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Abstract

Federated learning (FL) has emerged as a promis-
ing approach for training machine learning models
using geographically distributed data. This paper
presents a comprehensive comparative study of var-
ious machine learning models in the context of FL.
The aim is to evaluate the efficacy of these models
in different data distribution scenarios and provide
practical insights for practitioners in the field. The
findings highlight the performance and limitations
of linear and non-linear models on MNIST and Ki-
nase datasets.

1 Introduction

Federated learning (FL)[1] has emerged as a novel approach
in machine learning that has garnered considerable attention
in recent years. FL aims to facilitate model training using
data that is geographically distributed, without having to col-
lect all the data in a single centralized location. The strategy
involves allowing nodes or devices to train their own mod-
els with their respective data, and then using an aggregation
algorithm to combine the learned weights from each node to
create a new, enhanced model. This is an iterative process
that consists of multiple rounds of local training and model
weight aggregation, enabling continual improvement of the
model’s performance over time.

FL provides numerous advantages, particularly in situa-
tions where data is scattered across multiple locations[2]. In
the healthcare sector, for instance, centralizing medical data is
challenging due to privacy concerns. The sensitive nature of
medical data necessitates strict privacy regulations and safe-
guards, making it difficult to gather all the data in one cen-
tral location. In such cases, FL enables the development of
a robust and precise model while ensuring data confidential-
ity and privacy. Additionally, FL is beneficial in resource-
intensive data collection scenarios since it allows the utiliza-
tion of existing data sets to create new models. However,
despite the numerous advantages of federated learning, it is
important to acknowledge that there are challenges to over-
come.

One of the primary challenges in federated learning is han-
dling data heterogeneity and ensuring the scalability of the
models. The distribution of data across different devices can
be uneven, leading to variations in data characteristics and
statistical properties. Models trained on a few devices may
become biased towards those devices, resulting in limited
generalizability and inaccurate predictions when applied to
data from other sources[3]. Additionally, the scalability of
federated learning systems poses a significant challenge, as
the number of participating clients and their data can be vast.
Overcoming these challenges is crucial for effectively lever-
aging the potential of federated learning in privacy-preserving
and distributed machine learning applications.

When dealing with federated learning and heterogeneous
data distributions, exploring different ML models becomes
particularly interesting due to the varying ways in which
models handle and capture the complexities of the data. Dif-
ferent ML models possess unique mathematical properties

and assumptions that can impact their performance on hetero-
geneous data. Linear models, for example, assume linearity
and may struggle to capture nonlinear relationships present
in certain data distributions. Nonlinear models, on the other
hand, offer more flexibility and can capture complex patterns
more effectively.

Therefore, the objective of this research project is to inves-
tigate and evaluate the efficacy of various machine learning
models in distinct scenarios within the context of federated
learning. The study contributes to the expanding body of re-
search on federated learning by presenting implementation
examples of the considered scenarios. This research aims to
enhance our understanding of the strengths and limitations of
different models and provide valuable recommendations for
practitioners in the field of federated learning.

2 Background

This section presents the relevant knowledge used to compare
the performance of different machine learning models in both
centralized and federated learning settings. It consists of three
main components: data collection and preprocessing, model
selection, and performance evaluation.

2.1 Data Collection and Preprocessing

In order to explore various scenarios in federated learn-
ing, this study goes beyond independent and identically dis-
tributed (IID) data and incorporates non-IID data distribu-
tions. While the IID scenario assumes that each client pos-
sesses a representative subset of the complete dataset with
similar data distributions, introducing non-IID data distribu-
tions allows for the evaluation of machine learning models in
more challenging scenarios[4].

By considering both IID and non-IID data distributions,
along with different levels of intensity in class separations
between clients, the study aims to provide a comprehensive
assessment of machine learning models in federated learning
scenarios. This approach encompasses a wide range of data
distribution characteristics and challenges, contributing to a
deeper understanding of the models’ robustness and perfor-
mance in real-world settings.

2.2 Model Selection

A diverse set of machine learning models has been care-
fully chosen for this research to encompass both linear and
non-linear approaches. The selected models include the
Multilayer Perceptron (MLP), Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), Logistic Regres-
sion (LogReg), and Support Vector Machine (SVM).

