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Contactless characterization of mechanical resonances using Fabry-Perot interferometry is a power-

ful tool to study the mechanical and dynamical properties of atomically thin membranes. However,

amplitude calibration is often not performed or only possible by making assumptions on the device

parameters such as its mass or the temperature. In this work, we demonstrate a calibration

technique that directly measures the oscillation amplitude by detecting higher harmonics that arise

from nonlinearities in the optical transduction. Employing this technique, we calibrate the reso-

nance amplitude of two-dimensional nanomechanical resonators, without requiring knowledge of

their mechanical properties, actuation force, geometric distances, or the laser intensity. Published
by AIP Publishing. https://doi.org/10.1063/1.5009909

The dynamics of 2D material resonators has spurred enor-

mous interest because of their sensitivity to the surrounding

environment, paving the way towards gas1,2 and pressure

sensors.3,4 Additionally, the intricate thermal,5 optical,6 and

mechanical properties7 of these materials are of interest as

well. The analysis of the linear frequency response of sus-

pended 2D membranes usually provides information on their

pre-tension n0 through the resonance frequency f0 and on their

energy dissipation rate through the quality factor Q. Besides f0
and Q, it is often desirable to calibrate the amplitude of the res-

onant motion. This enables force sensing and also allows for

determination of the mass, Young’s modulus,7 and the thermal

properties.5 However, current calibration techniques assume

that the temperature or the mass is well known, which is diffi-

cult to justify for 2D material membranes.

Readout of the dynamic displacement of 2D resonators

is usually performed by the following two methods: (i) trans-

conductance measurements,8–11 where motion is detected via

a gate-induced conductance modulation, or (ii) laser interfer-

ometry,8,12–16 where a Fabry-Perot cavity is formed between

the resonator and a fixed mirror so that the motion of the

resonator modulates the intensity of the reflected light.

Thermomechanical calibration of the amplitude relies on the

equipartition theorem.17 This method is widely used for cali-

brating cantilevers for atomic force microscopy17 and has

recently been applied to few-layer graphene resonators.7,12

When applied to single-layer 2D materials however, thermo-

mechanical calibration has the drawback that one has to

assume that both the temperature and modal mass are

known. The mass can be significantly affected by impurities

and polymer contamination,10 therefore resulting in consid-

erable errors in the calibration of the motion amplitude of

the membrane.

At high amplitudes, the assumption of a linear transduc-

tion coefficient breaks down, since the output signal is no

longer proportional to the displacement. In Fabry-Perot inter-

ferometry, this happens because the intensity of the reflected

light is a periodic function of the membrane’s position. This

nonlinear relation between the membrane position and

the intensity of the reflected light is well known18–24 and

manifests itself in the frequency domain by higher harmonic

generation at integer multiples of the driving frequency f.
Here, we use heterodyne detection to measure these

higher harmonics and derive mathematical expressions that

relate their intensity ratios to the motion amplitude. We

show that using only three harmonics, we can deduce both

the resonant amplitude and the position of the resonator,

i.e., the cavity depth. This procedure provides an alternative

for the thermomechanical amplitude calibration method but

is instead independent of the mass and temperature of the

resonator and only requires the wavelength of the light to be

known.

We demonstrate the method using a Fabry-Perot inter-

ferometer as shown in Fig. 1(a). A red helium-neon laser

with a wavelength of k ¼ 633 nm is used for the readout.

This laser is focused at the center of a single-layer gra-

phene drum resonator, which is suspended over cavities in

a reflective gold substrate [Fig. 1(b)]. These cavities were

etched in a layer of 300 nm silicon dioxide, after which a

layer of 5 nm chromium and 40 nm gold was evaporated to

enhance the optical reflectivity of the substrate. To fabri-

cate graphene drum resonators, a sheet of single layer gra-

phene grown by chemical vapour deposition (CVD) was

transferred over the chip. A more detailed description of

the samples and their fabrication technique can be found in

Ref. 5. Due to interference between the moving graphene

membrane and the fixed substrate, the reflected intensity of

the red laser is a function of the position of the graphene

[Fig. 1(c)]. This reflected light is detected by the photodi-

ode. In order to drive the motion of the membrane, a blue

diode laser is focused on the resonator. The intensity of

this light is modulated, which periodically heats up thea)R.J.Dolleman@tudelft.nl
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membrane slightly and provides a mechanical drive due to

thermal expansion.

