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and
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A flight-path reconstruction algorithm for tethered aircraft, which is based on an extendedKalman filter, is presented.

The algorithm is fed by the measurements of a set of onboard and ground-based instruments and provides the optimal

estimation of the system state-space trajectory, which includes typical aircraft variables such as position and velocity, as

well as an estimation of the aerodynamic force and torque. Therefore, it can be applied to closed-loop control in airborne

wind energy systems and it is a first step towardaerodynamicparameter identification of tethered aircraft using flight-test

data. The performance of the algorithm is investigated by feeding it with real flight data obtained from a low-cost and

highly portable experimental setup with a four-line kite. Several flight tests, which include pullup and lateral-directional

steeringmaneuverswith twokites ofdifferentareas, are conducted.Thecoherenceof theestimationsprovidedby the filter,

such as thekite state-space trajectory andaerodynamic forces and torques, is analyzed. For some standard variables, such

as kite Euler angles and position, the results are also compared with a second independent onboard estimator.

Nomenclature

B = magnetic field, T
Dcb = control bar displacement, m
~d� = distance sensor measurements, m
Fa = aerodynamic force, N
~f IMU = specific force, m∕s2
Lcb = length of the control bar, m
Lds = depower stopper distance, m
Ll = lengths of the frontal lines, m
Lps = power stopper distance, m
Ls = length of the sliding tether, m
Lt = lengths of the rear lines, m
Ma = aerodynamic torque, N∕m
m = kite mass, kg
pd = differential pressure, Pa
�Q = process covariance matrix
�R = observation covariance matrix
�REK = Earth to kite body axis rotation matrix
r = kite position, m
S = kite surface, m2

s0 = control bar to load cell distance, m
T = tether tension, N
up = power ratio of the control bar
v = kite velocity, m∕s
wcl = width of the chicken-loop interface, m
x̂ = estimated value of x
~x = measured value of x

y = measurement vector given by sensors
η = sensor noise
Θ = instrument bias
θ = pitch angle, rad
ν = control bar deflection angle, rad
ρ = air density, kg∕m3

σ2 = variances
ϒ = Euler angles vector, rad
ϕ = roll angle, rad
χ = Markov state vector
ψ = yaw angle, rad
ω = kite angular velocity, rad∕s

Subscripts and accents

A� = leading edge attachment points
B� = trailing edge attachment points
E = Earth frame
K = kite body frame
k = kite
x̂ = estimated value of a variable
~x = observed value of a variable

I. Introduction

T HE increasing demand for renewable energy is actively driving

the search for more efficient methods to harvest energy from the

wind. Although conventional horizontal-axis wind turbines now play

an important role in the energy economy of many countries, the

technology has a substantial environmental impact and, particularly

for offshore deployment, is still relatively expensive. This triggered

the research on airborne wind energy (AWE) systems based on the

pioneering work of Miles Loyd [1]. These devices operate at higher

altitudes than conventional wind turbines where, due to more steady

and stronger winds, more energy is available. The proposed solutions

include the so-called ground- and fly-generation systems (see a review

of technologies in Refs. [2,3]). For a ground-generation system, the

high tether tension obtained by flying the kite along optimal

crosswind trajectories is used to drive a drum with a connected

generator on the ground in a pumping cycle with alternating reel out

and reel in [4,5]. Fly-generation systems produce the electrical power
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directly on board by using wind turbines [6]. An example isMakani’s
M600 system, developed by Makani Power in the United States [7].
To become a real alternative to other energy generation systems,

AWE systems need to operate autonomously for long periods of time
and be efficient in a broad range of wind speeds. However, the design
of wind energy systems based on power kites and capable of
operating autonomously for extended periods of time is technically
challenging. Similar to any other unmanned air vehicle, several
disciplines (such as system state estimation, control, and guidance)
are interrelated. The aerodynamic characterization of the kite also
plays a central role both in the design and evaluation of the system
capabilities. The flexible nature of the kite structure, the constraints
imposed by the tethers, and the lack of accurate aerodynamic data are
rendering the development of these systems difficult. For these
reasons, the development of accurate mathematical models validated
by flight testing is a priority for the AWE community. In this regard,
testbeds for airborne wind energy technologies [8], as well as flight
simulators [5,9–15], are of great interest. Naturally, these last include
an aerodynamic model, which basically receives the airspeed of the
kite and returns the aerodynamic coefficients that describe the
aerodynamic force and torque about the center of mass of the kite.
These coefficients, which are also denoted as stability derivatives,
play a central role in the stability of the equilibriumof the kite [16,17],
which is of fundamental interest for many kite applications including
the generation of energy.Although analyseswith computational fluid
dynamics codes have been carried out [18,19], the complex fluid–
structure interaction is still an open and active field of research.Wind-
tunnel experiments for ram-air wings have been also conducted [20].
On the other hand, in addition to numerical and wind-tunnel

studies, aircraft aerodynamic characterization based on real flight-
test data has been used profusely by the aerospace industry in the past.
This characterization can be approached by both in one-step or two-
step techniques.One-step techniques, such as themaximum likelihood
method, estimate both the state variables and the aerodynamic
parameters at the same timeby anoptimization process. This is done by
a formulation of the process model that implicitly includes the
aerodynamic coefficients, requiring an a priori knowledge of the
structure of the aerodynamic model [21,22]. A study on kite
aerodynamic identification with estimations of the generated lift and
drag, and based on some a priori system modelization, has been
presented recently [23]. Two-step techniques [or estimation before
modeling (EBM) [24,25]] first estimate the time histories of the state
variables of the system. Such time histories, which include the
aerodynamic force and moment, are used in the second phase to
perform the aerodynamic parameters identification of the system.
Because of the space state trajectory estimation, the so-called flight-
path reconstruction (FPR) [26] is independent of the proposed
aerodynamic model structure, a priori knowledge of the system is no
longer needed, and different model structures can be tested afterward
without a reformulation of the problem. For this reason, the solution of
the FPR problem is the first step toward aerodynamic parameter
identification for AWE systems. Recent works have tackled this
problem for rigid-wing AWE pumping systems [27,28].
Our contribution consists of two main elements. The first one is a

