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Abstract

Introduction Early detection of Alzheimer’s Disease (AD), i.e. before symptom onset, would

provide the opportunity for development and testing of interventions at earlier stages, when the

disease process may still be altered or interrupted. Computer algorithms combining machine learn-

ing with non-invasive imaging and other biomarkers for AD have been developed in an effort to

improve early detection methods. However, so far, none of the individual algorithms perform at a

level that qualifies for clinical use. In this study, we investigated whether combining several existing

AD prediction algorithms improves performance and generalisability.

Methods State-of-the-art AD progression prediction algorithms were collected from the

TADPOLE-SHARE project. Algorithms were trained on data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) study and made forecasts of the clinical diagnosis (CN, MCI, or AD).

These algorithms were combined using i) simple, unlearned fuser methods and ii) learned fuser

methods. In total, seven experiments were conducted, exploring different combination strategies

with increasing complexity of fusers. Finally, we implemented and added our own individual algo-

rithm, a residual neural network (ResNet). All individual algorithms and ensembles were evaluated

with the multiclass area under the curve (mAUC) and the balanced classification accuracy (BCA)

performance metrics. Statistical significance was evaluated with the McNemar test.

Results TADPOLE-SHARE resulted in the collection of eight algorithms, from which five

were reused for combination. Overall, combining algorithms slightly improves performance (i.e. in-

creased BCA and mAUC), although improvements were not statistically significant (McNemar test).

Both BCA and mAUC showed a trend of improved performance with increasing fuser complexity i.e.

data learned fusers and re-entering original data features. DoubleResNet was the best performing

ensemble (BCA = 0.809 [±0.026], mAUC = 0.902 [±0.020]) and performed slightly better than the

best scoring fused algorithm EMCEB (BCA = 0.761 [±0.029]; mAUC = 0.866 [±0.020]).

Conclusion These preliminary results suggest that combining pre-existing AD progression

prediction algorithms might provide the increase in performance and generalisability needed to

enable clinical translation. To do so, future work should be focused on increasing the interoperability

of currently existing and newly developed algorithms.

Keywords— Alzheimer’s Disease (AD), progression, computer algorithm, ensemble learning,

Alzheimer’s Disease Neuroimaging Initiative (ADNI), residual network (ResNet)
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1 Introduction

1.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is the most common form of dementia, accounting for 50-70% of the

dementia cases (Winblad et al., 2016). The most important risk factor for this disease is aging. As

a result of the aging world population, the prevalence of AD is increasing dramatically. In 2015 the

number of AD cases worldwide was 46 million and, the expectation is that this number will rise

to 131.5 million by 2050 (Prince M, Wimo A, Guerchet M, 2015). The symptoms of AD include,

amongst others, memory loss, anxiety, and depression. In AD, proteins tau and amyloid-β (Aβ)

accumulate in and around the neurons. These proteins play a physiological role in maintaining the

cell’s morphology and in neuronal growth and repair respectively (Avila et al., 2004). However, in

AD, Aβ proteins form plaques outside neurons, interfering with neuron-to-neuron communication.

Furthermore, abnormally folded tau proteins form tangles inside neurons, blocking the transport

of nutrients and other essential molecules inside neurons (Gaugler et al., 2019). As a consequence,

these proteins cause neurodegeneration, leading to the deterioration of cognitive structures and

functions associated with AD.

AD is a progressive disease. Its progression comprises three stages during which progressive

brain changes can be observed. The three stages range from no or minimal cognitive or behavioral

symptoms to severe memory loss and functional impairment and eventually death (Gaugler et al.,

2019). The first stage ’pre-clinical AD’, is characterised by changes in the brain that are considered

biomarkers for AD, e.g., increases in Aβ levels as measured using positron emission tomography

(PET) and brain degeneration as demonstrated in magnetic resonance imaging (MRI). In this stage,

no or minimal cognitive and behavioural symptoms are notices by the individual. In the second stage

(Mild Cognitive Impairment; MCI) individuals can still carry out everyday activities, but noticeable

memory loss and cognitive impairment are present. In the final stage (AD) noticeable memory loss

and cognitive and behavioral problems impair the ability to carry out everyday activities. Two

things should be noted concerning this continuous process. First, not all individuals in the pre-

clinical stage convert to MCI, and not all individuals in the MCI stage convert to AD (Ward et al.,

2013). Second, the duration of separate stages (and in effect the entire course of the disease) varies

between individuals and is dependent on age, genetics, gender, and other factors (Vermunt et al.,

2019).

The heterogeneity with which Alzheimer’s Disease presents complicates the diagnostic process.

On average, dementia is diagnosed 2.8 years after symptom onset in late-onset dementia and 4.4

years after symptom onset in young-onset dementia (development of dementia before age 65) after

symptom onset (Van Vliet et al., 2013). There is a large window of opportunity for advancing the

diagnostic process, considering that measurable changes of AD start to develop around 20 years

before symptom onset (Gordon et al., 2018). Currently, AD is typically diagnosed by a general

practitioner or neurologist based on a combination of physical tests, neurological tests, cognitive

tests, brain imaging, information on problems in the patient’s daily life, their medical history,
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and other assessments. Criteria for diagnosis are i) impairment of two cognitive domains and ii)

difficulties with everyday activities.

Early accurate diagnosis is widely considered critical for the development of new treatments

for AD. Despite the decades of extensive research investigating the disease, no curative treatment

is available. Clinical trials in which potential medicines are tested are hampered by the lack of

accurate early diagnosis (Mehta et al., 2017). Accurate early diagnosis would offer an opportunity

to test interventions that may alter or interrupt the progression of the disease.

1.2 Computer algorithms for predicting progression in AD

Computer algorithms can be used as a decision support system for the classification of current

and prediction of future clinical status. In this thesis, we focus on the latter, as improving the

predictive power of algorithms for AD disease progression may support earlier diagnosis of AD.

Computer algorithms utilize machine learning (ML) and biomarkers measurements, enabling the

discovery of patterns in the progression of AD from biomarker measurements (Frisoni et al., 2010;

Jack et al., 2018). The combination of computer algorithms and biomarkers potentially leads to

more accurate and robust diagnoses and predictions in comparison to the earlier described clinical

diagnosis protocol.

Numerous promising computer algorithms predicting progression in AD are being developed

(Ansart et al., 2021). These algorithms use various prediction methods based on support vector

machines (SVM), neural networks (NN), logistic regression, random forests (RF), and other meth-

ods. Different features may be used as input. The most frequently used features are T1-weighted

MRI, cognition, and socio-demographic features. Less frequently used are fluorodeoxyglucose F18

(FDG) PET, APOE, and CSF AD biomarkers.

In general, performance comparisons for different published algorithms in the medical field is

challenging because models are often developed and tested using different data sets and/or different

metrics. Therefore, despite the reports of many seemingly well-performing, optimised algorithms

for AD progression prediction, none are currently used in clinical practice.

1.3 Open science: challenges

Grand challenges (grand-challenge.org) are organised aiming at fairly comparing algorithms with

the same task by testing them on the same data and evaluating them with the same performance

metrics. Challenges can be interpreted as reviews that capture the state-of-the-art in a particular

field. They have proven to be successful in the medical field (Heimann et al., 2009; van Ginneken

et al., 2010; Bron et al., 2015; Setio et al., 2017; Marinescu et al., 2018; Bándi et al., 2019; Mari-

nescu et al., 2020). The first grand challenge, SILVER07 on liver segmentation, compared and

evaluated 16 algorithms on the same data sets (Heimann et al., 2009). They found that algorithms

reporting the highest performance in literature did not perform the best in the grand challenge

comparison. A challenge concerning AD is the Alzheimer’s Disease Prediction of Longitudinal Evo-

lution (TADPOLE) Challenge (Marinescu et al., 2018). This challenge aimed to make a fair and
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systematic comparison of 62 models – developed by 34 international research teams – for the pre-

diction of progression in AD. To that end, the challenge used data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (Weiner et al., 2017; Veitch et al., 2019). The challenge showed

that not one single method is best for predicting all biomarkers: clinical status, cognitive decline,

and neurodegeneration. In fact, it was found that a different algorithm performed best for each

biomarker.

Unfortunately, many algorithms are not directly available for further research. For some al-

gorithms, there is code publically downloadable (e.g. from GitHub), but it is often not trivial to

achieve optimal performance on new data due to incomplete information about, or lack of robustness

of used models (Hutson, 2018). In 2016, the FAIR guiding principles were established (Wilkinson

et al., 2016). The referred paper describes four fundamental principles: Findability, Accessibility,

Interoperability, and Reusability. These principles put specific emphasis on enhancing the ability

of machines to automatically find and use data, in addition to supporting its reuse by individuals.

This paper led to extensive research according to the described principles and boosted open science

in academia.

Particularly, the TADPOLE-SHARE project (tadpole-share.github.io), aimed to build a plat-

form for sharing prediction algorithms for the progression in Alzheimer’s Disease with the scientific

community. It relied on the TADPOLE challenge and targeted to collect optimised algorithms

predicting the progression of AD to allow further research as well as evaluation of these algorithms.

Participants from the TADPOLE challenge were asked to submit their algorithms to the platform

according to the pipeline in figure 2. This setup was selected to enhance the likelihood that sub-

mitted algorithms would be replicable, i.e., would yield the same results on reuse, and could thus

be further refined, e.g. on different test sets. What is more, (grand-challenge.org) recently added

an option to upload algorithms to the website as a Docker container. A docker container is a stan-

dalone, executable package of software that includes everything needed to run an application: code,

runtime, system tools, system libraries, and settings. So far, 21 algorithms are uploaded as such to

the (grand-challenge.org). New initiatives, such as TADPOLE-SHARE and the docker containers

on (grand-challenge.org), open up a new world of possibilities.

