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A B S T R A C T   

Ultimate limit state (ULS) assessment examines the maximum load-carrying capacity of structures considering 
inelastic buckling failure. Contrary to the traditional allowable stress principle which is mainly based on ex-
periences, the ULS assessment focuses on explicitly evaluating the structural safety margin and thus enables a 
consistent level of safety/risk between conventional and novel structural designs. Modern structures are usually 
designed as a network of plates and stiffeners (e.g., ship structures, offshore and onshore wind turbine, and land- 
based bridge) joined by welding which induces a residual stress field. Hence, predicting the ultimate strength 
reduction of stiffened panels caused by welding residual stress is a crucial problem addressed by many scholars 
with different approaches, among which the Nonlinear Finite Element Method (NLFEM) is the prevailing 
approach within the community of structural engineering. Unfortunately, the NLFEM has a high computational 
requirement which prevents its use in the design, appraisal, and optimisation phases of stiffened panels. To well 
approximate the nonlinear finite element method, a data-driven method is proposed in this paper, with a 
functional which is computationally expensive to build but computationally inexpensive to use allowing its 
application at design stage. Results obtained in different (i.e., interpolation and extrapolation) scenarios using 
data generated by a state-of-the-art NLFEM on a series of stiffened panels will support the proposed method.   

1. Introduction 

The design, appraisal, and optimisation of engineering structural 
systems critically rely on the rational choices of analysis methods and 
assessment criteria [1,2]. The traditional analysis methods in structural 
engineering are developed based on solid mechanics [3,4] (e.g., elas-
ticity, plasticity, large deflection instability, fracture mechanics and 
impact mechanics). The equilibrium equation is derived and solved by 
analytical approaches [5–10] or numerical approximations [11–18] (e. 
g., Finite Difference and Finite Element Method, respectively FDM and 
FEM). The assessment criteria include the allowable stress principle and 
limit state design [19]. Traditional allowable stress principle is pre-
dominately based on past experiences and therefore its application 
should be limited to the conventional design. Recently, the limit state 
design has become the preferred approach as it explicitly evaluates the 
structural safety margin being also able to ensure a consistent level of 

safety/risk between the conventional and novel structural design [20]. A 
limit state is formally defined as the condition beyond which a particular 
structural member or the entire structure would fail to perform the 
designated function [21]. From the viewpoint of structural appraisal, 
four types of limit states are relevant [22]: the Serviceability Limit State 
(SLS), the Ultimate Limit State (ULS), the Fatigue Limit State (FLS), and 
the Accidental Limit State (ALS). The SLS concerns the excessive 
deflection, vibration, and noise of structures under normal loading 
scenarios [23]. The FLS deals with the occurrence of fatigue cracking 
due to stress concentration and damage accumulation or crack growth 
under repeated loading with relatively low stress intensity [24–26]. The 
ALS evaluates the widespread structural damage from accidents, such as 
collisions, grounding, explosion and fire [27–31]. 

When compared with the other types of limit states, the ULS 
assessment is the most relevant in terms of structural safety issues under 
extreme conditions [32,33]. In fact, ULS deals with the catastrophic 
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collapse of structures caused by excessive loading by examining the 
maximum load-carrying capacity (i.e., the ultimate strength) of a 
structural system considering inelastic buckling failure, with reference 
to the most probable extreme load case. Therefore, the ULS assessment is 
a mandatory phase in the design of large-scale structures, such as ships 
[34–39], offshore drilling platforms [40,41], floating wind turbines 
[42,43], box girder beams [44–46], and land-based civil structures 
[47–50]. In all the aforementioned engineering structures, stiffened 
panel formed of stiffeners and attached plating is one of the most 
common solutions of structural design [51–54]. The construction of 
stiffened panels is usually completed through welding: as a result initial 
imperfections are induced in the structures taking the form of geometric 
deflection and welding residual stress [55]. As shown by the compre-
hensive studies such as [56–61], the ultimate strength of stiffened panels 
is strongly influenced by the initial imperfections. The resulting geo-
metric deflection and welding residual stress are predominantly caused 
by the heat imparted to the plating along the weld, typically fillet welds 
of attached stiffeners and butt welds between adjacent plates 
[55,62–64]. During the welding process, the rapid heating of the sepa-
rate parts and subsequent cooling of the welded construction introduces 
a tensile stress zone close to the weld which is balanced by a compressive 
stress zone away from the weld [55]. 

The measurement of welding residual stress has always been an 
active research area. Pioneering works investigating the measurement of 
residual stress distribution and magnitude are documented in [56,57]. 
In these works, the distribution pattern of welding residual stress is 
assumed as rectangular blocks: a tensile stress field close to the inter-
section between the stiffeners and attached plates (e.g., welding line) 
and a compressive stress field at the central part of the plates achieving 
equilibrium. This distribution pattern simplifies the experimental ob-
servations and is generally accepted by the research community [32,55]. 
The very recent full-scale measurements [65–67] and numerical simu-
lation [68] of welding-induced residual stress further confirm the ra-
tionality behind these idealised distributions. In terms of the magnitude 
of welding residual stress, empirical formulas were proposed by [69,70] 
to calculate the width of the tensile stress block bt as a function of plating 
dimension, weld heat input, and weld leg length. However, the infor-
mation regarding a specific welding technique (i.e., weld heat input and 
weld leg length) is usually not available at design stage. For this reason, 
a common solution is to employ the empirical formula introduced by 
[57] where the magnitude of compressive residual stress can be evalu-
ated as a fraction of the material yield stress which is known at design 
stage. 