The Multilayer Perceptron (MLP), CNN, and RNN are par-
ticularly well-suited for handling complex patterns and de-
pendencies in data[5]. MLP is a feedforward neural network
that can effectively capture non-linear relationships between
features. CNNs excel at extracting spatial and hierarchical
patterns from image data through the use of convolutional
layers and pooling operations. RNNSs, on the other hand, are
designed to capture sequential dependencies in data, making
them suitable for processing time series or text data.



In contrast, Logistic Regression and SVM provide efficient
solutions for linearly separable problems. Logistic Regres-
sion is a linear model that employs a sigmoid function to esti-
mate probabilities and make binary classifications. SVM, on
the other hand, finds an optimal hyperplane that maximally
separates classes in the feature space.

These selected models have a proven track record and have
been widely used in various machine learning applications.
They are also relevant to the field of federated learning, where
different data distributions and challenges arise due to the dis-
tributed nature of the data.

By including both linear and non-linear models, this re-
search aims to explore the strengths and weaknesses of each
model in the context of federated learning. The evaluation
and comparison of these models will provide valuable in-
sights into their performance under different scenarios, facil-
itating the identification of suitable models for specific data
distribution settings in federated learning.

2.3 Performance Evaluation

To evaluate the performance of the machine learning models,
experiments will be conducted in both centralized and feder-
ated learning settings. In the centralized setting, the models
will be trained on the complete dataset, while in the federated
learning setting, the models will be trained on distributed data
across multiple clients, with each client holding a fraction of
the dataset. To evaluate the accuracy of the models, the pri-
mary metric of interest will be the accuracy over communica-
tion rounds.

3 Methodology and Experimental Setup

This section provides a detailed account of the approach that
was employed to conduct the study. It encompasses various
implementation aspects, including the techniques, method-
ologies, and tools utilized in the project. Additionally, it cov-
ers the selection and preparation of datasets, along with any
preprocessing or cleaning steps performed on the data.

3.1 Frameworks

For the implementation of the linear models, the scikit-
learn[6] library was utilized. Scikit-learn provides various
linear models such as Logistic Regression and Support Vec-
tor Machine, along with functionalities for data preprocess-
ing, feature selection, and evaluation metrics.

To handle the implementation of non-linear models, in-
cluding Multilayer Perceptron (MLP), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN), the
TensorFlow framework was leveraged. TensorFlow[7] is an
open-source library for deep learning that supports the build-
ing, training, and evaluation of neural network models.

Additionally, the Flower framework[8] was employed to
enable communication between the server and client nodes
in the federated learning setting. Flower simplifies the de-
velopment and coordination of federated learning systems,
providing high-level abstractions and tools for client-server
communication, model aggregation, and coordination among
participating clients.

3.2 Datasets

The selection of appropriate datasets is essential in evaluating
the performance of machine learning models. This subsection
provides a description of the datasets used in the experiments
and highlights their key characteristics.

MNIST Dataset

The MNIST dataset[9], widely used for image classification
tasks, serves as the first dataset in our study. It consists of a
large collection of handwritten digit images (0-9) and corre-
sponding labels. Each image in the dataset is grayscale and
has a dimension of 28x28 pixels. The MNIST dataset pro-
vides a benchmark for evaluating the models’ performance in
image recognition and classification tasks.

Kinase Dataset

The Kinase dataset used in this study is based on “molecu-
lar fingerprints” and focuses on capturing the structural el-
ements of molecules numerically[10]. The data points are
small molecules that are described by 8191 integer features,
and the goal is to predict whether a molecule inhibits a spe-
cific type of protein known as FLT3, a kinase. The label asso-
ciated with each molecule is binary, with values of either O or
1. In the case of the Kinase dataset, its complexity provides a
more challenging task compared to the MNIST dataset. This
increased difficulty level allows us to benchmark and com-
pare the performance of different machine learning models in
handling complex data relationships and addressing intricate
prediction problems.

3.3 Federated Setting

This subsection presents the experimental configuration and
setup for the federated learning setting. It outlines the ex-
perimental setup, the data distribution among clients and the
specific ML model infrastructures.