With the advent of more publicly available databases and extensions of existing databases (Aal-

ten et al., 2014; Ikram et al., 2017) the performance of existing algorithms can be better evaluated,

e.g. generalisability can be validated by testing algorithms on external data (Bron et al., 2020).

Furthermore, challenges allow for easy and simple combining algorithms that have participated.

Indeed, some challenge authors showed that combining algorithms can result in better performance

than any of the individual algorithms (Heimann et al., 2009; van Ginneken et al., 2010; Marinescu

et al., 2020).

1.4 Ensemble learning

Ensemble learning is a technique that fuses multiple individual models that together decide on the

final output. An ensemble can be constructed in two possible canonical topologies: in series and
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parallel as shown in figure 1. The parallel topology (top part of figure 1) is described most frequently

in the literature (Woźniak et al., 2014). In this architecture, each algorithm is independently trained

and the outputs of the individual algorithms are combined by a fuser system that makes the final

decision.

In the in-series architecture (bottom part of figure 1), the algorithms are ordered or ranked and

are applied in sequence. The data points that the first classifier in the sequence predicts falsely are

passed on to the next classifier with, for instance, an increased weight compared to the correctly

classified data points. As such, the algorithm is tweaked in favour of the data points that the

classifiers misclassified earlier in the sequence of classifiers. AdaBoost is an example of an algorithm

that has an architecture like the serial topology (Freund and Schapire, 1997). Observe that in this

combination architecture, algorithms are trained one by one in a dependent manner.

Figure 1: Ensemble of algorithms applied in parallel (top part of the figure) and in series (bottom
part of the figure) aiming to achieve enhanced performance.

Previous research has pointed out that an ensemble of weak classifiers, i.e. classifiers that are

slightly better than random guessing (i.e. accuracy just above 0.5) (Schapire, 1990), results in

improved performance compared to individual algorithms (Kittler et al., 1998; Dietterich, 2000;

Kuncheva, 2014). Usually, the weak classifiers are generated out of one base classifier with e.g

bagging, also called bootstrap aggregating, which is a technique that generates multiple classifiers

by training one single classifier multiple times on random subsets of the original data set (Breiman,

1996), or using slightly different parameter settings (Hinrichs et al., 2009; Liu et al., 2012; Cheng

et al., 2017; Dai et al., 2012). Although not often reported, it has been demonstrated that combining

existing, independent, pre-optimised (strong) algorithms also improves performance over individual

algorithms (Marinescu et al., 2020; van Ginneken et al., 2010; Setio et al., 2017; Codella et al.,

2018; Harangi, 2018). These studies combine the individual algorithms in a relatively simple way,

e.g. taking the mean or the median of the individual algorithms’ outputs. However, algorithms

can also be combined by a more complex system that uses the individual algorithms’ outputs to

train a model and use that model to make a final decision. For example, a meta-algorithm like an

artificial neural network (ANN) can combine the individual algorithms by taking into account what

it learned from the individual algorithms. Ksieniewicz et al. use a trained classifier to combine

weak algorithms with a single-layer perceptron, the most simple form of a neural network (NN)

(Ksieniewicz et al., 2018). They report a significant increase in accuracy compared to individual
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models. A NN is an algorithm that uses a learning technique inspired by the human brain and

therewith can model complex patterns and prediction problems. A neural network consists of an

input layer, several hidden layers, and an output layer. The layers consist of so-called neurons. A

NN can, as any other machine learning model, classify, for example, a patients’ diagnosis which

can either be CN, MCI or AD. The input data can for example be information on volumes of the

ventricles and the age of the patient. The inputs represent a certain value and are entered into the

nodes of the input layer. Regular neural networks are characterized by fully connected layers in

which each node is connected to all the nodes in the next layer. The determination of the values

of the nodes in the next layer, which is called activations, is done as follows. The activation of a

node in the next layer is calculated by taking a weighted sum of all the activations in the previous

layer, adding a bias term that indicates how much a certain neuron should be activated to have a

positive value, and by passing this calculation through an activation function. The weights, which

are usually initialized at random, give an indication of how much weight the particular neuron

attributes to an input.

In summary, in the training phase, a NN takes examples as input, makes a prediction, learns

from its mistakes by backpropagation, and updates its weights to improve itself. A neural network

has as its goal, like any other model, to generate a certain output that matches the true label as

closely as possible. It reaches this goal by finding the set of weights and hyperparameters that are

optimal, decided by the loss function. The loss function represents the performance of the model.

Ideally, the loss equals 0, reflecting that the model predicts all examples perfectly.

To the best of my knowledge, there is only one study that uses trained fusers to combine existing,

strong, independent algorithms. In this study, different computer-aided detection (CAD) systems

that participated in grand challenges, are combined in several ways. Amongst others, outputs are

combined using a linear discriminant classifier (LDC), a quadratic discriminant classifier (QDC),

and a support vector machine (SVM). The reason why there is only one study combining algorithms

with trained fusers is that it is a complex problem. First of all, algorithms need to be tested on the

same data set to be able to fairly compare their performance and to use their predictions on this

data for combination. Furthermore, an ensemble with a trained fuser involves two training and two

prediction steps at the levels of individual algorithms and the fuser. Consequently, choices have to

be made regarding how the data is used.

The TADPOLE-SHARE project enables combining existing strong algorithms with a trained

fuser. Since research has shown that improved performance can be achieved by combining weak

classifiers, we hypothesize that this is also true for strong algorithms.

1.5 Problem definition

Despite extensive research on AD and its progression, a curative medicine has not yet been found.

It is widely believed that noticeable brain damage can be prevented if disease-modifying treatments

are administered at an early stage. Computer algorithms have shown good performance predicting

the progression of AD, by forecasting future clinical diagnosis Marinescu et al. (2020). However,
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these algorithms are developed and tested using specific data sets and evaluation parameters, and

it is not well known how they would perform in clinical practice. Grand challenges provide a

fair and objective comparison of individual algorithms and provide insight into the state-of-the-art

performance in a particular field. Moreover, grand challenges offer the opportunity to combine

individual models in a relatively easy way, as the models are already evaluated on the same data.

Although models show relatively high performance on particular data, their generalisability is often

not assessed as they are generally not tested on external data. As such, most of the methods do

not have reproducible results.

1.6 This thesis

For this thesis, a validation study will be performed of combinations of individual strong algorithms

to improve progression prediction in AD.

Aim 1. We will collect existing, optimised algorithms predicting the progression of AD. To

that end, we will introduce TADPOLE-SHARE, an initiative that will provide an open-source

platform for sharing algorithms for the progression prediction for AD. This project will build upon

the TADPOLE challenge, in which 64 algorithms participated.

Aim 2. We will investigate combinations of individual strong optimised algorithms for the

prediction of progression in AD. Thus far, existing optimised algorithms for progression prediction

for AD have not been combined in a more advanced way than by using a mean or median fuser

methods. To facilitate an optimal combination of these strong algorithms, we propose a framework

to combine them. Seven different ensembles will be explored: the mean, the median, and several

different NNs.

Aim 3. Lastly, we will compare the performance of ensemble methods and individual methods.

Specifically, we will compare 1) individual algorithms and ensembles in general, and 2) unlearned

(mean and median) and learned ensembles (NNs).
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2 Materials and Methods

2.1 Data

The data used in this study originates from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(adni.loni.usc.edu). ADNI is a longitudinal multicenter study designed to develop clinical, imaging,

genetic, and biochemical biomarkers for the early detection and tracking of AD. The main goal of this

study is to follow the evolution of AD with the use of biomarkers, together with clinical measures, to

assess the brain’s structure and function throughout the different disease states. The disease states

that were assessed in this thesis are cognitive normal (CN), mild cognitive impairment (MCI), and

Alzheimer’s Disease (AD). The participants included in the ADNI study are between the ages of 55

and 90 and were recruited at 57 sites in the United States and Canada. Each participant underwent

initial tests and baseline measurements. Subsequently, these tests were repeated at intervals of 3

to 12 months. The first ADNI study started in 2004 (ADNI1) and the last ADNI study is still

ongoing (ADNI3). The data includes features such as (1) CSF markers of amyloid-beta and tau

deposition, (2) various imaging modalities such as magnetic resonance imaging (MRI), positron

emission tomography (PET) using several tracers: FDG (hypometabolism), AV45 assessment such

as ADAS-COG-13 acquired in the presence of a clinical expert; (4) genetic information such as E4

(APOE4) status extracted from DNA samples; and (5) general demographic information such as

age, gender and education level.

In this project, the subsets selected by the organisers of the TADPOLE challenge were used,

see Marinescu et al. (2018). These standard ADNI-derived data sets (available via the Laboratory

Of NeuroImaging data archive at adni.loni.usc.edu) were pre-processed and contain all participants

ever included in any ADNI study. Among these data D1 D2 is a longitudinal data set containing

multiple time points of data per subject. Furthermore, data set D4 contains data from participants

in data set D1 D2 that returned for new measurements after 1 January 2018. Since data set D1 D2

is used for training the algorithms and data set D4 for testing, from now on, data sets D1 D2 and

D4 will be referred to as XTrain and XTest for purposes of this thesis. Table 1 shows further details

on the data sets.
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Table 1: Summary information of data sets XTrain, XTest. Converters are participants that are
considered to convert to a different diagnosis (CN to MCI, MCI to AD, CN to AD, AD to MCI,
MCI to CN, AD to CN) during any of their visits. Data points correspond to time points of data
collection (in particular imaging data).

.

