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ABSTRACT 
 
Geometric patterns inspired in historical Islamic ornamental art have attracted the attention of contemporary 
designers worldwide. The large variety of shapes, symmetries and combinations is a source of inspiration, but at the 
same time makes it difficult to provide general rules when used in a technological application. Structural small-scale 
applications have been object of research, but there are potential applications at larger scales that deserved attention. 
In view of some recent proposals of Islamic patterns as structural grids for tall building skins, the question of their 
structural efficiency, especially compared to conventional grids, arises. 
 
The purpose of this research is to assess the performance of structural grids based on geometric Islamic patterns as 
outer skins of tall buildings. For this purpose, several historic patterns have been classified. An equivalent meta-
material has been defined for each pattern, based on the homogenization method for a series of saturations or beam 
sizes. Their response in different orientations has been studied to identify their structural behaviour based on the 
pattern geometry. Their relative performance has been assessed for all patterns against themselves and against the 
conventional diagrid system. All this process has been collected and summarized in a predesign tool made of graphs, 
pictures and tables Finally, the predesign tool accuracy has been assessed and applied to three tall buildings. All those 
steps have been structured in three distinctive levels:  
 
At the method level, the conclusion is that the developed predesign tool is a success as it provides a higher level of 
accuracy than modelling all the beams. It is also faster and easier to implement, than modelling all the beam elements, 
to compare alternatives in early stages as the complexity of modelling the patterns is postponed to later stages. As the 
saturation decreases and the effective beam length influence in the beam model results diminishes, the beam model 
will become more reliable than the predesign tool and vice versa. 
 
At the pattern level, the most interesting finding is that the patterns with square symmetry (symmetry directions at 
90º) display a perpendicular isotropic behaviour, whereas the patterns with pentagonal symmetry (symmetry 
directions at 72ª) display an orthotropic behaviour, and the patterns with hexagonal symmetry (symmetry directions 
at 60ª) display an isotropic behaviour. It has also been studied the effect that would have filling the stars as an 
alternative to building the patterns as an assembly of beams. 
 
At the building level, it has been found a few geometric Islamic patterns that could be suitable alternatives to the 
conventional diagrid systems, a pattern with a similar performance and even a pattern with a higher structural 
performance than the conventional diagrids. This highly performing pattern is currently been used for some architects 
such as Shigeru Ban in their parametric designs. In this regard, it can be concluded that the objective of finding suitable 
alternatives to conventional diagrid systems has also been a success and it can affect some designers engineering 
judgement.  The homogenization process obtained an equivalent ideal material corresponding to a plane infinite panel 
that will not correspond with the built structural grid. The use of complex geometries and its application to tall 
buildings introduce effects not considered in the homogenization that will disrupt the expected structural 
performance. Those effects are minimized in the case of other shells structures such as domes but can be important 
in the case of tall buildings. It is not advisable to account for the squeezing effect by adapting the saturation with the 
change of the modulus size in the x-direction as the relative beam depth has a greater impact in the overall stiffness 
than the change of geometry due to the squeezing effect. The distortion effect cannot be accounted for directly and 
it depends on the angle of the distortion and the pattern. However, in the studied case it has been found a required 
correction factor of 1.2-1.3, in line with other uncertainty factors used in practice. Finally, the intermediate supports 
can have a great influence in the final drift. It depends on the pattern used and the number of diaphragms inside the 
module. Nevertheless, the use of intermediate supports is always beneficial and not considering them will always lead 
to more conservative solutions. 
 
In conclusion, this document successfully bridges the knowledge gap regarding the structural behaviour of historic 
Islamic patterns, with comparative tables. It identifies the best performing patterns and their best orientation, and it 
provides a useful tool for the decision making in the design process of in-plane bearing geometric Islamic patterns. 
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∆𝑙  Imposed deformation 𝑚𝑚  
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𝐸𝑖   Modulus of elasticity in 𝑖 direction 𝑁/𝑚2  
𝐸𝑏𝑎𝑠𝑒  Modulus of elasticity of the base material 𝑁/𝑚2  
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𝐺  Shear modulus 𝑁/𝑚2  
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𝑢𝑥(𝑦)  Maximum horizontal displacement at height y 𝑚  
x  In-plane horizontal direction - 
y  In-plane vertical direction - 
z  Out-of-plane direction - 
   
Contractions  
𝐷𝑖𝑓𝑓.  Difference. Change in the results between steps in mesh refinement. %  
𝑟𝑏𝑑  Relative beam depth. Beam depth as percentage of the module size in x-direction. %  
𝑅𝑜𝑡.  Rotation. The pattern is rotated this angle. º  
𝑆𝑎𝑡.  Saturation. Percentage of the surface occupied by the structure. %  
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1. INTRODUCTION 
1.1. RESEARCH MOTIVATION.  
According to the United Nations Department of Economic and Social Affairs (UN DESA)2. during the next 30 years there 
will be a mass exodus of population from the rural areas to the cities. Among them, 90% in the regions of Africa and 
Asia. This process will lead to ever-growing megalopolis with a high density of population. From a social and 
environmental point of view, it is essential to research into different constructive and structural alternatives that 
integrated with their social environment make an efficient use of the resources. In that sense, the Bending Rigidity 
Index defined by Le Messurier3 shows how a perimeter array of the bearing elements is generally more efficient 
regarding the material use. The tube system has been widely employed regardless being less efficient than the braced 
systems, since its elements work in bending to withstand the wind action. Within the braced systems, the mega-frame 
system has been so far the most commonly used. However, it still presents the problem of relative displacement 
between floors inside each module and it strongly constrains the designer when it comes to irregular building shapes. 
Finally, diagrids systems use has been quite limited due to its aesthetic impact and its nodes high construction costs. 
However, currently diagrid systems are living a new golden age due to its adaptability to complex and organic building 
shapes, due to the new software that simplifies its analysis and manufacture reducing costs, and due to its aesthetic 
possibilities with the apparition of non-conventional designs. Examples of non-conventional diagrid systems: 
 
 

 
FIG 1.1 Surnrise Tower4 

 
FIG 1.2. Sino-Steel Tower2 

 
FIG 1.3. Hypergreen Tower3 

 
FIG 1.4 Citic Financial Centre4 

 
A literature review shows recent researches about the structural optimization of conventional diagrid systems (Moon 
et al 2007)4. about other simple geometries such as pentagrids (Taranath et al 2014)5 and hexagrids (Montuori et al 
2015)6. and a method for the preliminary design of irregular diagrids based on Voronoi’s tessellation (Angelucci and 
Mollaioli 2018)7. However, other geometries which are more complex, open to prefabrication and widely present on 
the regions where most of the tall buildings will be erected, such as the Arabic, have not been researched.  That is the 
reason behind this master thesis focus in this research area. An area that is under development, that has practical 
applicability in the coming years and that in case of being applied will have social, environmental and economic effects. 
Examples of Arabic patterns in conceptual design of modern architecture: 
 