portable and low-cost experimental setup for the acquisition of flight
data from four-line kites with tether lengths on the order of several
tens of meters. Recent works highlighted the important role of these
types of experiments in the progress of AWE systems and the
difficulties arising in the determination of the airspeed of the kite
[29,30]. The second element is a solution for the kite FPR problem,
which incorporates special features of this type of system such as the
constraints imposedby the tethers and their tensions.For configurations
with relatively short lines, tether sagging can be neglected and the
accuracy of the Global Positioning System (GPS) can be improved by
the geometric constraint introduced by the lines [31,32].
The work is organized as follows. Section II describes the main

elements of the experimental setup and justifies the hardware selection.
Two different four-line power kites are used as platforms, and a set of
measurement instruments provides state variables, such as position,
velocity, acceleration, attitude, angular acceleration, airspeed, and
tether tension.Control variables (i.e., the positionof the control bar) are

also measured during the flight tests. Two key features of the setup are
the low cost and portability because it can be easily adapted to other
types of kites. An outline of the FPR algorithm is given in Sec. III, and
its full description is in theAppendix. The experimental results and the
performance of the FPR method are given in Sec. IV, whereas the
conclusions and applications of the work are presented in Sec. V.

II. Experimental Setup

A. System Layout

Figure 1 shows a schematic of the experimental setup. It involves a
four-line power kite of massm and surface S attached to a fixed point
OE on the ground. In our experimental setup, pointOE coincideswith
the hook of a stationary car that acts as a large mass to anchor the
system. Point OE is the origin of an Earth-fixed reference frame SE
with axes xE and yE spanning the horizontal ground and pointing to
the north and east, respectively, with zE pointing downward. In the
following, the frames of reference are denoted with capital letters.
The two front tethers, attached to the leading edge of the kite at points
A�, are of lengthsLl and connect at pointFv. The two control tethers
of lengths Lt connect points B� of the trailing edge with the tips of a
control bar of length Lcb. The control bar slides over a short tether of
length Ls that links the moving point Fv with the origin OE fixed to
the ground. Following Ref. [17], we also introduce the plane Π
defined by points Fv and A� (see Fig. 2). Because the tethers

Fig. 2 Detail of the Π plane.

Fig. 1 Frames of references and scheme of the experimental setup.
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connected to the leading-edge transfer most of the aerodynamic load,
we will assume that they are well tensioned, and thus straight within
the planeΠ. A kite-fixed reference frame SK linked to the kitewith an
origin at its center ofmassOK will also be used.Axes xK and zK are in
the plane of symmetry of the kite, xK is parallel to the center chord
(i.e., the imaginary line linking the leading- and trailing-edge points
of the plane of symmetry of the kite), and yK completes a right-
handed coordinate frame. Because the kite has a plane of symmetry,
theSK component of the tensor of inertia of the kite about its center of
mass then reads

�IOK
�

0
BB@

Ix 0 Ixz

0 Iy 0

Ixz 0 Iz

1
CCA (1)

and Ixy � 0 and Iyz � 0.
Our kite state vector

xk � � r v ϒ ω � (2)

includes the SE components of the position vector of the kite; the SK
components of the absolute velocity and angular velocity of the kite;
and its roll, pitch, and yaw angles:

r � OEOK � xEiE � yEjE � zEkE (3)

v � dr∕dt � uiK � vjK � wkK (4)

ω � piK � qjK � rkK (5)

ϒ � �ϕ θ ψ � (6)

A detail of the configuration of the control bar is given in Fig. 2.
The middle point of the bar, named C0, slides over a tether of length
Ls that links points Fv andOE. If considered massless, such a tether
will be in theΠ plane because its tension vector is in equilibriumwith
the tension vectors of the two tethers connecting to the leading edge
that define the Π plane. The movement of the bar is limited by the
depower and power stoppers that are placed at distances Lds and Lps

from Fv and OE, respectively. Its distance to the power stopper is
denoted as Dcb. Assuming that the pilot maneuvers the kite while
keeping the control bar inside planeΠ, the state of the bar is given by a
control vector with only two variables:

xc � � up ν � (7)

i.e., a power ratio up and the bar deflection angle ν between the bar
and the tether of length Ls. The former is defined as [29]

up � 1 −
Dcb

Ls − Lps − Lds

(8)

and it takes values equal to zero and one when the kite is fully
depowered (bar at the depower stopper) and powered (bar at the power
stopper), respectively. Figure 2 also shows the four load sensors
(marked by symbols Sc� and Sl�) and the distance sensors attached to
the control bar safety fuse just below the depower stopper. These
elements are described in Sec. II.B, which focuses on the hardware
selection and the reconstruction of the state and control vectors from
the measurements.