An important component in the setup is the vector net-

work analyzer (VNA, type Rohde and Schwarz ZNB4-k4).

This apparatus measures the transmission ratio between the

modulation voltage of the diode laser and the voltage signal

detected at the photodiode. Normally, this is done in a homo-

dyne detection scheme, where only the frequency component

equal to the driving frequency is detected. However, the fre-

quency conversion option of this VNA enables one to drive

the resonator at the resonance frequency, while detecting the

photodiode signal at a different frequency. This feature

allows detection of the higher harmonics that arise from the

nonlinear optical transduction. Alternatively, one could

employ a modern digital lock-in amplifier to achieve the

same functionality.

We now use optical theory to show how these higher

harmonics can be used to determine the motion amplitude

and average position. Figure 1(b) shows a cross-section of

the graphene device suspended over the cavity. The reflected

intensity of the red laser light [red solid curve in Fig. 1(c)] is

a periodic function of the membrane position; therefore, it

can be described by a Fourier series. If the membrane is thin

enough and the reflectivity of the back mirror is sufficiently

high, the reflected intensity I as a function of distance from

the cavity bottom can be approximated by a single term in

the series (see supplementary material)

IðtÞ ¼ Aþ B cos 4p
gþ xðtÞ

k

� �
; (1)

where A and B are the constants, g is the average distance

between the membrane and the bottom of the cavity, x is the

membrane’s deflection, and k is the wavelength of the light

used for the readout. For small amplitudes, a linear approxi-

mation can be used for Eq. (1); however, for large ampli-

tudes, this approximation breaks down and a Taylor

expansion with more orders is necessary to accurately

describe the amplitude [Fig. 1(c)]. Using this Taylor series

expansion, it can be mathematically shown that for a sinusoi-

dal motion of the graphene membrane xðtÞ ¼ d sinðxtÞ, the

detected optical modulation amplitudes can be expressed by

the series IðtÞ ¼
P

m Imx sin mxt, where m¼ 1, 2, 3….

Performing the series expansion up to m¼ 4 gives for the

amplitudes Imx (see supplementary material for the

derivation)

I1x ¼ �Bcd sin cgð Þ þ
1

8
Bd3c3 sin cgð Þ; (2)

I2x ¼
1

4
Bd2c2 cos cgð Þ �

1

48
Bc4d4 cosðcgÞ; (3)

I3x ¼ �
1

24
Bd3c3 sin cgð Þ; (4)

I4x ¼
1

192
Bc4d4 cos ðcgÞ; (5)

where c ¼ 4p/k and higher order terms of d are neglected.

Note that I1x contains not only a term linearly proportional

to d but also a term proportional to d3, which causes devia-

tions from the linear response in the conventional homodyne

Fabry-Perot readout. Using the ratio between the harmonics

I3x/I1x, an expression is obtained that is independent of A
and B

d ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6I3x=I1x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � I3x=I1xc2

p : (6)

With this equation, the amplitude d can be determined

directly from the measured ratio I3x/I1x and the wavelength

of the light k, since c ¼ 4p/k, as is shown in Fig. 2(a). In the

supplementary material, it is shown that the amplitude d can

also be obtained from the ratio I4x/I2x, which can be more

accurate when sin ðcgÞ is small.

Once the amplitude d is determined from Eq. (6), the

ratio I2x/I1x can now be used to obtain the average position g

g ¼ 1

c
pnþ arctan

12dc� d3c3

ð6d2c2 � 48ÞI2x=I1x

 ! !
;

where n ¼ 0; 1; 2; 3… (7)

The procedure to obtain g from this equation is shown in

Fig. 2(b). Note that the value of g needs to be roughly known

from the fabrication process, with an accuracy better than

k/4, to determine the value of n in Eq. (7). Since the

FIG. 1. (a) Fabry-Perot interferometer setup used in the experiments. (b) Cross

section of the suspended graphene device. (c) The reflected intensity detected

by the photodetector (solid red line) as a function of membrane distance from

the cavity [Eq. (1)], which deviates from the linear approximation when the

amplitude becomes large compared to the wavelength.
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fabricated depth of the cavities is 300 nm, n¼ 2 gives the

correct average position in our case [Fig. 2(b)]. It is shown in

the supplementary material that other ratios, such as I3x/I2x,

yield similar expressions for g.