When it comes to the effect of residual stress on ultimate strength of 
stiffened plated structures, it was argued that the cyclic loading expe-
rienced during operation (e.g., wave load) would lead to a relaxation of 
the built-in residual stress, i.e., shakedown effect. Hence, there is 
probably no need to consider residual stress in the structural integrity 
assessment. However, quantitative evidence for a wide spectrum of 
structural configurations is still lacking in terms of how much residual 
stress can be relieved. In addition, as shown in [71], whilst the residual 
stress can be shaken down, its mechanism is fairly complex and is 
dependent on the failure mode of the panels. Additionally, the reduction 
in residual stress is not uniform throughout the plate-stiffener combi-
nation. Hence, to make the design on the safe side, it was not recom-
mended to consider the shakedown effect. 

The ultimate strength reduction of stiffened panels under compres-
sion caused by welding residual stress has been investigated in several 
works [72–76]. The state-of-the-art solution for the analysis of ultimate 
strength reduction is the Nonlinear Finite Element Method (NLFEM) 
[77,60] thanks to its ability to evaluate all types of buckling failure 
modes and their complex interaction with other influential parameters, 
whereas the semi-analytical such as PULS [78] are dependent on certain 
assumptions in terms of the buckling modes and failure criteria (i.e., 
membrane stress yielding on certain locations). In addition, NLFEM al-
lows a tractable inclusion/removal of the residual stress, whereas the 

simplified approaches such as [79–88] are not easily adaptable to take 
into account the effect of residual stress [89] because of the complexity 
of the relation between the strength reduction and structural configu-
rations. Hence, NLFEM appears to be only dependable solution to deal 
with the effect of residual stress on stiffened plated structures. The FEM 
is a numerical approach to solve the boundary value problem for many 
engineering applications. The mathematical basis was first proposed by 
[90]. In terms of the ULS analysis, the nonlinear formulation of FEM (e. 
g., NLFEM) is adopted to account for the geometric and material 
nonlinearity. Unfortunately, while being robust for the current problem 
of interest, NLFEM is not the usual analysis method in the design, 
appraisal, and optimisation phases of stiffened panels because of its high 
computational requirements [91]. This fact raises significant challenges 
and limitations, both from the academic and industrial perspectives, for 
the reliability assessment and optimisation of large-scale structures 
considering the negative effects of residual stress [92–94]. As a conse-
quence, currently, the potential impact of welding residual stress on the 
strength of stiffened panels is not mandatory in many structural design 
codes such as the IACS Common Structural Rules for shipbuilding 
[95,96]. 

For this purpose, in this work, we propose to overcome this limita-
tion by exploiting a data-driven approach [97–99]. Data-driven methods 
(DDMs) allow to accurately approximate the NLFEM without requiring 
to design grounded simplifications. DDMs are able to automatically 
learn a functional representing the NLFEM using a series of data 
generated by running multiple times the NLFEM. The advantage of this 
approach is that the learned functional is computationally inexpensive 
to apply, addressing the limitations of the NLFEM. The disadvantage is 
that this function is computationally expensive to build. In fact, building 
a model using DDM requires running the NLFEM code multiple times to 
generate the data and then to train the functional with a Machine 
Learning (ML) algorithm. Nevertheless, once this procedure is 
completed, the resulting learned functional can be reused inexpensively 
as many times as necessary. Note that this approach has been already 
exploited in the past to resolve many solid mechanics related problems 
[100–111]. A number of surrogates have been developed in the litera-
ture to predict the buckling and ultimate strength of stiffened plated 
structures [80,112,83,113,114]. Some exploit the simple relation be-
tween panel slenderness ratio and ultimate strength (e.g., second-order 
polynomials), while some take the full set of geometric scantling and 
material property as the input. However, it has not yet been applied in 
predicting the ultimate strength reduction of stiffened panels caused by 
residual stress. For these reasons, we will first focus our attention on 
stiffened panels for the shipbuilding industry as they are the most 
common type of structures in this domain [115,116]. Then we will 
generate a database of simulations, using a state-of-the-art NLFEM, 
containing information on ultimate strength reduction for stiffened 
panels with different geometric dimensions and material properties. 
Subsequently, we will test the ability of the data-driven method to 
accurately learn the NLFEM considering two different and statistically 
consistent [117] scenarios: interpolation and extrapolation. In the 
interpolation scenario we will train the ML model considering a random 
subset of geometric dimensions and material properties keeping the 
remaining ones for testing. In the extrapolation scenario we will train 
the ML model considering a subset of the geometric dimensions and 
material properties in a specific range and we tested the resulting model 
for geometric dimensions and material properties outside the range 
exploited during the training phase. Since the no-free-lunch theorem 
[118] ensure us that there is no way to determine a priori the best ML 
model to use for a specific application, in this work we will test different 
state-of-the-art-methods (i.e., Kernel Methods [119], Ensemble Methods 
[120], Neural Networks [98], and Gaussian Processes [121]). Results on 
the two different scenarios will support the proposal and its potential for 
future use in the design, appraisal, and optimisation of engineering 
structural systems. 

The rest of the paper is organised as follows. Section 2 will describe 
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the problem of estimating the ultimate strength reduction of stiffened 
panels caused by welding residual stress, numerical modelling and 
simulation by NLFEM, and the data generated by running multiple times 
the NLFEM. Section 3 will present our DDM to approximate the NLFEM 
using the generated data in the interpolation and extrapolation sce-
narios. Section 4 will report the result of applying the methodology 
presented in Section 3 using the data described in Section 2. Section 5 
will conclude the paper. 

