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Abstract

Topological crystalline insulators (TCI’s) are materials that host robust gapless states protected by
crystalline symmetries. In this thesis, SnTe is studied using a tight-binding model. We focus on
the electronic and transport properties of nanowires with (100) and (110) surface terminations, in
the mesoscopic regime. In these configurations, gapless states are characterized as robust (against
finite-size effects, step edges, and hinge rounding) spin-polarized surface and hinge states with cor-
ner charge, demonstrating intrinsic higher-order-topological behavior. We also investigate a mixed
nanowire configuration having both (001) and (101) surface terminations, which displays extrinsic
topological behavior.

Transport simulations reveal distinct conductance signatures for each surface termination. Nanowires
with (100) terminations host surface states extending along the nanowire’s perimeter, showing Aharonov-
Bohm oscillations in longitudinal transport. Nanowires with a (110) terminations host confined surface
states, giving rise to resonant tunneling conductance signatures for transverse transport.

These findings contribute to the general understanding of TCI nanowires, specifically the relationship
between surface termination, gapless states, and transport signatures, providing valuable insights for
the future design of TCI-based electronic devices.
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1 Introduction

In the last decades, topological materials have emerged as a frontier in condensed matter physics,
driven by their unique electronic properties. These unique properties give rise to promising applica-
tions in quantum computing, spintronics and low-power electronics [1].

Topological insulators are a subclass of topological materials, characterized by an insulating bulk and
robust conductive surface states, protected by the topology of the material. Among these, topological
crystalline insulators (TCI’s) rely on crystalline symmetries protecting the topology [2]. SnTe, which
is narrow-gap IV–VI semiconductor, is the first material realization of a TCI predicted [3] and exper-
imentally observed [4]. SnTe has also been proposed as a higher-order topological insulator (HOTI)
[5], in which gapless surface states lose there two-dimensional character, becoming one-dimensional
hinge states, localized at the edges of the nanowire. A recent study confirmed SnTe nanowires host
these hinge states, while also hosting confined and extended Dirac surface states [6], depending on
the wire’s surface termination.

The experimental interest for SnTe is mostly because combining a SnTe nanowire with superconduc-
tivity, gives rise to Majorana modes at the ends of the nanowire [7]. These modes can be used to
create a topologically protected qubit. An advantage of this type of qubit, is its robustness and fault
tolerance, which are necessary when scaling the number of qubits in quantum computing.

This thesis aims to contribute to the theoretical understanding of SnTe nanowires, which is an impor-
tant step towards realizing these applications. We focus on how the electronic and transport properties
of hinge and surface states depend on the nanowire geometry and surface termination.

A tight-binding approach will be used to model SnTe for different nanowire configurations. We inves-
tigate how properties of surface and hinge states in cross sections of a TCI (specifically SnTe) depend
on surface termination. We analyze their band structures, the emergence of gapless states, the flux
response, the influence of strain, spin polarization and corner charge. Imperfections like step edges
and hinge rounding will also be discussed.

We also explore quantum transport in these nanowire structures, which is a novel topic, not addressed
in literature. We examine transport in both the longitudinal direction (along the nanowire axis) and the
transverse direction (perpendicular to the nanowire axis). By threading the nanowires with a magnetic
flux, we examine the presence of Aharonov-Bohm oscillations. We aim to identify distinct transport
signatures of the gapless states propagating in these structures.

The thesis is structured as follows: Chapter 2 provides theoretical background, Chapter 3 describes the
methodology, including the tight-binding model and its validation against bulk and slab geometries.
Chapter 4 covers the electronic properties of the nanowire configurations. Chapter 5 presents the
quantum transport results in the longitudinal and transverse directions. Chapter 6 gives the conclusion
and Chapter 7 the outlook discussing future research directions.
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2 Theory

In this section, we present the theoretical background necessary to describe the electronic and trans-
port properties of SnTe nanowires. We begin by outlining the crystal structure and reciprocal space
of SnTe, followed by a discussion of the tight-binding (TB) model used to capture its electronic be-
havior. Next, we introduce some basic concepts in topology, including the notion of a topological
crystalline insulator, the role of symmetries, and bulk-boundary correspondence. Finally, we discuss
the scattering matrix formalism, which plays a central role in our quantum transport calculations.

2.1 Crystal structures

This section covers the mathematical description of crystal structures. We demonstrate that the physics
of a crystal can be described using its band structure, which can be numerically evaluated using the
tight-binding approach.

2.1.1 Band structures

A crystal can be described by a set of repeated points, known as a lattice. In real space the full lattice
is described by R = n1a1 + n2a2 + n3a3, where {a1, a2, a3} are the primitive lattice vectors constructing
the unit cell (n1, n2, n3 ∈ N). This is known as a Bravais lattice, which is generated by a set of discrete
translation operations. SnTe has a rock-salt crystal structure, consisting of two interpenetrating face-
centered cubic (FCC) lattices, depicted in Figure 2.1 (a). The primitive lattice vectors {a1, a2, a3} for an
FCC lattice are:

a1 =
a
2
(0, 1, 1), a2 =

a
2
(1, 0, 1), a3 =

a
2
(1, 1, 0)

where a = 6.31 Å is the length of the unit cell, such that the bond length between Sn-Te atoms is a/2.

Figure 2.1: (a) Rock salt crystal structure SnTe. The unit cell (green box) consists of Sn and Te, the
Bravais lattice vectors {a1, a2, a3} span the FCC lattice [8]. (b) Bulk BZ of SnTe. (c) Bulk band
structure of SnTe, taken from [9].
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The electronic wave functions in a crystal can be described by utilizing the periodicity of the crystal.
Bloch’s theorem states that the solutions of the Schrödinger equation in a periodic potential can be
expressed as a Bloch states

ψn,k(r) = eik·run,k(r) (2.1)

where un,k(r) is a function that shares the same periodicity as the crystal. Each Bloch state is labeled
by a (discrete) band index n and the wave vector k.

The reciprocal lattice vectors {b1, b2, b3} can be directly computed from the primitive lattice vectors
using ai · bj = 2πδij, with δij the Kronecker delta. Using the reciprocal lattice vectors, reciprocal space
can be constructed.
Adding a reciprocal lattice vector to the wave vector k does not change the wave function ψn,k(r).
Therefore, all unique k-vectors can be restricted to the Wigner–Seitz cell of the reciprocal space, known
as the (first) Brillouin zone (BZ).
For bulk (3D) SnTe, the BZ has the shape of a truncated octahedron, shown in Figure 2.1 (b). It contains
several high-symmetry points (HSP’s) such as Γ : (0, 0, 0), X :

(
1
2 , 0, 0

)
, and L :

(
1
2 , 1

2 , 1
2

)
, given in the

reduced coordinates relative to the reciprocal lattice vectors.

Each k-point in reciprocal space corresponds to a distinct Bloch state, characterized by an energy E and
wave function ψn,k(r). Since computing the band structure across the entire 3DBZ is computationally
intensive, it is common practice to evaluate the band structure along a path connecting these HSP’s,
which is known as a high-symmetry path.
The band structure of bulk SnTe is shown in Figure 2.1. The L-point is of special interest, as the
energy gap between the valence and conduction band is smallest there, placing SnTe among the IV–VI
narrow-gap semiconductors.

Two important quantities that can be extracted from the band structure E(k) are the group velocity
and the effective mass.

vg =
1
h̄

dE
dk

(2.2)

m∗ = h̄2
(

d2E
dk2

)−1

(2.3)

The group velocity vg determines how fast an electron wave packet moves through the crystal, deter-
mined by the slope of the energy band. The effective mass m∗ describes how the electron responds to
external forces (such as an electric field) and is related to the curvature of the band. A linear dispersion
(e.g. near a Dirac cone) has zero curvature, resulting in an effective mass of m∗ = 0.

When considering lower-dimensional geometries, such as slabs (2D) or nanowires (1D), the BZ also
reduces its dimension. For example, in a slab geometry, translational symmetry is preserved only in
the in-plane directions (as these have periodic boundary conditions), while broken in the out-of-plane
direction (which has an open boundary condition). The momentum in the out-of-plane direction be-
comes discrete such that the 3DBZ is projected to a 2DBZ.
Since this is quite abstract, we make it more concrete by considering the following example. A
nanowire with translational invariance along the z-axis, has a 1DBZ, characterized by a single mo-
mentum kz. To relate this to a higher-dimensional BZ, for instance the 2DBZ (ky, kz) of a (100) slab,
we notice that the difference between the slab and the nanowire is the replacement from a periodic
boundary condition in the y-direction to an open boundary condition. In reciprocal space, this results
in the formerly continuous momentum ky becoming discrete, with allowed values ky = n · 2π/Ly,
where Ly are the number of unit cells along the y-direction and n ∈ N. The 2DBZ becomes effectively
a set of 1DBZ cuts projected onto each other, labeled with continuous kz and discrete ky values.
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2.1.2 Tight-binding approach

A widely used approximation for computing electronic band structures is the tight-binding (TB) ap-
proach. In this model, we assume that the electrons are primarily localized on individual atomic sites,
but can also move (hop) in between sites due to some orbital overlap.

With this picture in mind, we can for example write the Hamiltonian of a simple 1D chain of atoms
with nearest neighbor hopping:

H = ∑
n

ϵn|n⟩⟨n|+ ∑
n ̸=m

tnm|n⟩⟨m| (2.4)

where |n⟩ represents the orbital at site n. ϵn is the onsite energy of the orbital and tnm the hopping
between orbitals of neighboring sites n and m.

Solving the Schrödinger equation Hψ = Eψ comes down to diagonalizing the Hamiltonian matrix.
The eigenvalues correspond to the allowed energies E, while the eigenvectors ψ describe the associated
wave functions.

Obviously this strategy raises problems when there is a translational invariant direction, as such sys-
tems contain an infinite number of sites. However, this translational symmetry can be exploited by
performing a Fourier transform

|k⟩ = 1√
N

∑
n

eik·Rn |n⟩, (2.5)

where Rn denotes the position of the n-th site and N is the total number of sites.

Using these momentum states we can find the energy dispersion by diagonalizing the Hamiltonian.
Its matrix elements read

H(k) = ⟨k|H|k⟩ = 1
N ∑

m,n
e−ik·Rm⟨m|H|n⟩eik·Rn = ϵ0 +

1
N ∑

R ̸=0
t(R)eik·R, (2.6)

where ϵ0 is the onsite energy, t(R) the hopping between sites separated by R = Rn − Rm.
This shows how a translational invariance replaces the infinite number of sites in the Hamiltonian
matrix by the wave vector k.

Peierls substitution

Magnetic fields can be included into TB models using the Peierls substitution, which modifies the
hopping amplitudes by attaching a phase factor tnm → tnmeiφnm , where φnm is the phase acquired by
an electron hopping from site rn to rm. This phase is given by

φnm =
e
h̄

∫ rm

rn
A · dl, (2.7)

where A is the vector potential associated with the magnetic field B = ∇×A, and dl is an infinitesimal
line element along the hopping path. This substitution ensures gauge invariance and captures the
influence of an external magnetic field [6].
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2.2 Symmetries

Crystal structures are inherently highly symmetric. They are invariant under a set of point group
symmetries, such as mirror reflections, rotations and inversion. These symmetries are not just aes-
thetic, they are deeply embedded in the physics of the system. In particular, they are present in the
Hamiltonian that governs the electronic properties of the crystal.

In general, a symmetry is represented by an operator S. If the system is symmetric under this opera-
tion, the symmetry operator commutes with the Hamiltonian:

[H, S] = 0.

This implies that the symmetry imposes constraints on the energy eigenstates and eigenvalues of the
system.

Symmetries have important consequences for the BZ as well. They reduce the number of unique points
that need to be considered, because symmetry-related points in the BZ are physically equivalent. As
a result, we can focus on a reduced BZ, which contains all the physical information.

We take a closer look at two key symmetries relevant to our study: time-reversal (TR) symmetry
and crystalline mirror symmetries. We will explore how these symmetries act on the Hamiltonian,
influence the structure of the BZ, and shape the band structure of the material.

2.2.1 Kramer’s pairs

A system is TR symmetric if the system looks exactly the same if time would be reversed (t 7→ −t).
Under TR both momentum and spin are reversed k 7→ −k and σ 7→ −σ.

This symmetry ensures that the energy bands E(σ, k) = E(−σ,−k), forming a so called Kramers pair
at TR-invariant momenta (TRIM) such as k = 0.

A system is inversion (I) symmetric if the system looks exactly the same if positions would be inverted
(r 7→ −r), such that E(σ, k) = E(σ,−k). Combined with TR symmetry, this ensures all bands in the
band structure are two-fold degenerate.

2.2.2 Mirror symmetry

SnTe possesses an important set of mirror symmetries associated with the {110} family of mirror
planes. In particular, the (110) mirror symmetry, represented by mirror operator M, acts on the Bloch
Hamiltonian as:

MH(kx, ky, kz)M−1 = H(ky, kx, kz). (2.8)

From this, we see that the mirror-invariant plane in the BZ is defined by kx = ky. Therefore, the Bloch
states within this plane are left invariant under the mirror operation and must be eigenstates of the
mirror operator M.

Interestingly, if we apply the mirror operation twice, one might expect to recover the original state.
However, for spin- 1

2 particles such as electrons, a minus sign is picked up under a 2π rotation, leading
to M2 = −1. This implies that all (bulk) wave functions living in the mirror plane can be labeled by
the mirror eigenvalues M = ±i.

This allows the Hamiltonian to be block-diagonalized into two decoupled sectors:

H = Hi ⊕ H−i (2.9)

where each block corresponds to states with mirror eigenvalue +i or −i, respectively. Why this is
useful will be discussed in a later section.

5



2.2.3 k · p

Symmetries can also be used to study band structures analytically. In general, band structures can only
be solved analytically in highly simplified models. As the complexity of the TB model increases, full
exact solutions become impossible to find. However, it is still possible to analyze low-energy regions
of the band structure analytically using perturbation theory along with symmetry constrains.