XTrain XTest

Number of unique subjects 1667 197

Unique data points 12734 234

Follow-up time (mean [std]) 0.60 y [± 0.36] 2.6 y [±0.73]

Baseline Diagnosis

CN 523 (30.2%) 84 (42.6%)
MCI 866 (50.1%) 84 (42.6%)
AD 341 (19.7%) 29 (14.7%)

Converters 468 (27.1%) 33 (16.7%)

Age (mean [std]) 73.8 y [± 7.0] 79.57 y [± 7.3]

Gender (%male) 56.6% 55.3%

2.2 TADPOLE-SHARE

2.2.1 Framework

To allow further research and evaluation of the TADPOLE algorithms, participants from the TAD-

POLE challenge were asked to submit their algorithms to the platform according to the pipeline in

figure 2. It is expected that this makes the algorithms easily applicable, as that they can be studied

on different test and training data sets. The standardized interface requires users to implement the

following functions:

• train: this function trains the machine learning model to prepare it for predictions.

• predict : a function to make predictions of clinical status, cognitive decline, and neurodegen-

eration for each month in the following 10 years.

• evaluate: function to evaluate the predictions using standardized performance metrics.

Figure 2: Standardized pipeline algorithms submitted to the TADPOLE-SHARE project

The project was supported with a 2 day (limited due to COVID-19 pandemic) online hackathon

that aimed at the submission of rewritten algorithms before the hackathon deadline. Participants’

reward for contributing to this project is the co-authorship of the paper that will be published on

the TADPOLE-SHARE project in the near future.
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2.2.2 Algorithms

Five individual algorithms that participated in the TADPOLE-SHARE project were used in this

project: BenchmarkLastVisit, BenchmarkSVM, EMCEB, EMC1, and BORREGOSTECMTY. These

algorithms were designed by different research groups. The goal for an algorithm in the TADPOLE

challenge was to be the best of all participating algorithms in predicting the clinical status (diag-

nosis), cognitive decline (ADAS-COG-13), and neurodegeneration (i.e. ventricle volume). In this

project, I merely focused on the prediction of clinical status. Unfortunately, the algorithms EMC1

and BORREGOSTECMTY were not submitted in a way that allowed for retraining (despite exten-

sive efforts to facilitate this). As such these algorithms could not be optimized on new data. Short

descriptions of the studied algorithms are:

1. BenchmarkLastVisit (BLV)

This algorithm is designed by the organisers of the TADPOLE Challenge to be used as ref-

erence algorithms to compare with participant algorithms. It uses the measurements of each

target from the last available clinical visit as the forecast. Features selected for this algorithm

are diagnosis, ventricle volume, and ADAS-Cog13.

2. BenchmarkSVM (BSVM)

BenchmarkSVM is also designed by the organisers of the TADPOLE Challenge to be used as

a reference algorithm. It uses an out-of-the-box support vector machine (SVM) classifier and

regressor to provide a forecast. Selected features for this algorithm are diagnosis, age, ADAS-

Cog13, ventricle volume, intracranial volume (ICV), and APOE gene (playing an important

role in AD).

3. EMCEB

The algorithm EMC-EB also uses SVMs. Feature selection was done automatically resulting

in 204 features.

4. EMC1

The algorithm EMC1 uses novel event-based modeling (EBM) technique, which is shown to

be more accurate than existing state-of-the-art EBM methods (Venkatraghavan et al., 2019).

Feature selection was done automatically resulting in 250 features.

5. BORREGOSTECMTY (BTMTY)

The BORREGOTECMTY algorithm applies an ensemble of 50 linear regression models, which

are weak classifiers. Feature selection was done automatically resulting in 500 features.

13



Table 2: Summary of methodology used by the individual algorithms to predict the clinical status.
Keywords: SVM - Support Vector Machine, DPM - disease progression model, BCA - balanced
classification accuracy, mAUC - multi-class area under the curve

Algorithm
Feature
Selection

Number
of
features

Diagnosis prediction
model

Performance
in TADPOLE
Challenge

BenchmarkLastVisit None 3 Constant model BCA: 0.774, mAUC: 0.792

BenchmarkSVM Manual 6 SVM BCA: 0.764, mAUC: 0.836

EMC-EB Automatic 204 SVM BCA: 0.805, mAUC: 0.907

EMC1 Automatic 250 DPM + 2D spline + SVM BCA: 0.811, mAUC: 0.898

BORREGOSTECMTY Automatic 500 Regression ensemble BCA: 0.808, mAUC: 0.866

Table 2 summarizes some aspects of the algorithms. More information on these algorithms can

be found in (Marinescu et al., 2020). Observe that the potential benefit of combining them derives

from the use of different classification strategies as well as relying on different information to do so

(ranging from brain imaging, genetic information, and cognitive tests information).

2.3 ResNet algorithm

Since algorithms EMC1 and BTMTY could not be optimised on new data, TADPOLE-SHARE

resulted in three retrainable and retestable algorithms. However, it is doubtful if the algorithms

BLV and BSVM can be considered strong as they are benchmark models and were not carefully

optimised. Tabel 1 demonstrated that the benchmark models perform worse in comparison to e.g.

algorithm EMCEB. We, therefore, developed our own model: a ResNet.

Residual networks (ResNets) were first introduced by (He et al., 2016). This journal paper

became one of the most influential papers in modern deep learning. ResNets make use of skip

connections. As the name suggests, layers can be skipped in the neural network providing an

alternative path for the gradient. This methodology is experimentally validated to be beneficial

for the models’ convergence. Figure 3 shows the fundamental building block of the residual neural

network proposed in (He et al., 2016). The input, x, is first fed through a fully connected layer

followed by a ReLu activation. Thereafter, x is fed through a fully connected layer resulting in

F (x). Concurrently, the input x skips the fully connected layer and is added to F (x). Finally, F (x)

+ x is activated by the ReLu activation function. These types of networks are a standard module

in many convolutional architectures, however, they can be used in any type of NN. This type of

framework eases the training of networks that are substantially deeper than those used in previous

research.
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Figure 3: The fundamental building block of a residual network

We explored to what extent our developed network can predict the progression of AD on XTest

in comparison to previously introduced methods. The models’ architecture is presented in figure 4.

The input features are passed through a fully connected (fc) layer with fifty nodes. Activation is

determined by the relu activation function. Thereafter, ten residual blocks (figure 3) are embedded

in series. Finally, the input is downscaled from fifty nodes to the three classes and activated by the

softmax function.

The model was trained and validated on both the data split scenarios (explained in section

2.5.3). Feature selection methodology was adopted from algorithm EMCEB resulting in 203 features.

Missing values in the data set were filled with forward filling followed by backward filling per RID.

The remaining missing values were set to -0.05.

Figure 4: The ResNet model architecture. Observe that the residual block was embedded in series
for ten times. Each layer in the model is activated by the relu activation function except for the
final layer: this layer was activated by the SoftMax function.

Hyperparameter optimisation was performed manually on the validation set. Several different

setups were evaluated (see Appendix B) and the final hyperparameter setup was selected based

on the the BCA score on the validation set. Batch normalization and dropout techniques were

deployed. During the training process, the learning rate (LR) was optimised by ’reducing the LR
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on plateau’. This is a widely used adaptive LR scheduler and exists as a function, amongst others,

in Pytorch (Paszke et al., 2019). This function divides the LR by 2-10 if the BCA score on the

validation data is not improving for a certain number of epochs. We divide the LR by 2 if it is not

improving for 5 epochs. The training process automatically terminates when the LR reached the

minimal value 1e-5. The model in the epoch with the highest BCA score is saved, and loaded when

the LR gets updated.

Note that this algorithms is retrainable, however, was not retested yet and could therefore no

be used as input for learned fusers.

2.4 Ensemble Methods

Two general frameworks are described to construct ensembles (combinations) of algorithms with i)

an un-trained fuser and ii) a trained fuser. Next, the fuser methods and the conducted experiment

setups are explained. Finally, the performance evaluation metrics are explained.

2.4.1 General frameworks to combine algorithms

First, Figure 5 introduces a general framework for ensemble learning with an unlearned fuser (e.g.

applying mere averaging of predictions). This framework is relatively simple as the outputs are

directly fused to give a final decision. In step 1, the individual algorithms are trained on dataset

XTrain. In step 2, predictions are made with the trained individual algorithms on data set XTest.

The outputs are then fused with the (untrained) fuser, giving the final decisions.

Figure 5: Ensemble framework for combining algorithms with an untrained fuser: step 1) train
individual algorithms on data set XTrain, step 2) make predictions with individual algorithms on
data set XTest and fuse the predictions of the individual algorithms to give the final decision
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Alternatively, in figure 6, the general framework for ensemble learning with a trained fuser

is shown. This framework involves 3 steps and is more complex than the previously introduced

framework. In step 1, the individual algorithms are trained as before (applying XInd
Train). In step

2, the trained individual algorithms make predictions on data set XInd
Test that are subsequently used

as inputs for training the fuser. Finally, in step 3, predictions on data set XTest are made and

combined by the trained fuser to yield the final decision.

While doing so, an important issue is: How should one generate XInd
Train and XInd

Test in this

framework?

Figure 6: Ensemble framework for combining algorithms with a trained fuser.

Two scenarios are applied to define data sets XInd
Train and XInd

Test:

• Single training set scenario

Essentially, data set XTrain is not split in this scenario. As such, the individual algorithms

are trained on the complete set XTrain in step 1. Subsequently, in step 2, the same data set

XTrain is used to train the fuser. A possible downside of this scenario, however, is that it

might result in overfitting.
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• Separated training sets scenario

A more robust way would be to perform a k-fold cross-validation. Here, the dataset XTrain

is split up into k-groups. k-1 groups are used to train the individual algorithms and the

remaining group is used for validation. This is repeated so that each group is used once

for validation. In this way, independent predictions are made on the entire data set XTrain.

However, since some of the algorithms are complex and take a long time to train, this scenario

was found too time-consuming.