B. Hardware Selection

AWE systems are being developed on the basis of flexible ram-air
kites (KiteEnergy, Kite Power Systems, and SkySails), semirigid
inflatable kites (Kitepower), and tethered fixed-wing drones
(Makani/X or Ampyx Power) [2] flying hundreds of meters high in

the sky. Because the rigid-body hypothesis is implicitly assumed in
our work, our solution to the FPR problem is more suitable for
semirigid and tethered fixed-wing drones. This assumption, in
addition to cost and resource constraints, leads to the decision to
focus the analysis on two different four-line off-the-shelf inflatable
surf kites with tether lengths on the order of several tens of meters.
These kites, although smaller scale, are still representative of the ones
used in AWE systems and show the portability of our experimental
setup. Moreover, the techniques, tools, and hardware components
developed in this work can be easily implemented with much larger
kites. The two selected kites, having different areas and numbers of
struts (stiffness), also provide a broad wind speed range without
switching to different-scaled load sensors. Table 1 shows the most
important characteristics of the kites. They both have the same mass,
but there is a 30% difference in surface area. Compared to the larger
kite, the smaller one is more rigid because it has two additional struts.
The lengths of the leading-edge supporting lines, here named the kite
bridle, are different; but the control bar, tether lengths, and
experimental setup used for both kites are identical.
Both kites have a supported inflated leading edge and sweptback

wing. The bridled leading edge allows for flatter wings with higher
aspect ratios than those with unsupported ones, thus increasing the
aerodynamic efficiency and projected lifting area. Moreover, the
concave trailing edge and sweptback angle in the wing allow for
greater lift control by increasing the pitch variations induced by the
control bar. Such higher maneuverability still keeps acceptable
control forces on the bar, due to the shifting of the attaching points of
the control lines further back from the pressure center of the wing.
These characteristics, in comparison with the so-called C-type
unsupported leading-edge kites, provide a broader flight envelope
and allow a larger dynamical range for themeasured variables. Such a
property is of great interest for future studies in terms of parameter
identification and system observability. Figure 3a shows the 13 m2

kite during one of the flight tests.
The flight-test instrumentation implemented in the experimental

setup is split into two groups. The first group includes the onboard
instruments. A PixHawk™ running Px4™ open-source flight control
software is used for data logging the GPS position ~r and velocity ~v,
the magnetic field vector ~B, static and differential pressures ~p0 and
~pd, specific forces

~f IMU, and angular rates ~ω. Additionally, Px4™
attitude estimation is recorded during the flight for validation
purposes of our own estimator (see Fig. 4 in Sec. IV). Onboard
instruments are powered by a 4.8 V nickel–metal hydride battery,
whereas its positioning and orientation with respect to the kite frame
SB is guaranteed by a specifically designed three-dimensionally
printed rig (see Fig. 3b). Such an interface allows us to safely attach
the sensors to the central strut of the kite, just behind the leading edge.
The plastic rig is designed to align the PixHawk hardware to the axes
of SK . Therefore, the measured vector components are provided in
the SK frame.

Table 1 Kite parameters

Cabrinha Switchblade Cabrinha Contra

Mass 3.4 kg 3.4 kg

Ix 8.68 kg∕m2 12.33 kg∕m2

Iy 2.43 kg∕m2 3.18 kg∕m2

Iz 8.40 kg∕m2 11.41 kg∕m2

Ixz 0.33 kg∕m2 0.43 kg∕m2

Surface 10 m2 13 m2

Span 4.3 m 5 m
Struts 5 3
XA 0.42 m 0.53 m
YA 1.05 m 1.40 m
ZA −0.20 m −0.31 m
XB −0.97 m −0.98 m
YB 2.15 m 2.50 m
ZB 1.38 m 1.60 m
Ll 23.85 m 24.37 m
Lt 23.19 m 23.45 m

2606 BOROBIA ETAL.
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The second instrumentation group comprises the ground-based

sensor equipment. As shown in Figs. 2 and 3c, four load sensors are

installed to measure the tether tensions at points Sc� and Sl�. The
sensors at Sc� are at distance s0 from the tips of the control bar. To

measure the state of the control vector, defined by the power ratio and

the bar deflection, a specifically designed andmanufactured interface

with twoPosiwireWS31C750-mm-distance sensors is secured to the

safety fuse of the kite control bar. These sensors measure the

distances d� between the tips of the interface, placed at distance wcl

from a tether of length Ls, and the points Sc�.
Because jC0OKj ≫ jA�B�j, one may assume that the rear control

lines practically belong to Π and they are parallel to the tether of

length Ls. Under such assumptions, the following trigonometric

relations hold:

d2�� ≈
�
Lcl �Dcb∓

Lc

2
sin ν� s0

�
2

�
�
Lc

2
cos ν −wcl

�
2

(9)

These constraints andEq. (8) give the power ratioup (or the control
bar distance Dcb) and the bar deflection ν as a function of the

measured distances d� and d−.
Table 2 provides the numerical values of the characteristic lengths

related to the experimental setup of the control bar. The load cells and

the distance sensors feed a National Instruments (NI) 6002 data-

acquisition system with eight 16-bit 50 kilosamples∕s analog inputs
and two 16-bit analog outputs. The data-acquisition system is

connected to a laptop running NI Signal Express Software through a

Universal Serial Bus (USB) interface.
The selection of the load cells was based on the expected traction

forces. A conservative calculation, based on a maximum

aerodynamic lift coefficient of CL � 1.2 and an airspeed of about

Va � 7 m∕s, gave a lift force of around 460 N for the larger kite.

Because most of the load was supported by the front lines, we took

two 50kg self-amplified�10 V analog output, load cells for the front

tethers. During flight tests, forces were consequently limited to

1000 N (roughly twice the expected stationary lift force) by manual

control of the kite and real-time supervision of the generated forces.

Fig. 3 Kite (Fig. 3a), onboard instruments (Fig. 3b), and control bar (Fig. 3c) during a flight test.

0
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Fig. 4 Euler angles from the PixHawk software (dashed lines) and the
FPR algorithm (solid lines).