 

 
FIG 1.5. Park5112 

 
FIG 1.6.  Algerian Parliament13 

 
FIG 1.7. Nomad Inception14 
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1.2. RESEARCH OBJECTIVE. 
The main objective of this thesis is to provide insight into the structural behaviour and design of geometric Islamic 
patterns as alternative to conventional diagrid systems for tall buildings. In other words, to fill that knowledge gap, 
to assist future designers by providing insight into the geometric Islamic patterns in-plane behaviour, their relative 
structural performance, their design and their feasibility as alternative to conventional diagrid systems for tall 
buildings. This research objective is articulated at three levels: 
 
METHOD LEVEL: 
Development of a simple tool for the predesign of surface structures with geometric Islamic patterns  
 
PATTERN LEVEL: 
Determination of the structural behaviour and performance comparison of surface structures with geometric Islamic 
patterns loaded in their plane  
 
BUILDING LEVEL: 
Feasibility of the adoption of geometric Islamic patterns as an alternative to conventional diagrid systems. 
 
 

1.3. RESEARCH QUESTIONS. 
The research questions are enunciated so their answers will provide the knowledge sought by the research objectives. 
Therefore, three main research questions are required, matching the three knowledge levels (method, pattern and 
building) distinguished when laying out the research objectives. 
 
METHOD LEVEL: 
Can a simple tool be developed for the predesign of geometric Islamic patterns as a non-conventional diagrid system? 
 
PATTERN LEVEL: 
How do geometric Islamic patterns behave and compare when loaded in their plane? 

 
BUILDING LEVEL: 
Can Islamic inspired patterns become a feasible alternative to traditional diagrid systems for tall buildings? 
 
 

1.4. METHODOLOGY 
Each research question is approached by a series of stepping stones in order to reach a satisfactory answer: 
 
METHOD LEVEL: 
Can a simple tool be developed for the predesign of geometric Islamic patterns as a non-conventional diagrid system? 

- Method chosen and methodology for its adoption 
- Development of a pre-design tool. 
- Assessment of the developed tool 

 
PATTERN LEVEL: 
How do geometric Islamic patterns behave and compare when loaded in their plane? 

- Selection of historic Islamic patterns and their parametric variations 
- Characterization of the patterns’ structural behaviour 
- Performance comparison of the different patterns 
- Proposals for their improvement 

 
BUILDING LEVEL: 
Can Islamic inspired patterns become a feasible alternative to traditional diagrid systems for tall buildings? 

- Performance comparison of the different patterns and the conventional diagrids 
- Overview practical applications of best performing patterns 
- Special cases in tall buildings 
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1.5. SCOPE 
This study is limited to the in-plane structural behaviour of geometric Islamic patterns under linear elastic response. 
The research will account for the Representative Volume Element effects and mesh size during the homogenization 
process.  It has been considered that 20 widespread historic Islamic patterns will be comprehensive enough to assess 
their structural behaviour and performance. It has been proposed a series of parametric variations of each historic 
pattern to show the designer the variation possibilities of this method  and provide them with a basis to come up with 
their own designs. Once the structural behaviour and performance of the selected historic patterns is obtained, they 
are compared against each other and against a conventional diagrid system to evaluate their suitability for practical 
application. The tables, graphs and figures are collected in a compendium as a pre-design tool, whose accuracy is 
assessed.  
 
The homogenization process requires of 4 tests (two elongations and two distortions). As the relative beam depth 
affects the grid response, each pattern is tested for an average of 9 different relative beam depths. The historic 
patterns and their 6 proposed parametric variations are test for 3 different panel sizes with beam elements (1x1, 2x2 
and 4x4). Just the historic patterns are tested for 2 different mesh sizes (D/6 and D/12). All of this makes a total of 
16,560 tests. Including the stars filling, study cases and other tests, the total amount of tests in SAP2000 done for the 
development of this research are near to 20,000.  
 
 

1.6. DOCUMENT OUTLINE 
This report is structured as a direct transposition of the outlined methodology, with extra chapters to account for the 
conclusions and preliminary sections. 
 

PRELIMINARIES - Introduction 
- Literature review 
- Geometric Islamic patterns 

Ch 1 
Ch 2 
Ch 3 

   
RQ1. METHOD LEVEL - Method adopted 

- Homogenization methodology 
- Representative Element Volume (REV) 
- FEM Beam elements 
- FEM Membrane elements 
- Mesh refinement 
- Membrane correction factor (C2D) 
- Ideal homogenized mechanical properties 

Ch 4.1 
Ch 4.2 
Ch 4.3 
Ch 4.4 
Ch 4.5 
Ch 4.6 
Ch 4.7 
Ch 4.8 

   
RQ2. PATTERN LEVEL - Directional mechanical properties. 

- Wire patterns performance 
- Star filling 
- Filled patterns performance 
- From wire to filled patterns 

Ch 5.1 
Ch 5.2 
Ch 5.3 
Ch 5.4 
Ch 5.5 

   
RQ3. BUILDING LEVEL - Conventional diagrids 

- Diagrids vs historic patterns performance 
- Overview of best performing patterns 
- Accuracy assessment 
- Special cases in tall buildings 

Ch 6.1 
Ch 6.2 
Ch 6.3 
Ch 6.4 
Ch 6.5 

   
CONCLUSIONS - Research Question 1. Method level 

- Research Question 2. Pattern level 
- Research Question 3. Building level 

Ch 7.1 
Ch 7.2 
Ch 7.3 

   
ANNEX - Design Guide 

- Numerical results 
Appendix I 
Appendix II 
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2. LITERATURE REVIEW 
 

2.1. PREVIOUS RESEARCH ON THE STRUCTURAL USE OF GEOMETRIC ISLAMIC PATTERNS 
 

Traditionally, the geometric Islamic patterns have had a mere decorative application as carved, cladded or painted. 
Nowadays architects are showing their wish to use them for other functions such as light control or structural 
bearing. The available literature on the structural use of geometric Islamic pattern is: 
 

- N. Emami, A. Khodadadi and P.V. Buelow, (2014)8. Design of shading screens inspired by Persian geometric 
patterns: An integrated structural and daylight performance evaluation. IASS-SLTE Symposium: Parametric 
study of a patterned wall based on the dynamic shading of Al Bahr Tower. The structural analysis concludes 
that “these are not appropriate configurations to choose as a self-standing wall, even though their daylight 
performance is acceptable. Different structural system needs to be designed to use these configurations” 
 

 
FIG 2.1. Shading screens inspired by Persian geometric patterns 

 
- N. K. Khouri (2017)9. Structural Grid Shell Design with Islamic Pattern Topologies. Master thesis Massachusetts 

Institute of Technology: Parametric optimization of the pattern 4.8.8. by modifying the contact angle, for the 
use on funicular shells. Master thesis focus primarily in form finding and parametric optimization. 