Since electrons occupy all states up to the Fermi energy EF, it are primarily the states near EF that
determine the properties of a material. Therefore, developing an analytical understanding of the band
structure in the vicinity of the Fermi level is particularly valuable. This can be achieved through an
effective low-energy model, constructed using so called k · p theory, which we will outline here.

The periodic function un,k(r) of a Bloch state satisfies H(k)un,k(r) = En,kun,k(r), which is similar to
the Schrödinger equation but with Bloch Hamiltonian

Hk =
p2

2m
+

h̄ k · p
m

+
h̄2k2

2m
+ V (2.10)

consisting of the standard Schrödinger Hamiltonian H0 = p2

2m + V with an additional k-dependent
term. This term determines how the energy bands behave as a function of k. In general there is no
analytical solution. Using perturbation theory a low-energy model can still be constructed.
Suppose we are interested in the band structure near a particular HSP in the BZ, denoted by kHSP.
Consider a small deviation δk from this HSP, such that k = kHSP + δk.

Expanding the Bloch Hamiltonian H(k) up to first order in δk, we obtain:

H(k) = H(kHSP) + δk · ∇kH(k)|kHSP
+O((δk)2)

= H(kHSP) +
h̄
m

δk · (p + h̄kHSP) +O((δk)2). (2.11)

Since this is a Taylor expansion, the approximation is only valid when δk is small (i.e. close to the
HSP). Therefore, k · p theory serves as an effective low-energy model. Treating δk · p as a perturbation,
energy bands and wave functions can be analytically studied. From this, parameters such as the
effective mass and group velocity can be extracted.

In constructing k · p models, symmetries play a crucial role. The crystal symmetries at HSP’s constrain
the allowed terms in the effective Hamiltonian.

For SnTe, the k · p model near the L-points in the BZ is given by [3]:

H(k) = m0 s0 ⊗ σz + v(k1s2 − k2s1)⊗ σx + v3k3 s0 ⊗ σy, (2.12)

where s⃗ and σ⃗ are Pauli matrices acting in spin and orbital space, respectively. This Hamiltonian
describes a Dirac cone when the mass term m0 = 0, when m0 ̸= 0, an energy gap opens.

Interestingly, the sign of the mass term m0 is not merely a detail, it carries physical meaning. In order
to explain its physical significance, we need to introduce topology.

6



2.3 Topology

Topology is the mathematical study of properties of spaces that remain invariant under continuous
deformations. A classic example illustrating this is the topological equivalence of a coffee mug and
a doughnut, which can be continuously deformed into each other. A sphere is not topologically
equivalent to either the coffee mug or the doughnut, as deforming it into one of these shapes would
require creating a hole, which is not allowed under continuous deformation.

In condensed matter physics, the topology of a material is not protected by a physical hole, but by the
energy gap between the valence and conduction bands in its electronic band structure. In other words,
two materials are topologically equivalent if the Hamiltonians describing them can be continuously
deformed into each other without closing the energy gap. If the energy gap must close in order to
continuously deform the band structure of one system into that of the other, the two systems belong
to different topological phases.

Systems in different topological phases give rise to a wide range of interesting and physical phenom-
ena. In what follows, we will touch upon the basic topology concepts relevant for this thesis.

2.3.1 Topological (crystalline) insulator

Topological insulators (TI’s) are a subclass of topological materials. To build an understanding of the
physics of TI’s, we first examine two well-known quantum Hall systems. This foundation allows us to
explore the general band structure characteristics of a TI.

From quantum Hall systems to topological insulators

The integer quantum Hall insulator (IQHI) was historically the first encounter with a quantum phase
characterized by topology. Its phase is based on the integer quantum Hall effect, where applying a
magnetic field perpendicular to a two-dimensional (2D) material induces unidirectional (chiral) edge
states, schematically shown in Figure 2.2 (a). This is an example of a Chern insulator, which refers to
2D systems with an insulating bulk and conducting edge states.

The topological phases of the IQHI are characterized by the Chern number C, which serves as the
topological invariant of this system. It can be shown that the Chern number must be an integer,
meaning the IQHI possesses a Z invariant. Specifically, when C = 0, the system is in a trivial phase,
without any edge states. When C ̸= 0, the system enters a non-trivial topological phase, hosting
chiral edge states. The Chern number can also be related to the number of edge states and therefore
the quantized conductance seen in the integer quantum Hall effect. Therefore, the Chern number
provides the theoretical tool to understand the IQHI in terms of topology. Computing the Chern
number involves integrating over the energy bands in the BZ. The mathematical formulation of the
Chern number can be found in Hatsugai et al. [10].

Figure 2.2: Schematic illustration of the (a) integer quantum Hall insulator (IQHI) with chiral edge
states, and (b) the quantum spin Hall insulator (QSHI) with helical edge states. This illustration was
taken from [11].
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It is important to highlight that the IQHI relies on an external magnetic field to generate edge states. In
other words, these edge states exist due to broken TR symmetry. In topological systems, the presence
or absence of symmetries plays a crucial role in determining whether a phase is trivial or non-trivial.

A related system, where TR symmetry must remain intact (instead of broken) to sustain a topological
non-trivial phase, is the quantum spin Hall insulator (QSHI). Unlike the IQHI, the QSHI hosts two
counter-propagating spin-polarized (helical) edge states, depicted schematically in Figure 2.2 (b). In
this system, no external magnetic field is required. Instead, strong spin-orbit coupling (SOC) generates
the edge states, with TR symmetry protecting them from backscattering. The corresponding topolog-
ical invariant for the QSHI is the Z2 = (0, 1) index [12]. This invariant differentiates the trivial phase
(no edge states) from the non-trivial phase (with helical edge states).

The principles explaining the IQHI and QSHI provide a foundation for understanding topological
insulators. The described ideas extend naturally to three-dimensional topological insulators, where
protected surface states arise from non-trivial band topology. To understand these topological phases
quantitatively, we will now study the band structure characteristics of a topological insulator.

Topological band structure characteristics

The schematic band structure of a trivial insulator is illustrated in Figure 2.3 (a). In this case, the
valence and conduction bands are well seperated by the energy gap Eg. The Fermi level lies within
this gap, as (at half-filling) the valence band is fully occupied while the conduction band is empty.
This is of course at zero temperature, which is the regime considered in this thesis.

Figure 2.3 (b) schematically illustrates the band structure of a TI. Unlike a trivial insulator, a TI exhibits
spectral flow, meaning that gapless states provide a continuous connection between the valence and
conduction bands. These gapless states exist within the bulk energy gap and are localized at the
boundaries of the material (i.e. boundary states). In a 3D TI, they appear as surface states, while in a
2D TI, they manifest as edge states.

Note that the band structure of a trivial insulator and a topological insulator cannot be continuously
deformed into one another without closing the energy gap, indicating that they belong to topologically
distinct phases.
An important difference between the bulk bands of these phases is band inversion, where the usual
ordering of conduction and valence bands is reversed due to strong SOC. This inversion changes the
topological character of the bulk bands and leads to the emergence of protected gapless boundary
states.

Figure 2.3: Schematic illustration of band structures. (a) Trivial insulator: the conduction and valence
bands are separated by an energy gap (Eg), with the Fermi level (EF) positioned within the gap. (b)
Topological insulator: features spin-polarized gapless states forming a Dirac cone, with band
inversion indicated.

8



These gapless states have a linear dispersion relation, forming the characteristic Dirac cone. The Dirac
point is typically located at TRIM points in the BZ. Due to the linear dispersion, these gapless states
behave as massless fermions, as there effective mass becomes zero (m∗ = 0). This means that the
electron response is extremely sensitive to an external force, allowing for dissipationless transport.

The gapless states also exhibit spin-momentum locking. This occurs in materials with strong SOC, giv-
ing rise to spin-polarized states. In such materials, the electron’s spin becomes tied to its momentum.
In a low-energy model this is typically captured by k · σ terms, as can be seen in the k · p Hamiltonian
from eq. 2.12.

Although gapless states are localized at the boundary, their wave functions penetrate into the bulk
with an exponential decay: ψ = e−z/ξ , characterized by the penetration depth ξ.
If wave functions of gapless states localized on opposing boundaries of a material have a finite overlap,
they hybridize and open a finite-size-induced energy gap in the Dirac cone. The overlap of the surface
states on opposing sides of a slab geometry is approximately given by

⟨ψtop | ψbottom⟩ ∼ e−N/ξ , (2.13)

where N is the number of layers of the slab geometry. Therefore, the finite-size-induced energy gap
scales as Eg ∼ e−N/ξ . Thus, only if the system size N >> ξ we expect to see a clear Dirac cone.

Topological protection

Assuming we have a system that is large enough, such that there are no hybridization effects, the Dirac
cone is protected by the symmetry that protects the topology of the system.
For instance, for the QSHI, breaking TR symmetry would destroy its topological protection, leading to
a gapped Dirac cone (i.e. a finite energy gap).

The topology of a material can be quantified through topological invariants, which mathematical
formulation depends on the underlying symmetries of the system and its Bloch bands. In general,
using the local symmetries: TR, particle hole and chiral symmetry, the topology of a material can be
classified using the Altland-Zirnbauer classification.

Another class of TI’s is the topological crystalline insulator (TCI), which will be focused on in this the-
sis. It is novel in the sense that the topological protection relies on crystalline point group symmetries,
rather than local symmetries.

SnTe is an example of such a TCI. The symmetry protecting the topology is the family of {110} mirror
symmetry planes. The topological invariant for SnTe is the mirror Chern Cm = −2. The mirror Chern
number is defined as

Cm = (Ci − C−i)/2 (2.14)

where C±i are the Chern numbers corresponding to each sector in the block-diagonalized Hamiltonian
from eq. 2.9. TR symmetry ensures Ci + C−i = 0, but the difference can be non-zero, defining the
non-trivial mirror Chern number [13].

For SnTe, the mirror Chern number in each of the {110} mirror planes has been computed to be
Cm = −2. Therefore, SnTe is expected to host an even number of Dirac cones on high-symmetry
crystal surfaces such as {001}, {110}, and {111} [3]. These Dirac cones are topologically protected by
the {110} mirror plane.

When the mirror symmetry plane protecting the Dirac cone is broken, the Dirac cone becomes gapped.
A natural way of breaking a mirror symmetry is by applying strain to the material.
Strain deforms the crystal, causing atoms to stretch and squeeze. This effectively changes bond lengths,
altering the overlap between orbitals. This symmetry breaking removes the (onsite) degeneracy of the
orbitals, causing them to split in energy.

This effect can be modeled using a crystal field splitting term characterized by the strain strength
parameter ∆ (see supplementary materials of Schindler et al. [5]). The lowest order term capturing
this anisotropy is given by:
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HCF =
∆
2
[
(L · d2)

2 − (L · d1)
2] (2.15)

where L = (Lx, Ly, Lz) is the orbital angular momentum operator. Unit vectors d1 and d2 specify the
directions along which the strain is applied.

Although strain also modifies the hopping terms by altering the overlap integrals, we will neglect this
effect, as the crystal field splitting term already captures the relevant symmetry-breaking behavior.

Finally, because strain modifies the bond lengths, it can potentially change the band inversion and in-
duce a topological phase transition, as SnTe is not trivially connected to the atomic limit [3]. Therefore,
it should be checked for which strain strength ∆ the bulk energy gap Eg closes.

2.3.2 Bulk-boundary correspondence

The link between the topological invariant (determined solely by the bulk) and the presence/absence
of gapless surface (or edge) states is known as the bulk-boundary correspondence [14]. In other words,
the topological properties of the bulk alone indicate the existence of gapless states.

This principle provides a theoretical framework that explains the robustness of gapless boundary
states. In order to eliminate the gapless states, the system’s topological invariant must be changed,
which would require a topological phase transition.

An intuitive picture of bulk-boundary correspondence arises when considering a domain wall, which
can be an interface between a trivial and non-trivial system.

Domain wall

Bulk-boundary correspondence predicts protected boundary states based solely on bulk topology.
Another way to interpret these boundary states is as arising from a domain wall. This scenario can be
analytically analyzed using k · p theory.

An important term in the k · p Hamiltonian of SnTe (eq. 2.12) is the mass term m0, whose sign
determines the topological phase of the system: m0 > 0 corresponds to a band-inverted non-trivial
phase (e.g. SnTe), while m0 < 0 corresponds to a trivial insulator (e.g. PbTe).

For a domain wall, the effective mass m0 changes sign at the interface, introducing a spatial depen-
dence m0 → m(x). Starting from the k · p Hamiltonian for SnTe (Eq. 2.12) and simplifying to one
dimension (setting k1 = k2 = 0) in position space (k3 → −i∂x), yields

H(x) = −iv3σy∂x + m(x)σz (2.16)

This 1D Dirac Hamiltonian was first studied by Jackiw-Rebbi [15]. Solving it for a mass profile that
changes sign at the interface reveals a bound state (E = 0) localized at the interface. The state decays
exponentially into the bulk ψ ∼ e−x/ξ .

This analyses can be generalized to higher dimensions, the principle remains the same: a domain wall
is accompanied by a bound state localized at the interface and decaying exponentially into the bulk.
This provides the theoretical basis for the gapless states we encountered earlier.

Importantly, a domain wall is not necessarily an interface between a trivial and a non-trivial system.
It can also arise in other contexts. For example, when two surfaces meet to form a hinge, which we
will turn our attention to now.
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Hinge states

Higher-order topological insulators (HOTIs) go beyond the conventional bulk-boundary correspon-
dence. Unlike TI’s, where gapless states appear on boundaries one dimension lower than the system,
HOTIs host gapless states on boundaries that are two or more dimensions lower. In a 3D HOTI,
this means that the gapless states can appear along 1D hinges instead of 2D surfaces. SnTe has been
identified as a HOTI, hosting helical hinge states at the edges of a nanowire [5].

Figure 2.4 illustrates the formation of these hinge states. First consider a surface hosting two gapless
Dirac cones. Tilting the surface on both ends breaks the mirror symmetry that was protecting the
surface Dirac cones, allowing a mass term in the k · p Hamiltonian. Since the angles are opposite ±α,
it can be shown that the mass terms are opposite [5]. Therefore, these two surfaces form a domain
wall at the hinge. This gives rise to a pair of counter-propagating protected hinge states. Increasing
the tilting angle cannot remove the hinge state, as long as the opposite surfaces map into each other
such that the mirror symmetry at the hinge is preserved.