Experimental Setup

For the MNIST dataset, the experiments involved 10 clients,
while for the kinase dataset, which was initially collected as
three separate datasets, three clients were used. In each com-
munication round, every client performs one local epoch of
training. The performance of the federated experiments will
be compared against a central implementation for evaluation
and analysis.

Data Distribution

In the federated learning setting, different data distribution
scenarios were considered to evaluate the robustness and
generalization capabilities of the machine learning models.
These scenarios encompass both IID data, as well as non-1ID
data with varying levels of label distribution among clients.

In the IID scenario, it is assumed that each client has a rep-
resentative subset of the complete dataset, and the data distri-
butions among all clients are similar.

To ensure the IID attribute while distributing the data sam-
ples across clients, a random assignment is performed. This
assignment ensures that there is no overlap between the data
samples assigned to each client, preserving the IID character-
istic of the data. Figure 1 illustrates an example of this data
distribution.



Label Distributions by Clients 11D

700
Client 0

Client 1 6 5 6 629 5 600

Client 2
500

Client 3

Client 4 400

Clients

Client 5
- 300

Client 6
-200
Client 7

client 5 -JY 5 9 6 5 9 | 100

Client 9

Figure 1:
clients.

Example of MNIST IID label data distribution for all

To assess the models’ performance in more challenging
and realistic scenarios, non-IID data distributions were intro-
duced. These distributions include imbalanced distributions
where certain clients have a significantly higher proportion of
samples from specific classes.
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Figure 2: Example of MNIST non-IID softer skew label data distri-
bution for all clients.

For the MNIST dataset non-I1ID cases, an imbalanced class
distribution scenario is introduced. This deliberate skewing
of the data distribution creates class imbalances across the
clients. The first scenario can be seen in Figure 2. This case
will be referred to as the non-IID case throughout the paper.
The harsher scenario, that will be further referred to as ag-
gressive non-IID, can be seen in Figure 3. The purpose of
these scenarios is to assess the ability of federated learning
models to handle the challenges posed by class imbalances
commonly encountered in real-world datasets.

Models

For the MNIST dataset, LogReg makes use of the
LogisticRegression class from the scikit-learn library,
applying the 12 penalty. On the other hand, for the Ki-
nases dataset, the logistic regression model utilizes the
SGDClassifier class with a learning rate of 0.0001 and
”log_loss” as the chosen loss function. The SVM implemen-
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Figure 3: Example of MNIST non-1ID harsher skewed label data
distribution for all clients.

Dataset: MNIST

Multi-Layer Perceptron (MLP)
Learning rate: 0.0001

Input: (28, 28)

Fully Connected: 784 x 128 (ReLU)

Dataset: Kinases

Multi-Layer Perceptron (MLP)
Learning rate: 0.0001

Input: (8192,)

Fully Connected: 8192 x 64 (ReLU)

Fully Connected: 128 x 256 (ReLU) Dropout: 0.7
Fully Connected: 256 x 10 (Softmax) Fully Connected: 64 x 32 (ReLU)
Dropout: 0.7

Fully Connected: 32 x 2 (Softmax)
Convolutional Neural Network (CNN)
Learning rate: 0.0001

Input: (8192,)

Conv1D: 32 filters, kernel size (3, 3)
MaxPooling1D: pool size 2
Conv1D: 64 filters, kernel size (3, 3)
MaxPooling1D: pool size 2

Fully Connected: 8192 x 64 (ReLU)
Dropout: 0.7

Fully Connected: 64 x 32 (ReLU)
Dropout: 0.7

Fully Connected: 32 x 2 (Softmax)
Recurrent Neural Network (RNN)
Learning rate: 0.00001

Input: (8192,)

SimpleRNN: 8192 x 128

Fully Connected: 128 x 2 (Sigmoid)

Convolutional Neural Network (CNN)
Learning rate: 0.0001

Input: (28,28)

Conv2D: 32 filters, kernel size (3, 3)
MaxPooling2D: pool size (2,2)
Conv2D: 64 filters, kernel size (3, 3)
Fully Connected: 784 x 128 (ReLU)
Fully Connected: 128 x 10 (Softmax)

Recurrent Neural Network (RNN)
Learning rate: 0.00001

Input: (28, 28)

SimpleRNN: 784 x 128

Fully Connected: 128 x 10 (Softmax)

Table 1: Architecture of Models

tation also relies on the SGDClassifier class, with the loss
parameter set as ’hinge” and a learning rate of 0.00001 for
both datasets. For details about non-linear models, see Ta-
ble 1.