Instead, an experiment was performed with separated training and test sets: in this scenario,

data set XTrain is split in half so that half of the data, XInd
Train, is used to train the individual

algorithms in step 1 and the other half, XInd
Test, for training the fuser in step 2. A positive

aspect of this scenario is that different data is used in steps 1 and 2. However, a disadvantage

is that the individual algorithms are trained on part of the data. This could results in weaker

individual algorithms, in particular with smaller datasets.

2.4.2 Fusers

In this project, three different ensemble methods were used.

First, the algorithms were combined in several setups by merely averaging the predictions. This

model could be expected to give a slightly improved result as some models might be positively

biased regarding their predictions, while others might be negatively biased (Marinescu et al., 2018).

Second, the algorithms were combined in several combinations by selecting the median proba-

bility. For this ensemble method, a similar result is expected as for ensemble method 1, but it might

be less sensitive to outliers.

The last more complex combination method is applying a NN (explained in section 1.3). This

is a method that must be trained as in framework 2 (figure 6). Notice that while applying such a

combination method, only the three retrainable individual algorithms (BLV, BSVM, EMCEB) can

be deployed.

Accordingly, I will separately study (1) the situation in which all six algorithms are applied

without retraining while only combining with the unlearned methods; (2) the situation in which

three individual retrainable algorithms BLV, BSVM, and EMCEB are retrained and subsequently

the combining classifier (see figure 6).

2.4.3 Data split

The total data was split three times, as illustrated in figure 7. Initially, Split1 splits the total data

set in data set XTrain and XTest. Notice that XTest includes data from the patients in XTrain, but

at a later stage. In particular, it separates the (before January 1, 2018) time points of all RIDs

(patient IDs) from newer time points (after January 1, 2018) of participants enrolled in the study.

This split was originally applied in the TADPOLE challenge so that at the time of submission

of the algorithms, XTest did not yet exist. Therefore, it was not used in the development of the

algorithms. Moreover, this split mimicked a clinical setting in which patients are to be tracked over
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time. However, this initial split complicates our machine learning strategies for several reasons.

First, the class balance in XTest is not similar to the class balance in data set XTrain (see table 1).

Moreover, there might be a bias as algorithms were developed using data from the same patients

that are also in the test set. Also, the test data set is small in comparison to XTrain (table 1).

Split2 splits the subjects in data set XTrain into two sets: one for training the individual

algorithms, and the other for testing them: XInd
Train and XInd

Test respectively. This was done in such a

way that, subset XInd
Train and XInd

Test do not have overlapping participants. In other words, all time

points belonging to the same subject are put in the same set. The latter step is only necessary,

however, for the experiments that use a learned fuser. As already stated above, the ratio of data

points between XInd
Train and XInd

Test was set to 1:1 (50%/50%)

Split3 is, like Split2, only applied for the framework with the neural networks to have train-

ing data and validation data: XNN
Train and XNN

V al respectively. Both Split2 and Split3 are random

and stratified based on their baseline diagnosis and on if they are converting to another diagnosis

throughout their visits.
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Figure 7: Illustration of how the data is split for the ensemble with an learned fuser method. In
total, the data is split three times. Split1: the total data is split in XTrain and XTest, Split2: XTrain

is split in XInd
Train and XInd

Test

2.5 Experimental setup

Seven experiments were conducted as described below. Each individual algorithm yields three inputs

to the fuser: the relative probability of CN, the relative probability of MCI, the relative probability

of AD. Experiments six and seven also re-enter the union of the inputs of the fused algorithms (203

features) as additional information. Table 3 summarises the seven conducted experiments.
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Table 3: Summary of the seven conducted experiments. Notice that experiment 1 and 2 are con-
ducted twice: in the single and separate training set scenario. The input algorithms EMC1 and
BTMTY were only used as input in the single training set scenario as they are not retrainable.
Experiments 1b and 2b were conducted with and without fusing ResNet. Results without fusing
ResNet are used for direct comparison with learned ensembles. Results with fusing ResNet are
presented in Appendix A.

Fuser
Unlearned/
Learned

Scenario Input

Experiment 1a Mean Unlearned Single training set
BLV, BSVM, EMCEB,

EMC1, BTMTY, ResNet

Experiment 1b Mean Unlearned Separate training set
BLV, BSVM, EMCEB,

(ResNet)

Experiment 2a Median Unlearned Single training set
BLV, BSVM, EMCEB,

EMC1, BTMTY, ResNet

Experiment 2b Median Unlearned Separate training set
BLV, BSVM, EMCEB,

(ResNet)

Experiment 3 OneNeuron Learned Separate training set BLV, BSVM, EMCEB,

Experiment 4 TwoLayers Learned Separate training set BLV, BSVM, EMCEB,

Experiment 5 ResNetFuser1 Learned Separate training set BLV, BSVM, EMCEB,

Experiment 6 ResNetFuser2 Learned Separate training set
BLV, BSVM, EMCEB

and 203 features

Experiment 7 DoubleResNet Learned Separate training set
BLV, BSVM, EMCEB

and 203 features

2.5.1 Unlearned ensembles

In experiments 1 and 2, individual algorithms were combined by taking the mean and median

of the output probabilities, respectively. These experiments were both conducted twice: in the

single and separate training set scenario. First, the five algorithms that participated in TADPOLE-

SHARE (BLV, BSVM, EMCEB, EMC1, and BORREGOSTECMTY) plus the developed ResNet

were trained according to the single training set scenario and subsequently combined. Second, the

four retrainable algorithms (BLV, BSVM, EMCEB, and ResNet) were trained according to the

separate training set scenario and subsequently combined.

All possible combinations of the algorithms were investigated resulting in 57 experiments for both

mean and median in the single training set scenario and 11 experiments for both mean and median

in the separate training set scenario. In total 57x2 + 11*2 = 136 experiments were conducted.

2.5.2 Learned ensembles

The experiments with the learned ensembles were conducted only in the separated training sets

scenario explained before. First, the three trainable algorithms (BLV, BSVM, and EMCEB), were

combined with relatively simple NNs.

In experiment 3, the NN architecture has one hidden layer with a single node (figure 8a). We

refer to this ensemble as OneNeuron. This experiment was conducted to study how the NN performs
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in comparison to the unlearned mean. We hypothesize that this method performs at least as well

(as it may just compute the mean of its inputs).

In the fourth experiment, a NN was used that has a somewhat more complex architecture: two

hidden layers, with six and three nodes (figure 8b). This ensemble is referred to as TwoLayers.

Both experiment 3 and 4 use an adaptive LR scheme in which the LR is divided by ten every

50 epochs.

(a) NN architecture for experiment 3: it has nine
inputs, 2 hidden layers with six and three nodes

respectively.

(b) NN architecture for experiment 4 : it has nine
inputs, two hidden layers with six and three

nodes respectively.

Figure 8: Architectures of the NNs for combining with a learned fuser. The output of both the NN
architectures is either: CN, MCI, or AD. A ReLu activation function was applied to the hidden
layer(s) and a softmax activation function was applied to the output layer. Figures were created
with alexlenail.me/NN-SVG.

In the fifth experiment, the architecture that was designed for the individual model ResNet

(figure 4), was here applied as fuser. Therefore, this ensemble is referred to as ResNetFuser1. This

experiments was done to see if more complex architectures, further improve performance over the

individual models.

In the sixth experiment, the same architecture was used as in the fifth experiment. The 203

original input features were re-entered to the fuser as additional information. This experiment is

referred to as ResNetFuser2. The input features were normalized with the min-max normalisation

technique. The hypothesis is that this gives improved performance in comparison to experiment five

as the network might learn other dependencies to trust or not trust certain models or data inputs

from certain models.

In the final experiment, experiment 7, the same inputs were used as in experiment 6. However,

in this experiment, they were split into the nine relative probabilities from the individual algorithms

and the 203 features. The 203 features are entered to the first ResNet and downscaled to three

features. These are then added to the nine relative probabilities from the individual models, adding

up to twelve inputs for the second ResNet. It is hypothesised that this experiment results in

even better performance, as the first ResNet might learn which features are resulting in improved

performance from the second ResNet. Since two ResNets are used concurrently, this ensemble is

referred to as DoubleResNet.

In experiment 5-7, optimisation of the validation accuracy was supported by the adaptive LR
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’Reduce LR on plateau’. The same settings were applied as for optimisation of the individual

algorithm ResNet. The optimal settings for optimal accuracy on the validation set in each of

experiments five, six, and seven is a network with ten residual blocks, fifty nodes per layer, a batch

size of ten, an initial LR of 5E-4, and a drop out rate of 0.05.

In all experiments with NNs, the cross-entropy loss and adam optimizer were used as these

are fast and suitable for classification problems. The relu activation function was applied in all

the layers, except in the output layer. The activation function applied in the output layer is the

SoftMax. Hyperparameter optimisation was performed manually on the validation set.

Observe that there is increasing model complexity across experiments 4 to 7, sustaining enhanced

flexibility.

2.6 Performance evaluation

Classification performance of individual models and ensemble models were evaluated with the bal-

anced classification accuracy (BCA) and the multi-class area under the curve (mAUC). The perfor-

mance evaluation framework was adopted from the TADPOLE challenge.

The mAUC represents the area under the ROC curve (AUC) applicable for problems with more

than two classes Hand and Till (2001). All the class i and class j data points are ranked in increasing

order based on the probability that a data point x belongs to class i. Si is then the sum of the

ranks of the data points belonging to class i. The AUC Â(ci|cj) for classification of one class against

another class (in this case ci and cj respectively) is given by:

Â(ci|cj) =
Si − ni(ni + 1)/2

ninj
(1)

with ni and nj are the number of data points belonging to class i and class j respectively. The

average AUC is defined as:

Â(ci, cj) =
1

2
(Â(ci|cj) + Â(cj |ci)) (2)

Then the mAUC is given by:

mAUC =
2

L(L− 1)

L∑
i=2

i∑
j=1

Â(ci, cj) (3)

with L the number of classes.