Figure 2.4: Formation of hinge states, image taken from [16].
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2.4 Scattering matrix formalism

The study of quantum transport has historically proven to be a powerful tool in identifying and
characterizing topological phases. A prime example is the integer quantum Hall insulator (IQHI),
where quantized plateaus in the Hall conductance are directly related to the topological invariant.

What distinguishes a non-trivial topological insulator from a trivial one is the presence of robust, spin-
polarized, gapless surface states. Since these states cross the Fermi level, they can support conduction
even when the bulk is insulating. Studying the conductance around the bulk energy gap thus provides
direct insight into the nature and presence of such topological surface states.

By studying the quantum transport properties of SnTe nanowires, we aim to identify transport signa-
tures of the gapless states present. Conductance is numerically computed using the scattering matrix
formalism, which we introduce in this section.

Scattering problem

In order to study the quantum transport properties of the nanowire structures, we need a way to
extract the conductance from our system. In the ballistic mesoscopic regime, computing conductance
G comes down to finding the total transmission probability T between incoming and outgoing modes.
Finding these probabilities for a particular configuration is known as a scattering problem.

Figure 2.5 illustrates a general 1D scattering problem. An incoming mode encounters a scattering
region, visualized as a potential barrier V(x). The goal is to find the transmission probability t, i.e. the
probability of the incoming mode scattering into an outgoing mode. From current conservation, the
reflection probability is directly related by |r|2 + |t|2 = 1.

Figure 2.5: Schematic illustration of a 1D scattering problem.

To solve this system, we discretise everything onto a lattice. Since the wavefunctions in the incom-
ing/outgoing leads are known (plane waves), they can be matched to the wavefunction in the scatter-
ing region. This results in a linear system of equations that can be numerically solved to obtain the
transmission amplitudes. For further details, see [17].

In this thesis, the scattering geometry involves two leads connected via a central scattering region. We
fix the energy E and define M0 and M1 as the number of propagating modes in lead 0 and lead 1,
respectively. The reflection and transmission amplitudes between incoming and outgoing modes are
summarized by the scattering matrix

S =

[
S00 S01
S10 S11

]

Each block is a submatrix describing scattering between modes in the leads. S00 and S11 correspond
to reflection within leads 0 and 1, respectively, while S01 and S10 describe transmission between the
leads.

In particular, we are interested in the submatrix S01, which has dimensions M0 × M1. The total
transmission probability T01 is given by the squared Frobenius norm of S01, i.e. the sum of all mode-
to-mode transmission amplitudes.
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Conductance

The Landauer-Büttiker formula relates the total transmission probability to the conductance:

G =
e2

h
T01 =

e2

h ∑
ij
|Sij

01|
2 (2.17)

where h is Planck’s constant and e is the elementary charge, with the prefactor e2/h defining the
conductance quantum.

We study the conductance as a function of energy E, particularly in the energy range between the
valence and conduction bands, where the gapless states are located. The conductance spectrum G(E)
reveals how states at different energies contribute to transport through the scattering region. It is
especially sensitive to the presence of confined or extended states in the scattering region.
For example, when the scattering region supports confined quasi-bound states, due to confinement
from two potential barriers, resonant tunneling occurs. In that case, when the energy of an incoming
mode matches the energy of a confined state, a sharp peak occurs in the conductance spectrum G(E).
In contrast, when states are not confined, conductance varies more smoothly with energy.

When computing conductance with leads connected perpendicular the infinite nanowire system (prob-
ing conductance in the transverse direction), a kz value needs to be specified. To account for all states
contributing to transport, the total conductance is obtained by integrating over the one-dimensional
BZ of the nanowire:

G(E)/L =
1

2π

∫
G(kz, E) dkz ≈

1
2π ∑

kz

G(kz, E)∆k (2.18)

where L is the wire length. The sum approximates the integral under the assumption that G(kz, E) is
smooth.
Note that integrating over the states in the BZ is not necessary when attaching leads parallel to the
nanowire (the longitudinal direction), as in that case the scattering region is finite.
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3 Tight-binding models and validation

This section presents the tight-binding (TB) approach applied to SnTe. We introduce two distinct
TB models, validate their implementation, and demonstrate their topological equivalence. This will
be carried out through characteristic examples involving both bulk and slab geometries. Along the
way, we will discuss important concepts such as penetration depth, spin-momentum locking, and the
topological phase transition.

3.1 Tight-binding models

In literature on theoretical studies of SnTe, two TB models are frequently used. In this work, we will
refer to these two models as the Hsieh model [3] and the Lent model [9].

The Lent model is historically most widely used and is considered the more accurate model. The TB
Hamiltonian includes onsite potentials, nearest-neighbor hopping, and a spin-orbit coupling (SOC)
term. It includes s-, p-, and d-orbitals, in total 18 orbitals per atom (one s, three p, and five d,
each with spin degeneracy). While including a lot of orbitals makes the model more accurate, it
also significantly increases the Hamiltonian size. Between these orbitals, it incorporates not only the
dominant σ-bonding term, but also the higher-order bonding interactions such as the π- and δ-bonds.
The Hamiltonian as well as the parameters used for the Lent model, are presented in the Appendix
A1.

The Hsieh model is used as an effective model, designed to capture the essential topological features of
SnTe near the Fermi energy. It considers only the p- orbitals with σ-bonding, as these give the dominant
contributions around the Fermi energy. This decreases the DOF to 6, making it computationally much
more efficient. For most of the results presented in this thesis, we use the Hsieh model. Therefore, we
will take a closer look at its TB Hamiltonian:

Htb =m ∑
j
(−1)j ∑

r,α
c†

j,α(r) · cj,α(r)

+ ∑
j,j′

tjj′ ∑
(r,r′),α

c†
j,α(r) · d̂rr′ d̂rr′ · cj′ ,α(r

′) + h.c.

+ ∑
j

iλj ∑
r,α,β

c†
j,α(r)× cj,β · sα,β.

(3.1)

The first line represents the onsite potentials at the sites, labeled by position r. The first term m is the
onsite potential difference between Sn and Te. Index j labels Sn (j = 1) and Te (j = 2), α =↑, ↓ the spin.
The creation (c†) and annihilation (c) operators are vector operators, written in the following basis:

{|px, ↑⟩, |py, ↑⟩, |pz, ↑⟩, |px, ↓⟩, |py, ↓⟩, |pz, ↓⟩}

The second term includes the nearest (t12 = t21) and next-nearest (t11 and t22) neighbor hopping terms.
The dot product with unit vector d̂rr′ between sites r and r′ ensures σ-bond hopping.
The third term is the SOC term, written in terms of creation and annihilation operators. It can be
easily implemented using L · S = ∑2

i=0 (σi ⊗ Li), where λ1,2 represents the strength of the SOC.

When using the Hsieh model, the following set of parameters will be used: m = −1.65, t11 = −t22 =
0.5, t12 = t21 = 0.9, λ1 = λ2 = 0.7. These parameters were also used in previous studies of SnTe
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nanowires [6]. Using the topological invariants presented in [7], it can be checked that these parameters
fall within the topological regime. Parameters used for the Lent model are given in the Appendix A1.

These TB models were implemented using Kwant [17]. Kwant is a Python library for numerical
calculations involving TB models, designed to make the simulation and implementation as easy as
possible. Since these models give rise to large sparse matrices, the MUMPS library [18] was used.
The code used to produce the results presented in this thesis is publicly available on GitLab1. For the
implementation of the Lent model, existing code, written by Dániel Varjas was used2.

1https://gitlab.kwant-project.org/qt/tci_surface_states/-/tree/master?ref_type=heads
2https://gitlab.kwant-project.org/qt/SnTe/-/blob/master/model/SnTe models.py?ref type=heads#L125
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3.2 Model validation

This section covers the analyses of SnTe in both bulk and slab geometries, focusing on systems that
are well understood and have been extensively studied in literature. Our goal is twofold: validate our
implementation of the tight-binding (TB) models as well as demonstrating the topological equivalence
between the Hsieh and Lent TB models.

To justify the use of the Hsieh model in later sections, it is important to establish that both models
exhibit equivalent topological band structure features, specifically Dirac cones and surface states. We
will also cover other relevant topics in the context of topological states, like penetration depth and
spin-momentum locking.

3.2.1 Bulk

Figure 3.1 (a) shows the bulk band structure of SnTe along a high symmetry path, computed using
the Lent TB model. Parameters reported in the Lent paper [9] were used using the Slater-Koster
sign convention (Vp,s Vp,d and Vp,dπ opposite sign), presented in Appendix A1. This sign convention
seems to give slightly better fits with other SnTe band structure computations (for more details, see
the supplementary materials of Safaei et al. [19]).
Figure 3.1 (b) gives a zoomed-in view of the band structure (a) around the energy gap. The band gap
is smallest at the L-points, with Eg = 0.22 eV. The colors indicate the weight of the wavefunction on the
Sn-atom |ψSn|2. The exchange of the band character at L-point, indicates the intrinsic band inversion
of SnTe [3].

Figure 3.1: Bulk band structure for the (a) Lent and (c) Hsieh models. (b) Zoomed-in view of the band
gap for the (b) Lent and (d) Hsieh models, showing intrinsic band inversion at the L-point.

Figure 3.1 (c) shows the bulk band structure for the Hsieh TB model. Interestingly, the smallest energy
gap does not occur at the L-point, but rather along the Σ line, where Eg = 0.60 eV. Figure 3.1 (d) again
illustrates band inversion between the valence and conduction band, which is absent along the Σ line.
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The combination of band inversion, {110} mirror symmetry protection and a small energy gap, is
what gives rise to the topological states. Therefore, topological behavior is expected at the projections
of the L-point.

It is important to note that the energy scales of the Lent and Hsieh models differ. However, what
matters for our numerical analyses is their topological equivalence, which will be further demonstrated
in the following section.

3.2.2 Slab geometries

SnTe is known to have robust surface states with an even number of Dirac cones on crystal surfaces
such as {001}, {110} or {111}, which are symmetric about {110} mirror planes [3]. Figure 3.2 indicates
the (a) (001)-, (b) (110)- and (c) (111) Miller planes (in green). These planes can form the surface
termination of slab geometries.

Figure 3.2: Rock-salt crystal structure showing (a) (001)-, (b) (110)- and (c) (111) Miller planes (in
green).

In contrast to three lattice vectors for the bulk, a slab geometry has two lattice vectors a1 and a2. Which
specific vectors these are, depends on the surface termination. Table 3.1 gives the lattice vectors {a1,
a2} as well as the normal vector n for each surface termination of interest.

Kwant constructs the slab geometry by applying periodic boundary conditions along the translational
invariant directions, defined by the lattice vectors. In the direction normal to the slab’s surface n,
Kwant applies an open boundary condition, which can be used to set the thickness of the slab.

Table 3.1: Lattice vectors {a1, a2} and surface normal n of slab geometries with [001]-, [110]-, and
[111] surface termination.

Surface termination a1 a2 n
[001] (1, 1, 0) (1, -1, 0) (0, 0, 1)
[110] (0, 0, 2) (1, -1, 0) (1, 1, 0)
[111] (1, -1, 0) (1, 0, -1) (1, 1, 1)

Going from three to two translational invariant directions also means going from a 3D Brillouin zone
(3DBZ) to a 2D Brillouin zone (2DBZ). Figure 3.3 shows how the 2DBZ projections (marked in green)
originate from the 3DBZ. The corresponding {110} mirror planes are marked in the 3DBZ (in yellow),
as well as their projections as a dotted line in the 2DBZ.

Note that the Dirac cones must be located within the mirror plane in the 3DBZ or on its projected
dotted lines in the 2DBZ, since the topological protection of the Dirac cone originates from this mirror
symmetry. The high symmetry L-points are indicated in the 3DBZ, the dotted vertical lines indicate
their projections onto the 2DBZ. The Dirac cones are expected to be located at these points. HSPs in
the 2DBZ are indicated by a bar on top of them. For example: L1 and L2 from the 3DBZ, project onto
X̄1 in the 2DBZ.
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Figure 3.3: 2D Brillouin zone projections (in green) for the (a) (001)-, (b) (110)- and (c) (111)- slab
geometries. The {110} mirror planes are indicated (in yellow). This figure was taken from [20].

Slab (001)

Figure 3.4 (a) shows the band structure of the (001) slab geometry, for a thickness of 61 atoms. The
color indicate the weight of the wavefunction on the Sn atom |ψSn|2. The Dirac cone is present at the
Γ̄ − X̄ line, but not exactly located at X̄. It exhibits a Lifshitz shift [21], due to intervalley scattering
between different L-points [22]. The Dirac point is located at E = 0.15 eV. Figure 3.4 (c) indicates the
path taken through the 2DBZ in red.

This illustrates an important distinction between topological crystalline insulators (TCIs) and time-
reversal invariant topological insulators (TIs). In TCIs, the Dirac cones are protected not by time-
reversal symmetry but by crystalline symmetries. As a result, surface Dirac cones in TCIs are not
constrained to appear at time-reversal-invariant momenta (TRIMs), but can instead occur at non-TRIM
points in the Brillouin zone, provided the protecting crystal symmetries remain unbroken.

Figure 3.4: (a) Band structure of a (001) slab, obtained using the Lent TB model. (b) Surface state at
the Dirac cone. (c) Brillouin zone for the (001) slab. The path along which the band structure is
computed is indicated by red.

The bands are twofold degenerate, due to the simultaneous presence of inversion and time-reversal
symmetry [23]. Giving rise to a fourfold degenerate Dirac point, creating a degenerate subspace of four
orthonormal wave functions {ψ1, ψ2, ψ3, ψ4}. To visualize this state, we sum the probability densities
and plot them onto the unit cell of the slab, shown in 3.4 (b). Clearly the states are localized at the
surface of the slab, exponentially decaying into the bulk.
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Figure 3.5 (a) shows the band structure computed using the Hsieh TB model. It has the same topo-
logical features as the Lent TB model. We see a Dirac cone at the Γ̄ − X̄ line with a Lifshitz shift.
Again, inspecting the probability density of the fourfold degenerate Dirac point shows a surface state
in Figure 3.5 (b).