 

 
FIG 2.2..Hankin method on pattern 4.8.8.mapped into funicular shells 

 
From the existing literature on the structural use of geometric Islamic patterns, it is concluded that: 
 

- There is no previous literature on the in-plane structural behaviour and structural characterization of the most 
important historic geometric Islamic patterns. 

- There is no previous literature on the structural performance comparative between the most important 
historic geometric Islamic patterns. 

- There is no previous literature on the structural performance comparative of the most important historic 
geometric Islamic patterns with regard other conventional structural systems. 

- There is no previous literature on the effects of the rotation in the in-plane structural behaviour of the most 
important historic geometric Islamic patterns. 

- There is no existing tool or guide for the predesign of historic geometric Islamic patterns 

- The only parametric study on the structural behaviour of Islamic patterns is limited to the tessellation 4.8.8. 
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2.2. DIAGRID SYSTEMS 
A diagrid is a regular assembly of diagonally intersecting beams that creates a planar rigid structure. Its name is the 

acronym for diamond grid as the resulting pattern is a rhomboid tessellation. The diagrid system has been experiencing 

an evolution of its topology during the last decades, leading to the following possible classification: 

First generation: The first conceptual proposals were presented in 1953 at the Illinois Institute of Technology by Myron 

Goldsmith10. He designed three triangulated structures for tall buildings, namely a variable-density diagrid, a regular 

narrow diagrid and a mega-diagonal solution.  

 
FIG 2.3. Diagrid systems proposed by Goldsmith 

Under this first generation are those “diagrid systems” currently better known as “braced frames”. A clear example of 

these early applications was the Hancock tower built in Chicago in 1965. This typology keeps the beams and columns 

leaving the diagonals the role of bracing against horizontal loads. This provides a high bending stiffness proving to be 

suitable for very slender buildings. In his drawings, Goldsmith represented this solution with right-angled triangles, 

but it does not have to be always the case.  

 

Second generation: Under this generation are those diagrid systems currently referred as conventional diagrids. As 

the columns are removed, the diagonals have to work for gravitational as well as horizontal loads, making the structure 

more efficient in terms of material use. When this typology is applied to a building, all the nodes at the same level are 

normally tied with a horizontal beam to triangulate the structure improving greatly its stiffness.  

The widespread use of Computer Aided Design software in the construction field has pushed the boundaries of 

architecture into more geometrically complex designs. In this regard, conventional diagrids are the natural result of 

faceting organic shapes and as result, they have found a new re-awaken as the best feasible solution for complex 

buildings such as the Museum of the future18 in Dubai or 30st Mary Axe19 in London.  The characteristic module of the 

second generation is the equilateral triangle. 

 
FIG 2.4. Museum of the future18 

 
FIG 2.5. 30st Mary Axe19 

 
FIG 2.6. Hearst Tower20 
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Third generation: As the acceptance of this structural typology increases, the interest in its practical application 

catalyses the search of more optimal diagrid systems. The third generation is characterized by diagrids whose triangles 

are distorted in order to obtain better mechanical properties. A representative example is the Hearst Tower20 in New 

York, where a parametric study of the diagrid angle allowed to save 20% of the material in comparison with a 

conventional diagrid. 

In his article “Material-Saving Design Strategies for Tall Building Structures”, Professor Kyoung Sun Moon11 states 

regarding the optimal diagrid angle: “Thus, the optimal angle of diagonal is highly dependent upon the building height. 

Since the optimal angle of the columns for maximum bending rigidity is 90 degrees and that of the diagonals for 

maximum shear rigidity is about 35 degrees, it is expected that the optimal angle of diagonal members for diagrid 

structures will fall between these angles and as the building height increases, the optimal angle also increases.” So 

there is not an optimal angle a priori, it will ultimately derive from the height and slenderness of the building under 

study.  

 

Fourth generation: New patterns are arising for aesthetic and structural reason which deviate from the original 

diamond shape that gives name to the diagrid system. They are better known as unconventional diagrid systems and 

a few different mainstreams can be identified: 

- Michell truss: In 1904 G. A. Michell12 defined analytically the optimal structure to withstand a point load for 

continuum, giving name to this specific typology. Due to W. Prager contribution for the application on discrete 

trusses on recent years, this typology is sometimes referred to as Prager truss as well for his contributions13. 

The main objective of this typology is to obtained the most efficient structure in terms of material consumption 

so its shape derives directly from the building shape and the loads considered. A recent example is the Citic 

Financial Centre4 in Shenzhen. The design can be obtained analytically as proposed by Michell, iteratively with 

a genetic algorithm in a parametric design, or by means of topology optimization.  

 

- Organicist: Variations of the diagrid system to get an aesthetic that evokes the nature. An example is the 

unbuilt Sunrise Tower1 designed for Kuala Lumpur. However, the most extreme case is the use of Voronoi 

tessellation that is wide spread in the nature. Angelucci and Mollaioli (2018)7 have recently proposed a method 

for the preliminary design of non-conventional diagrids based on Voronoi’s tessellation. 

 

- Hexagrids: Other simple geometries different to triangles have recently been studied as alternatives to 

conventional diagrid systems for their aesthetic interest. It is the case of pentagrids (Taranath et al 2014)5 

whose module is the pentagon or the case of hexagrids (Montuori et al 2015)6 whose module is the hexagon. 

An example is the Sino-Steel Tower2 currently under construction in Tianjin.  

 
FIG 2.7. Surnrise Tower1 

 
FIG 2.8. Sino-Steel Tower2 

 
FIG 2.9. Hypergreen Tower3 

 
FIG 2.10 Financial Centre 
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- Geometric Islamic Patterns: Based on the historic geometric Islamic patterns across the Muslim world. 

Examples of Arabic patterns in conceptual design of modern architecture are the Park515 proposed for New 

York, the project for the Algerian Parliament6 or the façade solutions offered by Nomad Inception7. 