4 Results

4.1 Logistic Regression

MNIST
The data obtained from the experiments is shown in Fig-
ure 4. Comparing the central implementation and the IID
case, revealed a difference in accuracy between the two ap-
proaches. The centralized implementation achieved higher
accuracy compared to the IID scenario, with a small margin
of difference observed towards the later rounds of commu-
nication. This indicates that the decentralization introduced
in the IID setting has a slight impact on the overall accuracy
achieved, albeit not as large as with the non-IID cases.

The non-IID scenarios demonstrate a noticeable perfor-
mance impact compared to the centralized approach, as can
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Figure 4: Accuracy over communication rounds for Logistic Regres-
sion on MNIST data.

be seen in Figure 4. It required more than four times the num-
ber of communication rounds needed for the centralized case
to converge. Additionally, there is an accuracy difference of
approximately 0.02 between the non-IID and central scenar-
ios, indicating that the non-IID data distribution has indeed
affected the model’s performance.

Although the non-IID models show a longer convergence
time and a noticeable difference in accuracy compared to the
centralized scenario, they still exhibit good final accuracy
overall. It is important to note that there is a distinction be-
tween the non-IID and aggressive non-IID cases, indicating
that the level of label skewness affects the model’s perfor-
mance. While the logistic regression model can effectively
adapt and learn from the skewed data distribution, it is evi-
dent that there is still a difference between the performance
of the central and federated approaches.

Kinase

Both the centralized and federated cases achieved results can
be seen in Figure 5. The centralized approach exhibited
slightly higher accuracy compared to the federated scenario,
although the difference between the two is minimal. This sug-
gests that the model is capable of handling the federated sce-
nario reasonably well.

An interesting observation from the accuracy graph is that
the accuracy values fluctuate over the communication rounds,
creating a ”jumpy” pattern. Despite these fluctuations, the
general trend shows an increase in accuracy over time. This
behavior could be due to the complexity of the Kinase dataset.

4.2 Support Vector Machine

MNIST

In the non-IID cases, Figure 6, the accuracy values exhibit
fluctuations over the communication rounds, with no notice-
able improvement in the average accuracy over time. On the
other hand, the IID case, although starting with a lower ac-
curacy compared to the non-IID cases, shows a converging
trend towards higher accuracy as the communication rounds
progress. Eventually, the IID case surpasses both non-IID
cases in terms of accuracy.

LogReg on KINASES
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Figure 5: Accuracy over communication rounds for Logistic Regres-
sion on Kinases data.

Among the non-IID cases, it is worth noting that the
more skewed distribution demonstrates a noticeable differ-
ence in performance compared to the softer skew. The softer
skew scenario performs relatively better, implying that a less
skewed data distribution among clients contributes to im-
proved SVM performance.

SVM on MNIST
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Figure 6: Accuracy over communication rounds for SVM on
MNIST data.

Kinase

The SVM model achieves performance that is similar to lo-
gistic regression on the Kinase dataset, Figure 7. This obser-
vation is expected, since both SVM and logistic regression
are linear models that aim to separate data points based on a
linear decision boundary.

The similarity in performance between the central and fed-
erated scenarios using SVM and logistic regression on the
Kinase dataset suggests that the linear relationship captured
by these models is sufficient for making accurate predictions
in this context. However, it should be noted that there is still
a difference between the accuracy achieved in the central and
federated cases, indicating the impact of the decentralization
process on the overall performance. Nonetheless, both SVM
and logistic regression models demonstrate their effectiveness
in handling the complexity of the dataset.
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Figure 7: Accuracy over communication rounds for SVM on Ki-
nases data.