Figure 3.5: (a) Band structure of a (001) slab, obtained using the Hsieh TB model. (b) Surface state at
the Dirac point.

An important distinction between the Hsieh and Lent models lies in the localization length of their
surface states. Specifically, the surface state in the Hsieh model decays more rapidly into the bulk,
indicating a shorter localization length compared to that of the Lent model. This characteristic, will be
examined in more detail in the next section.

The Dirac point of the Hsieh band structure is located at E = −0.096 eV, indicating an energy offset
compared to the Lent model. The energy gap seen in the Hsieh model (Fig. 3.5) is approximately
twice that of the Lent model (Fig. 3.4). Beside the offset in the Dirac point and difference in the energy
gap, both band structures exhibit similar qualitative features.
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Slab (110)

Figure 3.6 shows the overlayed band structures of the (110) slab, for the Hsieh and Lent model. The
Hsieh band structure is given an energy offset (0.22 eV) for a clear visual comparison. Both band
structures have the same topological characteristics. There is a Dirac cone located at the Γ̄ − Ȳ line,
which is protected by the {110} mirror plane symmetry of the crystal (see Figure 3.3 (b)). The Dirac
cone again exhibits a Lifshitz shift.
There appears to be an avoided crossing around the S̄ point, which makes sense as there is an L-point
projection onto S̄, but it does not coincide with the {110} mirror plane and is therefore not protected.

Figure 3.6: Overlayed band structures of the (110) slab for the Hsieh and Lent model.
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Slab (111)

Although the (111) surface termination is of theoretical interest, it will not be the focus of this thesis.
We concentrate on nanowires with (001) and (110) surface terminations, which are experimentally
more stable and commonly realized. For completeness, the (111) surface is briefly discussed in the
context of a slab geometry.

Figure 3.7 shows the overlayed band structure of the (111) slab, for the Hsieh and Lent model. The
Dirac cone is located at Γ̄ and M̄, with no Lifshitz shift as there is no intervalley coupling [22].
Note that this surface termination consists of a single type of atom, either all Sn or all Te. In Figure
3.7 the slab thickness is 61 layers, with both surfaces Te-terminated. The Dirac points lie close to the
bottom of the conduction band. The Dirac point at M̄ is even hidden in the bulk band. Though it
might be possible to shift it within the band gap, using a surface potential, which would make them
accessibly to probe in experimental measurements.

Figure 3.7: Overlayed band structures of the (110) slab for the Hsieh and Lent model.
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3.2.3 Penetration depth

As we saw previously, the wave function of the surface state is not completely restricted to the surface
of the slab (see Fig. 3.4 & 3.5 (b)). Rather, it decays exponentially into the bulk ψ = e−z/ξ , characterized
by the penetration depth ξ. By studying the decay of Eg as a function of the number of layers of the
slab Nz, we can extract the penetration depth ξ (see eq. 2.13). The penetration depth has been well
studied for the Lent model [24, 19], as it helps to determine experimental system sizes for topological
behavior. We will also examine it for the Hsieh model, to establish computational boundaries for the
nanowire systems we aim to study.

Figure 3.8 (a) shows the finite-size-induced energy gap Eg as a function of the number of layers Nz in
the (001) slab. A distinction is made between even (dotted line) and odd (solid line) values of Nz, as
these slabs exhibit different symmetries.
Both TB models yield an exponentially decaying energy gap. For the Hsieh model, the decay flattens
around Nz > 40 due to numerical resolution limits. The Lent model displays a clear even-odd effect,
meaning the dotted (Nz even) and solid (Nz odd) follow a distinct oscillatory pattern. These effects
are less apparent for the Hsieh model. Exponential fits yield penetration depths of ξLent,001 ∼ 7 layers
and ξHsieh,001 ∼ 2 layers.

Figure 3.8 (b) reveals that the location of the Dirac cone converges quickly to k = 0.90 π/a for the
Hsieh model and k = 0.91 π/a for the Lent model.

Figure 3.8: (a) Finite-size-induced energy gap Eg as a function of the number of layers Nz in a (001)
slab geometry. (b) Position of the Dirac point along the Γ̄ − X̄ line as a function of Nz.

Figure 3.9 (a) shows the finite-size-induced energy gap as a function of the number of layers in the
(110) slab. This time an even-odd effect, along with an oscillatory behavior in the energy gap, is
observed in both models. Exponential fits yield penetration depths of approximately ξLent,110 ∼ 7 and
ξHsieh,110 ∼ 3 layers, values comparable to the penetration depth of the surface states of the (001) slab.
Figure 3.9 (b) shows the position of the Dirac cone along the Γ̄ − Ȳ line as a function of Nz. The Dirac
point quickly converges to k = 0.82 π/a for the Hsieh model and k = 0.91 π/a for the Lent model.
The difference in the location of the Dirac cone in the BZ can also be seen in Figure 3.6.

To study clear resolved isolated surface states, system size Nz should be at least a couple of times the
penetration depth from each boundary, say Nz/ξ ∼ 5. This means nanowires using the Hsieh model
need about 20 layers, while those with the Lent model require around 60. This highlights an important
advantage of the Hsieh model, smaller systems can be used to study topological states, reducing the
computation time.
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Figure 3.9: (a) Finite-size-induced energy gap Eg as a function of the number of layers Nz in a (110)
slab geometry. (b) Position of the Dirac point along the Γ̄ − Ȳ line as a function of Nz.
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3.2.4 Spin-momentum locking

Spin-momentum locking refers to the spin orientation being linked to the momentum of an electron.
This is a general phenomenon among TI’s, arising from strong SOC and symmetries dictating the spin
texture. A key feature of this is that electrons traveling in opposite directions (so called time-reversal
(TR) partners) have opposite spins, resulting in a helical spin texture. In this section, we will examine
the spin texture for the (001) slab.

Figure 3.10 provides a zoomed-in view of the Dirac cone from Figure 3.5 (a). However, here we take
a straight path through the BZ, extending into the adjacent BZ to reveal the spin density of the TR
partner.
The σx component of the spin density is plotted for all bands at E = −0.05 eV. Note that TR partners
(A & D, B & C) indeed exhibit opposite spin orientation.

Figure 3.10: Band structure of a (001) slab, zoomed-in on the Dirac cone, obtained using the Hsieh TB
model. Spin density plots of the σx component for all bands at E = −0.05 eV.

Furthermore, the spin direction on the top surface is opposite to that on the bottom surface, consistent
with the (symmorphic) mirror symmetry present in the slab with an odd number of layers (Nz = 41).
Note that a slab with an even number of layers lacks this mirror plane, but retains a (non-symmorphic)
glide symmetry. This does not eliminate spin-momentum locking, although the precise spin density
is slightly modified due to different symmetry constraints.

The σy component of the spin shows a similar structure, but opposite sign relative to σx. The out-of-
plane spin component (σz) is zero, indicating that the spin polarization lies entirely in the plane of
the slab. Combining these findings shows that the spin is oriented along ŝ = ±(x̂ − ŷ)/

√
2, which is

perpendicular to the momenta on the Γ̄ − X̄ line, pointing along the (x̂ + ŷ)/
√

2 vector.
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3.2.5 Topological phase transition

Experimentally growing SnTe is challenging due to Sn vacancies giving rise to bulk conductance. An
approach to solve this is growing the ternary Pb1 – xSnxTe, for which selective area growth in nanowires
is possible [25].
PbTe is known as a trivial insulator, whereas SnTe is a TCI. Changing alloy composition x results in a
topological phase transition [26].

To model Pb1 – xSnxTe, we use the virtual crystal approximation [27]. In this approximation, the bulk
unit cell consist of a Te atom and a virtual atom. The properties of the virtual unit cell are linearly
interpolated between the SnTe and PbTe tight-binding parameters, based on the stoichiometric mixing
ratio x. The PbTe parameters were taken from Lent et al. [9] and used in the Slater-Koster sign
convention (see Appendix A1).

Figure 3.11 shows the band structure of a (001) slab (61-monolayers) for a Sn content of x = 0.2, 0.381, 0.6
and 1. For x = 0.2 (a) the system is in the trivial insulating regime due to the energy gap. At x = 0.381,
known as the critical composition xc for bulk Pb1 – xSnxTe [24], the valence and conduction bands
should touch, closing the energy gap. However, due to finite-size effects, the gap remains slightly
open. For x = 0.6, band inversion occurs, but a small finite-size-induced energy gap persists. Increas-
ing Sn content further to x = 1 (SnTe) results in the topological phase, as also shown in Figure 3.4
(a).

Figure 3.11: Band structures for a Pb1 – xSnxTe 61-monolayer (001) slab, varying x.

Although the critical composition xc varies with the slab thickness due to finite-size effects, SnTe
shares the same topological phase as Pb1 – xSnxTe as long as x > xc. Therefore, we believe that the
results presented in this thesis on SnTe nanowires will also be applicable to the non-trivial phase of
Pb1 – xSnxTe nanowires. Or in general, the results are applicable for any range of parameters that do
not close the bulk energy gap.
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4 Nanowires

So far, we have focused on bulk and slab geometries to understand the physics of SnTe. While these
provide valuable insights, any practical realization of the material will necessarily be finite. In this
context, SnTe nanowires are of particular interest due to their potential applications.

In this section, we examine nanowires with distinct surface terminations. We explore a broad range
of phenomena, including their band structure, the emergence of gapless states, the flux response, the
influence of strain, spin polarization and corner charge. Additionally, we briefly discuss step edges
and rounding off the hinges, which are relevant in experimental settings.

4.1 Nanowire (100)

Figure 4.1 (a) schematically illustrates the (100) nanowire configuration and its cross section (b). The
(100) nanowire is infinite along the z- direction, with facets oriented along [100] and [010]. Note that its
unit cell consists of two cross sectional layers. The red dotted lines indicate the bulk mirror symmetries
that would protect the surface Dirac cones for the related slab geometries. However, in the nanowire,
these symmetries are broken by the open boundary conditions along the x- and y-directions. As a
result, the corresponding surface Dirac cones are expected to gap out.

Note that some mirror symmetries remain unbroken in the nanowire geometry and continue to protect
other topological features. The hinge mirror symmetries, indicated by purple dotted lines (Mxy and
Mxȳ), remain preserved. Therefore, we expect the emergence of topologically protected helical hinge
states [5].

Figure 4.1: Nanowire (100) configuration (a) with cross section (b), images taken from [6].
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4.1.1 Band structure

To understand the band structure of the (100) nanowire we need to look back at the slab geometry.
The (100) nanowire can be deformed to a slab with [010] (or [100]) surface termination, by replacing
the open boundary condition in the x- (or y-) direction with a periodic boundary condition. Therefore,
the nanowire can be thought of as a (100) slab which is compactified along one of its translational
invariant directions.

Considering a (100) slab with N = 46 layers, the spacing in reciprocal space is ∆k = 2π
N·a/2 ≈ 0.26

a−1. To obtain the correct 1D Brillouin zone (BZ) projection, we use a slab unit cell with translational
invariance vectors a1 = (0, 0, 2) and a2 = (0, 2, 0). In the slab’s 2DBZ, the Dirac cone is located at
kx = ky = 0.90π a−1. The slab’s band structure, computed along cuts at kx = 0.90 π

a + n 2π
N·a/2 for

n ∈ N, is shown in Figure 4.2 (a). It provides insight into what to expect for the (100) nanowire band
structure.

The band structure of the (100) nanowire is given in Figure 4.2 (b). It shows that the surface Dirac
cone becomes gapped, due to the breaking of the bulk mirror symmetries near the hinges. Hinge band
appear crossing the gap, as they remain protected by the Mxy and Mxȳ symmetries. These findings
are similar to the results from Skiff et al. [6].

Figure 4.2: (a) Band structure of the (100) slab (N = 46 layers) for cuts kx = 0.90 π
a + n 2π

N·a/2 for n ∈ N.
(b) Band structure of the (100) nanowire, 46 × 46 atoms.
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Wave functions

Here we will be inspecting how the probability density of the wave functions look like for the gapless
states. Since each band is two-fold degenerate, we orthonormalize the states within the degenerate
subspace using QR decomposition and sum their probability densities.

Figure 4.4 shows the probability density at three points: A, B & C. Densities A & C can be clearly
identified as hinge states, due to the localized probability density in the corners. Around the gapped
Dirac cone, the hinge state becomes an extended surface state, matching the results from Skiff et al.
[6].

It should be noted that the 46x46 (100) nanowire strictly does not obey C4 symmetry. Plotting the den-
sities of the total unit cell (i.e. 2 cross-sectional layers) on top of each other, restores the C4 symmetry
in the wave function probability density.

Figure 4.3: Probability densities of the wave functions for points (labeled A-C) indicated by insets in
the band structure of the (100) nanowire.
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Flux response

Applying a homogeneous magnetic field along the nanowire’s axis (B = B0ẑ with gauge A = −B0yx̂)
gives rise to a flux through the nanowire. The flux ϕ = BA, where A is the area of the nanowire, is
given in units of the flux quantum ϕ0 = h/e.

This reproduces the characteristic band openings and closings between the surface and hinge bands [6].
These gap openings and closings are manifestations of Aharonov-Bohm (AB) oscillations, arising from
quantum interference of wave functions encircling the wire perimeter, which acquire flux-dependent
phases.

Figure 4.4: Flux response of a 46 × 46 (100) nanowire.

The magnetic field breaks time-reversal symmetry, lifting the two-fold degeneracy of the energy bands.
The degeneracy is approximately restored at ϕ = 1.1, not exactly at a flux quantum as the surface states
enclose effectively a smaller area due to their finite penetration depth.
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Strain

Although the bulk (110) mirror plane protecting the surface Dirac cones is broken near the corners,
extended surface states are still preserved. The topological protection of these surface states can be
explicitly broken by applying strain, following a similar approach as Schindler et al. [5].