2. Problem Description, NLFEM, and Generated Data 

2.1. Problem Description 

A typical stiffened panel with the definition of its geometric di-
mensions is reported Fig. 1. Considering this geometry, it is possible to 
define the nine parameters characterising the stiffened panel: plate 
length (a), plate width (b), plate thickness (tp), stiffener web height (hw), 
stiffener web thickness (tw), stiffener flange width (bf ), stiffener flange 
thickness (tf ), material yield stress (σY) and material Young’s modulus 
(E). 

Conventionally, two dimensionless parameter are employed to 
characterise the slenderness of a stiffened panel, i.e., plate slenderness 
ratio (β) and column slenderness ratio (λ) defined as follows 

β =
b
tp

̅̅̅̅̅
σY

E

√

, (1)  

λ =
a
πr

̅̅̅̅̅̅̅̅
σYeq

E

√

. (2)  

Note that r is the radius of gyration and σYeq is the equivalent material 
yield stress of a stiffened panel’s cross section. The nine basic geometric 
scantling and material property are employed as the input features, 
rather than the dimensionless slenderness ratio which were commonly 
adopted in simple surrogate development in this field. Simple surrogate 
with slenderness ratios as the only input appears to provide unsatis-
factory prediction as shown in our preliminary work, which is likely due 
to the increased nonlinearity as compared with the well-studied relation 
between slenderness ratio and ultimate strength. Thus, this motivates us 
to exploit the advanced learning algorithms for predicting the reduction 
of ultimate strength based on nine basic design variables. 

Regarding the magnitude of the welding residual stress (σrcx), an 
average-level of severity recommended in [56,57] is assumed for the 
compressive stress field, corresponding to the most common design 
specification as defined below 

σrcx = 0.15σY . (3)  

The magnitude of tensile stress (σrtx) is taken as the material yield stress 
(σY) and the width of tensile field (bt) is determined based on the 
equilibrium of initial tensile force and compressive force as follows. 

2btσrtx = (b − 2bt)σrcx, (4)  

We define the reduction factor (ζ) as the ratio between the ultimate 
compressive strength with welding residual stress σwR

xu and the ultimate 
compressive strength without welding residual stress σwoR

xu 

ζ =
σwR

xu

σwoR
xu

. (5)  

2.2. NLFEM 

The NLFEM modelling adopted in this paper has been previously 
proposed in [89]. For the sake of completeness, this section will sum-
marise it. As recommended by the International Ships and Offshore 
Structures Congress (ISSC) [122], a two-bay and two-span stiffened 
panel model has been adopted, as reported in Fig. 2. The longitudinal 
girders and transverse frames are modelled by constraining the out-of- 
plane movement. Symmetric boundary conditions are applied on four 
edges. The compressive load is imposed through a reference point in 
combination with a displacement-controlled method, such that the 
loaded edge keeps straight. The present model extent and boundary 
condition are able to account for the interaction between adjacent 
structures and eliminate the effect of the end-rotation of the stiffener, 
providing a rational representation of ship-type orthogonal grillage for 
ULS assessment. 

In terms of the meshing scheme of the FEM, the general criteria is 
that the local plating is discretised by an even number of elements, while 
the characteristic element size is in the range of [50,100] millimetres. In 
this study, the local plate is discretised transversely with 10 elements, in 
which each tensile stress block is represented by 1 element and the 
central part is partitioned into 8 elements. In the longitudinal direction, 

Fig. 1. Definition of geometric dimensions of a stiffened panel.  
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the number of elements is calculated as 10-times of the closest round-off 
even number of the plating aspect ratio. Regarding the meshing of 
stiffeners, 6 elements are utilised in both stiffener web and flange 
regardless of their dimension. This is consistent with the ISSC approach 
[122]. 

An initial geometric imperfection is applied by the direct nodal 
translation approach through an external subroutine. Three different 
types of geometric imperfections are considered (i.e., local plate 
deflection wopl, column-type deflection woc, and stiffener sideway 
deflection wos) as follows 

wopl = wmax
opl sin(

mπx
a

)sin(
πy
b
), (6)  

woc = wmax
oc sin(

πx
a
)sin(

πy
B
), (7)  

wos = wmax
os

z
hw

sin(
πx
a
). (8)  

A representation of the initial geometric imperfection is given by Fig. 3. 

The maximum deflection magnitudes of each geometric imperfection 
type, wmax

opl , wmax
oc , and wmax

os , respectively for local plate deflection, 
column-type deflection, and stiffener sideway deflection, are defined as 
follows 

wmax
opl = 0.1β2tp, (9)  

wmax
oc = 0.0015a, (10)  

wmax
os = 0.0015a. (11)  

Examples of different types of initial deflections applied in finite element 
models are shown in Fig. 4. The welding residual stress is applied by 
defining the initial stress field of the finite element model. The 
commonly adopted distributions of residual stress include a hybrid 
distribution pattern (Fig. 5) proposed by [57], rectangular distribution 
pattern (Fig. 6) reported in [55], and bi-axial distribution pattern 
(Fig. 7) developed by [32]. In all these distribution patterns, the initial 
stress field in the attached plating is modelled by the rectangular strips. 
However, in the hybrid pattern, the stress field in the stiffener follows a 

Fig. 2. Schematics of model extent and boundary condition.  

Fig. 3. Representation of the initial geometric imperfection (i.e., local plate deflection wopl, column-type deflection woc, and stiffener sideway deflection wos).  
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triangular shape, as compared with the rectangular profile suggested by 
[55]. The triangular distribution pattern may only be appropriate for the 
analytical approach developed by [57], in which case the stiffeners are 
subdivided into many small fibres. However, in NLFEM, the overly fine 
mesh which is required for triangular shape modelling would lead to an 
excessively long computational time and possibly a convergence issue 
causing the failure of simulation [89]. Thus, this work follows the 
recommendation proposed by [55]. Regarding the bi-axial distribution 
suggested by [32], it would be important in the case of bi-aixial 
compression. Nevertheless, this is disregarded in the present work 
since the main focus is the longitudinal compression which is the most 
critical scenario for stiffened plated structures. 

