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Abstract—The National Institute of Standard and Tech-
nology (NIST) has recently started a competition with the
objective to standardize lightweight cryptography (LWC).
The winning schemes will be deployed in Internet-of-Things
(IoT) devices, a key step for the current and future infor-
mation and communication technology market. GIFT is an
efficient lightweight cipher and it is used by one-fourth of
the LWC candidates in the NIST LWC competition. Thus,
its security evaluation is critical. One vital threat to the
security are so-called logical side-channel attacks based on
cache observations. In this work, we propose a novel cache
attack on GIFT referred to as GRINCH. We analyzed the
vulnerabilities of GIFT and exploited them in our attack.
The results show that the attack is effective and that the full
key could be recovered with less than 400 encryptions.

Index Terms—Lightweight cipher, GIFT cipher, cache at-
tack, Micro-architectural attack.

I. INTRODUCTION

The wide use of Internet-of-Thing (IoT) devices is
transforming many domains, including the automation
industry, automotive, avionics, and healthcare [1]. It is
expected that by 2021, 25 billion IoT devices are de-
ployed [1]. IoT devices are highly-constrained devices
that are widely and seamless deployed and blended
in their environment. The key role of such devices is
the remote monitoring of critical systems and collecting
of data; both put severe requirements on the security.
The current standardized cryptographic algorithms are
typically designed for desktop/server environments and
are not suited for constrained devices [2]. To cope
with this challenge, there is a strong need for secure
lightweight cryptography (i.e., ciphers, hash functions
and protocols).

Currently there is an ongoing NIST competition to
standardize lightweight cryptography (LWC NIST com-
petition) [2]. To this end, a portfolio of new block ciphers
will emerge as a standard for lightweight authenticated
encryption in the upcoming years. Among the 32 can-
didates of the second competition round, 7 are based
on GIFT cipher [3]. GIFT is based on a substitution-
permutation network (SPN) cipher and was proposed
in [4] as an improvement to the well-known PRESENT
cipher [5] which is part of the ISO standards ISO/IEC
29192-2:2012 and ISO/IEC 29192-5:2016. Currently, GIFT
needs the least amount of operations per bit [4]. Al-
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though the computational security of GIFT has been
widely studied, GIFT is prone to implementation at-
tacks [6, 7]. During operation, the secret key may pas-
sively be inferred through side-channels. To the best of
our knowledge, only two works have studied implemen-
tation vulnerabilities of GIFT [6] [7]. In [6], the authors
have demonstrated a power attack on GIFT, while the
authors in [7] a fault injection attack. Yet, cache attacks
against GIFT have never been demonstrated before.

In this paper we propose GRINCH, the first cache
attack on GIFT. Caches are usually shared memories
that are used to speedup the execution of the crypto-
graphic algorithms. However, they become a security
threat when mutually accessed by multiple processes. A
malicious process may gather information to reveal the
secret key by: observing the execution time (time-driven
attack) [8], exploiting the access pattern (access-driven
attack) [9], or inferring the sequence of hits and misses
(trace-driven attack) [10]. GRINCH crafts specific inputs
to the cipher to extract sensitive data by observing its
cache accesses. Hence, it is an access-driven cache attack.
In summary, the contributions of the paper are:

e Analysis of GIFT vulnerabilities

o Implementation of the GRINCH attack

o Evaluation of the impact of the cache configuration

on the attack efficiency

e Practical demonstration of the attack with two hard-

ware platforms (SoC and MPSoC) in an FPGA

« Proposal of two countermeasures to protect GIFT

The rest of the paper is organized as follows. Section II
describes the GIFT cipher. Section III presents the threat
model and GRINCH attack. Section IV presents the
validation results. Finally, Section V concludes the paper.

II. GIFT CIPHER

Like most popular standardized symmetric crypto-
graphic algorithms (such as Advanced Encryption Sys-
tem (AES) [11] and PRESENT [5]), GIFT is a cipher
based on Substitution—Permutation Networks (SPNs) [4].
GIFT was proposed as an improvement to PRESENT.
Despite PRESENT’s simple construction of substitution
and permutation operations, a particular part of the
cipher that protects against differential cryptanalysis sig-
nificantly increases the cost and complexity of PRESENT,
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as its S-Box has to satisfy branching number 3 (BN3) [4].
To overcome such drawbacks, GIFT carefully constructs
the substitution and permutation blocks in conjunction,
thereby reducing the requirement from BN3 to BN2
in the S-Box implementation, and hence, resulting in
a lower overhead. In contrast to PRESENT, GIFT has
smaller substitution blocks and uses a fewer number of
rounds, achieving a very compact and high throughput
design.