Table 2 Characteristic lengths

related with the control bar

Symbol Value, m

Lc 0.56
Lds 0.52
Lcl 0.1
s0 0.35
Ls 2.07
Lps 1.1
wcl 0.07
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For the rear tethers, two 10 kg-load cells were selected to measure
control forces over the kite. The amplified load cells and the distance
sensors were powered by a 22.2 V lithium polymer rechargeable
battery pack, whereas the NI 6002 was powered through the host
computer’s USB port.
All the measured variables are logged during the flight and

postprocessed offline. As two different groups of sensors (onboard and
ground-based) with two different data-logging systems (PixHawk
for onboard ground sensors and a NI data-acquisition system for
on-ground sensors) are used, a synchronization method is needed. For
this purpose, a square time signal is generated during the experiment by
the analog output of the NI system. This signal, transported by an
electrical wire attached to a front line, is sent from the NI system to the
6.6 V PixHawk Analog to digital converter input, and therefore
synchronously records both on board and on the ground.
Finally, in the case of loss of control, surf kites are equipped

with a manual safety fuse that allows the rear lines to become
completely slack, so the kite flags on the front lineswith a zero angle
of attack and falls to the ground. To make this safety method
compatible with the experimental setup, a fifth line linking the
leading edge with the ground is added. This safety line, which has a
low diameter, is long enough to be completely slack during the flight;
and its influence on the kite dynamics is negligible (both inertial effects
and aerodynamic drag).

III. Space State Flight-Path Reconstruction

This section presents a solution to the FPR problem of the
experimental setup in Sec. II.B. Its main inputs are the digital records
of the sensors during the flight, which contain statistical noise and
other inaccuracies; and its outputs are the time histories of the system
state variables. In addition to the kite kinematic variables, it provides
an estimation of the kite aerodynamic force and moment, the wind
speed and direction, and tether loads. This feature distinguishes it
from other estimation solutions for kites, and it is of great interest for
future works on the aerodynamic characterization of kites based on
EBM techniques. The core of the algorithm follows previous works
on FPR for aircraft by using continuous-discrete extended Kalman
filters (EKFs), in which the forces and moments are also part of the
state vector and modeled as Gauss–Markov stochastic processes
[25,33,34]. They are adapted to consider the special characteristics of
kites and our experimental setup. These extensions cover the
information added by the constraints introduced by the tethers, the
GPS, the magnetic field, and the tether length measurements, as well
as a variation of the process model of the sensors, to include
stochastic error models for each sensor.
The process model of the filter is written in the compact form:

dx�t�
dt

� fproc�x�t�� � �Gw�t� (10)

with x representing the state vector andw the process noise, which is
modeled from a multivariable normal distribution function with zero
mean and covariance �Q. Explicit equations for the flow fproc and the
constant matrix �G are given in the Appendix. The state vector of the
filter

x � � xk xbias χ 1 χ 2 χ 3 � (11)

appearing in Eq. (10) includes 1) the kite state vector [xk in Eq. (2)];
2) a bias state vector xbias � �ΘB Θf Θω Θaer � with the biases
for the measured magnetic field, inertial measurement unit (IMU)-
specific forces, angular velocities, and airspeed; and 3) a set of three
pseudostates vectors

χ i � �Fai Mai TA�i TA−i TB�i TB−i Vwi ψwi �

with i � 1, 2, 3 stochastically described using third-order Markov
models. The first vector χ 1 contains the SB components of the
aerodynamic force Fa1 and moments about the center of mass of the
kiteMa1, the magnitudes of the tether tensions at the four attachment

points TA�1 and TB�1, the magnitude of the wind velocity Vw;1, and

its heading angle ψw;1. The process equations of this vector and the

ones for χ 2 and χ 3 yield a three-term quadratic interpolation as a

function of time for which the coefficients are updated by the filter at

each sampling instant. The dimensions of the kite state xk, bias state
xbias, and each Markov vector χi are equal to 12, 10, and 12,

respectively. Therefore, the dimension of the total state vector of the

filter x is NF � 58.
Although the state vector of the filter just contains themagnitude of

the tether forces, we can estimate the vectors if we assume that the

tensions are along the line determined by the attachment points

(A� or B�) and OE. Hereafter, we will take

TA� � −TA�1OEA
�∕jOEA

�j (12)

TB� � −TB�1OEB
�∕jOEB

�j (13)

with

OEA
� � r�OKA

� (14)

OEB
� � r�OKB

� (15)

OKA
� � XAiK � YAjK � ZAkK (16)

OKB
� � XBiK � YBjK � ZBkK (17)

The coordinates of the attachment points of the two kites are given

in Table 1. Equations (12) and (13) assume that the tethers are

straight, and they use the fact that the tethers are much longer than the

distance between the center of the mass of the kite and the IMU, as

well as any distance related with the setup of the control bar (see

Table 2). This pair of equations gives the tether tensions as a function

of the state vector of the filter.
After denoting the observed variables with the symbols ∼, the

observation model of the filter is

~y � h�x� � η (18)

with ~y representing the observation vector, h�x� representing the

observation model that maps the true state space into the observed

space (see the explicit model of h in the Appendix), and η
representing the observation noise that is assumed to be zero mean