The tensile block is applied to the intersection between local plates 
and stiffeners, while the compressive block is applied to the remaining 

part. The width of the tensile stress block is determined by assuming that 
the tensile residual stress equals the material yield stress, and the 
compressive residual stress corresponds to the average-level magnitude 
as given by Eq. (3). The ratio between the height of the tensile stress 
block ht and the total web height hw is 

ht

hw
=

1
6
, (12)  

so to satisfy the meshing scheme of stiffeners and to consider a value 
corresponding to the average-level severity. A relaxation step prior to 
any other external load application is utilised for the self-equilibrium of 
the initial stress field. It should be noted that the relaxation step would 
lead to a minor difference on the geometric imperfection as reported in 
[89]. However, the difference would be negligible, usually less than 0.5 
millimetres [89]. The relaxation step aims to achieve a self-equilibrium 
of the applied stress field, which in some cases could help avoid the 
convergence issue of obtaining a numerical solution. A typical example 
of the stiffened panel after stress relief is reported in Fig. 8. 

An example of the effects of residual stress on the progressive 
collapse behaviour (load-shortening curve) of slender and stocky stiff-
ened panels predicted by NLFEM is reported in Fig. 9. Note that the high 
slenderness panel is of β = 1.664 and λ = 0.729 and the low slenderness 
panel is of β = 1.167 and λ = 0.280. In these load-shortening curves, the 
peak values correspond to the ultimate strength of stiffened panels in 
different conditions. The ultimate compressive strength without welding 
residual stress (σwoR

xu ) is highlighted with a solid black marker. The ul-
timate compressive strength with welding residual stress (σwR

xu ) is indi-
cated with a hollow marker. It is clear that an appreciable strength 
reduction is caused by the residual stress in stiffened panels with 
different slenderness. 

2.3. Generated Data 

In this section, we will describe the data generated with the NLFEM 
described in Section 2.2 for stiffened panel described in Section 2.1 for 

Fig. 4. Examples of different types of initial deflections applied in finite element model.  

Fig. 5. Hybrid distribution pattern of welding residual stress.  

Fig. 6. Rectangular distribution pattern of welding residual stress.  

Fig. 7. Bi-axial distribution pattern of of welding residual stress.  
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different values of the parameters (geometry and material) character-
ising it (see Table 1). 

The database contains 136 scenarios generated randomly in the 
ranges reported in Table 2 and Table 3. For the interpolation scenario, 
we sampled 100 points within the lower and upper limits of each input 
feature (see Table 2) according to the ISSC benchmark study [122] in 
order to represent typical configurations of stiffened panels for marine 
applications. For the extrapolation scenario, we sampled 12 points from 
each range reported in Table 3, considering ranges of 5%,10%, and 15% 
outside the interpolation ranges, respectively. Both tee-bar and angle- 
bar stiffened panels are considered during the data sampling. Never-
theless, as shown in a previous study, the ultimate strength reduction 
caused by residual stress is nearly identical between tee-bar and angle- 
bar stiffened panels [89]. Hence, it should be reasonable to expect 
that the developed data-driven models are applicable to both tee-bar and 
angle-bar stiffened panels. Regarding the flat-bar stiffened panel, a 
different database is needed and is out of the scope of present research. 
For each of the 136 scenarios, the NLFEM has been run twice to compute 
ζ (see Eq. (5)). Each simulation took an average of 30 min on a machine 
equipped with two Intel Xeon Silver 4216,128 GB of RAM, and 512 GB 
SSD running Windows Server 2019 and equipped with ABAQUS 2019 
for a total of 136 h for creating the entire dataset. Note that significant 
man hours are also required for the modelling phase prior to each 
simulation. From these computational requirements, it is immediately 
clear why NLFEM is normally not exploited for the initial design, 
appraisal, and optimisation of structural engineering systems and why 

we propose DDMs to address these computational barriers. 

3. Data Driven Models 

The problem that we want to face in this work is to predict the result 
of the NLFEM (i.e., ζ) based on the input parameters reported in Table 2 
using just the data produced by a number NLFEM simulations (see 
Section 2.3). 

This problem can be easily mapped into a now-classical supervised 
ML problem, in particular an ML regression problem [97]. In regression, 
we have an input space X ⊆ Rd composed of d features (in our case the 9 
parameters of Table 1), an output space Y ⊆ R (in our case the output of 
the NLFEM, namely ζ), and a series of n examples, a dataset, input/ 
output relation D n = {(x1, y1),⋯, (xn, yn)} where xi ∈ X and yi ∈ Y ∀

i ∈ {1,⋯,n}. The scope is to learn the unknown input/output relation μ :

X →Y based just on D n. Generally μ is a probabilistic relation, but in 
our case, this relation is induced by the NLFEM so it is deterministic. An 
ML regression algorithm A , characterised by its hyperparameters H , 

Fig. 8. Stiffened panel after stress relief.  

Fig. 9. Example of the effects of residual stress on the progressive collapse behaviour, represented by load-shortening curves, of slender and stocky stiffened panels 
predicted by NLFEM. σwoR

xu is highlighted with a solid black marker and σwR
xu is indicated with a hollow marker. 

Table 1 
Parameters characterising the stiffened panel.  