The BCA is derived from the classification accuracy and compensates for class imbalance in the

data Brodersen et al. (2010). This classification method uses discrete data points as input. In the

case of the TADPOLE challenge, the inputs are the classes of the diagnosis’: CN, MCI, and AD.

The the BCA for class i looks as follows:

BCAi =
1

2

[
TP

TP + FN
+

TN

TN + FP

]
(4)
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with TP, FP, TN, FN representing the number of true positives, false positives, true negatives,

and false negatives for classification of class i. The total BCA, for all classes, can be calculated by

taking the mean of the BCA for each class.

The variance within the test set was accounted for by performing 100 bootstraps on the test set.

The significance of the difference between models was evaluated by the non-parametric McNemar

Chi-square test (Dietterich, 1998). This test is specifically applicable for pairwise comparisons,

which is the case in this study. With contingency table 4, the McNemar test statistic is

χ2 =
(N10 −N01)2

N10 +N01
(5)

Moreover, the diversity between individual algorithms and ensemble models was assessed by

the pairwise diversity measure: the correlation coefficient ρ (Kuncheva and Whitaker, 2003). This

calculates the correlation between two binary classifier outputs (true or false). With contingency

table 4, the correlation coefficient ρ between two binary classifiers is

ρ1,2 =
N11N00 −N01N10√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(6)

Two classifiers can be considered diverse if they make different errors on the same data points

(Dietterich, 2000). Generally, it is known that differences between individual classifiers’ outputs

contribute towards overall ensemble accuracy. However, there is no formal proof for this in the

classification context. Kuncheva et al. conclude that one should be careful with these measures

since an improved accuracy is not always observed when combining diverse classifiers (Kuncheva

and Whitaker, 2003). Nonetheless, we still rapport the diversity to give more insight on classifier

performance and possible benefits that could be obtained by combination.

Table 4: Example contingency table. C1 - classifier 1, C2 - classifier 2, N11 - number of points
correctly classified by both C1 and C2, N10 - number of points correctly classified by C1 and
wrongly classified by C2, N01 - number of points wrongly classified by C1 and correctly classified by
C2, N00 - number of points wrongly classified by both C1 and C2.

C1 correct C1 wrong

C2 correct N11 N10

C2 wrong N01 N00

2.7 Implementation

The code for this study was written in Python 3.7.9, using the open source neural network library Py-

torch, using torch version 1.8.0. The code can be downloaded from (github.com/lottemulder/ensemble4AD).
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3 Results

3.1 TADPOLE-SHARE

The collection of algorithms for predicting progression in AD resulted in eight algorithms, from

which five were reused in this study. Despite the organisation of a hackathon, re-using code from

other researchers was experienced to be challenging. First of all, not all participants submitted

their algorithms in time. Three out of eight algorithms were submitted to the GitHub repository

within the deadline of the hackathon (these were the benchmark algorithms and the algorithm

EMCEB of the main organiser of the hackathon). Four other algorithms were submitted to the

GitHub repository a few months after the hackathon deadline, and one has not yet been submitted.

Second, not all of the algorithms were submitted according to the instructions described in the

methods section. For example, one of the algorithms did not have separate training and predict

functions, but instead, these algorithms have one function for training and prediction. Furthermore,

another algorithm used the researcher’s own split function, instead of the data split function that

was provided by the hackathon organisers. Third, two of the algorithms were originally (mainly)

written in R, whereas the preferred programming language for the TADPOLE-SHARE project was

Python. These algorithms were rewritten so that R was called from Python. This complicated

the reuse of these algorithms on different data sets. Fourth, algorithms were not always bug-free

submitted to the GitHub repository. Lastly, algorithms were sometimes hard-coded for training or

testing on a specific data set. To train or test the algorithm on different data sets, the algorithms

had to be adjusted. Despite extensive effort to rewrite and debug algorithms allowing for retraining

and retesting, only three out of eight algorithms were retrainable and retestable.

3.2 Performance evaluation

Performance of the individual algorithms and the ensemble models were evaluated and compared.

The comparison of the models was split into two separate situations: the comparison of; (1) the

individual models and the unlearned ensembles both trained according to the single training set

(results presented in table 5); and (2) the individual algorithms, the unlearned ensemble models

and the learned ensemble models all trained according to the separate training set scenario (results

presented in table 6). Each individual algorithm and ensemble model is evaluated on both metrics

BCA and mAUC. More insight on results is provided with boxplots.
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Table 5: BCA and mAUC scores (mean [std]) of individual algorithms and unlearned ensembles in
the single training set scenario obtained with 100 times bootstrapping on XTest.

Single training set scenario

Individual
algorithms

BCA mAUC
Unlearned
ensembles

BCA mAUC

BLV 0.764 [±0.027] 0.756 [±0.028] MeanAll 0.805 [±0.027] 0.897 [±0.020]

BSVM 0.767 [±0.027] 0.792 [±0.022] MeanBest 0.818 [±0.025] 0.910 [±0.019]

EMCEB 0.773 [±0.025] 0.884 [±0.024] MedianAll 0.803 [±0.026] 0.915 [±0.018]

EMC1 0.795 [±0.023] 0.902 [±0.019] MedianBest 0.821 [±0.023] 0.905 [±0.018]

BTMTY 0.812 [±0.024] 0.889 [±0.025]

ResNet 0.838 [±0.022] 0.898 [±0.021]

Table 6: BCA and mAUC scores (mean [std]) of individual algorithms, unlearned and learned
ensembles in the separate training set scenario obtained with 100 times bootstrapping on XTest.
Note that EMC1, BTMTY and ResNet were not used in the both the unlearned and learned
ensembles.

Separate training set scenario

Individual
algorithms

BCA mAUC
Unlearned
ensembles

BCA mAUC

BLV 0.763 [±0.022] 0.756 [±0.029] MeanAll 0.762 [±0.023] 0.858 [±0.022]

BSVM 0.768 [±0.021] 0.798 [±0.024] MeanBest 0.769 [±0.026] 0.865 [±0.022]

EMCEB 0.761 [±0.029] 0.866 [±0.020] MedianAll 0.760 [±0.028] 0.848 [±0.022]

MedianBest 0.770 [±0.027] 0.864 [±0.019]

Learned
ensembles

BCA mAUC

OneNeuron 0.805 [±0.025] 0.840 [±0.030]

TwoLayers 0.774 [±0.026] 0.876 [±0.020]

ResNetFuser1 0.795 [±0.027] 0.878 [±0.020]

ResNetFuser2 0.809 [±0.026] 0.893 [±0.020]

DoubleResNet 0.814 [±0.023] 0.902 [±0.020]

3.2.1 Individual models

Figure 9 and table 5 show the prediction performance of the six individual algorithms trained

according to the single training set scenario. Observe that a slight difference in scores is obtained

by the TADPOLE-SHARE algorithms in table 5 compared with the scores obtained by the same

algorithms in the TADPOLE challenge in table 1. This slight difference is caused by rewriting the

code according to the TADPOLE-SHARE pipeline. Algorithms EMCEB, EMC1, BTMTY, and

ResNet score significantly better than benchmark model BLV (p<0.05) (McNemar test)). ResNet

obtained the highest BCA score (0.834 [±0.024]) and model EMC1 obtained the highest mAUC score

(0.902 [±0.019]). Neither ResNet nor EMC1 scored significantly better than BTMTY, EMCEB,

and BSVM. Observe that a difference exists between BCA and mAUC scores. This difference
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could be explained by the fact that the BCA takes hard classes into account while the mAUC

is calculated by taking the sum of the ranks of the relative probabilities. For example, EMC1 is

performing worse than BTMTY and ResNet on the BCA, while performing best on the mAUC.

This might indicate that algorithm EMC1 might classify less correct, alternatively is more confident

on correctly classified points than e.g. BTMTY and EMC1. In our opinion, both being correct as

being confident are important properties for an algorithm. To that end, both metrics are computed.

Furthermore, these results are in line with expectations as the performance increases with a more

advanced methodology.

Figure 9: Boxplots of the BCA (a) and mAUC (b) scores obtained with 100x bootstrapping on
XTest. The plots show the six individual models: BLV, BSVM, EMCEB, EMC1, BTMTY and
ResNet. Observe that all of these models were trained according to the single training set scenario.
Boxplots indicate the median (the horizontal line in each box), the mean (the cross in each box),
the interquantile range (IQR) of the data (the boxes that span the 25th to the 75th percentile) and
the whiskers (the extending vertical lines), indicating the minimum (25th percentile - 1.5 x IQR)
and the maximum (75th percentile + 1.5 x IQR).

Figure 10 provides a comparison of the individual models trained according to the single training

set scenario and the separate training set scenario. Table 6 shows the prediction performance

of algorithms BLV, BSVM, EMCEB, and ResNet trained according to the separate training set

scenario. Concluding from figure 10, training on half of the data does not have a significant effect

on models BLV and BSVM. For algorithm BLV, which takes the previous visit diagnosis as the

follow-up visit diagnosis, it is evident that reducing the data does not affect the performance as

the data split was stratified on converters and classes. For algorithm BSVM, similar performance

for both scenarios might be explained by the fact that this model is relatively simple. Therefore,

reducing the training data by half does not affect the performance. The performance of the model

ResNet decreased from 0.838 to 0.785 (0.053 difference) for the BCA. Likewise, the performance of

model EMCEB decreases slightly from 0.774 to 0.761 (0.013 difference) for the BCA and from 0.883

to 0.866 (0.017 difference) for mAUC when training in the separate training set scenario. However,

these differences (for both BCA and mAUC scores) are within the standard deviations of either

of the performances in both scenarios and not significantly different (p>0.05). Though, this slight
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decrease in performance might be explained by the fact that algorithms EMCEB and ResNet are

more complex than BSVM and BLV.