GIFT-64 (GIFT-128) encrypts 64 (128) bits of data with
a key length of 128 bits using 28 (40) rounds. The input
rounds are organized in segments of 4 bits (plaintext for
the first round, otherwise intermediate states). Hence,
GIFT-64 has 16 segments and GIFT-128 has 32 segments.
Figure 1 shows a single round of the GIFT-64 cipher. It
consists of:

a) SubCells: Each segment (4-bit) is substituted
based on a non-linear function called substitution box
(S-Box). The output of the S-Box is a 4-bit segment.

b) PermBits: It shuffles (i.e., reorders) the bits in all
segments.

c) AddRoundKey: The two least significant bits
(LSB) of each segment are XORed (i.e., exclusive-or
operation) with specific bits of the key. Figure 1 shows
that the two LSB bits of the first segment are XORed
with key-bit 0 and key-bit 16 (see purple blocks in the
Sub-Key Adding part of the figure). For the following
segment, the key-bit 1 and key-bit 17 are used. This inter-
leaved AddRoundKey process uses 32 bits of the key per
round. Additionally, in this step, the most significant bit
of each segment (MSB) is XORed with a specific round
constant (see yellow blocks in the Constant Adding part).

d) UpdateKey: This step updates the key for the
next round. First, the entire key is 32-bits circularly
rotated to the right, thus replacing the used key-bits
by the next 32 bits. Thereafter, the 32 used key bits
(now located in the most significant part of the key) go
through a local circular rotate operations, where the 2
MSB bytes are rotated by 2, and the following 2 bytes
by 12, as shown in the bottom part of Fig. 1.

III. GRINCH ATTACK

This section discusses the GRINCH attack. First, it de-
scribes the vulnerabilities of GIFT. Thereafter, it presents
the threat model and the attack methodology.

A. GIFT Vulnerability

Similarly as in many SPN-based ciphers, GIFT in-
cludes a non-linear substitution operation (i.e., SubCells
or S-Box) that substitutes each 4-bit segment with an-
other 4-bit number. A commonly used software imple-
mentation of GIFT is based on transformation tables,
where the SubCells operation is implemented with a
lookup table whose entries are the input rounds. In such
implementation, a single lookup table is used in such
a way that it is accessed by each segment. Our attack
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Fig. 1. Round operations of GIFT-64 cipher
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focuses on the first four rounds by monitoring the key-
dependant S-Box cache accesses.

The input of the S-Box (also called index) is the result
of XORing the previous round state (round input) with
the secret key. In the first round, the plaintext is used
as the state and no key operation is involved. From the
second round onwards, the index is computed from the
previous state and the secret key. Therefore, when the
round input and the index of the substitution table are
known, it is possible to retrieve the key by calculating
Key < Index @ Input.

Fortunately, GIFT cipher uses an S-Box of 16 values,
which is considered very tiny when compared with the
256 values S-Box used in the AES. As a result, the
probability that an encryption uses all S-Box addresses
in the first rounds is very high. Hence, an attacker that is
looking for the used cache addresses after the end of the
encryption process would not be able to extract useful
information. Nevertheless, today’s systems employ task
scheduling, where tasks are pre-empted to run multiple
tasks concurrently. Therefore, it is possible to access the
cache while the cipher is still in its intermediate state.

GRINCH strategy is based on running multiple en-
cryptions with different messages, each carefully crafted
in order to activate the same index of the S-Box (in a
certain segment of a certain round). The attacker can
eliminate key candidates from the encryption based on
the selected S-Box address until a single index remains,
which the attacker subsequently can use to retrieve part
of the key (see part ¢ of Section II). Finally, the same
process is repeated by targeting different segments until
the full key is recovered.