Gaussian white noise with covariance �R. The observation vector of

the experimental setup

~y� � ~r ~v ~f IMU ~ω ~B ~vaer ~D ~TA− ~TB� ~TB� ~TA� � (19)

includes theSE components of the position and velocity vectors of the

kite ( ~r and ~v); the SK components of the specific force, the angular

velocity, and the magnetic field ( ~f IMU, ~ω, and ~B); the magnitude of

the airspeed ~vaer; the distance between the fixed point OE and the

center of mass of the kite ~D; and the four magnitudes of the tether

forces ~TA� and ~TB� .
The application of the EKF to Eqs. (10–18) is standard (see, for

instance, Ref. [35]). As usual, wewill denote with superscripts− and

� the a priori (before measurement) and a posteriori (after

measurement) estimated values, respectively. Given the estimated

value of the state vector x̂�j and the covariancematrix �P�
j at instant tj,

the EKF computes their values at a later instant tj�1 as follows. First,

in the prediction phase, the reference trajectory xR�t� is computed by

integrating Eq. (10) without noise [the term Gw�t�]

dxR�t�
dt

� fproc�xR�t�� (20)
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from t � tj to t � tj�1 and with the initial condition xR�tj� � x̂�j .
An approximation of the state transition matrix �Φ is obtained by
integrating the linearized version of Eq. (20)

d �Φ
dt

� �J �Φ (21)

with initial condition �Φ�t � 0� � �I, and �J as the Jacobian of f
evaluated at x̂�j . The a priori state vector and covariancematrix at tj�1

are

x−j�1 � xR�tj�1� (22)

�P−
j�1 � �Φ �P�

j
�ΦT � �G �Q �GT (23)

The Kalman gain is

�Kj�1 � �P−
j�1

�HT
j�1� �Hj�1

�P−
j�1

�HT
j�1 � �R�−1 (24)

with �Hj�1 as the Jacobian of h evaluated at x̂−j�1. The a posteriori
(i.e., corrected by the measurements) estimations at tj�1 are

x̂�j�1 � x̂−j�1 � �Kj�1�yj�1 − h�x̂−j�1�� (25)

�P�
j�1 � � �I − �Kj�1

�Hj�1� �P−
j�1 (26)

where yj�1 is the measurement vector provided by the sensor.
In addition to the Kalman innovation error yj�1 − h�x̂−j�1� in

Eq. (25), the filter also gives the difference h�x̂�j�1� − h�x̂−j�1� that
can be used for checking purposes.
The application of the filter to our flight data exhibited a high

robustness with little sensitivity to its initialization. In any case, we
normally initialized xk by using the information provided by the GPS
and assuming symmetric flight with zero angular velocity. Vectors
xbias, χ 2, and χ 3 were initialized to zero. For χ 1, we set the specific
forces equal to minus the weight, zero moments, and wind velocity
and its heading angle taken from average measurements before the
flight. Following [25], the covariance matrix was initialized with the
measured noise of the measured variables, and it was initialed to one-
fourth of the estimated initial value of the state for the unmeasured
ones. The filter parameters had been tuned by using the sensor
datasheets andbyanalyzing the effect of the different parameters on the
filter output. A full description of the filter and the parameters used in
this work are given in the Appendix and Table A1, respectively.

IV. Experimental Results

Flight tests have been carried outwith the 13 and 10 m2 kites under
similar wind conditions. The testing procedure started by powering
all the sensors while the kites were on the ground. Px4™ software
was modified to record data from all sensors after powering up. Once
a validGPS signal was acquired, the kitewas launched from one edge
of the wind window and steered toward a stable equilibrium state
close to the zenith. At that moment, the data-acquisition software
and the synchronization time signal were started, thus allowing a
synchronousdata acquisitionof theonboardandon-ground instruments.
Several maneuvers (see the following) were performed repeatedly, and
the kitewas landed at one edge of thewindwindow afterward. The data
recorded by all the instruments, which were resampled using a common
50 Hz time vector started at the first rising edge of the synchronization
signal, were analyzed offline.
Figures 4a–4c show the evolution of the pitch, roll, and yaw angles

for the 13 m2 kite during the first 2min of flight. The dashed lines and
the solid lines correspond to the Px4™ and the FPR estimated
attitudes, respectively. Both estimations, obtained from totally
independent algorithms and software, are in good agreement with
discrepancies in the estimated pitch and roll angles under 5 deg, and
they are a little bit higher for yaw angles (especially at the beginning

of the flight). They prove that the experimental setup and the filter are
correctly implemented. A second verification of the integrity of the
filter is given in Fig. 5, which shows theGPSmeasured (dashed lines)
and FPR estimated (solid lines) values of the kite position
components xE and yE, its altitude H � −zE, and the constraint
distanceD appearing in Eq. (A9). The addition of such a constraint in
our EKF greatly improves theGPS accuracy.As shown in Fig. 5d, the
raw GPS distance to the attachment point OE oscillates with typical
GPS accuracy values, whereas the FPR solution follows the imposed
constraint.
The next two sections show experimental results of the two

different maneuvers: 1) a pullup, i.e., continuous enhancement of the
power ratio with vanishing (or small) lateral deflection of the control
bar; and 2) a steering maneuver with periodic variations of the
deflection angle of the control bar. The goal of the analysis is twofold.
First, it provides quantitative information about the performances of
the experimental setup and the filter, and it shows coherence between
the control inputs and kite response. Second, it highlights some of the
distinguished features of the filter, such as the estimation of the
aerodynamic force and moment.