 
FIG 2.11. Park515 

 
FIG 2.12. Algerian Parliament6 

 
FIG 2.13. Nomad Inception7 

   

2.3. STIFNESS-BASED DESIGN. 
In tall buildings the most critical loads are the lateral loads, specially the wind loads. If the wind load is simplified to its 

equivalent constant distributed load, the shear distribution will be linear (h1), the bending distribution parabolic (h2), 

the rotations distribution cubic (h3) and deformations will have a distribution directly proportional to the building’s 

height at the power of four (h4). The mechanical properties that have to withstand the bending force are related to 

the inertia of the bearing system. As the external tube is approximately a hollow section, according to Steiner’s rule, 

the inertia is directly proportional to the area of the structural element times the distance to the neutral axis squared 

(b/2)2. In other words, as the building slenderness increases, the displacement limitations at the top become more 

critical than the resistance limitations at the base. Generally speaking, it can be stated that in tall buildings, fulfilling 

the global Service Limit State limitations indirectly leads to the fulfilment of the Ultimate Limit State limitations as they 

tend to be more restrictive. This premise is valid only for the predesign and all the limitations must be later verified, 

especially those concerning the global stability of the building overturning as a rigid body 

The stiffness-based design approach is derived from the above premise. The structural elements are disposed and 

sized so the overall stiffness of the structure is enough to fulfil the required displacement limitation. This approach is 

widely used for the preliminary design of tall buildings and is applied by Moon11 for his diagrid optimization: 

“Tall building structures can be modelled as vertical cantilever beams 

on the ground. Then, the deflection at the top is given by: 

𝑢𝑥(𝐻) = 𝛾∗𝐻 +
𝜒∗𝐻2

2
                                                 (1.1)            

𝛾∗𝐻 is the contribution from shear deformation and  

𝜒∗𝐻2/2 is the contribution from bending” 

Then, the dimensionless ‘s’ factor equal to the ratio of the displacement 

at the top of the structure due to bending and the displacement due to 

shear is introduced. The optimization study will find the appropriate ´s´ 

for the most economic design. 
 

FIG 2.14.Stiffness based design 

Applying Timoshenko beam theory to a prismatic cantilever beam under uniform distributed load:  

𝑢𝑥(𝐻) =
𝑞𝑤𝐻4

8𝐸𝐼
+

𝑞𝑤𝐻2

2𝐺𝐴𝑠
≤ 𝑢𝑥(𝐻)𝑚𝑎𝑥                                                                                                 (1.2) 

The top displacement is compared with the drift limitation and the mechanical properties chosen to meet it. 
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2.4. HOMOGENIZATION METHOD. 
This method was first developed for the theory of materials, to simulate the macroscale behaviour of porous materials 

without the need of modelling its constitutive microscale elements. The main idea is to get analytically or numerically 

the ‘equivalent’ or ‘homogenized’ mechanical properties of a continuous metamaterial that represents the periodic 

structure that forms it. In the context of non-conventional diagrids, the diagrid would be substituted by an equivalent 

homogenized material whose homogenized mechanical properties would lead to the same displacements with 

stiffness-based design equations. 

G.M. Montuori14 uses this method in his hexagrid structural assessment research: “(…) the idea is to idealize whichever 

grid as a continuous depleted medium, characterized by penalized mechanical properties, according to the classical 

micromechanical approach based on homogenization methods. In fact a plane periodic structure made up of an 

isotropic linearly elastic material and possessing a certain degree of symmetry behaves macroscopically as an isotropic 

material; the macroscopic properties of the structure are called the effective properties, and depend on both the 

mechanical properties of the solid matrix and on the microstructural features of the grid, namely topology, density 

and orientation.” 

Module: “The module is the frame shape, i.e. the geometrical arrangement of the structural members giving a visual 

representation of the pattern (hexagon for hexagrid and triangle for diagrid), anyway the replication of the module 

gives rise to overlaps of the edges, so that the overall geometry cannot be obtained by simply copying the module.” 

Unit cell: “Defined as the geometric unity that through replication allows to obtain the overall geometrical pattern 

without overlaps or gaps”. 

Representative Volume Element (RVE): “While the unit cells represent the repetitive unit from the geometric point 

of view, the RVE represents the structural idealization of the unit cell, that only can be established by anticipating the 

deformation modes and internal forces arising in the unit cell as a part of the global grid “. 

 

FIG 2.15. Unit cell definition 

 

FIG 2.16. Representative Volume Element definition  

This document diverges from the above definitions provided by G.M. Montuori14. The modules do not overlap, the 

unit cells are not the minimum possible unit and the representative volume elements are the direct structural 

idealization of the unit cells. For simplicity of the proposed design method, only the terminology “module” is employed 

to refer to the three of them, that in all cases have the exact same geometry. Their geometric definition is derived 

from the minimum rectangle standing in the x- and y-axis, whose replication leads to the complete pattern. These 

definitions are applied to Great Mosque of Damascus pattern in the following pictures:  

 
FIG 2.17.  Module as per Montuori 

 
FIG 2.18. Unit cell as per Montuori 

 
FIG 2.19.  Module edges in this doc. 

 
FIG 2.20.Unit cell and RVE in this doc. 

 
The unit cell is exploded to fit into the module`s defining rectangle so the results are expected to have a great 

dependency on the applied boundary conditions and a Representative Volume Element refinement will be necessary. 
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2.5. PERIODIC BOUNDARY CONDITIONS 
Historic geometric Islamic patterns can present three main geometric symmetries, namely square, pentagonal and 
hexagonal symmetries. Each generating symmetry will lead to a different orientation and number of axis of symmetry 
corresponding to the pattern’s principal directions. For simplicity and to allow the automation of the analysis, a 
rectangular module is chosen for all patterns for the homogenization process. The unit cell is exploded in order to fit 
into the module’s defining rectangle, leading ultimately to distortions in the results that need to be account for with a 
Representative Volume Element refinement.  
 

  

 

 

 

  
FIG 2.21. 90º. Square symmetry FIG 2.22.72º. Pentagonal symmetry  FIG 2.23. 60º. Hexagonal symmetry 

 
A similar phenomenon is found when the cracking formation in concrete is studied a with Finite Element Analysis. The 
orthogonality of the element discretization does not correspond with the diverse orientations in which the cracking 
can occur. This difference in the cracking and finite element orientation can affect the crack generation derived from 
the different concentration of strains. A possible solution would be to repeat the tests changing the orientation of the 
square finite elements inside the volume under study, leading to a periodic boundary condition in its perimeter.  
 