Parameter Symbol Unit 

Plate length a mm 
Plate width b mm 
Plate thickness tp mm 
Stiffener web height hw mm 
Stiffener web thickness tw mm 
Stiffener flange width bf mm 
Stiffener flange thickness tf mm 
Material yield stress σY MPa 
Material Young’s modulus E MPa  

Table 2 
Ranges for the LHS exploited to generate the data for 
the interpolation scenario.  

Symbol Interpolation Range 

a [2550 ÷ 4750]
b [850 ÷ 950]
tp [8.5 ÷ 37]
hw [138 ÷ 580]
tw [9 ÷ 15]
bf [90 ÷ 150]
tf [12 ÷ 20]
σY [235 ÷ 315]
E [20 ÷ 21]⋅104  
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selects a model f inside a set of possible ones F based on the available 
data A H : D n × F →f . F is generally unknown and depends on the 
choice of A and H . Many different ML algorithms exist in the literature 
[97,98,123,124] but, as the no-free-lunch theorem states [118], there is 
no way to determine a priori the best ML algorithms to use for a specific 
application. For this reason, in this work (see Section 3.1) we will 
consider a series of different state-of-the-art ML algorithms. The error of 
f in approximating μ is measured by a prescribed metric M : f→R. 
Multiple metrics are available in the field of ML for regression [125], 
nonetheless, because of the physical meaning of ζ in this paper we will 
rely on three main metrics: Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and the Pearson Correlation Coefficient 
(PCC). For the sake of selecting the best ML algorithms and the related 
optimal hyperparameters and to estimate (in both interpolation and 
extrapolation scenarios) the performance of the final model according to 
the desired metrics, a statistically consistent Model Selection (MS) and 
Error Estimation (EE) phase needs to be performed [117]. Section 3.2 
will focus on addressing this tricky problem. 

3.1. ML Models 

In this section we briefly recall the four algorithms that we will 
exploit in this work by pointing out the idea behind them, how to use 
them, and their hyperparameters. The selected algorithms represent the 
most effective algorithms in the main four families of ML regression 
algorithms [97,97,98,123,124]: Kernel Methods [119], Ensemble 
Methods [120], Neural Networks [98], and Gaussian Processes [121]. 

3.1.1. Kernel Methods 
Kernel Methods are a family of techniques which exploits the “Kernel 

trick” for distances in order to extend linear techniques to the solution of 
non-linear problems [126]. Kernel methods select the model which 
minimises the trade-off between the performance, measured with a 
defined metric, over the data and the complexity of the solution, 
measured with different measures of complexities [119,97]. Support 
Vector Regression (SVR) represents the most known and effective Kernel 
methods techniques. The hyperparameters of the SVR are: the kernel, 
which is usually fixed to be Gaussian because of the reasons described in 
[127], the kernel hyperparameter γ, which regulates the nonlinearity of 
the solution, and the regularisation hyperparameter C, which trades-off 
accuracy and complexity of the solution. C and γ need to be tuned during 
the MS phase. 

3.1.2. Ensemble Methods 
Ensemble Methods are methods based on the wisdom of the crowd 

principle [128]: construct many simple and independent models and 
then combine them to obtain a more complex and effective model [120] 
The Random Forests (RF) [129] are probably the most prominent al-
gorithms between the Ensemble Methods. In RF the simple models are 
the Decision Trees (DT) [130]. The DT is a flowchart-like structure in 
which each internal node represents a test of a feature, each branch 
represents the outcome of the test, and each leaf node represents an 
output of the tree. A path from the root to a leaf represents a model rule. 
A DT is built with a recursive schema until it reaches its desired depth. 
Each node of the DT, starting from the root node, is built by choosing the 
attribute and the cut that most effectively splits the set of samples into 
two subsets based on the information gain. RF combines bagging with 
random subset feature selection. In bagging, each DT is independently 
constructed using a bootstrap sample of the dataset. RF adds an addi-
tional layer of randomness to bagging. In addition to constructing each 
DT using a different bootstrap sample of the data, RF changes how the 
DT are constructed. In standard DT, each node is split using the best 
division among all variables. In a RF, each node is split using the best 
among a subset of predictors randomly chosen at that node. Eventually, 
a simple majority vote is taken for prediction. The accuracy of the final 
model depends mainly on three different factors: 1) how many trees 
compose the forest, 2) the accuracy of each tree, and 3) the correlation 
between them. The accuracy for RF converges to a limit as the number of 
trees in the forest increases, while it rises as the accuracy of each tree 
increases and the correlation between them decreases. There are several 
hyperparameters which characterise the performance of the final model: 
the number of trees nt, the number of samples to extract during the 
bootstrap procedure, the depth of each tree, the number of predictors np 

exploited in each subset during the growth of each tree, and finally the 
weights assigned to each tree. Nevertheless, in common applications, the 
RF sensitivity to these factors (apart from nt and np) is quite low 
[131,129]. 

3.1.3. Neural Networks 
Neural Networks are a family of techniques which combine many 

simple models of a human brain neuron, called perceptrons [132], in 
order to build a complex network. The neurons are organised in stacked 
layers connected by weights that are learned based on the available data 
via backpropagation [133]. If the architecture of neural networks con-
sists of only one hidden layer, it is called shallow, while, if multiple 
layers are stacked together, the architecture is defined as deep. From a 
functional point of view both architectures have the same representation 
power [134] but in practice, for some applications like natural language 
processing and image analysis, deep networks outperform the shallow 
ones [98]. In our context, instead, where the number of samples is 
limited and features are not structured, it is more reasonable to use a 
shallow network [135,98]. In particular, in this work, we exploited a 
pretty well known and effective architecture, the The Multilayer Per-
ceptron Network with Dropout (MLP) [135,98], where a single hidden 
layer is present, we train it with adaptive subgradient methods, and we 
tuned the following hyperparameters during the MS phase [98]: the 
number of neurons in the hidden layer nh, the dropout rate pd, the 
percentage of data to use as batch size pb, the learning rate rl, the fraction 
of gradient to keep at each step ρ, the learning rate decay rd, and the 
activation function. 