A. Pullup Maneuver

Figure 6 shows the evolution of the power ratio and deflection
angle of the control bar during a pullup maneuver of the 10 m2 kite.
As shown by the following results, the maneuver is not perfectly
symmetric but close to it. The power ratio is increased smoothly from
approximately 40 to 90%, and the deflection angle is held almost
constant at −4 deg which shows a constant pulling on the right
control line during thewhole maneuver (the one linked to pointB− in
Fig. 1). The position of the center of mass of the kite (not shown)
remains almost constant during the time span displayed in Fig. 6.
The FPR of the Euler angles (pitch, yaw, and roll) versus the power

ratio during the pullup maneuver is shown in Fig. 7a, in which, for
clarity, the yaw angle is divided by a factor of 10. As expected, the
yaw and roll angles are almost constant during the pullup, and the
pitch angle increases notably (Δθ ∼ 7.1 deg). These results are in
agreement with the sign of the estimated angular velocities (see
Fig. 7b). The linear dependence between the pitch angle and
the power ratio can be understood from simple kinematic
considerations. After assuming straight and inextensible tethers,
pure rotation along jK , and small pitch angle variations, we can
write Δθ ≈ −ΔDcb∕RG, with Δθ being the increment of the pitch
angle, ΔDcb the distance increment between the control bar and the
power stopper, and

-15
-10
-5
0
5

a)

b) -15
-10
-5
0
5

c) 0

10

20

30

d)

0 20 40 60 80 100 120
24

26

28

Fig. 5 Position anddistance from the sensors (dashed lines) and theFPR
algorithm (solid lines).
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RG �
�����������������������������������������������������
�XA − XB�2 � �ZA − ZB�2

q
� 2.12 m

the distance between the two lines passing through points A� and

A− and B� and B− for the 10 m2 kite. Calling up0 ≈ 0.42 and

up∞ � 0.9 the initial and final power ratios, one has

ΔDcb � �Ls − Lps − Lds��up0 − up∞� ≈ −0.216 m

that gives a pitch increment of 5.84 deg.
A quasi-stationary (Δt ≈ 1.2 s) variation of pitch angle translates

into an instantaneous increase of the kite angle of attack andmodifies

the aerodynamic forces. Its lateral SK components, Fay1 remains

almost invariant, as shown by the dashed line in Fig. 8a. However, as

expected, the longitudinal components Fax1 and Faz1 increase

considerably during the maneuver. Figure 8b shows the components

of the estimated aerodynamic moment. The pitch moment May1

remains relatively constant, indicating a position of the center ofmass

close to the aerodynamic center c∕4. This can be checked using the

data provided in Table 1, in which c∕4 ≈ �XA − XB�∕4 � 0.38 m,

and the distance of the c.g. to the leading edge of the kite is

approximately XA � 0.42 m. On the other hand, an average wind

heading angle of ψw ≈ −60 deg and a yaw angle during the

maneuver of ψ ≈ 150 deg result in a negative sideslip angle of the

kite. As expected, the estimated roll momentMax1 is negative due to

the negative dihedral of the wing. Finally, Fig. 8c shows the

magnitude of the resultant of the four tether tensions estimated in the

FPR T̂ and, for reference, the tensions measured by the load sensors
~T. Again, the tension exhibits a linear dependence with the power

ratio and is almost doubled during the pullup.

B. Steering Maneuver

The lateral-directional dynamics of the 10 m2 kite was

investigated by periodically varying the deflection angle of the

control bar. As shown in Fig. 9, the maximum and minimum

deflections were about 20 and −30 deg. Because the force at the bar
increased notably during the induced crosswind motion of the kite,

the pilot could not keep the power ratio constant and it varied

periodically around the nominal value of up ≈ 0.4. The kite flew in

crosswind conditions and moved from side to side in the wind

window.A top viewof themeasured trajectory is displayed in Fig. 10,

in which we also plotted the wind direction and the Earth axes at the

initial instant of the steering maneuver.

We now describe the lateral-directional steering maneuver as seen

from the point of view of the pilot placed at the origin the wind

reference frame displayed in Fig. 10. The steering maneuver started

with the kite placed at the right side of the wind window (circle in

Fig. 10). Because the kite initially had a lateral velocity pointing to

Fig. 7 Pullup maneuver: Euler angles and angular velocity versus
power ratio.

Fig. 8 Pullup maneuver: a,b) aerodynamic force and moment and
c) total tension versus up.
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Fig. 9 Power ratio and bar deflection angle versus time during a
steering maneuver.
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Fig. 6 Power ratio and bar deflection angle versus time during a
symmetric pullup maneuver.
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the left and the pilot imposed almost zero deflection to the control bar
at that instant, the kites moved laterally. Although the kite was

moving to the left with a positive and increasing roll angle (Fig. 11a),
the pilot pulled the right tip of the control bar, thus decreasing angle ν
(see Fig. 9). Such a control input stopped the lateralmotion of the kite,
and it avoided a kite crash at the left-hand side of the wind window.
The kite reached the center of the wind window and the maximum

lateral displacement at instants of t � 114.6 s and t � 116.9 s,
respectively. The latter coincided approximately with the minimum

of ν. After reaching themaximum lateral displacement at the left side,
the kite moved to the right and the pilot increased the value of ν from
−27 deg at t ≈ 117 s to�20.46 deg at 120.4 s. The kite performed a
second crosswind motion during that time interval. It was also

interesting to look at the behavior of the roll angular velocity
component p. At the beginning of the maneuver, p was positive and

at a maximum. The action of the pilot decreased the value of p and,
once it vanished, the kite banked to the right and moved to the

opposite side of the wind window.
An analysis of the control inputs in Fig. 9 and the Euler angles in

Fig. 11 reveals a strong correlation between the deflection of the bar
and the yaw angle of the kite. The roll response also follows these two

variables but with certain delay. The forces and torques provided by
the EKF (Figs. 12a and 12b) are coherent with the dynamics

described previously. The lateral force component Fay1 and the roll
torque Max1 oscillate among positive and negative values. The

longitudinal force components, especially Faz1, are larger than the
one observed during the pullup due to the crosswind conditions of the
steering maneuver. This effect is also evident in Fig. 12c, in which
the magnitude of the resultant of the four tether tensions is plotted.
Similar pullup and steering maneuvers have been recently

analyzed theoretically with the module KiteSurf of the Lagrangian
kite flight simulator named LAKSA. The dynamic response of the
kite and the tether tensions found in the simulations were in
qualitative agreement with the experimental results of this work [15].
A quantitative agreement will not be possible until an accurate
aerodynamic model for the kites is available. The combination of our
FPR algorithm with the estimation-before-modeling technique can
contribute to this goal.