Figure 10: A comparison between individual models trained according to the single training set
scenario (open boxes) and separate training set scenario (filled boxes). Boxplots of the BCA (a)
and mAUC (b) scores obtained with 100x bootstrapping on XTest. The plot only shows the four
retrainable individual models: BLV, BSVM, EMCEB, and ResNet.

Table 7 shows the correlation matrix of the six individual algorithms trained according to the

single training set scenario. Most algorithms correlate strongly (ρ > 0.5). ResNet shows moderate

correlation with algorithms BLV, BSVM, EMCEB, and EMC1 (ρ < 0.5). These results indicate

that combining the six algorithms with unlearned fusers would not necessarily lead to improvements

in performance. Similarly, these results indicate that combining the three retrainable and retestable

algorithms BLV, BSVM, EMCEB with unlearned and learned fusers, would also not necessarily lead

to improvements in performance, while ResNet could be a valuable addition.

Table 7: Correlation coefficient ρ for the individual algorithms in the single training set scenario.

3.2.2 Single training set scenario

Figure 11 and table 5 presents the prediction performance of individual algorithms (a,c) and the

unlearned ensembles MeanAll, MeanBest, MedianAll, MedianBest (b,d). The mean results of the

ensembles can be found in table 5. None of the unlearned ensembles performed better than the best

performing individual algorithm on the BCA (ResNet with BCA score of 0.838 [±0.024]). However,
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on the mAUC, the ensembles MeanBest, MedianAll, and MedianBest perform slightly better (Me-

dianAll obtained a mAUC = 0.915 [±0.018]) than the best performing individual algorithm (EMC1

with BCA score of 0.902 [±0.019]). Yet, these differences are not significant (p>0.05). The slightly

improved performance of the mean and median is according to our expectations as the mean and

median ensembles might compensate for the under- and overestimation of individual algorithms.

Figure 11: Boxplots of the BCA (a,b) and mAUC (c,d) scores obtained with 100 times bootstrapping
onXTest. The plots show all six individual models (non-filled boxplots (a,c)) and unlearned ensemble
models (filled boxplots (b,d)). Observe that all of these models were trained according to the single
training set scenario. MeanAll - the ensemble with the mean fuser of all six individual algorithms.
MeanBest - the best performing ensemble with the mean fuser on XTest (ensemble of EMC1 and
ResNet). MedianAll - the ensemble with the median fuser of all six individual algorithms with the
median fuser. MedianBest - the best performing ensemble with the median fuser on XTest (ensemble
of EMC1 and ResNet)

3.2.3 Separate training set scenario

Figure 12, 13 and table 6 present the prediction performances of individual algorithms, and un-

learned and learned ensembles both fusing retrainable algorithms BLV, BSVM, EMCEB, trained in

the separate training set scenario. Results of the unlearned ensembles fusing BLV, BSVM, EMCEB

and ResNet are presented in Appendix A (table 8 and figure 14).

Observe that the unlearned ensembles MeanBest and MedianBest have slightly higher perfor-

mance on the BCA than the best scoring individual algorithm EMCEB (p>0.05). None of the

unlearned ensembles has higher performance than EMCEB on the mAUC score. The best perform-

ing unlearned ensemble is MeanBest (BCA = 0.769 [±0.026]; mAUC = 0.865 [±0.022]).

The performance increases with the increased complexity of the learned fusers in figures 12 and

13. The BCA for ensemble OneNeuron is unexpectedly high, compared to the individual algorithms.

As this was the first conducted experiment with learned fusers, this high performance might be due

to better optimisation in model selection compared to other learned ensembles. On the other hand,

the mAUC score of OneNeuron is not improved over the mAUC of the best scoring individual

algorithm used here, EMCEB. On the BCA, ensemble ResNetFuser1 is performing slightly better

than ensemble TwoLayers, implying that the more complex ResNetFuser1 is better. However, on
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the mAUC score, these two ensembles have similar performances. Ensembles ResNetFuser2 and

DoubleResNet fuse the individual algorithms and the 203 input features. It is evident from figure

12 and 13 that, besides fusing the individual algorithms, also re-entering the 203 features to the

fuser, therewith giving the ensemble extra information, moderately improves performance compared

to individual algorithms.

DoubleResNet is the ensemble scoring best on both BCA (0.814 [±0.023]) and mAUC (0.902

[±0.020]). Although DoubleResNet improves with 0.053 on the BCA and 0.036 on the mAUC

compared with the best performing individual algorithm (EMCEB), results are not statistically

significant (p>0.05).

Comparing the best scoring unlearned ensemble with the best scoring learned ensemble, we can

conclude that the learned ensemble DoubleResNet outperforms the unlearned ensemble MeanBest,

however not statistically significant (p>0.05).

Figure 12: Boxplots of the BCA scores of individual algorithms (a), unlearned ensembles (b) and,
learned ensembles (c) obtained with 100x bootstrapping on XTest. Observe that all of these models
were trained according to the separate training set scenario. MeanAll - the ensemble fusing the
three retrainable individual algorithms with the mean, MeanBest - the best performing ensemble
with the mean fuser (ensemble of EMCEB and ResNet), MedianAll - the ensemble fusing the three
retrainable individual algorithms with the median fuser, MedianBest - the best performing ensemble
with the median fuser (ensemble of EMCEB and ResNet)
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Figure 13: Boxplots of the mAUC scores of individual algorithms (a), unlearned ensembles (b) and,
learned ensembles (c) obtained with 100x bootstrapping on XTest. Observe that all of these models
were trained according to the separate training set scenario. MeanAll - the ensemble fusing the
three retrainable individual algorithms with the mean, MeanBest - the best performing ensemble
with the mean fuser (ensemble of EMCEB and ResNet), MedianAll - the ensemble fusing the three
retrainable individual algorithms with the median fuser, MedianBest - the best performing ensemble
with the median fuser (ensemble of EMCEB and ResNet)
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4 Discussion

In this study, we collected existing optimised algorithms predicting the progression of AD. We

investigated the possibilities of how to combine these collected, strong algorithms. We presented

two frameworks for careful combination with unlearned and learned fusers. Finally, we evaluated

and compared individual algorithms and several ensembles with unlearned and learned fusers. In

this section, I will discuss the results and the limitations of this study and I will propose ideas for

future work.

4.1 TADPOLE-SHARE

The first aim of this study was to collect existing, optimised algorithms for the predicting progression

in AD. To this end, we offered TADPOLE-SHARE to allow for sharing scientific code among the

research community. Participants were asked to rewrite their code in a particular format that

allowed for re-training and testing on different data sets. However, sharing and reusing code proved

challenging. Here, I will summarise the main obstacles that delayed or precluded the combination

study.

Most of the collected algorithms were not immediately retrainable and/or retestable on different

data sets. The main reason for this was hard-coding towards specific data of the train and/or predict

function. As retraining and retesting algorithms are necessary for combination with learned fusers,

algorithms EMC1, BTMTY were excluded from the study with learned fusers. Furthermore, some

of the algorithms used another programming language (R) within their final python code. This

complicated running and debugging their code.

For future projects that aim to share code with the scientific community, organisers should be

strict on participants and should have a test available that checks if the algorithm is in the right

format and should reject submissions that are not. This test could for example consist of running

the algorithm on a test data set consisting of one patient from an external data set (that is not

included in the current test data set). Moreover, it might help motivate participants by giving

them insight into the benefits of their hard work rewriting the code. Being clear on the kind of

follow-up project their algorithm might participate in after sharing, might motivate the participants

prioritising to submit code in the right format.

4.2 Individual model ResNet

The individual model ResNet was designed for this study because only five algorithms from TADPOLE-

SHARE could be combined with unlearned fuser methods and, only three could be combined with

learned fuser methods. ResNet performed best on the BCA score (0.838 [±0.022]) and third on

the mAUC score (0.898 [±0.021]) in comparison to the other individual algorithms deployed in this

study. It would have been ranked 8th based on the mAUC performance in the TADPOLE challenge.

The complex residual network in combination with the smart ’reduce LR on plateau’ adaptive LR

scheduler, might have caused its relatively good performance. Although ResNet is performing rel-
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atively well already, more extensive optimisation of this model might lead to further improvement

of the performance.

ResNet was, thus far, only tested on XTest. This allowed using this algorithm for fusing with

unlearned methods. However, for this algorithm to be used for fusing with learned ensembles,

predictions should be made on XInd
Train so that these predictions can be entered as training data to

the fuser (see figure 7). From the correlation matrix in table 7, it is clear that ResNet correlates the

least to any of the other algorithms. Therefore, adding this algorithm to learned ensembles might

improve the ensemble’s performance.

4.3 Ensemble results

The second aim of this study was to investigate the possibility of combining strong optimised

algorithms for predicting progression in AD by providing frameworks for combining with unlearned

and learned fusers. The third aim was to evaluate and compare individual algorithms and several

ensembles with unlearned and learned fusers.

Although improvements were not significant, reusing optimised algorithms and combining them

led to further improvement of algorithms’ performance. Ensembles with learned methods outper-

formed ensembles with unlearned methods on both the BCA and the mAUC. Gradual improvement

was obtained by deploying more complex fusers. The largest improvement was obtained by the

learned ensemble DoubleResNet, the most complex learned fuser experimented with. This ensem-

ble fused the retrainable algorithms BLV, BSVM, EMCEB, and reused the original data features as

additional feed-in. Fusion methodology consists of two dependent ResNets. DoubleResNet scored

0.814 [±0.023] on the BCA and 0.902 [±0.020] on the mAUC while the best algorithm among the

fused algorithms (EMCEB) scores 0.761 [±0.029] on the BCA and 0.866 [±0.020] on the mAUC.