Using the crystal-field splitting term in eq. 2.15 with d1 = (1, 1, 0)/
√

2 and d2 = (1,−1, 0)/
√

2, we
apply strain along the (110) direction, breaking the mirror symmetries Mxz, Mxz̄, Myz and Myz̄ that
protect the surface Dirac cones of the [100] and [010] surfaces. Figure 4.5 (b) illustrates the breaking
of topological protection by displaying the (un)protected Dirac cone at ∆ = 0 (∆ = −0.8) for the (100)
slab. The mirror planes Mx,y and Mx,ȳ protecting the hinge states, remain preserved under strain, as
shown in Figure 4.5 (a).

Figure 4.5 (d) shows the band structure of the (100) nanowire, with strain applied along the (110)
direction. The hinge states continue to cross the energy gap, consistent with the preservation of Mxy,
Mxȳ symmetries. The sign of strain parameter ∆ corresponds to stretching (∆ > 0) and squeezing
(∆ < 0) along the given axis. Note that the sign of ∆ does not affect the nanowire’s band structure.

Figure 4.5: (a) Preservation of Mxy, Mxȳ mirror planes under strain, taken from [5]. (b) Gap opening
in the surface Dirac cone of the (100) slab. (c) Bulk energy gap Eg as a function of the strain
parameter ∆. (d) Band structure of a 46 × 46 (100) nanowire at ∆ = −0.8.

An interesting question is for what strain strength the system undergoes a topological phase transition.
Figure 4.5 (b) shows the bulk energy gap Eg as a function of strain strength ∆. Note that extracting the
energy gap from the bulk band structure, which is computed along a high-symmetry path through
the BZ, is insufficient here. Strain shifts the location of the energy gap away from this high-symmetry
path. Therefore we compute the gap using a grid covering the entire 3DBZ. The bulk band gap closes
at |∆c| = 0.76, going through a topological phase transition. This also causes the bulk bands in the
nanowire’s band structure (around kz = 0) to shift into the energy gap, making the ’gapless’ states
unmeasurable when the strain becomes too large (|∆| > |∆c|).

For |∆| < |∆c|, we can argue that states in the unstrained nanowire are protected by the same symme-
try as those in the strained nanowire (i.e. Mxy, Mxȳ), since the two systems are continuously connected
without closing the bulk energy gap.

Figure 4.6 shows the probability density of the gapless wave function from a hinge band near the
surface Dirac cone. For ∆ = −0.3 (a), the surface state remains extended despite a slight breaking of
C4 symmetry. Increasing the strain to ∆ = −0.6 (b) reveals how the extended surface state localizes
into a hinge state as the surface Dirac cone becomes increasingly gapped. Further increasing the strain
to ∆ = −0.9 (c), going through the topological bulk transition, does not qualitatively change this
behavior. Note that for this strain strength, bulk bands are pushed through the energy gap near k = 0.
The gapped Dirac cone with its hinge bands remain intact, allowing us to identify the ’gapless’ state
even when the bulk gap is closed.
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Figure 4.6: Probability density of the gapless wave function from a hinge band near the surface Dirac
cone for different strain parameters ∆ = −0.3,−0.6,−0.9.
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Finite-size effects

Figure 4.7 (a) shows the finite-size-induced energy gap Eg between the valence and conduction bands
of the surface Dirac cone, plotted as a function of the square (100) nanowire’s side length W (in number
of atoms). Increasing the wire’s cross-section reduces the gap, as the system approaches the bulk limit.
An exponential fit was applied to the data and provided a slightly better fit compared to the Eg ∼ 1

W
dependence.

Naively, one could extract the penetration depth from the exponential fit, yielding ξ ∼ 24 atoms,
similar to our approach for the slab geometry. However, this interpretation is incorrect in the nanowire
geometry. Unlike the slab (where surface states are located on opposing top and bottom surfaces), the
extended surface states wrap around the full perimeter of the nanowire. As a result, the surface
states are not spatially separated as they touch at the hinges, regardless of the side length of the wire.
Additionally, hinge bands cross the energy gap, disrupting clean separation between valence and
conduction bands. Thus, an exponential fit to Eg(W) does not isolate the penetration depth reliably.

Figure 4.7: (a) Finite-size-induced energy gap Eg between the valence and conduction band for a
square (100) nanowire with side length W. (b) and (c) show the probability densities |ψ|2 for the
extended surface state and hinge state, respectively, along the path indicated by the black dotted line
in the inset.

To still estimate the penetration depth of the extended surface state (Fig. 4.4 B) into the bulk, we
analyze the probability density in Figure 4.7 (b), extracted along dotted black line in the inset. Since
the probability density of the surface states scales as |ψsurface|2 ∼ e−2x/ξsurface , we can extract ξsurface ∼ 2
atoms, consistent with the penetration depth of the surface states from the (100) slab.

Similarly, we extract the decay length of the hinge state above the Fermi energy, (Fig. 4.4 A) by plotting
the probability density along the nanowire edge. This yields ξhinge, A ∼ 5 atoms, indicating weaker
localization compared to the surface states decay into the bulk. For the hinge state below the Fermi
energy (Fig. 4.4 C), an even larger localization length of ξhinge, C ∼ 13 is found.
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Step edge states

Step edges are one-dimensional edge channels giving rise to flat bands. Such states have been both
theoretically predicted and experimentally observed in Pb1 – xSnxSe [28, 29]. They were also predicted
in Sn1 – xPbxTe1 – ySey for slab geometries [30]. Consistent with these findings, step edge states also
emerge in SnTe nanowires.

Figure 4.8 (a) shows the band structure of a 46 × 46 (100) nanowire, with a single atomic step edge
introduced for y < 0, as schematically depicted in panel (b). The flat band (labeled A) originates from
the step edge. The corresponding wave function’s probability density is shown in panel (c).

The presence of a step edge breaks the inversion symmetry, which lifts the degeneracy of the band
structure. Since time-reversal symmetry is preserved, two-fold degeneracy is restored at the kz = π/a
TRIM point.

Figure 4.8: (a) Band structure of a 46 × 46 (100) nanowire with a single atomic step edge for y < 0,
illustrated in (b). The probability density of the step edge wave function (labeled A) is shown in (c).
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Rounding off the hinges

Up until now, sharp (90◦) corners have been considered. In this section, we investigate how the band
structure evolves when these corners are gradually rounded.

Figure 4.9 shows the band structures for various radii. A schematic illustration of the cross-sectional
shape of the nanowire is depicted as well. For the given band structures, the rounding radii r (atoms)
are reaching up to r/W ∼ 0.1. When r ̸= 0, the hinge bands become noticeably flatter within the
energy gap, reminiscent of the behavior seen at step edges. This is due to the discrete nature of the
crystal structure, making rounded hinges resemble multiple step edges.

When the rounded hinges start becoming more significant r/W ≳ 0.2, the energy gap closes. The
hinge states remain present, but become effectively unmeasurable.

Figure 4.9: Rounded hinges in a 46 × 46 (001) nanowire, for radii r given in atoms.
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4.1.2 Spin polarization

Spin is an axial vector, meaning that under a mirror operation, only the component parallel to the
plane changes sign. The mirror planes of the cross section (Figure 4.1 (b)) are Mx, My, Mxy and Mxȳ.
The (non-trivial) spin texture consistent with all these mirror symmetries is a rotational pattern, shown
in Figure 4.10 (a).

Figure 4.10: Spin texture for nanowire (100) configuration (a), with spin density component σx (b) and
σy (c).

Figures 4.10 (b) and (c) show the σx and σy components of the spin density, respectively, for the
hinge state from Fig. 4.4 A. Taking a superposition of these spin components reproduces the full spin
texture. The time-reversal partner of this state has spin polarization in the opposite direction. The σz
component is not shown, as it is zero.
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4.1.3 Corner charge

The localization of the gapless hinge states at the corners of the nanowire give rise to corner charge Qc.
Since the conduction and valence band are connected by the hinge bands, we have a different number
of states below the Fermi level (at half-filling) at kz = 0 with kz = π/a.

The probability density at a specific k-point is defined as:

ρkz(r) = ∑
n:En<EF

|ψn,kz(r)|
2 (4.1)

By comparing the densities at kz = 0 (ρ0) with kz = π (ρπ), the excess charge localized at the corners
can be identified as the corner charge: Qc = ρπ − ρ0. This identification reflects the bulk-boundary
correspondence in higher-order topological insulators. Additional details for the extraction of corner
charge are given in the Appendix A3.

Figure 4.11 (a) shows the resulting corner charge distribution for a 21 × 21 (100) nanowire. The excess
charge is clearly localized in the corners and decays away from them. To quantify this decay, we
enclose each corner in a square box of side length l and compute the summed charge within the
box. The summed corner charge as a function of l is plotted in 4.11 (b) and fitted using exponential
function ∑ Qc = 1 − e(−0.28l). The fit is expected to become more accurate with increasing system size.
Summing over the entire cross section yields a total corner charge of Qc = 4e, consistent with four
in-gap states crossing the Fermi level.

Figure 4.11: (a) Corner charge distribution Qc for a 21 × 21 (100) nanowire. (b) Summed corner
charges as a function of box length l, fitted exponentially.

The robustness of the hinge bands to size effects, strain and flux, along with their spin polarization
and corner charge, confirms the intrinsic higher-order topological nature of the (100) nanowire.
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4.2 Nanowire (110)

Now that we have analyzed the electronic properties of the (100) nanowire, we turn our attention to
a nanowire with a different surface termination. Since the {110} mirror planes possess a non-zero
mirror Chern number, it is natural to investigate a nanowire terminated along this orientation.

Figure 4.12 (a) illustrates the so called (110) nanowire configuration, with its cross-sectional view
shown in panel (b). Note that the nanowire remains translationally invariant along the z-axis, only the
shape of the cross section is changed compared to the (100) nanowire.

Figure 4.12: Nanowire (110) configuration (a) with cross section (b), images taken from [6].

The (110) nanowire is made up of facets with surface terminations in the [110] and [11̄0] planes. Note
that the system is infinite in the z- direction. The unit cell consists of two cross-sectional layers, with
atoms alternating from Sn to Te in subsequent layers, removing any atom-type dependency in the size
of the wire.
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4.2.1 Band structure

To understand the band structure of the (110) nanowire, we recognize the wire as a (110) slab, com-
pactified along the ê1 = (êx + êy)/

√
2 direction. Considering a (110) slab with thickness N = 54 layers

and taking cuts through its 2DBZ at k1 = n 2π
N·a/2 for n ∈ N, reveals the band structure shown in Figure

4.13 (a). The two main features are the Dirac cone and avoided crossing. The Dirac cone is located at
kz = 0.82 π/a, originating from the Γ̄ − Ȳ line (i.e. k1 = 0) in the 2DBZ of the (110) slab. The avoided
crossing is located at kz = 0.54 π/a, originating from the X̄ − S̄ line (i.e. k1 = π/a), which is not
protected by (110) mirror plane, resulting in an avoided crossing.

Figure 4.13: (a) Band structure of the (110) slab (N = 54) for cuts k1 = n 2π
N·a/2 for n ∈ N. (b) Band

structure of the (110) nanowire, with 28 × 28 atoms in its outermost layer.

Figure 4.12 (b) shows the band structure of the (110) nanowire, with 28 × 28 atoms in its outermost
layer. Note that this size is related to its thickness along the x-axis by W

2 + 1. The spectral flow at
the Dirac cone indicates gapless states connecting the conduction and valence bands. However, the
presence of an avoided crossing complicates the interpretation, as it hybridizes potential hinge modes
with bulk states, preventing a clear identification of the potential hinge bands.
The bands are two-fold degenerate, although it is hard to see from the band structure, two two-fold
degenerate bands cross the energy gap, resulting in 4 gapless states in total.
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Wave functions

Focusing on states around the Fermi energy, we examine the probability densities of the wavefunc-
tions, shown in Figure 4.14. States at the avoided crossing (A) show confinement to each facet of the
nanowire. Gapless states (B) show confined surface states as well, though there is still weak coupling
between the states belonging to different facets of the wire. Moving further away from the gapped
Dirac cone (C), the states regain there 1D character as hinge states.

Although the Mx, My symmetries are trivial, in the sense that mirror Chern number Cm = 0, localized
hinge states are still observed. We will later examine them further by applying strain. First, we study
the effect of the confinement to the flux response of the (110) nanowire.

Figure 4.14: Probability densities of the wave functions for points (labeled A-C) indicated by insets in
the band structure of the (110) nanowire.
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Flux response

Figure 4.15 shows the flux response of the low-energy states for the (110) nanowire. The degeneracy of
these states is completely lifted at ϕ = 0.3, partially restored at ϕ = 0.5 and fully recovered at ϕ = 1.1
This behavior is typical for four weakly coupled sites connected in a circle, as described by Skiff et
al. [6]. For the (110) nanowire, these ’sites’ correspond to confined surface states, which are weakly
coupled through tunnel barriers at the nanowire hinges.

No gap closings or openings are observed, indicating the absence of Aharonov–Bohm (AB) oscillations.
This is consistent with the states not strongly encircling the nanowire’s cross section, in contrast to the
behavior of the extended surface states in the (100) nanowire. The flux dependence of a broader
portion of the band structure is presented in appendix A2.

Figure 4.15: Flux response of the weakly coupled confined surface states for a 28 × 28 (110) nanowire.
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Strain

To determine whether the gapless states truly belong to hinge bands, or are part of the surface Dirac
cone, we observe if they are robust against strain. The (110) nanowire has facets along the [110] and
[11̄0] directions. Applying strain along the (110) direction (as was done for the (100) nanowire) does
not open the surface Dirac cone, but instead shifts it into the bulk bands, since the crystal field splitting
term act as an onsite potential.

In order to gap out the [110] and [11̄0] surface Dirac cones, while preserving the mirror symmetry of
the hinges (Mx, My), we apply strain along the d1 = (1, 0, 0) and d2 = (0, 1, 0) axis. It was confirmed
that this does open the surface Dirac cone for the (110) slab.