V. Conclusions

This work presents a flight-path reconstruction method for
tethered systems aswell as an experimental setup designed to provide
the required flight-test data for the algorithm. The solution of the
flight-path reconstruction problem (also known as a compatibility
check) is the optimal estimation of the system state-space trajectory,
which is consistent with the kinematic equations of a kite, observed
variables, and stochastic error models for the involved sensors. The
method is very general and avoids several a priori hypotheses, such as
the angular rate dependence on control inputs, the relative attitude of
the kite to the tethers, and the compliance with a particular
aerodynamic model. This feature distinguishes the proposed EKF
from past works and, because the filter provides the aerodynamic
force and torque, it represents the estimation step of the estimation
beforemodeling technique in the aerodynamic parameter identification
problem of a tethered aircraft. It can be also a fundamental component
in closed-loop control scenarios.
Two important advantages of the experimental setup are the

portability and low cost. Two kites of different sizes and stiffness are
investigatedwith the experimental setup,which can be adapted to other
kites or even to tethered drones by just three-dimensionally printing the
corresponding interfaces to host the onboard measurement instru-
ments. However, the analysis of the results suggests that amore precise
platform for the aerodynamic characterization of kites can be achieved
by implementing the following improvements: 1) adding an air data
boom with sensors to measure the flow direction (wind vanes) and to
improve the quality of the velocity magnitude by measuring in an
undisturbed region of the flowfield, and 2) substituting the control bar
and the load sensors at the tethers by a remotely controlled mechanical
assembly with integrated load sensors. These changes would slightly
affect the current EKF by extending the observation vector and the

-15 -10 -5 0 5 10 15

-5

0

5

10

15

Fig. 10 Top view of the kite trajectory during the steering maneuver.

Fig. 11 Steering maneuver: a) evolution of Euler angles and b) angular
velocity.
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Fig. 12 Steering maneuver: a) evolution of the aerodynamic force,
b) torque, and c) tether tension resultant.
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models for the angle of attack and sideslip angle measured by the
wind vanes.

Appendix: Estimator Description

A.1. Observation Model

This Appendix introduces the error and observation models that
are needed to implement Eq. (18) in the EKF. The observed SE
components of the position and the velocity vectors are ~r �
~xEiE � ~yEjE � ~zEkE and ~v � ~vxiE � ~vyjE � ~vzkE. After ignoring
latency but including a wideband and not correlated noise, the GPS
model reads 0

BB@
~xE

~yE

~zE

1
CCA �

0
BB@
xE

yE

zE

1
CCA� ηr (A1)

0
BB@

~vx

~vy

~vz

1
CCA � �REK

0
B@

u

v

w

1
CA� ηv (A2)

in which we introduce the rotation matrix that relates SE and SK
vector components:

�REK �

0
BB@
cψcθ cψsθsϕ − sψcϕ cψsθcϕ� sψsϕ

sψcθ sψsθsϕ� cψcϕ sψsθcϕ − cψsϕ

−sθ cθsϕ cθcϕ

1
CCA (A3)

and, for brevity, we write sα and cα to denote the sine and cosine of
any angle α.We remark that the SE components of the position vector
in Eq. (A1) (xE, yE, and zE) and the SK components of the kite
velocity in Eq. (A2) (u, v, and w) belong to the kite state vector xk.
The noises in the right-hand side of Eqs. (A1) and (A2) are taken from
normal distribution functions with zero means and variances σ2ηr and
σ2ηv , respectively.
After ~r and ~v, the next two variables in the observation vector ~y are

the specific forces and the angular velocity components in the kite
frame. The model for these two vectors, is a postcalibration error
model given by [36]

~f IMU � 1

m

�
Fa1 �

X
i��

�TAi � TBi�
�
�Θf � ηf (A4)

~ω � ω�Θω � ηω (A5)

where ηf ∈ N�0; σ2ηf �, ηω ∈ N�0; σ2ηω�, and the tensions depend on
the state vector of the filter according to Eqs. (12) and (13). Similarly,
for the magnetometer and the modulus of the airspeed, we write

~B � �RT
EKB0 �ΘB � ηB; ηB ∈ N�0; σ2ηB� (A6)

~vaer �
���� �REKv − vw;1

0
B@
cosψw;1

sinψw;1

0

1
CA
����� Θaer � ηvaer ;

ηvaer ∈ N
�
0; σ2ηvaer

	
(A7)

where B0 is the magnetic field in the test area. We remark that the
observed differential pressure ~pd is transformed into true air speed
(TAS) by using

TAS �
���������
2 ~pd

ρ

s
(A8)

with ρ � 1.15 kg∕m2 as the air density at the test area obtained from
the International Standard Atmosphere [37]. The TAS is then used by
the observation model as ~vaer.
The last component of the observation vector is the distance from

OE and the center of mass of the kite, and it arises from the constraint
introduced by the tethers, for which the stiffness is very high. Such a
constraint reads

~D � jrj � ηD; ηD ∈ N
�
0; σ2ηD

	
(A9)

Unlike previous components of the observation vector, the

distance ~D is constant and equal to Ls �
�������������������
L2
l − y2A�

q
, in which we

neglect the small distance between the location of the IMU and OK ,
and YA is the distance between the attachment pointA� and the plane
of symmetry of the kite.
Because the biases of the observed tether forces are considered to

be comparatively small, our observation model for the tether reads

~TA� � TA�1 � ηT
A�

(A10)