The overall best performing model on the BCA is the individual algorithm ResNet trained

according to the single training set scenario (BCA=0.838 [±0.022]). None of the ensemble methods

that, amongst others, fuses individual algorithm ResNet, improves on the BCA. The overall best

performing model on the mAUC is unlearned ensemble MedianAll trained according to the single

training set scenario (mAUC= 0.915 [±0.018]). This best performing ensemble on the mAUC fuses

all six individual algorithms and is therefore not directly comparable with DoubleResNet.

Learned ensembles ResNetFuser1, ResNetFuser2 and DoubleResNet use the same architecture

as individual algorithm ResNet. However, as the three enumerated learned ensembles do not fuse

ResNet, we can not directly compare them with individual algorithm ResNet. Nevertheless, we could

argue, if it is worth the effort to combine algorithms or rather develop and further optimise our own

method. ResNet (trained according to the single training set scenario) outperforms DoubleResNet

on the BCA and, mAUC scores are similar. On the other hand, the ensembles with learned fusers,

were not carefully optimised. Doing so might result in further improvements.

Thus far, learned ensembles only fused strongly correlating algorithms (ρ > 0.5) BLV, BSVM,

and EMCEB. Future research should point out how fusing ResNet affects the performance of learned

ensembles, especially since it correlates moderately with other individual algorithms.
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4.4 Limitations

This study has several limitations. The data was split in XTrain and XTest, dividing the data into

time points before January 1, 2018, and time points after January 1, 2018. This split was made

originally in the TADPOLE challenge to mimic clinical settings. Algorithms learn from data of

previous time points of subjects and forecast biomarkers such as clinical diagnosis for time points

in the future. However, from a machine learning point of view, this limits this study as XTest is

not independent of XTrain. However, some improvement could be made to make Split1 a better

choice. Future research could incorporate forecasts for visits farther in the future from which the

truth exists in the data set. Currently, the individual algorithms’ forecast that was used to train

the future, was limited to only the follow-up visit in the data set. The follow-up time difference in

data set XTrain is, on average, 2 years shorter than in XTest (follow-up time in XTrain is 0.6 years

and in XTest is 2.6 years). Forecasting on multiple future visits could decrease the difference of

follow-up time in XTrain and XTest.

Algorithm BLV takes the last visit diagnosis as the diagnosis for the next visit. Although this

algorithm does not learn anything, it obtained a BCA of 0.764 [±0.027] and an mAUC score of

0.756 [±0.028]. The data consists of subjects having a stable diagnosis throughout the whole ADNI

study, and subjects that convert to a different diagnosis. As data sets XTrain and XTest consist

only of 27.1% and 16.7% converting participants respectively, an algorithm such as BLV can seem

to have a quite high performance. In this study, the BCA and mAUC are not calculated separately

for converters and non-converters. Therefore, it is unknown if the slight improvements on these

two scores for the ensembles are through slightly improved performance on converters and similar

performance on non-converters, or vice versa. More insight into the strengths and weaknesses

of algorithms could be obtained by measuring the performance of converters and non-converters

separately.

Another limitation of this study is that only three, quite strongly correlating, algorithms were

combined. In fact, two out of three algorithms are benchmark models which were designed by

the organisers of the TADPOLE challenge and served as an example and comparison for partici-

pants. Therefore, we can not consider these algorithms as strong, as strong algorithms were defined

as independently optimised algorithms. Unfortunately, the strongest algorithms collected with

TADPOLE-SHARE (EMC1 and BTMTY) were not submitted in a way that allowed for retraining,

despite extensive efforts to facilitate this. As such, these algorithms could not be used in experi-

ments with learned fusers. Nevertheless, the preliminary results of this study show that combining

strong algorithms in principle, slightly improved performance.

Finally, the use of the data from ADNI brings some limitations. First of all, the ADNI study

included healthy volunteers and volunteers that visited the clinic with memory complaints. As

memory complaints do not start to develop concurrently with measurable brain changes, but at

a later stage, the ADNI database misses out on individuals within the first stretch of the AD

continuum. Secondly, the ADNI data used in this study only consists of individuals with clinical

diagnosis CN, MCI, and AD. However, it is unknown how the computer models will perform on
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data comprising all existing brain diseases. Future studies should test these models on databases

such as the Rotterdam Study Ikram et al. (2017) or the UK Biobank, which do contain volunteers

that are in the pre-clinical stage of AD. Furthermore, future work should assess the ability of our

proposed ensemble methods to distinguish between different brain diseases.

4.5 Future work

Open science, in particular, sharing reproducible code is advancing at a rapid pace. The future holds

many opportunities concerning reusing code from others. Initiatives such as the TADPOLE-SHARE

project and algorithm sharing tools like grand-challenge.org provide a base for comparison, further

development and refinement of existing algorithms. As there is plenty of room for improvement in

this study, we propose the following ideas for future work aside from the ideas that were already

proposed in the previous section.

First of all, it is largely unknown how algorithms would perform on external data. Currently,

algorithms predicting progression in AD are not yet used in clinical practice. Yet, the amount of pub-

licly available data sources on brain diseases is increasing. Studies such as ADNI (adni.loni.usc.edu),

Parelsnoer (Aalten et al., 2014), the UK Biobank (ukbiobank.ac.uk) and the Rotterdam Study Ikram

et al. (2017), will favor algorithm development and allow for evaluation of an algorithm’s ability

to generalize. We hypothesize that our learned ensembles will generalise better towards external

data in comparison with the individual algorithms. Therefore, future works should focus on the

generalisability towards external data of algorithms and ensembles.

Secondly, in this study, we showed preliminary results of improvement of performance when

combining only three strongly correlation algorithms. Results might further improve and might

become significant when more and other, less strongly correlating algorithms are combined with

methods proposed in this study.

Third, we investigated neural networks as learned fusers. Instead, it might be interesting to

investigate other methods would perform as fuser, such as recurrent neural network (RNN), SVMs

or linear regression.

Finally, as mentioned before, from a machine learning perspective, the data split was not optimal.

It could give more insight into how well ensembles perform by also optimising and evaluating them

with a different data split. A future experiment could be conducted where data set XTrain and

XTest are joined and randomly split so that XTrain and XTest do not contain overlapping subjects.
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5 Conclusion

This study has given more insight into how open science can improve the performance of algorithms

predicting the progression in AD. We show that reusing state-of-the-art algorithms from various

institutes is challenging. Nevertheless, the TADPOLE-SHARE project and algorithm sharing ini-

tiatives like grand-challenge.org provide a base for comparison, further development and refinement

of existing algorithms.

We found that combining existing algorithms slightly increases overall prediction performance,

although not statistically significant. Both BCA and mAUC showed a clear trend of improved

performance with increasing fuser training complexity. First of all, learned fusers outperformed

unlearned fusers. Secondly, reusing the original features as additional feed-in enhanced the end

performance even further. Since the results in this study were obtained by combining only three

algorithms that are strongly correlated, increased performance can be expected when combining

other algorithms that are less strongly correlating.

However, it is currently unknown when algorithm performance is sufficient for clinical transla-

tion. Generalisability of algorithms towards different data sets is often not examined. Nevertheless,

we believe that our method will be more robust, as it combines the opinion of multiple experts.

Therefore, future work should focus on algorithms’ generalisability, and on on the interoperability

of already existing and newly developed algorithms.
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Franco, André Goedegebure, Caroline C.W. Klaver, Tamar E.C. Nijsten, Robin P. Peeters,
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P. Robert, A. Salva, G. Waldemar, R. Bullock, Magda Tsolaki, G. Rodriguez, Luisa Spiru, R. W.

Jones, G. Stiens, G. Stoppe, M. Eriksdotter Jönhagen, A. Cherubini, P. M. Lage, T. Gomez-
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6 Appendix

A Results un-learned ensembles fusing algorithms BLV, BSVM, EMCEB and

ResNet

Table 8: BCA and mAUC scores of individual algorithms, un-learned and learned ensembles in the
separate training set scenario obtained with 100 times bootstrapping on XTest. Note that ResNet
was not used in the learned ensembles.

Separate training set scenario

Individual
algorithms

BCA mAUC
Un-learned
ensembles

BCA mAUC

BLV 0.763 0.756 MeanAll 0.805 0.890

BSVM 0.768 0.798 MeanBest 0.816 0.911

EMCEB 0.761 0.866 MedianAll 0.799 0.907

ResNet 0.785 0.896 MedianBest 0.820 0.911

Figure 14: Boxplots of the BCA (a,b) and mAUC (c,d) scores obtained with 100x bootstrapping on
XTest. The plots show individual models (non-filled boxplots (a,c)) and un-learned ensemble models
(filled boxplots (b,d)). Observe that all of these models were trained according to the separate
trainingset scenario. MeanAll - the ensemble with the mean fuser of all four retrainable individual
algorithms. MeanBest - the best performing ensemble with the mean fuser on XTest (ensemble
of BSVM and ResNet). MedianAll - the ensemble with the median fuser of all four retrainable
individual algorithms with the median fuser. MedianBest - the best performing ensemble with the
median fuser on XTest (ensemble of BSVM and ResNet).
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Table 9: BCA and mAUC scores (means) of experiment 1 where algorithms are trained in the
single training set scenario. The performance of the six individual algorithms are also in the table.
Observe that the table is ranked on mAUC score.