Figure 4.16 shows the band structure of the strained (110) nanowire, for strain parameter ∆ = −0.4. We
observe that the gapless state (labeled by A), corresponds to a hinge state. Following the hinge band,
we see that localization tends to increase when we move away from the gapped Dirac cone. Since the
hinge band remains gapless under strain, we conclude that the gapless states indeed originate from
hinge bands, rather than the nearby surface Dirac cone. However, the hinge bands do not appear to
be protected by the mirror symmetries of the [110] and [11̄0] facets, as these are broken.

Figure 4.16: Band structure of the strained (110) nanowire for ∆ = −0.4. Probability densities of the
wavefunctions labeled by A and B are shown.

The avoided crossing shifts up in energy if strain is applied. For small strain values, it remains outside
the energy gap. However, around ∆ = −0.8 the avoided crossing is pushed up through the energy
gap, such that the hinge states become unmeasurbable.
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4.2.2 Spin polarization

Figure 4.17 (a) shows the spin texture of the confined surface states in the (110) nanowire configuration,
constrained by the mirror symmetry planes of the unit cell. Panels (b) and (c) present the σx and σy
components of the spin density, respectively, for the confined surface state from Figure 4.14 B. Again,
the σz component is not shown, as it is zero.

Figure 4.17: (a) Spin texture of the confined surface states for the nanowire (110) configuration, (b)
spin density component σx and (c) σy.
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4.2.3 Corner charge

Using the same algorithm outlined earlier for the (100) nanowire, we can compute the corner charge
of the (110) nanowire. Due to computational limitations, we focus on a relatively small system size of
16 × 16 atoms.

Figure 4.18 shows the corner charge density Qc for the (110) nanowire. Summing all corner charge
contributions of the individual atoms yields Qc = 4 e, consistent with four bands crossing the Fermi
energy. Figure 4.18 (b) presents the summed corner charge contributions within a square box of size
l × l atoms. The data is fitted by the exponential fit curve ∑ Qc = 1 − e−0.41l , the fit is expected to
become more accurate for larger system sizes.

Figure 4.18: (a) Corner charge distribution Qc for a 16 × 16 (110) nanowire. (b) Summed corner
charges as a function of box length l, fitted exponentially.

The robustness of the hinge bands under strain and flux, combined with their spin polarization and
corner charge, establishes the (110) nanowire as an intrinsic higher-order topological insulator.
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4.3 Nanowire (101)

The (100) nanowire breaks bulk mirror symmetries (specifically (101), (101̄), (011) and (011̄)) around
its corners. Now we study a nanowire with the same cross section as the (100) wire (Fig. 4.1 (b)),
but with translational invariance a = (0, 1, 1), such that its surface terminations are [011] and [100].
Since these surface terminations are of a different type, the nanowire respects C2 symmetry (instead
of C4). Effectively, this nanowire can be viewed as a hybrid of the (100) and (110) nanowires discussed
previously. We refer to this structure as the (101) nanowire.

Figure 4.19 (a) shows the band structure of a 46× 46 atoms (101) nanowire. Where k1 is the momentum
along the direction defined by unit vector e1 = (ey + ez)/

√
2. Gapless states appear around k1 = 0.9

π/a, while an avoided crossing is observed at k1 = 0.

The cross section is illustrated in the inset (not to scale). Note that the unit cell only consists of a single
cross-sectional layer, leading to a strong atom-type (Sn/Te) dependency. For an even side length,
diagonally opposite corners are of the same atomic type, whereas for an odd side length all corners
are identical.

Figure 4.19: (a) Band structure of the (101) nanowire, with facets along [011] and [100]. The cross
section is of even side length 46 × 46 atoms, illustrated (not to scale) by the inset. Momentum k1 is
along the e1 = (ey + ez)/

√
2 unit vector. (b) Band structure of the (101) nanowire for an odd side

length of 47 × 47 atoms.

Figure 4.19 (b) shows the band structure for an odd side length of 47 × 47 atoms. In this case, the
gapless states are no longer present. Instead, parabolic states appear at k1 = 0, which do not connect
the valence and conduction band by spectral flow, as these remain separated by a finite energy gap.

The absence of gapless states for an odd number of atoms persists even at larger system sizes. Due to
this extrinsic behavior, we chose not to further investigate this (101) nanowire configuration.
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5 Quantum transport

Having developed a detailed understanding of the electronic properties of the (100) and (110) SnTe
nanowire configurations, we turn our attention to their quantum transport behavior.

We will examine transport in two configurations: the longitudinal (forward) direction, where leads
are connected along the axis of the nanowire; and the transverse direction, where leads are connected
perpendicular to the nanowire’s axis. In both cases, we investigate the effect of threading a magnetic
flux parallel to the nanowire’s axis. The goal of this section is to identify quantum transport signatures
that are characteristic for SnTe nanowires with (100) and (110) surface termination.

5.1 Longitudinal

Analyzing transport provides a connection between the electronic band structure and experiments. As
conductance and its effect under a magnetic field, can be measured in experimental settings. In this
section we will examine the conductance, its flux response and visualize the current flowing through
the nanowires.

Scattering regions in the longitudinal direction are scalable in their length. This makes longitudinal
transport especially suitable for studying disorder effects, such as Sn/Te vacancies, surface roughness
or electrostatic/magnetostatic inhomogeneities.
In principle, higher-order Fabry–Pérot interference effects can also be explored. For example, by
attaching leads to individual hinges and analyzing the resulting interference patterns [31]. How-
ever, such studies require hinge states to be sufficiently decoupled, which demands simulating wider
nanowires. These longitudinal transport systems are not very scalable in their width. While the TB
Hamiltonian of the scattering region involves sparse matrices, the leads (whose dimensions depend
solely on the width) involve dense matrix operations. Therefore, we limit our analysis to systems with
relatively small nanowire cross sections.

The computational limit for longitudinal transport systems appeared to be around W ∼ 20 atoms. At
this width, surface states are expected to be well separated since W/ξsurface ∼ 10. However, hinge
states exhibit significant overlap, with W/ξhinge, A ∼ 4 and W/ξhinge, C ∼ 2 (see Fig. 4.7).

5.1.1 Nanowire (100)

We study a (100) nanowire with a cross section of 11 × 11 atoms. This small cross section introduces a
relatively large finite-size-induced energy gap and stronger coupling between hinge states. Neverthe-
less, the topological features like hinge bands, hinge states, extended surface states, gap openings and
closings with magnetic fields, remain intact. Therefore, this system still provides reliable insight into
the conductance and Aharonov-Bohm (AB) oscillation signatures that we are looking for.
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Aharonov-Bohm oscillations

To build intuition for the transport calculations, we first consider a nanowire connected to SnTe leads,
effectively modeling an infinite nanowire.

Figure 5.1 (a) shows the scattering region (SnTe) in blue and a few unit cells of the leads (also SnTe in
this case) in red. A homogeneous magnetic field is applied parallel to the nanowire axis. Figure 5.1
(b) displays the energy-dependent conductance through the nanowire for magnetic flux values ϕ = 0
and ϕ = 0.475, in units of the flux quantum ϕ0 = h/e. The conductance remains finite within the bulk
energy gap due to the presence of topologically protected gapless states. Figure 5.1 (c) shows the band
structure within the energy gap of the (100) nanowire for the same flux values.

The conductance is determined solely by the number of available propagating modes (i.e. channels)
at a given energy. Each mode contributes a quantized unit of conductance e2/h, resulting in discrete
step-like increases. Due to the absence of disorder or interfaces between different materials, there is
no mode mixing or backscattering, resulting in perfectly transmitted modes.

At ϕ = 0, the bands are two-fold degenerate, leading to conductance steps that are multiples of
∆G = 2e2/h. When ϕ ̸= 0, time-reversal symmetry is broken, lifting the two-fold degeneracy. As a
result, the step size reduces to ∆G = e2/h.

Figure 5.1: (a) Longitudinal transport system, the scattering region shown in blue and a few lead unit
cells in red. (b) Conductance in the energy gap at ϕ = 0 and ϕ = 0.475. (c) Band structure
corresponding to the 11 × 11 (100) nanowire.

Since the gap openings and closings occur near E = −0.04 eV, we take a closer look at this fixed energy
to examine whether the conductance oscillation persists when metallic leads are attached. The result
is shown in Figure 5.2 for a scattering region of L = 131 layers. For comparison, the case with SnTe
leads is also included. Although the case with metallic leads does not exhibit perfectly quantized
conductance steps, as modes in the lead and scattering region do not perfectly match anymore, a clear
peak in conductance remains visible. This feature is robust and could, in principle, be observed in
experiments using gate voltage control over the chemical potential. Appendix A4 discusses a similar
plot for a wider ϕ range.
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Figure 5.2: Conductance at fixed energy E = −0.04 eV as a function of magnetic flux ϕ for an 11 × 11
(100) nanowire with L = 131 layers connected to metallic leads. The result for SnTe leads is shown for
reference.

In this simulation, the metallic leads are modeled as a collection of one-dimensional disconnected
wires. This configuration results in a cosine band structure for the leads, where the degeneracy is
determined by the number of degrees of freedom in the unit cell of the lead. This approach was chosen
to avoid complications that arise when introducing magnetic flux in metallic leads with transverse
hopping. In such cases, the flux causes the cosine bands to shift, altering the number of propagating
modes in the leads at fixed energy.
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Experimental parameters

To provide physical intuition for the relevant magnetic field strengths and their connection to experi-
ments, we examine the relationship between the flux ϕ and the corresponding magnetic field B:

B =
4hϕ

e(aW)2 (5.1)

where a = 6.31Å is the lattice constant of SnTe and W the nanowire cross-section width (in units of
atomic spacings). The factor of 4 in the numerator arises because the unit cell contains 2 atoms and
the area scales as a2, effectively giving 2 × 2 = 4 when expressed in terms of unit cell width.

For an 11 × 11 (100) nanowire, a single magnetic flux quantum (ϕ0 = h/e, i.e. ϕ = 1) corresponds to a
magnetic field of approximately B ∼ 400 T.
Typical vapor–liquid–solid (VLS) grown nanowires have a width of around 80 nm [32], corresponding
to a cross section of roughly 250 × 250 atoms. For such a wire, threading a single flux quantum
through the nanowire would require a magnetic field of approximately 2.6 T, a value that qualifies as
high but remains accessible under standard laboratory conditions.
Fabricating thinner nanowires reduces their magnetic flux response (assuming there is an experimental
limit in the applied magnetic field), making AB oscillations more difficult to detect. Since inserting
more than one flux quantum through the nanowire cross section requires even stronger fields, we
restrict our analysis to the regime of a single flux quantum.

When the wire width W approaches the coherence length ξ, gapless states hybridize. To clearly resolve
1D hinge states, the wire width should satisfy W >> ξ.
The penetration depth of the surface states extracted from the Lent model (see Fig. 3.8) sets a lower
bound near a 70 × 70 atomic cross section, corresponding to a nanowire width of approximately 22
nm. This ensures that W/ξLent, 001 ∼ 10, which is sufficient to clearly resolve the surface states.

For the Hsieh model, the penetration depth of the hinge state was found to be up to seven times larger
compared to the penetration depth of the surface states (ξHsieh,001/ξhinge,C ∼ 7).
There is no reason to expect significantly different behavior for the Lent model. Although we did
not explicitly extract the penetration depth of the hinge state for nanowires simulated using the Lent
model, we estimate the upper bound of the penetration depth of the hinge states to be approximately
ξhinge, Lent ∼ 7 · ξLent, 001 ∼ 50 atoms.

Currently VLS grown nanowires would have W/ξhinge, Lent ∼ 5, which should be sufficient to observe
well-separated hinge states. However, attempting to fabricate thinner wires is not recommended, as
this causes hybridization of the hinge states and suppression of the flux response.
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Current visualization

To understand how the current flows through the nanowire, we visualized the current density at ϕ = 0.
Figure 5.3 shows the current flowing through one of the facets of a (100) nanowire for a hinge state at
E = −0.040 eV. At a slightly lower energy, E = −0.065 eV, the surface states become extended again,
as shown in panel (b).

To probe the current distribution through the nanowire’s cross section, we computed the total current
flowing between two adjacent nanowire layers, from z = 0 to z = 1. The corresponding current
density plot reveals localized hinge modes at E = −0.040 eV (panel (c)) and extended surface states at
E = −0.065 eV (panel (d)).

Figure 5.3: Current visualization for a (100) nanowire at ϕ = 0. (a) Hinge state at E = −0.040 eV and
(b) extended surface state at E = −0.065 eV, along a facet of the (100) nanowire. Cross-sectional
current density for the hinge state (c) and extended surface state (d).

For ϕ ̸= 0, the hinge states remain robust and continue to flow along one-dimensional channels.
The extended surface states begin to spiral around the nanowire under the influence of the magnetic
field.
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5.1.2 Nanowire (110)

The band structure of the (110) nanowire does not show any gap opening/closing when a magnetic
field is applied along the nanowire’s axis. This behavior can be attributed to the nature of the gapless
states, which are confined to the surfaces of the individual facets and only weakly couple to each
other.

Figure 5.4 (a) shows the conductance in the energy gap along the longitudinal direction for two flux
values: ϕ = 0 and ϕ = 0.3. The conductance remains fixed at G = 4e2/h, consistent with the
presence of four gapless states. This indicates that no channels are opened or closed by the introduction
of magnetic flux. As expected, AB oscillations are absent in the (110) nanowire when measuring
conductance in the forward direction. For reference, the corresponding band structures are shown in
Figure 5.4 (b) at both flux values.

Figure 5.4 (c) shows the current density of a gapless state flowing through the nanowire’s cross section
at E = −0.075 eV. The current is localized at the surfaces, consistent with the picture of confined
surface states that remain gapless and unaffected by magnetic flux.

Figure 5.4: (a) Conductance of the 11 × 11 (110) nanowire at ϕ = 0 and ϕ = 0.3. (b) Corresponding
band structures at the two flux values. (c) Current density plot showing surface-confined current at
E = −0.075 eV.
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5.2 Transverse

Having the different characters of the gapless states; hinge states, extended surface states and confined
surface states, makes it interesting to look at transport in the transverse direction, perpendicular to the
nanowire’s axis. Specifically we will study the transverse transport properties for the (100) and (110)
nanowires.