A brief introduction is extracted from A.T. Slobbe, M.A.N. Hendriks and J.G. Rots15 paper on periodic boundary 
conditions applied to crack band model:  
 

“The test uses the concept of periodicity in the field of strain localization analysis. Due to inclusion of periodic boundary 
conditions, different mesh alignments of element orientations with respect to the loading direction can be adopted. 
In contrary to standard tests this can be done without disturbance of the localization process by the model boundaries 
and without loss of mess uniformity. (…) The proposed systematic testing procedure could be applied on different 
constitutive models. In this paper it is done for the crack band approach, which is (in a qualitative sense) known from 
literature to suffer from mesh-induced directional bias”.  
 

 
FIG 2.24. Periodic boundary conditions from the mesh rotation 

For the 2D situation, the formulation can be expressed as: 
𝑢𝑗2.𝑖 = 1.0 · 𝑢𝑗1.𝑖 + 1.0 · 𝑢∆𝑗𝑖, for  𝑖 = 𝑥, 𝑦 and  j= 𝑥, 𝑦              (1.3) 

𝑢𝑐2.𝑥 = 1.0 · 𝑢𝑐1.𝑥 + 1.0 · 𝑢∆𝑥𝑥 − 1.0 · 𝑢∆𝑦𝑥                                 (1.4) 

𝑢𝑐2.𝑦 = 1.0 · 𝑢𝑐1.𝑦 + 1.0 · 𝑢∆𝑦𝑦 + 1.0 · 𝑢∆𝑥𝑦                                 (1.5) 

In which 𝑢𝑗1.𝑖, 𝑢𝑐1.𝑥, and 𝑢𝑐1.𝑦 are the master nodal displacements 

components and 𝑢𝑗2.𝑖, 𝑢𝑐2.𝑥, and 𝑢𝑐2.𝑦their coupled slave nodal 

displacement components. The parameter 𝑢∆𝑗𝑖  is the master nodal 

dof that represents the constant displacement difference ∆𝑗𝑖 
 
Periodic boundary conditions address mesh-induced directional bias on continuous materials. It could a direct 
application in this project if the tests were performed to the homogenized equivalent material. However, the test are 
carried out to the discontinuous, heterogeneous and periodic patterns, so their application is not that obvious or direct 
as desired.  
 
For the sake of finding a method that is directly applicable to all patterns and easy to automate, continuous boundary 
conditions are finally chosen over periodic boundary conditions in this research. More details on the boundary 
conditions can be found in Ch4. Homogenization process. 
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2.6. CONSTITUTIVE MATRIX FOR 2D ORTHOTROPIC BEHAVIOUR 
The scope of this research is limited to the in-plane structural behaviour of the geometric Islamic patterns. A priori it 

is not possible to know if the equivalent metamaterial will have an isotropic, orthotropic or anisotropic behaviour. The 

most sensible approach would be to address it as an isotropic material and determine the actual behaviour by the 

obtained results. However, considering an isotropic behaviour would be too simplistic and an anisotropic behaviour 

would be excessive as one of the main objectives of this research is to develop an easy to use tool for the predesign 

of non-conventional diagrid systems based on geometric Islamic patterns. Therefore, in this research, the behaviour 

of the geometric Islamic patterns has been assumed a priori as orthotropic and the homogenization process has been 

designed in a manner to better provide the required input for such characterization. 

The following formulation of the constitutive equations of 2D orthotropic materials is extracted from the course on 

Composite Materials and Structures from the Aerospace Department of the IIT Madras (NPTEL)16. 

Starting with the generalized Hooke’s law for an anisotropic material, after applying the stress symmetry 𝜎𝑖𝑗 = 𝜎𝑗𝑖 and 

the strain symmetry 𝜀𝑖𝑗 = 𝜀𝑖𝑗  conditions, we can write Hooke’s law in a contract form as: 

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗     (𝑖, 𝑗 = 1.2. … ,6)                                                                                                     (1.6) 

Or in its better-known form: 

𝜀11 =
𝜎11

𝐸1
−

𝜈21

𝐸2
𝜎22  −

𝜈31

𝐸3
𝜎33                                                                                                 (1.7) 

𝜀22 = −
𝜈12

𝐸1
𝜎11 +

𝜎22

𝐸2
 −

𝜈32

𝐸3
𝜎33                                                                                             (1.8) 

𝜀33 = −
𝜈13

𝐸1
𝜎11 −

𝜈23

𝐸2
𝜎22  +

𝜎33

𝐸3
                                                                                            (1.9) 

Whereas the engineering shear strain components are given as: 

𝛾12 =
𝜏12

𝐺12
 ,   𝛾13 =

𝜏13

𝐺13
 ,    𝛾23 =

𝜏23

𝐺23
                                                                                  (1.10) 

𝐸𝑖  represents the Young’s moduli, 𝐺𝑖𝑗  the shear moduli and 𝜈ij the Poisson’s ratio. For the 2D case, the terms 𝜀33, 𝛾13 

and 𝛾23 are zero. Written in matrix form it is known as the compliance form: 

{ 

𝜀11

𝜀22 

𝛾12 

 } =

[
 
 
 
 
 
 

  

1

𝐸1

−𝜈21

𝐸2
0   

−𝜈12

𝐸1

1

𝐸2
0   

0 0
1

𝐺12
  
]
 
 
 
 
 
 

{ 

𝜎11

𝜎22 
𝜏12

}                                                                              (1.11) 

Finally, the stiffness matrix is the inverse of the compliance matrix: 

{ 

𝜎11

𝜎22

𝜏12

 } =

[
 
 
 
 
 

  

𝐸1

1 − 𝜈12𝜈21

𝜈12 𝐸2

1 − 𝜈12𝜈21
0   

𝜈𝑦𝑥 𝐸𝑥

1 − 𝜈12𝜈21

𝐸𝑦

1 − 𝜈12𝜈12
0   

0 0 𝐺12  ]
 
 
 
 
 

{ 

𝜀11 

𝜀22 
𝛾12 

}                                                        (1.12) 

This formulation has been derived for the material’s principal direction. However, the principal directions of the 

geometric Islamic patterns under study are unknown. As the assumption and steps taken stand for other orthogonal 

directions, the principal directions are replaced by the x- and y-directions.  
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Stiffness matrix used in the homogenization process: 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 } =

[
 
 
 
 
 

  

𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝜈𝑥𝑦 𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0   

𝜈𝑦𝑥 𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0   

0 0 𝐺  ]
 
 
 
 
 

{ 

𝜀𝑥𝑥 

𝜀𝑦𝑦 
𝛾𝑥𝑦 

}                                                           (1.13) 

 

2.7. ROTATION OF THE CONSTITUTIVE MATRIX. 
The formulation included in this chapter has been obtained from the course on Composite Materials and Structures 

from the Aerospace Department of the IIT Madras (NPTEL)16.  

