influence of the numerics on the results were studied. Based on this
numerical study a number of conclusions may be drawn.

• In order to reduce the influence of the boundary conditions extremely large domain
dimensions are required. For this study a domain size of R/c = 100 is used, resulting
in an influence of the domain on the solution of less than 2.2 percent, for all Reynolds
numbers and angles of attack tested.
The influence of the domain was strong for Cl at model-scale Reynolds numbers while
for full-scale Reynolds numbers the dependency was strong for Cd, which is in line with
the work previously done by others.
For future computations an attempt to reduce the domain size dependency can be
made by studying the influence of the α and β angle in the BCAUTODETECT settings,
which determine the size of the pressure boundary.

• The iterative convergence of both steady and unsteady computations was very good for
all tested cases.

• CPU times for steady computations were typically 2.5 hours on a standard workstation.
For unsteady computations CPU times of typically 5 days using 32 cores on a six years
old cluster.
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• From the verification study it is found that the round-off and iterative-error are small
enough to be considered negligible (typically L∞-norms of the residuals are below 10−6).
This holds for all cases analyzed, both steady and unsteady.
Performing an uncertainty study when using unstructured grids is shown to be chal-
lenging, especially for the unsteady case where a time-discretization error is introduced.
Large uncertainty estimations up to 35 % for the extreme case are found for the steady
computations performed. The trends found for the steady computations were also ob-
served for verification study on unsteady computations.
To understand the effect of the unstructured grids on the numerical uncertainty esti-
mation at low Reynolds numbers, it is desirable to perform more 2D computations on
structured grids. By doing so it can be determined whether the large variation in the
estimated numerical uncertainties are caused solely by the unstructured grids, the un-
steady separated flow, or both. Furthermore these results can than be compared with
the alternative methods of describing the typical grid cell size.
Additionally, to improve numerical uncertainty estimation using the alternative typical
grid-cell definition based on the model of the cell volumes could be further studied. The
number of cell volume intervals could be varied for the determination of the mode of
the cell-volumes.

• A number of numerical computations are performed in which various turbulence models
are implemented. At full-scale Reynolds numbers the differences between the various
models are only small in both Cl, Cd, and Cm (typically less than 1.5%) as well as the
flow characteristics.
At model-scale Reynolds numbers large difference are indeed observed. The numerical
solutions of these separated flows show large variation in both size and geometry, which
greatly affects the performance of the airfoil at hand.
Since no experimental data is available, validation can not be performed, however previ-
ous work done by others showed that the accuracy of the Spalart-Allmaras one-equation
models is less when separated flow is modeled.
It can be said that at model-scale Reynolds number flows, choice of turbulence mod-
els plays an important role. The k − ω SST models are a good choice for numerical
simulation of the separated low Reynolds number flows considered.

The sensitivity of the solution for domain size, grid density, and turbulence model show the
complexity of these computations. More research is desired on the effect of other param-
eters such as for example the level of the inflow turbulence quantities. Newly developed
turbulence/transition models can be used to study more the effect of transition on Cl/Cd.
Additionally, to further corroborate the findings above, a similar study could be performed
using a different airfoil type for which experimental data is available for validation.

8-2 Three-dimensional study

For the three-dimensional flow over the MSWT at model-scale, a numerical study compa-
rable to the two-dimensional study is performed. The knowledge obtained in this study is
summarized next.
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• The influence of the domain is studied by analyzing the flow over the turbine using
three domains with varying dimensions. For the largest domain of 30 times the turbine
diameter, the influence of the boundary conditions are assumed negligible with less than
one percent difference between the two largest domains.
To further study the influence of the domain size, additional computations should be
performed for lower tip speed ratios. Since the affected wake-field is expected to be
larger for the heavily loaded blades at low TSRs the domain size influence is likely to
be larger.

• Reaching the desired iterative convergence using steady calculations is challenging due
to the unsteady nature of the flow at model-scale conditions. Typical L∞- and L2- norms
of the residuals in the order of 10−2 and 10−5 are found respectively in the wake-field of
the blade root. The integral quantities CT and CP however do converge to a constant
value. The magnitude of the iterative error in combination with the use of unstructured
grids results in a large uncertainty. Using finer grids results in an uncertainty for CT
and CP of 1.39 and 32.31 percent respectively. The absolute difference between the
two finest grids, , is only is only 0.18 and 2.44 percent for CT and CP respectively.
Because of the moderate iterative convergence and highly separated unsteady flow it
is desirable to perform several URANS computations for comparison with the steady
RANS computations. The results of this comparison could lead to more knowledge on
the validity of using steady RANS solvers for low Reynolds number flows over wind
turbines. The uncertainty estimation procedure based on the least squares method
together with the more common approach based on the relative difference, as presented
in this study, provide the engineer with an extra method to asses the reliability of the
numerical computations. However the estimated uncertainties are merely indicative and
should always be used with great care.