We now experimentally demonstrate the method for a

5 lm diameter, single-layer graphene drum. Using the setup

in Fig. 1, we detect the harmonics due to nonlinear transduc-

tion. The intensity modulated laser heats the drum, and this

causes a tension modulation in the membrane by thermal

expansion. Since the spring constant of the membrane is

proportional to the tension, this modulation results in a para-

metric excitation of the drum resonances if the modulation

frequency is twice the resonance frequency. Parametric driv-

ing was chosen because it resulted in larger amplitudes than

direct driving, which increased the accuracy of the calibra-

tion method. Parametric excitation was achieved by setting

the frequency fext of the excitation port of the VNA to twice

the primary frequency fp: fext ¼ 2fp. By scanning fp across the

mechanical fundamental resonance frequency f0, the drum is

brought into parametric resonance. To detect the first, sec-

ond, third, fourth, and fifth harmonics, the frequency of the

analyzer port was set to fa¼ fp, 2fp, 3fp, 4fp, and 5fp, respec-

tively. The resulting signal amplitudes are shown in Fig.

3(a). In the frequency window indicated by dashed vertical

lines in Fig. 3(a), four harmonics are clearly above the noise

level and the calibration procedure can be applied. The data-

points are averaged within this frequency window to reduce

the error due to measurement noise.

First, we determine the amplitude of oscillation d for all

the frequencies in the window using Eq. (6) [Fig. 3(b)]. A

remarkably large amplitude is detected, close to 100 times

the thickness of the graphene membrane (0.335 nm), which

increases with frequency as expected. Now that the ampli-

tude is known, Eq. (7) is used to find the equilibrium position

shown in Fig. 3(c). An average position of g¼ 304.9 nm is

calculated with a standard error (SDE) of 0.16 nm. The trans-

duction coefficient
ffiffiffi
a
p

is deduced from the relation I1x

�
ffiffiffi
a
p

d, by taking the detected root mean square voltage I1x

at the VNA and dividing it by the amplitude d from Fig.

3(b). The resulting
ffiffiffi
a
p
� �Bc sin ðcgÞ within the frequency

window is shown in Fig. 3(d). We find
ffiffiffi
a
p
¼ ð8:860:1Þ

�104 V=m. As expected, the average position g and the

transduction coefficient
ffiffiffi
a
p

are independent of excitation

frequency or membrane amplitude.

The calibration method can also be used to correct for

the effects of nonlinear transduction, improving the high-

amplitude accuracy of the interferometer. As discussed

above, the expression for I1x [Eq. (2)] contains a term pro-

portional to d3, which can be used to estimate the relative

error � due to nonlinear transduction, from Eq. (2)

I1xffiffiffi
a
p ¼ d 1� 1

8
d2c2

� �
� dð1� �Þ; (8)

where � ¼ 1
8
d2c2.7 For small �, the amplitude d can now be

derived from the uncorrected amplitude I1x=
ffiffiffi
a
p

d ¼ 1þ 1

8

I1xffiffiffi
a
p
� �2

c2

 !
I1xffiffiffi

a
p ; (9)

with a known value of
ffiffiffi
a
p

from the calibration, and d can be

found from the measurement of I1x. Since
ffiffiffi
a
p

is constant,

this correction also works outside the frequency window

where the calibration is performed. To illustrate the error in

FIG. 2. Explanation of the calibration procedure. (a) The amplitude d of the

membrane versus the ratio I3x/I1x. From the measurement of this ratio, the

amplitude can be directly determined from Eq. (6). (b) Average position g
versus the ratio I2x/I1x from Eq. (7), with a known amplitude of d. From the

measured ratio, the gap size can be determined. However, a rough initial

guess of this gap size is required to choose the correct value of n in Eq. (7).