43 MLP

MNIST
The data obtained, seen in Figure 8, demonstrates a notable
difference is the higher accuracy achieved by the MLP model
compared to the linear models. This higher accuracy can be
attributed to the MLP model’s ability to learn and model com-
plex non-linear relationships within the dataset.
Furthermore, the MLP model achieves this higher accu-
racy with fewer communication rounds compared to the lin-
ear models. This indicates the MLP model’s efficiency in
leveraging its deeper architecture and multiple layers of neu-
rons to capture intricate patterns and improve classification
accuracy more rapidly. Additionally, the MLP model also ex-
hibits the ability to generalize better in the non-IID case.

MLP on MNIST
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Figure 8: Accuracy over communication rounds for MLP on MNIST
data.

Kinase

The MLP model converges in a similar manner to the logistic
regression and SVM models on the Kinase dataset, Figure 9,
however, there are a few notable differences. Firstly, the MLP
model achieves convergence in fewer communication rounds
compared to the other models. Additionally, the accuracy of
the MLP model exhibits fewer fluctuations compared to the

other models during the communication rounds. This sug-
gests that the MLP model is able to achieve more stable and
consistent predictions throughout the training process.
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Figure 9: Accuracy over communication rounds for MLP on Kinases
data.

44 CNN

MNIST

The results obtained from the CNN models, Figure 10, on
the MNIST dataset exhibit similar patterns to those observed
with the MLP model. However, there is one notable differ-
ence: the CNN models achieve higher accuracy across all
data distribution scenarios compared to the MLP model. This
suggests that the CNN models benefit from the spatial rela-
tionships present in the image data, enabling them to capture
more intricate patterns and generalize better.

CNN on MNIST
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Figure 10: Accuracy over communication rounds for CNN on
MNIST data.

Kinase

Performance of the CNN model on the Kinase dataset, Fig-
ure 11, exhibits similar behavior to the MLP model. How-
ever, there are some notable differences. The fluctuations in
accuracy observed in the CNN model have a larger amplitude
compared to the MLP model, indicating a higher degree of
variability in performance over the communication rounds.



Like the previous models, the CNN model shows that the
centralized case consistently outperforms the federated sce-
nario in terms of accuracy. This suggests that the centraliza-
tion of data and model parameters contributes to better per-
formance in this particular dataset.

CNN on KINASES
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Figure 11: Accuracy over communication rounds for CNN on Ki-
nases data.

4.5 RNN

MNIST

The RNN models on the MNIST dataset exhibit similarities
with the MLP and CNN models in terms of characteristics
and final achieved accuracy, Figure 12. Both models show-
case the ability to learn and make accurate predictions on the
handwritten digit images. However, there are notable differ-
ences observed between the two models.

One significant difference is the convergence speed. The
other non-linear models tend to converge faster compared to
the RNN models. This discrepancy can be attributed to the
inherent architecture differences between them. While MLP
and CNN models process images as vectors, RNN models
handle sequential data, treating each row of pixels as a time
step. The sequential nature of the RNN models introduces
additional complexity, resulting in a slower convergence rate.

Another difference lies in the performance of the non-IID
data distribution scenario. The non-IID case in the RNN mod-
els exhibits a larger performance gap compared to the IID
case, whereas the MLP models showed a smaller difference.

Kinase

The data of the RNN models on the Kinase dataset reveal
some distinct characteristics compared to other models, Fig-
ure 13. The RNN model achieved the lowest accuracy among
all the models evaluated on this dataset. Furthermore, the
accuracy exhibited noticeable fluctuations over the commu-
nication rounds, and the model did not seem to converge to a
stable performance.

The challenges encountered by the RNN model on the Ki-
nase dataset can be attributed to the dataset’s unique charac-
teristics. The Kinase dataset comprises a larger number of
features compared to the MNIST dataset. The presence of a
high-dimensional feature space can pose challenges for RNN
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Figure 12: Accuracy over communication rounds for RNN on
MNIST data.

models, particularly in terms of the exploding or vanishing
gradient problem.

The exploding or vanishing gradient problem arises when
gradients during the backpropagation process either become
too large or too small, hindering the model’s ability to learn
effectively. This problem can be exacerbated in datasets with
a large number of features, potentially leading to unstable
training and difficulty in finding an optimal solution.