• A study has been preformed in which the Spalart-Allmaras and k − ω SST (Standard)
model are compared. Since the turbine operates in the sub-critical regime large differ-
ences between the models are found mainly in CP . From flow visualization it is observed
that this large difference is related to the size of the separated region, which is different
for both models. When comparing the obtained results with experimental data it is
found that the k − ω-SST-Standard model is more accurate and the Spalart-Allmaras
over predicts both CT and CP . Additionally as for the two-dimensional study, it might
be of interest to study the effect of inflow turbulence levels. It is expected that this
will significantly influence the solution because of the critical conditions in which the
model-scale turbine operates.

• In the low TSR range (typically TSR < 6) the experimental and numerical data agree
well for both CT and CP . In the TSR > 6 range the difference in CP is larger, this is
due to the sensitivity of CP to the size of the attached flow region at the blade tips of
the turbine. CT is less sensitive to this effect and consequently the differences between
the experimental and numerical data is much smaller for this quantity.

• With the numerical and experimental uncertainties known a validation study is per-
formed for the MSWT at model-scale. Due to the large uncertainty estimations two
methods are applied based on the least-squares method and the relative difference be-
tween the two finest grids.
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Both methods however resulted in similar results, where only the lower TSR range
(TSR = 3.0 to TSR = 5.0) is validated against the experimental data. The differ-
ences between the experimental and numerical data at higher TSRs are too large to be
validated. This is caused by the critical flow in which the turbine operates.

8-3 Scaling effects of the MSWT and NREL 5MW

Overall it can be said that the results presented on the scaling effects are in line with the
experimental observations previously described by others.

• The poor performance of the NREL 5MW baseline wind turbine at model-scale condi-
tions is caused by Reynolds dissimilitude resulting in fully separated flows over the full
range of computed TSRs. Additionally a pressure side separation bubble is present at
model-scale, which further decreases the turbine performance due to its decambering
effect. At full-scale conditions fully separated flow is only observed at the low TSRs
and only partially in the higher TSRs near the blade root.

• For the flow over the MSWT at model-scale similar observations are made, where sep-
aration occurs over the full TSR range. However at higher TSRs an attached region
is located at the blade tip resulting in increased CT and CP values when compared to
the model-scale NREL 5MW baseline turbine. Additionally no separation bubble was
observed on the pressured side of the blades.

• The attempt to improve the turbine performance by means of the altered geometry of
the MSWT showed promising results. For the TSRs near the design conditions where
an attached flow region is observed, the MSWT design shows great improvements in
both CT and CP when compared to the NREL 5MW baseline in model-scale conditions.
Although for CP there is still a large difference is observed, the objective of scaling CT
was satisfactory. This is partially due to the increase of the blade chord length by 25%
over the full blade span, and the attached flow region at the blade tip. For the lower
TSR range the differences between the latter model are larger, due to the fully separated
flow at model scale.
Despite the fact that the pitch distribution of the original NREL 5MW baseline turbine
geometry is already altered for the MSWT, more improvements can be made. An altered
pitch distribution such that the attached region at model scale resembles the full scale
attached region is desired. Several initial CFD computations can be performed on this
altered geometry using the best possible settings based on the findings presented in this
study.

• For full-scale he differences between the BEMT and RANS computations of CT and
CP where only small over the full range of TSRs. The RANS computations resulted in
larger CT and CP values especially for higher tip speed ratios. No conclusions can be
drawn on the accuracy of the methods due to the lack of available measurement data
and uncertainty estimations. However it must be kept in mind that BEMT results rely
on input data and certain assumptions with respect to the flow. E.g. the assumed two-
dimensional flow over the blades does not hold for the highly separated flow at model
scale.
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To further investigate the validity of both full-scale BEMT and RANS computations
a verification and validation study should be performed on both methods. For the
BEMT computation input data based on both XFOIL and RANS data should be used
and result compared. The fact remains however that no full-scale measurement data is
available.