3.1.4. Gaussian Processes 
Gaussian Processes are nonparametric Bayesian ML methods [121]. 

Gaussian Processes have several benefits: they work well on small 
datasets and have the ability to provide uncertainty measurements on 
the predictions. Unlike many popular supervised ML algorithms that 
learn exact values for every parameter of the model, the Bayesian 
approach infers a probability distribution over all possible values. The 

Table 3 
Ranges for the LHS exploited to generate the data for the extrapolation scenario.   

Extrapolation Range 
Symbol 5% 10% 15% 

a [2422.5 ÷ 2550],
[4750 ÷ 4987.5]

[2295 ÷ 2422.5],
[4987.5 ÷ 5225]

[2167.5 ÷ 2295],
[5225 ÷ 5462.5]

b [807.5 ÷ 850], [950 ÷

997.5]
[765 ÷ 807.5],
[997.5 ÷ 1045]

[722.5 ÷ 765],
[1045 ÷ 1092.5]

tp [8.1 ÷ 8.5], [37 ÷

38.9]
[7.7 ÷ 8.1], [38.9 ÷

40.7]
[7.2 ÷ 7.7], [40.7 ÷

42.6]
hw [131.1 ÷ 138], [580 ÷

609]
[124.2 ÷ 131.1],
[609 ÷ 638]

[117.3 ÷ 124.2],
[638 ÷ 667]

tw [8.6 ÷ 9], [15 ÷ 15.8] [8.1 ÷ 8.6], [15.8 ÷

16.5]
[7.7 ÷ 8.1], [16.5 ÷

17.3]
bf [85.5 ÷ 90], [150 ÷

157.5]
[81 ÷ 85.5], [157.5 ÷

165]
[76.5 ÷ 81], [165 ÷

172.5]
tf [11.4 ÷ 12], [20 ÷ 21] [10.8 ÷ 11.4], [21 ÷

22]
[10.2 ÷ 10.8], [22 ÷

23]
σY [223.3 ÷ 235], [315 ÷

330.8]
[211.5 ÷ 223.3],
[330.8 ÷ 346.5]

[199.8 ÷ 211.5],
[346.5 ÷ 362.3]

E [19 ÷ 20]⋅104, [21 ÷

22.05]⋅104 
[18 ÷ 19]⋅104,

[22.05 ÷ 23.1]⋅104 
[17 ÷ 18]⋅104, [23.1 ÷

24.15]⋅104  

S. Li et al.                                                                                                                                                                                                                                        



Engineering Structures 264 (2022) 114423

8

Bayesian approach works by specifying a prior distribution on the pa-
rameters and relocating probabilities based on evidence (i.e., observed 
data) using Bayes’ Rule [136]. The updated distribution, called the 
posterior distribution, thus incorporates information from both the prior 
distribution and the dataset. To get predictions at points of interest, the 
predictive distribution can be calculated by weighting all possible pre-
dictions by their calculated posterior distribution. The prior and likeli-
hood is usually assumed to be Gaussian for the integration to be 
tractable. Using that assumption and solving for the predictive distri-
bution, we get a Gaussian distribution, from which we can obtain a point 
prediction using its mean and an uncertainty quantification using its 
variance. Gaussian Process Regression (GPR) is nonparametric (i.e., not 
limited by a functional form), so rather than calculating the probability 
distribution of parameters of a specific function, GPR calculates the 
probability distribution over all admissible functions that fit the data. 
However, we specify a prior (on the function space), calculate the pos-
terior using the training data, and compute the predictive posterior 
distribution on our points of interest. In GPR, we first assume a Gaussian 
process prior, which can be specified using a mean and covariance 
function. The form of the mean function and covariance kernel function 
in the GPR prior is chosen and tuned during MS. The mean function is 
typically constant, either zero or the mean of the training dataset. There 
are many options for the covariance kernel function: it can have many 
forms as long as it follows the properties of a kernel so also the kernel 
hyperparameter needs to be tuned during the MS phase. A popular 
kernel is the composition of the constant kernel with the radial basis 
function, this kernel has two hyperparameters: signal variance σ2, and 
lengthscale l [121]. 

3.2. Model Selection and Error Estimation 

MS and EE deal with the problem of tuning and assessing the per-
formance of a ML algorithm [117]. Resampling techniques are 
commonly used by researchers and practitioners since they work well in 
most situations and this is why we will exploit them in this work. Other 
alternatives exist, based on the Statistical Learning Theory, but they tend 
to underperform resampling techniques in practice. Resampling tech-
niques are based on a simple idea: the original dataset D n is resampled 
once or many (nr) times, with or without replacement, to build three 
independent datasets called learning, validation and test sets, respec-
tively L r

l ,V
r
v, and T r

t , with r ∈ {1,⋯, nr} such that 

L
r
l ∩ V

r
v = ø, L

r
l ∩ T

r
t = ø, V

r
v ∩ T

r
t = ø (13)  

L
r
l ∪ V

r
v ∪ T

r
t = D n (14)  

Subsequently, to select the best hyperparameters’ combination H in a 
set of possible ones H = {H 1,H 2,⋯} for the algorithm A H or, in other 
words, to perform the MS phase, the following procedure has to be 
applied: 

H
*
: argmin

H ∈H

∑nr

r=1
M(A H (L

r
l ),V

r
v), (15)  

where A H (L
r
l ) is a model built with the algorithm A with its set of 

hyperparameters H and with the data L
r
l , and where M(f ,V r

v) is a 
desired metric. Since the data in L r

l are independent from the data in 
V r

v,H * should be the set of hyperparameters which allows achieving a 
small error on a data set that is independent from the training set. 