For computational efficiency, we restore translational invariance in the z−direction for both the scatter-
ing region and the leads. This introduces three momentum parameters: kz, kz,lead 0 and kz,lead 1. Note
that kz specifies where we are in the band structure of the nanowire, we will set kz = kz,lead 0 = kz,lead 1.
Due to the periodic boundary condition along the z-axis, we only need to do computations on the sin-
gle unit cell of the transport system. Making these transverse transport simulations computationally
much more efficient compared to the longitudinal transport simulations. Typically, we will look at
systems of around W ∼ 50 atoms or larger, ensuring the surface and hinge states are well resolved
(W/ξ >> 1).
The metallic leads that are used to obtain these results are build using the 6-band Hsieh TB model,
but with zero onsite and identity hopping.

5.2.1 Nanowire (100)

The (100) nanowire is known to host extended surface and hinge states in the energy gap. Since we are
interested in these gapless states, we set kz = 0.90 π/a (unless stated otherwise), which corresponds
to the location of the Dirac cone. First we will study their transverse conductance properties. Next, we
examine the response of the conductance to magnetic flux, to see if there are AB oscillations present.
Finally, we calculate the total conductance by integrating over the entire BZ.

Conductance

To gain insight into transport along the transverse direction, perpendicular to the nanowire’s axis,
we study the conductance through a (100) slab geometry, shown in Figure 5.5 (a). The scattering
region (47 × 47 atoms, shown in blue) is translationally invariant in the z-directions, the leads (red)
are translationally invariant in the z− and x− directions, creating a (100) slab geometry with Nx = 47
layers.

Figure 5.5 (b) presents the conductance of this slab for SnTe and metallic leads. In the case of SnTe
leads G = 4, the gapless surface states are perfectly transmitted through the scattering region without
backscattering. The corresponding probability density of the scattering wavefunction ψsr (at E = −0.1
eV) is visualized in panel (c). The four conduction channels follow from the gapless states, present in
the band structure shown in the Appendix A5.
When metallic leads are introduced, reflection occurs at the metal-SnTe interface, leading to interfer-
ence effects causing an oscillatory conductance profile.

Figure 5.5: (a) Scattering region (47 × 47 atoms, shown in blue) translationally invariant in the
z-direction and leads (red) translationally invariant in the z− and x− directions, resembling a (100)
slab geometry. (b) Conductance through the scattering region for SnTe and metallic leads. (c)
Probability density of the scattering wave function ψsr, at E = −0.1 eV.
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Reducing the width of the leads effectively transforms the system into a (100) nanowire geometry.
This minimizes the influence of the leads on the scattering states, allowing for a clearer examination
of the nanowire’s gapless states.
Figure 5.6 (a) illustrates a 47 × 47 scattering region with narrow metallic leads of width Wleads = 2.
The conductance of the extended surface states for various nanowire sizes is shown in Figure 5.6 (b).
The conductance curves exhibit fluctuations, as the number of scattering states varies as a function of
energy at a fixed kz. There are no sharp conductance peaks due to band broadening. Importantly,
the conductance also does not decay with increasing system size. The average conductance remains
approximately constant, which is characteristic for extended surface states.

Figure 5.6: (a) Scattering region (47 × 47) and narrow metallic leads (Wleads = 2), effectively forming a
(100) nanowire. (b) Conductance of extended surface states (kz = 0.90π/a) as a function of nanowire
size. (c) Conductance of hinge states (kz = π/a) as a function of nanowire size.

To examine the conductance properties of the hinge state, we focus on the edge of the BZ for which
kz = π/a. Figure 5.6 (c) shows the conductance of these hinge states. Surprisingly, the hinge states
contribute significantly to the transverse conductance between the leads when L = W ≲ 80 atoms.
However, when system size increases further, there contribution decays, consistent with the obser-
vation that hinge states are localized at the corners and decay exponentially along the nanowire’s
perimeter.
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Flux response

To observe transport signatures such as AB oscillations, we thread the system with a magnetic flux.
Since we are also interested in studying how the system size influences the strength of the flux re-
sponse, we want to minimize finite-size effects. Therefore, we introduce a new gauge for the magnetic
field along the nanowire’s axis:

A = ϕ δ(x)Θ(−y) x̂,
B = ∇× A = ϕ δ(x) δ(y) ẑ.

(5.2)

To build intuition, we begin with SnTe leads, resembling a (100) slab geometry. Figure 5.7 (a) shows
the flux response for a slab with thickness N = 15 layers, evaluated in the middle of the energy gap at
E = −0.1 eV. A clear AB oscillation is visible, though its amplitude is relatively small. This is expected,
as the surface states at the top and bottom of the slab are exponentially decoupled, suppressing
interference effects.

Figure 5.7: (a) Flux response obtained using SnTe leads, effectively forming a (100) slab with N = 15
layers. (b) The conductance range in the AB oscillation Gmax − Gmin, as a function of slab thickness
N. (c) Amplitude as a function of metallic lead width Wleads, connected to the center of a 47 × 47 SnTe
scattering region.

Figure 5.7 (b) plots slab thickness N against the conductance range of the AB oscillation, defined by
Gmax − Gmin. The insets illustrate the increasing slab thickness. We observe that the AB oscillation
range decreases exponentially as the slab thickness increases. This behavior is consistent with the
exponential decay of the wavefunction overlap between the top and bottom surface states, as described
by Eq. 2.13. When the thickness becomes sufficiently large, the surface states on opposite sides of the
slab become effectively decoupled due to negligible wavefunction overlap. As a result, they can no
longer coherently interfere, leading to a suppression of AB oscillations. Deviations from a perfect
exponential trend arise from slight modifications in the slab’s band structure as its size changes.

Next, we switch back to metallic leads and fix the nanowire size to 47 × 47 atoms. By decreasing the
lead width Wleads, we examine its effect on the AB oscillation. Figure 5.7 (c) shows that narrower leads
result in a stronger AB oscillation. As the lead width increases, the oscillation amplitude decreases
exponentially. This makes sense because narrower leads induce more reflection, enhancing interference
effects. The gapless states also meet in a narrower region, allowing them to interfere more strongly
with each other.

These results were obtained at a fixed momentum kz = 0.90π/a and energy E = −0.1 eV. To assess
whether these AB oscillations are observable under experimental conditions, it is necessary to integrate
over the full BZ.
Figure 5.8 (a) shows the total conductance per unit length G/L, integrated over the Brillouin zone, in
units of conductance quantum e2/h per µm, for a 94 × 94 (100) nanowire with narrow metallic leads
of width Wleads = 2, at flux ϕ = 0 and ϕ = 0.5. An increased conductance is visible at the top of
the valence band, near E = −0.125 eV. On the other hand, gapless states in between the valence and
conduction band, do not seem to give a clear signal. A more detailed analyses on Figure 5.8 is given
in the Appendix A6.
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Figure 5.8: (a) Conductance per unit length G/L integrated over the Brillouin zone, for ϕ = 0 and
ϕ = 0.5. (b) Band structure of the 94 × 94 (100) nanowire at ϕ = 0 and ϕ = 0.5.

As previously shown, increasing the lead width Wleads exponentially suppresses the AB oscillation.
This suggests that in any realistic (100) nanowire, AB oscillations will be challenging to observe when
measuring conductance in the transverse direction.
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5.2.2 Nanowire (110)

The (110) nanowire is known to host confined surface states in the energy gap. Since we are interested
in these gapless states, we set kz = 0.82 π/a (unless stated otherwise), which corresponds to the
location of the Dirac cone in the band structure. First we will study the transverse conductance
properties. Next, we examine the response of the conductance to magnetic flux, to see if there are AB
oscillations present. Finally, we calculate the total conductance by integrating over the entire BZ.

Conductance

Again, we begin by examining the conductance through a (110) slab geometry. The system is shown
in Figure 5.9 (a), where the case of the slab corresponds to W = Wleads. Figure 5.9 (b) shows the
conductance for both SnTe and metallic leads, for slab thickness N = 28 layers in the direction normal
to the surface (meaning W = Wlead = L = 54 atoms). For SnTe leads, surface states are perfectly
transmitted without any backscattering. Two channels contribute to transport, resulting in a quantized
conductance of G = 2e2/h, which is consistent with the band structure shown in the Appendix A5.
When metallic leads are used, reflection occurs at the SnTe–metal interface. While part of the change
in the conductance spectrum is due to mode mismatch, the rather sharp conductance peaks suggest a
more dominant mechanism: the formation of confined surface states, separated from the leads by an
effective tunnel barrier.

Figure 5.9: (a) Scattering region (blue) with narrow metallic leads (red). (b) Conductance through a
(110) slab (Wleads = W = L = 54) for slab thickness N = 28 layers, examined for both SnTe and
metallic leads. (c) Conductance through the (110) nanowire with metallic leads of Wleads = 10.

Deforming the slab into a (110) nanowire means reducing the metallic lead widths. Figure 5.9 (c)
shows the resulting conductance for Wleads = 10 atoms. The conductance spectrum displays narrow
resonance peaks arising from confined surface states localized on the nanowire’s facets. The corners
of the nanowire act as tunnel barriers, allowing transmission only when the energy of an incoming
mode aligns with that of a confined surface state.

From this resonant G(E) spectrum, we can define the level spacing ∆E as the distance between neigh-
boring resonance peaks. It can be related to the group velocity vg of the band structure and the length
L of the nanowire by ∆E = vg · 2π/L.
If the resonance peaks are due to confined surface states with a tunnel barrier, we would expect this ∆E
relation to hold. To test this hypothesis, we examined the level spacing as a function of both nanowire
length L and width W. In all these simulations the metallic lead width is fixed at Wleads = 10 atoms.

Figure 5.10 (a) plots the level spacing as a function of nanowire length, fitted with group velocity
vg = 0.126 eV · a, with fixed W = 60 atoms. The clear 1/L dependence confirms the expected behavior.
The extracted value of vg agrees well with the group velocity from the slab band structure shown in
Appendix A5.
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Figure 5.10: (a) Level spacing ∆E as a function of nanowire length L, fitted using ∆E = vg · 2π/L with
vg = 0.126 eV · a. (b) Level spacing as a function of nanowire width W, fitted with a straight line. (c)
Resonance peaks for various nanowire widths, while fixing L = 40 and Wleads = 10 atoms.

Figure 5.10 (b) shows the level spacing as a function of nanowire width, with fixed L = 40 atoms.
A straight line is fitted to the data points, revealing no significant dependence on width. Figure 5.10
(c) shows the resonance peaks for nanowires of varying width. As the nanowire width decreases, the
resonance peaks broaden. This behavior can be attributed to a reduction in the effective tunnel barrier
at the corners of the nanowire, which increases the coupling between the confined surface states and
the leads.
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Flux response

The flux response of the gapless states of the (110) nanowire, for transport along the transverse direc-
tions, shows similar behavior as the (100) nanowire. AB oscillation are observed, but its amplitude
decays as the lead width Wleads increases.

These previous results were obtained at fixed momentum kz = 0.82π/a. To assess whether AB os-
cillations are observable under experimental conditions, we integrate the conductance over the full
BZ using eq. 2.18. It is important to note that conductance G(E, kz) is not a smooth function, as it
consists of sharp resonance peaks. Physically, this means that the integration is only meaningful for a
specific longitudinal length (in the z−direction). For an experimentally realistic estimate, we choose a
longitudinal nanowire length of 1 µm. Given the lattice constant of SnTe a = 6.31Å, the longitudinal
length corresponds to approximately 1600a, implying a BZ sampling of ∆k = 2π/1600.

Figure 5.11 (a) shows the total conductance G integrated over the BZ assuming a 1 µm longitudinal
length, at flux values ϕ = 0 and ϕ = 0.5. In the energy gap, resonant behavior remains visible.
However, it is unlikely that these features would survive at finite temperature (with disorder), except
potentially under cryogenic conditions.

Figure 5.11: (a) Conductance obtained for a 41 × 41 (110) nanowire with 1 µm longitudinal length and
narrow metallic leads Wleads = 3 atoms, at flux values ϕ = 0 and ϕ = 0.5. (b) Band structure of a
41 × 41 (110) nanowire.

Figure 5.11 (b) shows the band structure of the (110) nanowire around the energy gap region for
reference. The average conductance trend can be attributed to the density of states near the gapped
surface Dirac cone (around kz = 0.82 π/a). Interestingly, the avoided crossing does not give rise to
enhanced conductance, likely because the corresponding surface states are too confined to the facets
of the nanowire, to contribute significantly to transport. A more detailed analyses on Figure 5.11 is
given in the Appendix A6.

In general, the conductance at ϕ = 0.5 is approximately twice as large compared to the conductance
at ϕ = 0. For the (100) nanowire this was not a trend due to the band broadening. In this case,
contributions from different kz points remain distinct, producing a clear flux response. However, since
increasing the width of the lead suppresses the flux response, observing such effects in an experimental
setting will be challenging.
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6 Conclusion

In this thesis, we have theoretically simulated SnTe using a tight-binding (TB) model approach. Bulk
and slab geometries were used to validate the TB models. We confirmed the topological equivalence
between the Lent model and the effective Hsieh model. This was done by studying their equivalent
bulk and slab characteristics. The Hsieh TB model was used for all electronic and transport results. As
this is an effective model, we noticed that the specific energy and length scales (i.e. penetration depth)
do not exactly correspond to those in SnTe.

SnTe nanowires were studied in different configurations with surface terminations (100), (110) and the
combination of both, the so called (101) nanowire. We established that the (100) and (110) nanowires
are intrinsic higher-order topological insulators. Based on the robustness of their hinge bands to size
effects (including step edges and hinge rounding), strain, flux, as well as their spin polarization and
corner charge. The (101) nanowire exhibited extrinsic topological behavior.

We continued to study the quantum transport signatures of the gapless states in SnTe nanowires.
In the forward direction, the (100) nanowire exhibits Aharonov-Bohm (AB) oscillations, which could
be measured using gate voltage control over the chemical potential. Such AB oscillations were not
observed for gapless states in the (110) nanowire.