B. Threat Model

IoT devices contain System-on-Chips (SoCs) that in-
clude single or multiple heterogeneous processing units,
memories, peripherals, hardware accelerators and other
IP hardware cores [12]. SoCs may include memory hier-
archies comprising several levels of cache (e.g., L1 to L3)
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and DRAMs. When a cache miss occurs, data is searched
throughout the cache levels and eventually looked up in
the DRAM when needed.

GIFT cipher is designed to be used in such IoT devices.
They use an operating system to manage and schedule
multiple applications. Note that trusted cryptographic
applications (e.g., GIFT cipher) share the hardware plat-
form together with potential malicious or untrusted
third-party software that could gather, process and com-
municate data. Taking all of this into consideration, we
can assume that trusted and non-trusted applications
can run on the same hardware platform, sharing re-
sources like on-chip communication structures (e.g., bus
or Networks-on-Chip), interfaces and cache memories.
In this work, we define two main processes named vic-
tim and attacker. The victim process encrypts/decrypts
messages using GIFT cipher. The attacker process runs
external malware that manipulates the data to be en-
crypted and accesses the shared cache memory. In sum-
mary, the considered threat model has teh following
characteristics:

o The cache used by the victim is accessible by the
attacker.

o Attacker can measure the cache access time (to
differentiate cache miss and hit).

o Attacker can create/manipulate plaintexts.

o Optionally, the attacker can flush the cache.

C. Methodology

The GRINCH attack focuses on identifying the index
of one single S-Box access (i.e., one segment) of the
second round. Note that in the second round the key is
used for the first time. If such an index is identified, two
bits of the key can be retrieved (see Figure 1). However,
an attacker only can control the plaintext and not the
state of the second round. Hence, to control a single
access of the S-Box in the second round, the attacker
has to carefully select four segments of the plaintext
(i.e., input of first round). These four input segments
determine the value of one segment of the second round
due to the S-Box and permutation operation of the first
round. As the key is unknown to the attacker, it is not
possible to know upfront which S-Box index will be
used. To solve that issue, an attacker can perform many
encryptions while crafting the input in such a way that
the targeted segment is kept active and stimulates the
same target key bits (i.e., the two bits involved in the
AddRoundKey). These plaintext manipulations create a
condition where only one index will be accessed in the
cache during all performed encryptions. When more
encryptions are performed, more key candidates can
be eliminated until a single candidate remains. In such
cases, it is possible to reverse engineer the two bits of
the key using the index and the state of the involved
segment. This process is repeated 15 times for the other
segments to recover the complete 32 bits of the key.

i

Step 1: Generate
Plaintext + Encrypt

Step 2: Probe
the Cache
Step 3: Eliminate
Fixed target bits Candidates

Step 4: Reverse Engineer
Key-bits

Change target bits

Step 5: Update Plaintext
Generation

Change target round

Fig. 2. GRINCH attack methodology

Once the attacker knows 32 bits of the key, the process
can be repeated in order to attack the next round by
computing the input state of the following round. Note
that the key is shifted 32 bits to the right after each round
(see also Figure 1). By changing the plaintext to match
the targeted segments in the third round again 32 key
bits can be recovered. After applying the same trick four
times, the entire 128-bit key can be retrieved.

The methodology of GRINCH consists of five steps as
shown in Figure 2 and described next.
Step 1 - Generate Plaintext + Encrypt: The goal is of the
Step 1 is to craft the plaintext so to force the same S-Box
accesses for certain key-bits. The methodology starts by
defining the target key-bits, as shown in Algorithm 1.
The first part of the algorithm identifies the offset of the
key-bits K;, K; in the AddRoundKey (e.g., the offset of
key bit 0 is 0 and the offset of key bit 16 is one (see
AddRoundKey in Fig. 1. This is realized through the
StatusBitXorKey(K) function (lines 2 and 3). Thereafter,
these bits are inversely permuted (lines 4 and 5) to
obtain their indexes (bit 4) and (bitg) before the PermBits
function, which is equal to the output of the S-Box layer.
For the attack to succeed, the bits bit4 and bitg should
always keep the same value so that the target key bits
of the S-Box in the next round remain unchanged. In
this attack we set these bits to 1. Hence, the inputs of
the S-Boxes for these two bits must be careful chose and
always lead to a 1 at the output (loop on lines 5-12). As
a result, for each bit, a list of valid inputs and that will
always force the same XOR operation with the target
key-bits K;, K; is generated. Thereafter, all the plaintexts
are generated based on these lists, as in Algorithm 2. For
each plaintext segment, a random value is applied when
it is not part of a segment where bit or bitg is located,
and an arbitrary index from the list is used when it is
in order to make sure that the value at bit, and bitg is
always 1 after the S-Box. At the end of this procedure, a
single plaintext is generated and used for the attack.
Step 2 - Probe the Cache: To obtain the information
of accessed addresses of the S-Box, the attacker can
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Algorithm 1 Set target bits algorithm