Then, to evaluate the performance of the optimal model which is 
f*

A = A
H * (D n) or, in other words, to perform the EE phase, the 

following procedure has to be applied: 

M(f *
A ) =

1
nr

∑nr

r=1
M(A H * (L

r
l ∪ V

r
v),T

r
t ). (16)  

Since the data in L r
l ∪ V r

v are independent from the ones in T r
t ,M(f*

A )

is an unbiased estimator of the true performance, measured with the 
metric M, of the final model [117]. 

In this work we will rely on Complete k-fold cross validation which 

means setting nr⩽
(

n
k

)( n −
n
k

k

)

, l = (k − 2)n
k, v = n

k, and t = n
k and the 

resampling must be done without replacement [117]. 
In our experiment, we investigated two different scenarios to un-

derstand the interpolation and extrapolation capability of the DDM:  

• Interpolation Scenario: ML models will be trained considering a 
random subset of geometric dimensions and material properties 
keeping the remaining ones for testing;  

• Extrapolation Scenario: ML models will be trained considering a 
subset of geometric dimensions and material properties in a specific 
range and the resulting models will be tested for geometric di-
mensions and material properties outside the range exploited during 
the training phase, as reported in Table 3. 

Therefore, the two scenarios just differ in the definition of the three 
sets L r

l ,V
r
v, and T r

t , which are the subset of data exploited for building, 
tuning, and testing the models. For the Interpolation scenario L r

l ,V
r
v, 

and T r
t have been created by simply randomly selecting data from D n. 

For the Extrapolation scenario L r
l , V r

v, and T r
t have been created by 

putting in L r
l a subset of the geometric dimensions and material prop-

erties in a specific range, in V r
v a subset of the geometric dimensions 

and material properties outside the rage used for L r
l , and in T r

t a subset 
of the geometric dimensions and material properties outside the range 
used for L r

l and V r
v. 

4. Experimental Results 

In this section we will show the results of applying the methods of 
Section 3 on the dataset of Section 2. 

4.1. Experimental Setting 

In this section we recall the pipeline of our approach and the 
parameter exploited in the experiments:  

1. construction of the dataset as defined in Section 2.3;  
2. definition of the regression tasks, namely predict the reduction factor 

ζ (see Eq. (5)) based on the varying parameters (geometrical and 
material) of the stiffened panels considered in Section 2 (see 
Table 1);  

3. for each one of the considered ML algorithms (SVR, RF, MLP, and 
GPR in Section 3.1) we built a model using the MS strategy defined in 
Section 3.2 where we set the number of fold k = 10 and nr = 1000, 
and we performed the EE phase described in the very same section. 
For the MS we searched the hyperparameters using the following 
ranges:  
• SVR: H = {C, γ} and H = 10{− 6.0,− 5.8,⋯,4.0} × 10{− 6.0,− 5.8,⋯,4.0}; 
• RF: we set nt = 3000 (since increasing it did not improve the re-

sults) and H = {np} with H = {1,⋯,9};  
• MLP: H = {nh, pd, pb, rl, ρ, rd} and H = {5,10,20,40,80,160,320,

640,1280} × {0,0.001,0.01,0.1} × {0.01,0.1,1} × {0.001,0.01,
0.1, 1} × {0.9,0.09} × {.001, .01, .1, 1} and as activation function 
we used the RELU one [98];  

• GPR: H = {σ2, l} and H = 10{− 6.0,− 5.8,⋯,4.0} × 10{− 6.0,− 5.8,⋯,4.0}. 

For the interpolation scenario, as described in Section 3.2 we simply 
randomly selected the data from 100 simulation inserted in D n (see 
Section 2.3) to generate L

r
l , V r

v, and T r
t with r ∈ {1, ⋯, nr}. For the 

extrapolation scenario, instead, we considered the 100 simulation 
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inserted in D n to generate L r
l ,V r

v while T r
t contains the data from the 

5%, 10%, and 15% extrapolation ranges (see Section 2.3). 
Experiments have been repeated 30 times reporting mean and 

standard deviation of MAPE, MAE, and PCC on T r
t . 

Results are reported in Table 4. The proposed methods show very 
high accuracy in predicting the reduction of ULS (i.e., ζ) both in the 
interpolation and extrapolation scenarios. 

4.2. Interpolation Scenario 

In this scenario, ML models try to predict the reduction factor ζ in 
various, but different, configurations of the design parameters, as dis-
cussed in Section 2.3, within the ones exploited for building the models. 
In other words, this scenario is accounting for configurations that belong 
inside the search space used to build the dataset, i.e., within the range 
reported in Table 2. In particular, from Table 4 it is possible to observe 
that DDMs show a high accuracy for predicting the ultimate strength 
reduction of stiffened panels caused by residual stress, as indicated by 
the mean values of three performance indices (i.e., MAPE, MAE and 
PCC). In particular, SVR is the most performing DDM among the four ML 
algorithms with a MAPE error of about 1.5%. The high accuracy of the 
experiments is repeatable as demonstrated by the acceptably small 
standard deviation of performance indices. 