The rotation matrix around the 𝑥3 axis is well-known: 

𝑎𝑖𝑗 = [  
cos (𝛼) −sin (𝛼) 0
sin (𝛼) cos (𝛼) 0

0 0 1

 ]                                                                                                       (1.14) 

The direction cosines are used to transform a vector, a second order tensor or a fourth order tensor, and are given by 

the following relation: 

𝑎𝑗𝑖 =
𝜕𝑥′𝑖
𝜕𝑥𝑗

                                                                                                                                                 (1.15) 

Applied to a vector 𝑃𝑗 such that the rotated coordinate system is given in terms of components in unrotated system: 

𝑃𝑖 = 𝑎𝑗𝑖𝑃𝑗 = 𝑎1𝑖𝑃𝑥 + 𝑎2𝑖𝑃𝑦 + 𝑎3𝑖𝑃𝑧                                                                                                  (1.16) 

𝑃1 = cos(𝛼)𝑃𝑥 + sin(𝛼)𝑃𝑦                                                                                                                 (1.17) 

𝑃2 = −sin(𝛼)𝑃𝑥 + cos(𝛼)𝑃𝑦                                                                                                             (1.18) 

𝑃3 = 𝑃𝑧                                                                                                                                                      (1.19) 

Applied to a second order tensor 𝜎𝑘𝑙: 

𝜎𝑖𝑗 = 𝑎𝑘𝑖 𝑎𝑙𝑗 𝜎𝑘𝑙                                                                                                                                      (1.20) 

𝜎𝑖𝑗 = 𝑎1𝑖 𝑎1𝑗 𝜎𝑥𝑥 + 𝑎1𝑖 𝑎2𝑗 𝜎𝑥𝑦 + 𝑎1𝑖 𝑎3𝑗 𝜎𝑥𝑧 + 𝑎2𝑖 𝑎1𝑗 𝜎𝑦𝑥 + 𝑎2𝑖 𝑎2𝑗 𝜎𝑦𝑦 +                                      

            +𝑎2𝑖 𝑎3𝑗 𝜎𝑦𝑧 + 𝑎3𝑖 𝑎1𝑗 𝜎𝑧𝑥 + 𝑎3𝑖 𝑎𝑗2 𝜎𝑧𝑦 + 𝑎3𝑖  𝑎3𝑗 𝜎𝑧𝑧                                                    (1.21) 

𝜎11 = 𝑎11 𝑎11 𝜎𝑥𝑥 + 𝑎11 𝑎21 𝜎𝑥𝑦 + 𝑎11 𝑎31 𝜎𝑥𝑧 + 𝑎21 𝑎11 𝜎𝑦𝑥 + 𝑎21 𝑎21 𝜎𝑦𝑦 +                                 

           +𝑎21 𝑎31 𝜎𝑦𝑧 + 𝑎31 𝑎11 𝜎𝑧𝑥 + 𝑎31 𝑎12 𝜎𝑧𝑦 + 𝑎31 𝑎31 𝜎𝑧𝑧                                                (1.22) 

𝜎11 = cos2(𝛼) 𝜎𝑥𝑥 + 2 cos(𝛼) sin(𝛼) 𝜎𝑥𝑦 + sin 2(𝛼) 𝜎𝑦𝑦                                                           (1.23) 

The remaining five stress terms are also obtained in a similar way using stress symmetry (𝜎𝑥𝑦 = 𝜎𝑥𝑦). The 

transformation matrix for stress tensor [𝑇1] is given using short forms for cos(𝛼) = 𝑚 and sin(𝛼) = 𝑛. 

{ 

𝜎11

𝜎22

𝜏12

 } = [  
𝑚2 𝑛2 2𝑚𝑛  
𝑛2 𝑚2 −2𝑚𝑛   

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2  

] { 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 }                                                                                   (1.24) 

Similarly, the strain transformation matrix [𝑇2] 

{ 

𝜀11 

𝜀22 
𝛾12

 } = [  
𝑚2 𝑛2 𝑚𝑛  
𝑛2 𝑚2 −𝑚𝑛   

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2  

] { 

𝜀𝑥𝑥 

𝜀𝑦𝑦 
𝛾𝑥𝑦 

 }                                                                              (1.25) 
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Note that the transformation matrices [𝑇1] and [𝑇2] are not symmetric. There is a difference of factor 2 in two entries 

of the matrices. The transformation matrices [𝑇1] and [𝑇2] can be inverted using the following relation: 

[𝑇𝑖(𝛼)]−1 = [𝑇𝑖(−𝛼)]       𝑖 = 1. 2                                                                                                      (1.26) 

 Regarding the structural behaviour, the in-plane stress orthotropic reduced constitutive equation using stiffness 

matrix: 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 } = [  

𝑄11 𝑄12 0   
𝑄12 𝑄22 0   
0 0 𝑄33  

] { 

𝜀𝑥𝑥 

𝜀𝑦𝑦 
𝛾𝑥𝑦 

}                                                                                              (1.27) 

Where the 𝑄𝑖𝑗  terms can be written using index notation as follows: 

𝑄𝑖𝑗 = 𝐶𝑖𝑗 −
𝐶𝑖3 𝐶3𝑗

𝐶33
   (𝑖, 𝑗 = 1. 2)                                                                                                        (1.28) 

Being 𝐶𝑖𝑗 the terms of the 3D constitutive equation using stiffness matrix in principal material directions. Since reduced 

stiffness matrix is symmetric, 𝑄21 has been directly written as 𝑄12. Substitution of the terms leads to the known 

formulation previously adopted.  

The plane stress constitutive equation in principal material coordinates is 

{𝜎}123 = [𝑄]{𝜀}123                                                                                                                                 (1.29) 

The above equation can be re-written to give stresses in global coordinates as 

{𝜎}𝑥𝑦𝑧 = [𝑇1]
−1[𝑄][𝑇2]{𝜀}𝑥𝑦𝑧                                                                                                             (1.30) 

Introducing the definition of the plane stress transformed reduced stiffness matrix [𝑄̅] 

[𝑄̅] = [𝑇1]
−1[𝑄][𝑇2]                                                                                                                               (1.31) 

{𝜎}𝑥𝑦𝑧 = [𝑄̅]{𝜀}𝑥𝑦𝑧                                                                                                                                (1.32) 

[𝑄̅] is a symmetric matrix. Further, it is a fully populated matrix with non-zero 𝑸̅𝟏𝟑, 𝑸̅𝟐𝟑 coefficients, as they define 

the coupling between the in-plane normal and shear responses. However, in this research they are going to be 

assumed as zero so the results are coherent with the homogenization employed so far. It will inevitably lead to errors 

for pattern orientations deviating from the principal directions. The importance of those errors will be assessed by 

tests. 