1: procedure SET_TARGET_BITS(K;, K;)

2: a < StatusBitXorKey(K;)

3: b < StatusBitXorKey(K;)

4 bity = Inv_Permutation(a)

5: bitg = Inv_Permutation(b)

6: for each element X inside SBOX do
7 if X[bit4] == 1 then

8 list y.append(Inv_SBOX|[X])
9

: end if
10: if X[bitg] == X then
11: listg.append(Inv_SBOX|[X])
12: end if
13: end for
14: return List 4, Listg

15: end procedure

Algorithm 2 Plaintext generation algorithm

1: procedure GENERATE(List 4, Listp)
2: fori<«+ 0;i < 16;inc i do

3 if i == segment(bit,) then

4 Plaintext[i] < list g [random()]
5 else

6: if i == segment(bitg) then

7 Plaintext[i] « listg[random()]
8 else

9: Plaintext[i] + random()
10: end if

11: end if

12: end for

13: return Plaintext

14: end procedure

perform classical cache attacks such as Prime+Probe and
Flush+Reload. The former method accesses an address
of the cache that evicts the victim’s information. During
or after the victim’s operation, the attacker accesses the
same address and observe if it has been used. If the
victim used that address, the attacker experiences a
cache miss. Flush+Reload uses the same principle, but
the first part is performed with a specific command
to erase (parts of) the cache (i.e., flush operation). For
the GRINCH attack, the Flush+Reload method is better
choice. As a flush operation is faster, the attacker can
probe the cache earlier. The earlier the attacker is able
to probe the cache, the easier it is to monitor individual
rounds.

Step 3 - Eliminate Candidates: The goal of the Step 3
is to identify the unique index that is accessed in many
different encryptions. Since the target bits involved in
the add round key are fixed, one of the S-Box indexes
will be present in all performed encryptions. After some
iterations, it is possible to identify the index related to
the target key-bits by eliminating the indexes that do not

appear in all cases.

Step 4 - Reverse Engineer Key-Bits: Since the attack
methodology always forces the target key-bits to be
XOR-ed with ones (i.e., bit,=bitg=1), the attacker can
simply reverse engineer these key-bits by inverting the
related bits of the obtained index. This can be expressed
by Keyli] < Index[a] ®1 and Keylj] < Index[b] & 1; or
Keyli] < —Index[a] and Key[j] < —Index[b].

Step 5 - Update Plaintext Generation: After attacking
the first round, the attacker needs to repeat the process
targeting the following rounds. The complete key can
be retrieved after four iterations. However, each time the
target round changes, the plaintext generation algorithm
has to be updated. The revealed 32 key-bits (from Step
4) need to be used to generate new plaintexts that can
be used to attack the next round, i.e., the attacker can
compute the intermediate round values to generate the
plaintexts that force the values on the target bits in the
round under attack.

D. Challenges

By analyzing the GRINCH attack methodology, the
Step 2 (Probe the Cache) might be challenging due to the
required timing precision in accesses the cache during
the victim’s operation, and due to the configuration of
the cache memory. Some strategies to overcome such
issues are discussed next.

Cache Probing Precision: Depending on the system
configuration, the task to access the cache during the
first rounds of GIFT cipher might be not feasible. Nev-
ertheless, the attacker can still try other approaches. An
interesting option is to apply power analysis to observe
the cache accesses. The work in [10] has demonstrated
that the power consumption may clearly reveal when
cache misses and hits happens.