4.3. Extrapolation Scenario 

In this second scenario, the DDMs based on all ML algorithms try to 
predict the reduction factor ζ in various, but different, configurations of 
the design parameters, with respect to those exploited for building the 
model, considering configurations that belong outside of the search 
space used to build the dataset, i.e., within the ranges 5%, 10%, and 15% 
reported in Table 3. From Table 4 it is possible to observe that as ex-
pected, the extrapolation scenarios have seen higher prediction errors as 
compared with those in the interpolation scenario. Considering the most 
performing ML algorithm (SVR) the results report an increase of the 
MAPE error from 1.6% ± 0.2% to 2.4% ± 0.2% for the 5% scenario, to 
2.8% ± 0.4% for the 10% scenario, and to 4.2% ± 0.5% for the 15% 
scenario. Also in this scenario, the SVR is still the best performing al-
gorithm for the current problem, which is consistent with the results 
obtained in the interpolation scenario. Moreover, with a larger extrap-
olation range, the performance of the DDMs gradually declined. Finally, 
also in this scenario, all experiments retain a good repeatability as 
indicated by the relatively small standard deviation, while they also tend 
to grow with the extrapolation range. 

5. Conclusions 

In this paper, we focused on assessing the ultimate limit state to 
evaluate the maximum load-carrying capacity of structures considering 
inelastic buckling failure. The ultimate limit state is an indicator of the 
structural performance under extreme conditions and is adopted to 
formulate the structural safety margin within the limit state design 
framework. It, therefore, enables a consistent level of safety/risk be-
tween conventional and novel structural designs, contrary to the tradi-
tional allowable stress principle, which is mainly based on experiences 
and then applicable just to conventional structures. Predicting the ulti-
mate strength reduction of stiffened panels caused by welding residual 
stress is a crucial problem addressed in the past by many scholars with 
different approaches. The Nonlinear Finite Element Method is the 
common approach within the community of structural engineering. 
Unfortunately, this method cannot be efficiently used in the design, 
appraisal, and optimisation phases of stiffened panels because of its high 
computational requirement. For this purpose, in this work, we estimated 
the strength reduction computed by the Nonlinear Finite Element 
Method with a data-driven model. The latter, based on a series of 

Nonlinear Finite Element Method outputs corresponding to stiffened 
panels characterised by different geometries and material properties, 
proved to be able to synthesise the complex related functional. The 
resulting function, while computationally expensive to build, is 
computationally inexpensive to use and then it can be leveraged to 
design, to appraise, and to optimise stiffened panels. 

Results obtained taking into account two different scenarios (i.e., 
interpolation and extrapolation) proved and supported the proposed 
computationally inexpensive method for its application at design stage. 
In fact, for the interpolation scenario the most performing data-driven 
model was able to reach accuracy of ≈ 99%. Moreover, for the more 
challenging extrapolation scenario, characterised by 15% outside the 
interpolation ranges, the most performing data-driven model was able to 
reach an accuracy close to ≈ 96%. 

This work is surely a promising first step toward enforcing the in-
clusion of the potential impact of welding residual stress in a code-based 
strength assessment for stiffened panel’s structural design (e.g., in the 
IACS Common Structural Rules for shipbuilding), even if more in-depth 
tests (using also different structures) need to be performed. Moreover, in 
the future, we plan to include this data-driven model within an opti-
misation framework, to optimise the structural design of various stiff-
ened plated structures considering the impact of the welding residual 
stress. 

Besides, it is recommended that a more in-depth research is needed 
to advance the understanding on the shakedown phenomenon and to 
quantify the relaxation of residual stress in relation to service time. If 
such knowledge is developed, the present data-driven models can be 
extended by introducing more scenarios considering different severities 
of residual stress, i.e., introducing additional input features, so as to 
incorporate the consideration of shakedown. 

In terms of the impact on the design guidance development, a direct 
incorporation of the developed data-driven models with design code 
such as CSR may be difficult, as a closed-form explicit formula is 
preferred. However, the main strength of the developed tool is its high 
accuracy and computational efficiency, which makes it an ideal alter-
native to the direct computation by NLFEM. Hence, the developed 
model appears to be a highly capable tool for advancing the research in 
buckling and ultimate strength of stiffened plated structures considering 
residual stress. This may ultimately lead to the specification of partial 
safety factors in CSR explicitly related to residual stress. 
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The authors declare that they have no known competing financial 

Table 4 
Predict the reduction of ULS: MAPE, MAE, and PCC of SVR, RF, MLP, and GPR 
for the Interpolation and Extrapolation Scenario.  

Method Int. Ext. 
5% 10% 15% 

MAPE 

SVR 1.6 ± 0.2 2.4 ± 0.2 2.8 ± 0.4 4.2 ± 0.5 
RF 2.0 ± 0.2 2.8 ± 0.2 3.4 ± 0.3 5.0 ± 0.5 

MLP 2.8 ± 0.2 4.0 ± 0.3 4.8 ± 0.2 7.1 ± 0.3 
GPR 2.6 ± 0.1 3.8 ± 0.3 4.5 ± 0.3 6.7 ± 0.5 

MAE 

SVR .009 ± .001 .011 ± .001 .018 ± .001 .036 ± .003 
RF .011 ± .001 .013 ± .001 .022 ± .002 .043 ± .004 

MLP .015 ± .001 .019 ± .001 .031 ± .002 .061 ± .004 
GPR .014 ± .001 .018 ± .001 .029 ± .002 .058 ± .003 

PCC 

SVR 0.89 ± 0.10 0.85 ± 0.09 0.81 ± 0.08 0.78 ± 0.10 
RF 0.85 ± 0.11 0.81 ± 0.08 0.77 ± 0.07 0.74 ± 0.09 

MLP 0.76 ± 0.12 0.72 ± 0.07 0.69 ± 0.08 0.66 ± 0.07 
GPR 0.78 ± 0.08 0.75 ± 0.09 0.71 ± 0.09 0.69 ± 0.07  
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