𝑄̅11 = 𝑄11𝑚
4 + 2(𝑄12 + 2𝑄33)𝑚

2𝑛2 + 𝑄22𝑛
4                                                                             (1.33) 

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄33)𝑚
2𝑛2 + 𝑄12(𝑛

4 + 𝑚4) = 𝑄̅21                                                          (1.34) 

𝑄̅13 = (𝑄11 − 𝑄12 − 2𝑄33)𝑚
3𝑛 + (𝑄12 − 𝑄22 + 2𝑄33)𝑛

3𝑚 = 𝑄̅31 → 0                               (1.35) 

𝑄̅22 = 𝑄11𝑛
4 + 2(𝑄12 + 2𝑄33)𝑚

2𝑛2 + 𝑄22𝑚
4                                                                             (1.36) 

𝑄̅23 = (𝑄11 − 𝑄12 − 2𝑄33)𝑚𝑛3𝑛 + (𝑄12 − 𝑄22 + 2𝑄33)𝑛𝑚3 = 𝑄̅32 → 0                             (1.37) 

𝑄̅33 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄33)𝑚
2𝑛2 + 𝑄33(𝑛

4 + 𝑚4)                                                        (1.38) 

 

Theoretical exact result obtained from derivation: 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 } = [  

𝑄̅11 𝑄̅12 𝑄̅13  

𝑄̅21 𝑄̅22 𝑄̅23   

𝑄̅31 𝑄̅32 𝑄̅33  

] { 

𝜀𝑥𝑥 

𝜀𝑦𝑦 
𝛾𝑥𝑦 

}             (1.39) 

Approximation used for practical purposes: 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 } = [  

𝑄̅11 𝑄̅12 0  

𝑄̅21 𝑄̅22 0   

0 0 𝑄̅33  

] { 

𝜀𝑥𝑥 

𝜀𝑦𝑦 
𝛾𝑥𝑦 

}             (1.40) 
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3. GEOMETRIC ISLAMIC PATTERNS 
 

3.1. HISTORY OF THE GEOMETRIC ISLAMIC PATTERNS 

Many studies have been done in the field of geometric Islamic patterns (GIP) from different perspectives such as 

mathematical description, artistic implications and historic evolution. The information and pictures provided in this 

introduction about the history of the geometric Islamic patterns is extracted from Y. Abdullahi and M. R. Bin Embi 

article Evolution of geometric Islamic patterns17 

“The expansion and development of geometry through Islamic art and architecture can be related to the significant 

growth of science and technology in the Middle East, Iran, and Central Asia during the 8th and 9th centuries (…) History 

of Islamic geometrical ornaments is characterized by a gap of nearly three centuries – from the rise of Islam in the 

early 7th century to the late 9th century, when the earliest example of geometrical decorations can be traced from 

the surviving buildings of the Muslim world” 

 

FIG 3.1. Time chart of the evolution of GIPs throughout history elaborated by Y. Abdullahi and M. R. Bin Embi17 
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Umayyad architecture (660-750 CE): By the end of the 7th and early 8th centuries, vegetal and floral patterns derived 

Sassanid and Byzantine architecture became common in Islamic architecture. In 705CE, substantial parts of the 

Damascus Christian Temple were converted into the Great Mosque of Damascus 

Abbasids architecture (750-1258 CE): The ornaments of the Great Mosque of Kairouan (originally built in 670 CE and 

rebuilt in 836CE) are designed primarily with vegetal and floral motifs, but some elementary geometrical shapes are 

also observed. The Mosque of Ibn-Tulun is considered a milestone in terms of its introduction of geometrical patterns 

to Islmaic architecture. By the late 8th and early 9th centuries, geometrical shapes were introduced to surface 

decoration. However, woven geometrical patterns (6- and 8- patterns) began dominating Islamic architecture only 

during the late 9th century. 

Fatimids architecture (909-1171 CE): Al-Azhar Mosque (970-972 CE), Al-Juyushi Mosque (1085 CE), Aqnar Mosque 

(1125 CE) and Mosque of Al-Salih-Tala’i (1160 CE) belong to this stage with mixed vegetal, calligraphic and geometrical 

decorations. Early Fatimid decorative ornaments are commonly in the form of isolated elements, rather than entire 

surface-covering patterns. Geometrical patterns became prevalent because of the heavy influence of Seljuk in the late 

Fatimid era. 

Seljuk architecture (1038-1194 CE): First artistic movement. The Seljuks exerted tremendous efforts in transforming 

their ornaments from floral and figural into geometrical decorations, and their architecture is strongly characterized 

by geometrical patterns. The Friday Mosque of Isfaharan introduced highly complex and sophisticated 10-point 

geometrical patterns as well and abstract 6- and 8- point geometrical patterns. This movement continued on the 

Barsian Friday Mosque (1098 CE), to the early 13th century when unique 7-, 9-, 11- and 13- point patterns were used.  

Mamluk architecture (1250 – 1517 CE): second artistic movement. Architectural movement taking place in Cairo and 

characterized by 6-, 8-, 10- and 12- point patterns in early buildings such as Mosque of Baybar (1267 CE) OR THE 

Qalawun Complex (1283 – 1285 CE). Later, 16-point patterns would become very popular amid Mamluk architects and 

artisans as shown in Muayyad Mosque (1415 – 1475 CE), the Amir Qijmas Al-Ishaqi Mosque (1480-1481 CE) or Wikala 

of Al-Ghori (1505-1515 CE). 

Ottoman architecture (1290-1923 CE). Geometrical ornaments are generally only secondary decorative elements in 

Ottoman buildings such as the Yesli Mosque of Bursa (1421 CE), the Rustam Pasha Mosque (1560 – 1563 CE) orr the 

Selimiye Complex (1568 – 1575 CE).  In general, Ottoman architects favored floral and vegetal patterns over 

geometrical decorations, whose use was limited to door and Minbar panels. Ottoman architects and artisans preferred 

6-, 5-, and eventually 10- and 12- point patterns over the 8- and 16- point geometrical patterns that were very popular 

among Mamluk artisans. 

Safavid architecture (1501-1736 CE). Safavid architects used geometrical ornaments in both religious and secular 

buildings. Artisans preferred 8- and 10- point geometrical patterns, mixing them with calligraphic inscriptions in 

religious buildings as in Hakim Mosque of Isfahan (1656-1662 CE) and filling them with vegetal motifs in secular 

buildings as in the Ali-Qapu Palace (1598 CE). 