8-4 Wind Turbine Analysis Using CFD

As shown in this thesis, numerical analysis of floating offshore wind turbines using a RANS
solver can be extremely valuable. However, when compared to the “less advanced” modeling
tools such as BEMT codes, large amounts of CPU power is required. As an example: the
amount of CPU time required for the present work is estimated to be roughly 60 years! It is
obvious that without the available hardware (workstations/post-processing machines/HPC-
clusters) and software (state of the art codes/unlimited licenses/unlimited cores), it is impos-
sible to perform the amount of computations done in the present work.
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List of Acronyms

NREL National Renewable Energy Lab

EWEA European Wind Energy Association

FOWT Floating Offshore Wind Turbine

BEMT Blade Element Momentum Theory

URANS Unsteady Reynolds Averaged Navier Stokes

RANS Reynolds Averaged Navier Stokes

TSR Tip Speed Ratio

CFD Computational Fluid Dynamics

MSWT MARIN Stock Wind Turbine

LE Leading Edge

TE Trailing Edge

NS Navier-Stokes

V&V Verification and Validation

RMS Root Mean Square

RE Richardson extrapolation

QUICK Quadratic Upstream Interpolation for Convective Kinetics

CDS Central Difference Scheme

UDS Upwind Difference Scheme

SIMPLE Semi Implicit Method for Pressure Linked Equation
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PDF Probability Density Function

SA Spalart-Allmaras

SST Shear Stress Transport

RFM Relative-Formulation

AFM Absolute-Formulation

MVG Moving-Grid-Formulation

List of Symbols

Latin Symbols

B Body force vector [N ]

D Deformation tensor [−]

ef Eccentricity vector [−]

I Identity matrix [−]

T Stress tensor for Newtonian fluids [Nm−2]

V Velocity vector (u, v, w)T [ms−1]

~n Outward normal unit vector [−]

A Area [m2]

c Chord length / Speed of sound [m]/[ms−s]

ci Refined cell size [m]

Ci Initial cell size [m]

D Circular domain diameter / Drag force [m]/[N ]

f Shedding frequency [s−1]

Fs Safety factor for numerical uncertainty study [−]

g Gravitational constant [ms2]

h Vertical distance (height) [m]

k Mean turbulence kinetic energy per unit mass [m2s−2]

L Characteristic length / Lift force [m]/[N ]
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M Moment [Nm]

N Number of rotor blades [−]

ni Number of refinements [−]

np Total number of grid cells [−]

N∆V Number of cells within volume interval ∆V [−]

NTotal Total number of cell within a grid [−]

P Pressure [Nm−1]

pt Observed order of accuracy of time discretization [−]

qφ Source term in conservation equation [φs−1]

R Resulting force / Blade tip radius [N ]/[M ]

r Radius [m]

S Planform area [m2]

Ti Turbulence intensity [−]

Uφ Numerical uncertainty [−]

Uexp Experimental uncertainty [−]

Uinp Input uncertainty [−]

V Characteristic velocity [ms−1]

Vwind Wind velocity [ms−1]

W Relative velocity at rotor blade [ms−1]

Xcr Critical value along airfoil surface [m]

Non-Dimensional Quantities

a Axial induction factor [−]

a′ Tangential induction factor [−]

Cp Pressure coefficient [−]

Cdfrict Frictional drag [−]

Cdpress Pressure drag [−]

CmLE Moment coefficient about the leading edge [−]
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Cpn Angular pressure coefficient [−]

L2 RMS of the residuals of φ between iterations over the domain [−]

L∞ Norm of max. residual of φ between iterations over the domain [−]

Re Reynolds number [−]

Rex Reynolds number at location x from the leading edge [−]

Rexcr Critical Reynolds number [−]

St Strouhal number [−]

y+ Non-dimensional wall distance [−]

Cd drag coefficient [−]

Cl lift coefficient [−]

CP power coefficient [−]

CT thrust coefficient [−]

Fr Froude number [−]

Subscripts

∞ Far field location [−]

ct Flow property at the cell center [−]

m Model [−]

p Prototype [−]

Greek Symbols

α Angle of attack / Autodetect angle [deg]

αf Interpolation factor [deg]

αt Time discretization related constant [−]

ω̄z Non-dimensional vorticity. [−]

β Blending coefficient / Autodetect angle [deg]

∆t Time step [s]

δ Boundary layer thickness [m]
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Γ Diffusive coefficient in conservation equation [−]

γ Tip speed ratio [−]

γr Local tip speed ratio [−]

λ Scaling factor [−]

µ Dynamic viscosity [kgm−1s−1]

µt Turbulent viscosity [kgm−1s−1]

µtref Normalized turbulence viscosity [−]

Ω Angular velocity [s−1]

ω Turbulence dissipation rate [s−s]

φ Numerical flow quantity [−]

φ0 Estimation of the exact solution [−]

φi Integral of local quantity for iteration i [−]

φexact Exact solution [−]

ρ Mass density [kgm−3]

σ Blade solidity [−]

σr Chord solidity [−]

τ Shear stress [Nm2]

τi Time step of grid i [−]

τw Sheer stress on surface [Nm2]

ν̃ Auxiliary viscosity [kgm−1s−1]

ε Turbulence dissipation / Estimated discretization error [m2s−2]/[−]

ζ Non-dimensional radial position r/R [−]

resφ Non-dimensional change of the residual of a given variable [−]
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