Cache Configuration: The configuration of the cache
memory affects the attack. An important parameter is
the size of the cache line. Since the GIFT S-Box only
contains 16 bytes, a cache line could contain multiple
elements. As a result, the accessed index is obfuscated.
Nevertheless, the attack is still possible as long as the
whole S-Box fits in a single cache line. Note that only the
two least significant bits of the index are not controlled
by the attacker, as they depend on the key-bits. This
means that independently of the cache line size, the
maximum number of candidates is 4. As a result of this,
the attacker can continue to the next round and assume
all possibilities.

IV. EXPERIMENTAL RESULTS
A. Setup

The GIFT software implementation was obtained from
the public repository in [13]. It has the SubCells and
PermBits operations implemented through look-up ta-
bles. GIFT was deployed into two SoC platforms: i) sin-
gle processor SoC, comprised by a processor, a shared
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cache L1, I/O peripherals (i.e., UART serial) and a
bus as communication structure; and ii) multi-processor
SoC (MPSoC), a tile-based structure comprising seven
processors, a shared cache L1 and I/O peripherals. All
these components are interconnected through a mesh-
based Network-on-chip (NoC) that uses XY deterministic
routing. Both SoC platforms use the RISCY core as the
processing unit. RISCY is a RISC-V architecture from the
Pulpino project [14]. The shared L1 cache used in both
platforms is a 16-way set-associative memory with 1024
cache lines where each cache line contains in the default
case a single word consisting of 8 bits. GRINCH was ex-
ecuted on both platforms while performing encryptions
with GIFT. Three different experiments are performed in
this work:

1) Attack Effort versus Attack Efficiency: This exper-
iment analyzes the amount of encryptions that are
required by GRINCH to perform a full recovery of
the GIFT key. This amount depends on the cache
probing efficiency. We evaluate the impact of dif-
ferent probing moments and the impact of a flush
operation during the attack. This scenario uses the
cache line size of 1 word.

Attack Effort versus Cache Configurations: This
experiment evaluates the impact of the cache line
size on the attack. The effort is measured in terms
of the amount of encryptions required to perform a
full key recovery. Cache line sizes of 1, 2, 4 and 8
words per cache line are analyzed.

Practical Attack Analysis: This experiment runs the
attack on the two hardware platforms (i.e., single
processor SoC and MPSoC) on an FPGA. This eval-
uation provides practical attack efficiency results for
different clock frequencies. For the single processor
SoC, a task scheduler was used to emulate the RTOS
operating system [15]. RTOS is a popular OS for
embedded and IoT systems, which uses a quantum
time (i.e., the timing slot that a process gets assigned
to the processor) of 10 milliseconds.

For the first two experiments, RTL simulations were
used to collect clean data. The third experiment, the
attack was executed in an FPGA platform. The tar-
get FPGA is the Genesys 2 board which contains a
Xilinx Kintex 7 device [16]. In all experiments, the
pre/post-processing analysis (i.e., plaintext generation
and reverse-engineering of the keys) were performed in
Python.

B. Results

The results of the three set of experiments are pre-
sented next.

1) Attack Effort versus Attack Efficiency: Figure 3 shows
the required amount of encryptions to perform a full
key recovery of the GIFT cipher when the first round is
attacked; hence, only 32 bits of the key. The horizontal
axis shows the moment in time (in rounds) in which
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Fig. 3. Required encryptions to break 1st GIFT Round.

the attacker can probe the cache status. The earlier this
moment, the better the attacker’s efficiency. In case the
attacker is able to probe the cache in the first round,
approximately 100 encryptions are needed to recover
32-bit keys (as can be seen in the figure). To recover
the whole key, 400 encryptions would be required. The
later you probe the cache, the more contaminated the
results are. The efficiency of the attack depends on
the amount of noise (e.g., multiple processes disputing
the processor) and the operating system configuration
(i.e., defined quantum time). Considering the first round
attack (ie., the first round can be probed), only the
cache sets accesses of the second round contain useful
information for the attacker. The cache sets accessed in
the subsequent rounds are additional sources of noise,
which is reflected in the results as extra effort. Addi-
tionally, as the S-Box lookup table is small, late cache
probing results in that most likely all S-Box content is
present in the cache, which makes it extremely hard
for the attacker to eliminate candidates (see exponential
increase in complexity vs cache probing time in the
figure). Moreover, the experiment also evaluated the
effect of the flush operation. The absence of the flush
operation increases the attack effort since it adds noise
(includes “dirty” accesses from the first round) to the
information gathered by the attacker. Note that the first
round depends only on the input and it is not useful
for the attacker. Hence, it only increases the effort to
succeed. Our experiment does not evaluate the efficiency
of rounds higher than 10, as the amount of encryption
required for retrieving the key at round 10 is already too
high to be considered practical in an IoT environment.
Results show that the attack is practical if the adversary
probes the cache before the fifth round when the flush
operation is used, and before the forth round, otherwise.