Model BCA mAUC

Mean EMC1 ResNet 0.82 0.908
Mean EMC1 BTMTY ResNet 0.806 0.905
Mean EMCEB EMC1 ResNet 0.814 0.904
Mean EMCEB EMC1 BTMTY ResNet 0.805 0.903
Mean EMCEB EMC1 0.782 0.901
Mean BSVM EMCEB BTMTY ResNet 0.809 0.9
Mean BSVM EMCEBEMC1 BTMTY ResNet 0.802 0.899
Mean BSVM EMC1 ResNet 0.809 0.899
Mean EMCEB BTMTY ResNet 0.808 0.899
ResNet 0.838 0.898
Mean BTMTY ResNet 0.801 0.898
EMC1 0.792 0.898
Mean BSVM EMCEB EMC1 ResNet 0.805 0.898
Mean EMCEB ResNet 0.814 0.897
Mean EMCEB EMC1 BTMTY 0.802 0.896
Mean EMC1 BTMTY 0.805 0.895
Mean BSVM EMCEB BTMTY ResNet 0.802 0.894
Mean BSVM EMCEB EMC1 BTMTY 0.805 0.893
Mean BSVM BTMTY ResNet 0.803 0.892
Mean BLV BSVM EMCEB EMC1 BTMTY ResNet 0.805 0.892
Mean BSVM EMC1 BTMTY 0.805 0.892

Mean EMCEB BTMTY 0.785 0.892
Mean BLV BSVM EMC1 BTMTY ResNet 0.809 0.892
Mean BSVM EMCEB EMC1 0.792 0.891

Mean BLV EMCEB EMC1 BTMTY ResNet 0.802 0.89
Mean BLV EMCEB BTMTY ResNet 0.805 0.89
Mean BSVM EMCEB ResNet 0.805 0.89
Mean BLV EMC1 ResNet 0.803 0.889
Mean BSVM ResNet 0.76 0.888
Mean BLV EMCEB EMC1 ResNet 0.811 0.888
Mean BLV BSVM EMCEB EMC1 ResNet 0.805 0.888
Mean BSVM EMCEB BTMTY 0.792 0.887
EMCEB 0.778 0.886
Mean BLV BSVM EMC1 ResNet 0.806 0.885
Mean BLV EMCEB EMC1 0.781 0.885
Mean BLV BSVM EMCEB BTMTY ResNet 0.802 0.885
Mean BLV EMCEB BTMTY ResNet 0.812 0.885
BTMTY 0.803 0.884
Mean BSVM EMC1 0.774 0.884
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Mean BLV BSVM EMCEB EMC1 BTMTY 0.799 0.883
Mean BLV EMCEB EMC1 BTMTY 0.802 0.882
Mean BLV BTMTY ResNet 0.806 0.882
Mean BLV BSVM BTMTY ResNet 0.796 0.882
Mean BLV EMCEB ResNet 0.794 0.881
Mean BLV ResNet 0.76 0.881
Mean BSVM BTMTY 0.767 0.88
Mean BLV BSVM EMCEB EMC1 0.799 0.88
Mean BLV EMC1 BTMTY 0.799 0.879
Mean BLV EMC1 0.76 0.879
Mean BLV BSVM EMC1 BTMTY 0.799 0.879
Mean BLV BSVM EMCEB ResNet 0.806 0.878
Mean BLV EMCEB BTMTY 0.792 0.878
Mean BLV BSVM EMCEB BTMTY 0.799 0.877
Mean BLV BSVM ResNet 0.782 0.875
Mean BSVM EMCEB 0.767 0.874
Mean BLV EMCEB 0.76 0.873
Mean BLV BSVM EMC1 0.782 0.872
Mean BLV BTMTY 0.76 0.867
Mean BLV BSVM EMCEB 0.77 0.867
Mean BLV BSVM BTMTY 0.776 0.867
Mean BLV BSVM 0.76 0.82
BSVM 0.767 0.797
BLV 0.76 0.741
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Table 10: BCA and mAUC scores (means) of experiment 2 where algorithms are trained in the
single training set scenario. The performance of the six individual algorithms are also in the table.
Observe that the table is ranked on mAUC score.

Model BCA mAUC

Median BLV EMCEB EMC1 BTMTY ResNet 0.802 0.913
Median BLV BSVM EMCEB EMC1 BTMTY ResNet 0.805 0.911
Median EMCEB EMC1 BTMTY 0.799 0.91
Median BLV BSVM EMCEB BTMTY ResNet 0.809 0.91
Median BLV EMCEB ResNet 0.799 0.909
Median BLV BSVM EMCEB EMC1 BTMTY 0.805 0.909
Median BLV EMCEB EMC1 ResNet 0.811 0.909
Median BLV BSVM EMCEB EMC1 ResNet 0.805 0.909
Median BSVM EMCEB EMC1 BTMTY ResNet 0.802 0.909
Median EMC1 ResNet 0.82 0.908
Median EMCEB EMC1 BTMTY ResNet 0.802 0.908
Median EMCEB EMC1 ResNet 0.811 0.908
Median BLV EMC1 ResNet 0.803 0.907
Median EMC1 BTMTY ResNet 0.799 0.907
Median BLV EMC1 BTMTY ResNet 0.805 0.906
Median BLV BSVM EMCEB ResNet 0.806 0.905
Median BLV BSVM EMC1 BTMTY ResNet 0.809 0.905
Median BSVM EMCEB EMC1 ResNet 0.805 0.905
Median BLV EMCEB EMC1 BTMTY 0.808 0.905
Median EMCEB BTMTY ResNet 0.812 0.904
Median BSVM EMC1 BTMTY ResNet 0.809 0.903
Median BSVM EMC1 ResNet 0.805 0.903
Median BLV EMCEB BTMTY ResNet 0.808 0.902
Median BSVM EMCEB EMC1 BTMTY 0.805 0.902
Median BSVM EMCEB EMC1 0.799 0.901
Median BLV BSVM EMCEB EMC1 0.799 0.901
Median BSVM EMCEB BTMTY ResNet 0.799 0.901
Median BLV BSVM EMC1 ResNet 0.806 0.901
Median BSVM EMCEB ResNet 0.811 0.901
Median EMCEB EMC1 0.782 0.901
Median BSVM BTMTY ResNet 0.806 0.899
ResNet 0.838 0.898
Median BTMTY ResNet 0.801 0.898
EMC1 0.792 0.898
Median BLV EMCEB EMC1 0.789 0.898
Median EMCEB ResNet 0.814 0.897
Median BLV EMC1 BTMTY 0.805 0.896
Median BLV BSVM BTMTY ResNet 0.796 0.896
Median EMC1 BTMTY 0.805 0.895
Median BLV BTMTY ResNet 0.803 0.894
Median EMCEB BTMTY 0.785 0.892
Median BLV BSVM EMCEB BTMTY 0.799 0.891
Median BLV BSVM EMC1 BTMTY 0.799 0.89
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Median BSVM EMC1 BTMTY 0.805 0.89
Median BSVM EMCEB BTMTY 0.799 0.888
Median BSVM ResNet 0.76 0.888
EMCEB 0.778 0.886
BTMTY 0.803 0.884
Median BSVM EMC1 0.774 0.884
Median BLV EMCEB BTMTY 0.798 0.884
Median BLV ResNet 0.76 0.881
Median BSVM BTMTY 0.767 0.88
Median BLV EMC1 0.76 0.879
Median BSVM EMCEB 0.767 0.874
Median BLV EMCEB 0.76 0.873
Median BLV BSVM EMCEB 0.77 0.871
Median BLV BSVM ResNet 0.782 0.869
Median BLV BTMTY 0.76 0.867
Median BLV BSVM EMC1 0.782 0.867
Median BLV BSVM BTMTY 0.776 0.862
Median BLV BSVM 0.76 0.82
BSVM 0.767 0.797
BLV 0.76 0.741

Table 11: BCA and mAUC scores (means) of experiment 1 where algorithms are trained in the
separate training set scenario. The performance of the four individual algorithms are also in the
table. Observe that the table is ranked on mAUC score.

Model BCA mAUC

Mean EMCEB ResNet 0.817 0.911
Mean BSVM ResNet 0.8 0.904
Mean BSVM EMCEB ResNet 0.817 0.903
ResNet 0.785 0.899
Mean BLV ResNet 0.76 0.894
Mean BLV EMCEB ResNet 0.805 0.893
Mean BLV BSVM EMCEB ResNet 0.805 0.892
Mean BLV BSVM ResNet 0.784 0.891
EMCEB 0.763 0.866
Mean BSVM EMCEB 0.767 0.863
Mean BLV EMCEB 0.76 0.859
Mean BLV BSVM EMCEB 0.764 0.857
Mean BLV BSVM 0.76 0.821
BSVM 0.767 0.798
BLV 0.76 0.741
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Table 12: BCA and mAUC scores (means) of experiment 2 where algorithms are trained in the
separate training set scenario. The performance of the four individual algorithms are also in the
table. Observe that the table is ranked on mAUC score.

Model BCA mAUC

Median EMCEB ResNet 0.817 0.911
Median BLV EMCEB ResNet 0.798 0.908
Median BLV BSVM EMCEB ResNet 0.798 0.907
Median BSVM ResNet 0.8 0.904
Median BSVM EMCEB ResNet 0.811 0.902
ResNet 0.785 0.899
Median BLV ResNet 0.76 0.894
Median BLV BSVM ResNet 0.784 0.879
EMCEB 0.763 0.866
Median BSVM EMCEB 0.767 0.863
Median BLV EMCEB 0.76 0.859
Median BLV BSVM EMCEB 0.764 0.846
Median BLV BSVM 0.76 0.821
BSVM 0.767 0.798
BLV 0.76 0.741

B Hyper parameter optimalisation for models with a ResNet architecture.

Table 13: Hyperparameter optimisation for models that use the ResNet architecture. LR - learning
rate

Initial LR Batch size Nodes per layer # of layers % drop out
0.001 10 50 20 0.05
5E-4 10 50 10 0.05
5E-4 20 50 15 0.05
5E-4 15 100 10 0.05
5E-4 10 20 10 0.05
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