~TB� � TB�1 � ηT
B�

(A11)

with ηT
A�

and

ηT
B�

∈ N
�
0; σ2ηT

	

From Eqs. (A1–A7) and (A9), one finds the function h in Eq. (18).
Vector η is

η � � ηr ηv ηf ηω ηB ηvaer ηD

ηTA� ηTA−
ηTB� ηTB− �T (A12)

and the covariance matrix �R has zeros everywhere except at the
diagonal:

diag� �R� �
h
σ2ηr σ2ηr σ2ηr σ2ηv σ2ηv σ2ηv σ2ηf σ2ηf σ2ηf

σ2ηv σ2ηω σ2ηω σ2ηB σ2ηB σ2ηB σ2ηvaer σ2ηD

σ2ηT σ2ηT σ2ηT σ2ηT

i
(A13)

A.2. Process Model

This Appendix describes in detail the form of the flux fproc and the
noise appearing in the right-hand side of Eq. (10). The dynamics of
the kite state vector xk is governed by

d

dt

0
BB@
xE

yE

zE

1
CCA � �REK

0
B@

u

v

w

1
CA

d

dt

0
B@

u

v

w

1
CA �

0
BB@
fx

fy

fz

1
CCA� �RT

EK

0
BB@
0

0

g

1
CCA�

0
BB@

rv − qw

pw − ru

qu − pv

1
CCA (A14)

d

dt

0
BB@
ϕ

θ

ψ

1
CCA �

2
664
p� �q sinϕ� r cosϕ� tan θ

q cosϕ − r sinϕ

�q sinϕ� r cosϕ� sec θ

3
775 (A15)
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d

dt

0
BB@
p

q

r

1
CCA � �I−1OK

2
664

Mx − Ixzqp� rq�Iy − Iz�
My � Ixz�p2 − r2� � pr�Iz − Ix�

Mz � Ixzqr� pq�Ix − Iy�

3
775 (A16)

where g is the gravitational acceleration; �IOK
the tensor of inertia of

the kite about its center of mass; and Ix, Iy, Iz, and Ixz are the nonzero
components in SK of �IOK

. In the right-hand sides of Eqs. (A14) and
(A16), we gather in the specific force

f � fxiK � fyjK � fzkK

and torque

M � MxiK �MyjK �MzkK

as the actions of the aerodynamic and tether forces. These two vectors
depend on the state vector of the filter as follows:

f � 1

m

�
Fa1 �

X
i��



TAi � TBi

��
(A17)

M � Ma1 �
X
i��

�OKA
� × TAi �OKB

� × TBi� (A18)

withTA� andTB� given by Eqs. (12) and (13), andOKA
� andOKB

�
given by Eqs. (16) and (17).
The process models for the sensor biases are

dΘB

dt
� 0 (A19)

dΘf

dt
� −

Θf

τa
�wf wf ∈ N

�
0; σ2wf

	
(A20)

dΘω

dt
� −

Θω

τω
�wω wω ∈ N



0; σ2wω

�
(A21)

dΘaer

dt
� −

Θaer

τaer
� waer waer ∈ N



0; σ2waer

�
(A22)

Therefore, the correlated noise of the IMU (Θf andΘω) is defined
by first-order Gauss–Markov processes in which the variances of the
driving noise σ2wf

and σ2wω
and the time constants τa and τω are tuning

parameters adjusted to overbound the Allan variance plot of
correlated noise [36]. This methodology is convenient for low-cost
sensors like the one used in our experiment. Following the
methodology ofRef. [36],we find τa � τω � 10 s, σwf

� 0.1 m∕s2,
and σwω

� 0.01π∕180 rad∕s.
The last process equations are the ones related with the three

Markov state vectors χ i. Because

χ i � �Fai Mai TA�i TA−i TB�i TB−i Vwi ψwi �

each of these vectors has 12 components that we can denote as χij
with i � 1; : : : ; 3 and j � 1; : : : ; 12. The process equations can
then be written in the compact form

d

dt

0
BB@
χ1j

χ2j

χ3j

1
CCA �

0
BB@
0 1 0

0 0 1

0 0 0

1
CCA
0
BB@
χ1j

χ2j

χ3j

1
CCA�

0
BB@
ξχ1j

ξχ2j

ξχ3j

1
CCA (A23)

with ξχij taken for i � 1, 2, 3 from normal distribution functions with

zero mean and variances σ2ξFA
, σ2ξMA

, σ2ξT , σ
2
ξw
, and σ2ξψ for j � 1, 2, 3,

j � 4, 5, 6 j � 7, 8, 9, 10, j � 11, and j � 12, respectively.

From previous equations, one readily finds the flux fproc, the noise
vector w, and the matrix �G in Eq. (10). For instance, one has

w �
h
wf wω waer ξχ1;1 · · · ξχ1;12 ;

ξχ2;1 · · · ξχ2;12 ; ξχ3;1 · · · ξχ3;12

i
T

(A24)

�G �
"
�015×43
�I43×43

#
58×43

(A25)

with �0 as a matrix with zeros and �I as the identity matrix. The
covariance matrix �Q has zeros everywhere except at the diagonal that
reads

diag� �Q� �
h
σ2wf

σ2wf
σ2wf

σ2wω
σ2wω

σ2wω
σ2waer

σ2ξ1;1 · · · σ2ξ1;12 σ2ξ2;1 · · · σ2ξ2;12 σ2ξ3;1 · · · σ2ξ3;12

i
(A26)

Table A1 summarizes the parameters used in the process and
observation models of our EKF.
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