FIG. 3. (a) Detection of 5 harmonics of the parametrically driven fundamen-

tal mode for a 5 lm circular drum. The fifth harmonic has a magnitude

smaller than the noise floor; the lower harmonics are readily detected.

Dashed lines indicate the window in which the analysis was performed. (b)

Amplitude extracted from the data using Eq. (6). (c) Average position

extracted from the data using Eq. (7). (d) Transduction coefficient
ffiffiffi
a
p

, the

change in root mean square voltage per metre of amplitude of motion. (e)

Estimated error in the response by assuming that the transduction is linear.
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the graphene membrane amplitude, we apply this correction

to a different drum in Fig. 4, which exhibits large motion

amplitudes. In this case, the maximum amplitude gets under-

estimated by more than 10%. This correction is thus impor-

tant to take into account when measuring the motion of

resonators with large amplitudes.

The presented method is applicable not only for thin 2D

material resonators but also for other nanomechanical sys-

tems in Fabry-Perot cavities, such as nanowires,25 provided

that they are thin enough for Eq. (1) to remain valid. The

method could also be extended to thicker membranes;

however, since Eq. (1) does not hold anymore in that case,

the mathematics become rather complex and may require

numerical routines.

Mechanical nonlinearities have been left out of the anal-

ysis; however, these could lead to higher harmonics in the

mechanical response that could interfere with the calibration.

In the supplementary material, we show that these undesired

mechanical nonlinearities can be disentangled from the

desired optical nonlinearity by including the fourth harmonic

I4x in the analysis. This leads to more expressions for d and

g, which are completely independent of mechanical nonli-

nearities. Extending the analysis can also help determine the

systemic errors by the simplification behind Eq. (1), which is

larger for higher harmonics. From the extended analysis, we

find that the systemic errors due to both the simplification

and the mechanical nonlinearities on the transduction coeffi-

cient
ffiffiffi
a
p

are lower than 10%. This is considerably smaller

than existing techniques that require the mass to be known,

since the mass can show deviations as high as 600%.10

Another source of error that should be considered is due

to the finite spot size of the laser. The amplitude measured

by this technique should be regarded as an average over the

spot size. In our case, the spot size of the laser is estimated

to be 1 lm. Assuming that the laser is aligned in the center

of the drum and that the system is vibrating with the funda-

mental mode shape, we estimate the error due to the finite

spot size to be 2% compared to the maximum deflection.

While this is small for the 5 lm drum diameter used here,

this error can grow significantly for smaller drums. For

example, a 2 micron diameter drum would result in an error

of 12%.

It is interesting to point out that the transition from high

to low amplitude in Fig. 3(a) does not occur at exactly the

same frequency. This is attributed to the effects of fluctua-

tions on the nonlinear response of the membrane. Due to

these fluctuations, there is always a finite change that the res-

onator will jump down from the high amplitude solution

before reaching its saddle node bifurcation. Since the har-

monics I3x and I4x were detected with a lower bandwidth to

reduce the noise, the probability of such a premature jump to

occur is higher. This has no effect on the results of the analy-

sis, since the amplitude follows the same backbone in each

measurement. The effect is easily accounted for by choosing

an appropriate frequency window for the analysis.

In conclusion, we demonstrate a technique that directly

determines the amplitude and average position of suspended

single-layer graphene resonators in a Fabry-Perot interferom-

eter. This technique takes advantage of the nonlinear trans-

duction of the membrane motion by detecting the higher

harmonics that arise due to optical nonlinearities. The tech-

nique can be used to calibrate the motion without any

assumptions or knowledge of the mass, the mechanical prop-

erties, the actuation force, and the intensity of the laser

power. Only knowledge of the wavelength of the light is

required, thus providing a powerful means towards fully con-

tactless characterization of the mechanical properties of

atomically thin membranes.

See supplementary material for mathematical deriva-

tions including the ratio I4x/I2x, for the derivation showing

how to disentangle between mechanical and optical nonli-

nearities and experimental results including the fourth

harmonic.
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