2) Attack Effort versus Cache Configurations: Table I
shows the attack efficiency for different cache configu-
rations. Results show that the increase of the cache line
size decreases significantly the efficiency of the attack;
this is measured by the amount of encryptions required
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TABLE 1
REQUIRED ENCRYPTIONS TO ATTACK THE FIRST ROUND.

Attack Efficiency - Probing Round
Cache Line Size 1 2 3 4 5
1 Word 96 312 840 2,448 | 5,864
2 Words 136 1112 | 11440 | 188536 | >1M
4 Words 136 123848 | >IM | >1IM | >1IM
8 Words 113000 | >IM | >IM | >IM | >IM

TABLE II
ATTACK EFFICIENCY (ROUNDS) OF PERFORMED ATTACKS.
Clock Frequency

Platform 10 MHz | 25 MHz | 50 MHz
Single-processing SoC 2 4 8
Multi-processing SoC 1 1 1

to perform a full key recovery. Note that the experiments
with more than 1 million encryptions were drop-out
before finishing as they are not considered practical.
However, the attack is still practical when the attacker
probes the cache within the first or second rounds.
Therefore, the success of GRINCH depends both on the
precision and ability of the attacker to probe the cache
in the correct moment of time and on the cache memory
configuration.

3) Practical Attack Analysis: Table II shows the practical
implementation of GRINCH. The results show the round
number which was successfully probed by the GRINCH.
For the single processor SoC, the GRINCH was able to
probe the cache during the second round when oper-
ating at the lowest frequency (10 MHz). This result is
interesting as many IoT devices are expected to operate
at this frequency. In contrast, when the SoC is operating
at higher frequencies, the GRINCH was only able to
probe the cache at the fourth and eighth rounds for 25
MHz and 50 MHz, respectively. For the multi-processor
SoC, the GRINCH was very efficient and probed the
cache during the first round. Since the malware runs
on its own dedicated processor, the attacker can write
content to the shared cache as desired. As observed dur-
ing experiments, in the fastest scenario (i.e., encryption
running at 50 MHz), the time between different rounds
was about 1.2 milliseconds. This time is much higher
than accessing the shared memory on a different tile,
which took approximately 400 nanoseconds consisting of
the processor delay, Network-on-Chip latency and cache
memory response time.

C. Potential Countermeasures

From the analysis of the GIFT cipher and the observed
results it is possible to create two protection strategies.
The first countermeasure is to eliminate the look-up table
vulnerability. For the S-Box, the proposed method is to
set the cache line to 8 bytes and reshape the S-Box from
16 rows of 4 bits to 8 rows of 8 bits. As an overhead, you
have to select the right 4 bits at the output. The second

countermeasure is to modify the UpdateKey operation of
the GIFT cipher. Currently, the first four rounds uses
directly the bits of the key, which makes GRINCH attack
possible. If the UpdateKey of the first round prepare the
sub-key to be used in the next round by applying some
computation with bits that were not used yet, the key
retrieval would not be possible. This requires however
cryptanalysis that goes beyond the scope of this paper.

V. CONCLUSION

In this work we proposed GRINCH, the first cache at-
tack on GIFT. GRINCH is based on a customized access-
driven cache attack that exploits the access pattern to
the GIFT S-Box. Despite the use of small lookup tables,
we show that by exploiting microarchitectural charac-
teristics of the SoC, secret information of GIFT is leaked.
As a result, the full secret key can be retrieved by an
adversary with less than 400 encryptions. We explored
the impact of the cache configuration in the efficiency
of the attack and show its practical realization in SoC
and MPSoC. As future work, we aim to implement new
protection mechanisms and further explore the effect of
the memory hierarchy on the effectiveness of the attack.
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