It is interesting to note that despite both the central and fed-
erated cases possibly being affected by the gradient problem,
there still exists a difference between their performances. The
RNN model exhibits lower accuracy compared to the central-
ized case. This discrepancy suggests that factors beyond the
gradient problem may contribute to the observed differences
in performance between the two scenarios.

RNN on KINASES
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Figure 13: Accuracy over communication rounds for RNN on Ki-
nases data.

5 Responsible Research

Efforts have been made to ensure the reproducibility of the
methods employed in this study. The code implementations
of various machine learning models, such as MLP, CNN,
RNN, Logistic Regression, and Support Vector Machine,



have been made publicly available'. These implementations,
along with the provided datasets, allow others to access and
replicate the experiments conducted in this study. It is crucial
to acknowledge that reproducibility is an ongoing process. As
new techniques and frameworks emerge, modifications may
be necessary to replicate the results.

Additionally, detailed descriptions of the experimental
setup, including the number of clients, data distributions, and
training configurations, have been provided to facilitate the
replication of the research. These details aim to encourage
future researchers to validate the findings, explore alternative
approaches, and contribute to the advancement of federated
learning research.

6 Discussions and Conclusions

This study compared the performance of different machine
learning models in the context of federated learning using two
datasets: MNIST for image classification and Kinase for pre-
dicting molecular inhibition of FLT3 kinase. The findings
provide valuable insights into the strengths and limitations of
these models in the federated learning setting.

Linear models, such as Logistic Regression and Support
Vector Machines, performed well on both datasets, achiev-
ing high accuracy and steady convergence, particularly in the
case of IID data. However, they faced challenges in handling
non-IID data distributions and class imbalances, resulting in
decreased performance and slower convergence in terms of
communication rounds.

Non-linear models, including Multi-Layer Perceptron,
Convolutional Neural Networks, and Recurrent Neural Net-
works, demonstrated superior performance on the MNIST
dataset compared to linear models. These models effec-
tively captured complex patterns in the image data, leading
to higher accuracy. Additionally, MLP and CNN showed
promise in handling non-IID data distributions, achieving
comparable or better accuracy than the IID scenario. How-
ever, RNN struggled with the Kinase dataset, highlighting the
challenges of high-dimensional molecular data and sequential
modeling.

One limitation of this study is the restricted time allocated,
which resulted in a limited exploration of machine learn-
ing models and datasets within the federated learning set-
ting. A more extensive incorporation of additional models
and datasets would have provided a more comprehensive un-
derstanding of their performance. Furthermore, due to com-
putational resource constraints, the study was unable to con-
duct experiments on separate machines. This limitation hin-
dered the exploration of various scenarios with different num-
bers of clients, varying communication rounds, and diverse
computational power across clients.

An additional important consideration is that the observed
performance of the non-IID cases for SVM model on the
MNIST dataset, Figure 6, particularly the fluctuation of ac-
curacy, may be influenced by the specific implementation de-
tails of the SGDClassifier from scikit-learn that was used
for SVM implementation in this study. This observation is
supported by the fact that when the same model was used

"https://github.com/emilssipols11/FedML

with a logistic regression loss function, similar fluctuating re-
sults were obtained for the non-IID cases on MNIST, while
the LogisticRegression model exhibited different behav-
ior, as seen in Figure 4. It is worth noting that the SVM imple-
mentation in scikit-learn, which could potentially handle data
skew similarly to the LogisticRegression model, does not
support manual weight settings. As a result, it is not suitable
for federated learning scenarios. These findings highlight the
importance of considering the underlying implementation de-
tails and model choices when interpreting the results.

Therefore, an important avenue for future research is to
conduct experiments on separate machines, as originally in-
tended for federated learning, while also expanding the cur-
rent implementation with new models and datasets. Further-
more, exploring new implementations and keeping the code-
base up to date with the latest advancements in federated
learning frameworks and libraries is crucial. This ensures
compatibility with evolving standards and allows for the in-
tegration of new techniques and algorithms as they emerge.
Regular updates and maintenance of the codebase guaran-
tee reproducibility and facilitate the adoption of the research
findings by the community.
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