The transverse conductance of the (100) nanowire was smooth, a signature of extended surface states.
In contrast, the transverse conductance of the (110) nanowire showed sharp resonance peaks, a signa-
ture of confined surface state, where the nanowire’s corners act as tunnel barriers. Measuring these
resonance peaks will be experimentally challenging, as finite temperature and disorder could smear
them out. For both nanowires, transport along the transverse direction showed weak AB oscillation,
due to gapless states at different sides decoupling, preventing interference.

These findings demonstrate the relationship between surface terminations, the nature of gapless (sur-
face/hinge) states and their quantum transport signatures.
Although we only investigated SnTe, we believe that these results are valid for Pb1 – xSnxTe nanowires
with x > 0.38. More generally, these findings might suggest a deeper connection between surface ter-
mination, mirror Chern numbers and the nature of gapless states in topological crystalline insulators.
Specifically, the presence of confined surface states on (110) terminations (for which mirror Chern
number Cm = −2) contrasts the extended surface states on (100) terminations (for which Cm = 0).
Further research is needed to determine whether these patterns extend to other topological crystalline
insulators. Understanding this connection is important for predicting and controlling electronic prop-
erties of topological nanostructures, which could impact future electronics.
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7 Outlook

This thesis provides a foundational understanding of the electronic and transport properties of SnTe
nanowires. Building on these results, several natural directions for future research emerge.

While we briefly explored geometric imperfections such as step edges and hinge rounding, real exper-
imental systems inevitably contain additional sources of disorder, including atomic vacancies, surface
roughness, and electrostatic or magnetostatic inhomogeneities. The influence of such disorder on for
example the resonance peaks or the Aharonov-Bohm oscillations remains an open question. Our simu-
lations also assumed a magnetic field aligned parallel to the nanowire axis. A logical extension would
be to examine the effect of non-parallel magnetic fields.

To investigate transport through the Pb1 – xSnxTe nanowires, an effective tight-binding model needs to
be constructed for PbTe. One approach could be to fit the effective Hsieh model the Lent model for
PbTe. The resulting fit parameters could then be used with the virtual crystal approximation to study
the electronic and transport properties in Pb1 – xSnxTe nanowires. Another interesting direction would
be studying the transport properties of nanowire’s constructed using different surface terminations,
as presented in [25].

Lastly, k · p analysis could explain the interplay between surface terminations, mirror Chern numbers
and the extended/confined nature of the surface states.
Furthermore, to quantify the topology of the nanowires, topological invariants such as the scattering
invariant could be computed.
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A Appendix

A1 Lent tight-binding model

The Lent tight-binding (TB) model [9] is a nearest-neighbor model that considers two atoms per unit
cell. Its Hamiltonian is given by

H0 = ∑
R⃗,σ,i

[
|a, i, σ, R⃗⟩Ei,a⟨a, i, σ, R⃗|+ |c, i, σ, R⃗ + d⃗⟩Ei,c⟨c, i, σ, R⃗ + d⃗|

]
+ ∑

R⃗,R⃗′ ,σ,i,j

[
|a, i, σ, R⃗⟩Vi,j⟨c, j, σ, R⃗′ + d⃗|+ h.c.

]
+ HSO

(A.1)

Here, R⃗ denotes the lattice positions of the anion (a = Te) in the rock-salt structure. Indices i and j
label the orbitals for the cation (c = Sn or Pb) and anion, respectively. Telluride acts as the anion in
both SnTe and PbTe due to its higher electronegativity. The spin index σ corresponds to spin-up (↑)
or spin-down (↓) states. Vector d⃗ represents the position of the cation relative to the anion within the
unit cell, which is constant: d⃗ = aL

2 (1, 0, 0), where aL is the lattice constant.

The first line corresponds to the onsite potential, whereas the second line corresponds to the nearest-
neighbor hopping with an additional spin–orbit coupling term HSO defined as

HSO = ∑
R⃗,σ,σ′ ,i

[
|c, i, σ, R⃗⟩λc L⃗c · σ⃗c⟨c, i, σ′, R⃗|

]
+ ∑

R⃗,σ,σ′ ,j

[
|a, j, σ, R⃗⟩λa L⃗a · σ⃗a⟨a, j, σ′, R⃗|

]
.

(A.2)

The operators L⃗ and σ⃗ correspond to orbital angular momentum and spin (Pauli matrices), respectively.
Spin–orbit coupling strengths are given by λc and λa for the cation and anion.

Table A.1 presents the TB parameters of SnTe and PbTe, in the Slater-Koster sign convention, where Vp,s
Vp,d and Vp,dπ have an opposite sign (see the supplementary materials of Safaei et al. [19]) compared
to the original Lent parameters, presented by Lent et al [9]. The results in this thesis were obtained
using these parameters for the Lent TB model.
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Symbol SnTe (eV) PbTe (eV)
Es,c -6.578 -7.612
Es,a -12.067 -11.002
Ep,c 1.659 3.195
Ep,a -0.167 -0.237
Ed,c 8.38 7.73
Ed,a 7.73 7.73
λc 0.592 1.500
λa 0.564 0.428
Vs,s -0.510 -0.474
Vs,p 0.949 0.705
Vp,s 0.198 -0.633
Vp,p 2.218 2.066
Vp,pπ -0.446 -0.430
Vp,d 1.11 1.29
Vp,dπ -0.624 -0.835
Vd,p -1.67 -1.59
Vd,pπ 0.766 0.531
Vd,d -1.72 -1.35
Vd,dδ 0.618 0.668

Table A.1: Tight-binding parameters for SnTe and PbTe in the Slater-Koster sign convention.
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A2 (110) nanowire flux response

Figure A.1 shows the flux response of the (110) nanowire. As also shown by Skiff et al. [6], the low-
energy states near the gap exhibit a weak response to flux, with only slight lifting and restoring of
degeneracies (as seen in Fig. 4.15). In contrast, higher-energy states display a stronger flux response,
as the confined surface-state character becomes less pronounced.

Figure A.1: Flux response around the energy gap of in a 28 × 28 (110) nanowire.
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A3 Corner charge

Figure A.2 (a) shows the probability density summed over all states below the Fermi energy at kz = 0
for a 21 × 21 (100) nanowire. Since these are bulk energy states, the charge distribution is uniform,
with each cell carrying a charge of Q = 6e. This is expected as a bulk SnTe unit cell contains 12
orbitals, such that at half filling, 6 of these orbitals are occupied. At kz = 0, there are 2646 occupied
states (= 21 × 21 × 6), resulting in no net excess charge.

At kz = π/a, four gapless states cross the Fermi level, increasing the total number of occupied states
to 2650. The summed probability density for these states is shown in Figure A.2 (b), where some
excess charge is evident. Figure A.2 (c) presents the difference between (b) and the bulk background
(a), highlighting the corner charge discussed in the main text (see Fig. 4.11 (a)).

Figure A.2: (a) Probability density of all occupied bulk states at kz = 0 for a 21 × 21 (100) nanowire.
(b) Probability density at kz = π/a including four gapless states crossing the Fermi level. (c)
Difference between plot (b) and (a), revealing the corner charge.

A similar procedure was used to compute the corner charge of the (110) nanowire, with 16× 16 atoms
in its outermost layer. In the full unit cell of the nanowire, there are 962 atoms. At half filling, we
therefore expect 2886 occupied states (= 962× 6× 0.5). The summed probability density of these states
at kz = 0 is shown in Figure A.3 (a). As before, a uniform charge of 6e per cell is expected for the
bulk.

The case for kz = π/a is shown in Figure A.3 (b), where four gapless states cross the energy gap,
leading to excess charge. Subtracting the bulk background (a) from this distribution yields the corner
charge shown in Figure A.3 (c), also given in the main text (Figure 4.18 (a)).

Figure A.3: (a) Probability density of all occupied bulk states at kz = 0 for a 16 × 16 (110) nanowire.
(b) Probability density at kz = π/a including four gapless states crossing the Fermi level. (c)
Difference between plots (b) and (a), revealing the corner charge.
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A4 Longitudinal Aharonov-Bohm oscillation

Figure A.4 shows the conductance of an (11 × 11) (100) SnTe nanowire with longitudinal SnTe leads,
evaluated at E = −0.04 eV. For SnTe leads, modes are perfectly transmitted, resulting in discrete
conductance steps. Peaks appear at flux values ϕ ≈ 0.5, 1, 2, 4, indicating a nontrivial interference
pattern. This sequence suggests a strong interplay between AB phase, spin and crystalline symmetries.
Why peaks emerge at ϕ = 2n/2 for n ∈ Z remains an open question.

When metallic leads are attached instead, perfect mode matching is lost, yet distinct interference peaks
still persist in the conductance spectrum. Showing that AB oscillations are measurable at higher flux
values as well.

Figure A.4: Conductance at fixed energy E = −0.04 eV as a function of magnetic flux ϕ for an 11 × 11
(100) nanowire with L = 131 layers connected to metallic leads. The result for SnTe leads is shown for
reference.
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A5 Slab projections

Figure A.5 (a) shows the band structure of a (100) slab at fixed kz = 0.90 π/a, corresponding to the
location of the Dirac cone. The bands are two-fold degenerate, resulting in four states near the Dirac
point. Over the full 1D Brillouin zone (ky ∈ [−π/a, π/a]), there are eight states in total, but only
four have a positive group velocity (vg > 0). Thus, we expect four forward-propagating conducting
channels, consistent with the results shown in the main text (see Fig. 5.5 (b)).

Figure A.5 (b) shows the band structure of a (110) slab at fixed kz = 0.82 π/a, also near the Dirac point.
Here, k1 denotes momentum along the unit vector ê1 = (êx − êy)/

√
2. Due to two-fold degeneracy,

there are four states across the entire 1DBZ, but only two share the same (positive) group velocity.
Therefore, we observe two forward-propagating conducting channels, as discussed in the main text
(see Fig. 5.9 (b)).

Figure A.5: (a) Band structure of the (100) slab at kz = 0.90 π/a. (b) Band structure of the (110) slab at
kz = 0.82 π/a.

Fitting the level spacing relation, ∆E = vg · 2π/L, to the data in Figure 5.10 yields a group velocity of
vg = 0.126 eV · a. This value is in near-perfect agreement with the group velocity obtained by fitting
the Dirac cone in Figure A.5 (b) at k1 = 0. This consistency supports the interpretation that the (110)
nanowire corners act as tunnel barriers, hosting discretized bounded states in between them.
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A6 Brillouin zone integration

This section discusses the flux response of the total transverse conductance for the (100) (Fig. 5.8) and
the (110) nanowire (Fig. 5.11) in more detail, by looking at the conductance curves at each kz value.

Nanowire (100)

Figure A.6 shows the individual conductance contributions at discrete kz values for (a) ϕ = 0 and (b)
ϕ = 0.5. Summing all these conductance contributions (i.e. summing over kz) generates the the total
conductance G/L, shown in the main text (Fig. 5.8 (a)). The curves appear somewhat messy because
of the band broadening introduced by coupling the nanowire to leads.

As seen in Figure 5.8 (a), the most noticeable difference between the two flux values is the enhanced
conductance for −0.12 ≳ E ≳ −0.08 eV. This change arises from subtle differences in the density of
states (DOS) and the spatial character of the wavefunctions at these energies.

Figure A.6: Individual conductance curves at specific kz values at (a) ϕ = 0 and (b) ϕ = 0.5, for
transverse conduction of a (100) nanowire. Summing these curves yields the total conductance G/L,
shown in Fig. 5.8 (a).

Extended surface states originating from the gapless hinge bands exhibit a slight increase in localiza-
tion near the nanowire’s hinges, compared to surface states associated with the gapped Dirac cone (i.e.
the valence and conduction bands). The more uniform spatial distribution of the latter states appears
to enable stronger coherent interference, resulting in more pronounced conductance oscillations.

Furthermore, higher harmonics were observed in the flux response, which could lead to gapless states
exhibiting a reduced flux response specifically at ϕ = 0.5. These higher harmonics stem from the wave
function’s spatial non-uniformity. For instance, hinge states accumulate the AB phase differently from
surface states.
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Nanowire (110)

First we want to highlight our choice of system size. As discussed in the main text (see Fig. 5.10 (c)),
increasing the size of the scattering region (W = L >> Wleads) results in narrower resonance peaks in
the conductance spectrum G(E). To capture the sharpness of these peaks accurately, a dense energy
sampling is needed, leading to computational limitations. On the other hand, a smaller scattering
regions ((W = L ∼ Wleads)) broadens the peaks, causing resonant features to disappear in the energy
gap. To balance peak resolution and computational limitations, we choose a scattering region of 41× 41
atoms (∼ 10 · Wleads).

Figure A.7 shows each individual contribution of a specific kz value to the total conductance for ϕ = 0
and ϕ = 0.5. Summing all these conductance contributions (i.e. summing over kz) generates the the
total conductance G/L, shown in the main text (Fig. 5.11 (a)).

Nearly all non-zero contributions originate from the range kz ∈ [0.79π/a, 0.84π/a], where the gapless
states are located. The shifted peaks in the energy interval E ∈ [−0.09,−0.06] eV originate from the
band connecting the valence and conduction band. For energies E > 0.6 eV, the density of states
(DOS) increases, due to the gapped surface Dirac cone. The resonance peak height increases as well,
indicating an increase in the coupling between the leads and scattering region. A clear flux response
is seen for ϕ = 0.5, indicating coherent resonant transport along the wire’s perimeter.

Figure A.7: Individual conductance curves at specific kz values at ϕ = 0 and ϕ = 0.5, for transverse
conduction of a (110) nanowire. Summing these curves generates the total conductance G/L, from
Fig. 5.11 (a).

Extremely sharp peaks appear around E ≲ −0.09 eV, corresponding to conductance contributions from
the avoided crossing at kz ≈ 0.55π/a. The sharpness of these peaks reflect the stronger confinement
of the states, compared to the gapless states. As these peaks are so sharp, our energy sampling may
not fully resolve them. However, since these states belong to the valence band, they do not influence
the signature of the gapless states of interest.
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