Mughal architecture (1526-1737 CE). In Mughal architecture, red sandstone, white marble and polychromatic tiles are 

the main cladding and decorative materials. Used in both secular and religious buildings, , Mughal architects avoided 

highly detailed geometrical arrangements such as 12- and 16- point patterns. Instead, they exerted great effort to 

create accurate and perfect proportions of shapes and angles. Nonetheless, the rarest 14- point geometrical patterns 

can be found in some Mughal buildings. Examples of this era are the Mausoleum of Humayun in Delhi (1566 CE) or the 

Etimad-ud-Daulah Tomb in Agra (1628 CE). 

Muslims of Spain. Important surviving buildings are the Great Mosque of Cordoba (785-987 CE), Aljaferia Palace in 
Zaragoza (mid 11th century), the Great Mosque of Seville (1182 CE) and the Alhambra Palace (1338-1390 CE). Almost 
all the surfaces are richly decorated with the finest floral and geometrical motifs. Although geometrical ornaments 
were extensively used with profusely colored and intricate renders, highly complex patterns such as 7-, 9-, and 14- 
point patterns are missing.  
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3.2. DRAWING OF GEOMETRIC ISLAMIC PATTERNS 
There are two main approaches for drawing geometric Islamic patterns: 

STEP BY STEP METHOD: It is the approach taught by the School of Islamic Geometric Design18  and collected by Eric 

Broug19 in its book Islamic Geometric Patterns that will serve as reference in this document to identify different historic 

patterns. It consists in a series of steps that must be followed to draw a specific pattern. It is as a recipe and the rules 

change for each pattern. As an example, the Lahore Fort Complex pattern is drawing is shown in 8 simple steps. 

  

 

 

 
   

    
     FIG 3.2. Step by step method for Great Mosque of Damascus pattern. 

 

HANKIN METHOD: Proposed in 1925 by E.H. Hankin20 and recently popularized by C.S. Kaplan31, it is a method that 

allows to generate Islamic inspired starred patterns from a generating geometric tessellation. It consists of a simple 

algorithm or set of steps as the previous method, that depending on the generating generation that it is applied to 

and the values of the parameters inputted, will generate an Islamic inspired pattern. To an actual historic pattern, the 

designer must choose the appropriate tessellation and the matching values of the parameters. The advantage of this 

method is that it simplifies the automation of the generation process for mathematical analysis and computational 

design, it allows the creation of parametric variations and it gives more freedom to the designer to create his own 

pattern. In Hankin’s words, the method would be described as follows: 

“In making such patterns, it is first necessary to cover the surface to be decorated with a network consisting of 

polygons in contact. Then through the centre of each side of each polygon two lines are drawn. These lines cross each 

other like a letter X and are continued till they meet other lines of similar origin. This completes the pattern. The 

original construction lines are then deleted and the pattern remains without any visible clue to the method by which 

it was drawn” (8. p.4) 

    
             1. Tessellation 4.8.8.      2. Contact angle θ = 67.5º             3. N. of crossings η = 1                4. Complete pattern 

FIG 3.3. Hankin method for Great Mosque of Damascus pattern. 
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A tessellation of a flat surface is the tilling of a plane using one or more geometric shapes with no overlaps and no 

gaps. The tessellations included in this document are Euclidean plane edge-to-edge polygon tilling, implying that the 

sides of a polygon in the tessellation matches in length and position to the edge of the next polygon adjacent to it. In 

this disposition, two polygons in contact share a common vertex that is used as reference for the nomenclature.  

The tessellations label corresponds to the enumeration of the number of sides of the polygons found around a 

common vertex. Regardless of the vertex chosen as reference, the polygons found are always the same. Finally, the 

polygons are enumerated counter-clockwise starting by the lowest value. Following those rules, the tessellation below 

is called 4.8.8. Note that it is commonly used a more compact form with superscripts indicating that the same polygon 

appears more than once in a row, in this case, this tessellation could be called 4.82.  

    

FIG 3.4. polygons found from different vertices for tessellation 4.8.8. 

The Lahore Fort Complex pattern shown in the step by step method, can be obtained from the tessellation 4.8.8. with 
contact angle θ = 67.5º and number of crossings η = 1 with the Hankin method. Finally, the following pictures extracted 
from Islamic Star Patterns from Polygons in Contact will serve clarify the concept of contact angle.  
 

FIG 3.5. Contact angle. Kaplan21 

The contact angle is drawn from the centre of each side of all polygons 
constituting the tessellation. The value of the angle can vary between 0º and 
90º. A contact angle of 0º corresponds to the vectors superposing with the 
original polygon sides and a contact angle of 90º to the vectors being 
perpendicular to them. The vectors generated are symmetric with respect a 
plane perpendicular to the polygon sides and when the same contact angle is 
applied to all polygons, the vectors are symmetric with respect the polygons 
sides as well. 
 

 

 
FIG 3.6. Increasing contact angle in tessellation 4.8.8.with number of crossings equal to zero η = 0. Kaplan21 

 
 

For this research several patterns have been chosen to have a comprehensive view of the structural behaviour of the 
Islamic inspired star patterns and to provide a wide range of possibilities to the future designer. The number of 
solutions grows exponentially with the freedom given to the different parameters involved in the design. To better 
delimit the space of solutions around the desired ones, the parameters have been treated as follows: 
 
 
Tessellation: The first step is to choose the tessellation to which apply the Hankin method. First the wished historic 
patterns have been chosen and then the tessellation leading to those specific patterns have been identified.  
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Contact angle (θ): A parametric study is carried out with this variable, constraining its range around the wished 
solution. It has been done with the aim of leaving some freedom of design to the future designer, of being able to 
identify new appealing innovative patterns and to assess the efficiency of the chosen solutions. 
 
Number of crossings (η): The number of crossings is not specified for the whole tessellation but for each of the 
polygons that form it, in accordance to the following table. A reduced number of crossings for high-order polygons 
lead to inefficient patterns from the structural point of view, as the inner beams of those polygons barely work. A 
higher number of crossings than specified for all polygons lead to small openings, which difficult its construction and 
massifies its visual perception. However, the main reason is historical, as this table has been developed in accordance 
to the observed the historical geometric Islamic patterns. 

 
n. points star 3 4 5 6 7 8 9 10 11 12 >12 

η = 0 x x x x        

η = 1     x x x x x x  

η = 2           x 
TABLE 3.1. Maximum number of crossings for each star based on the observation of historical geometric Islamic patterns 

 
Others: In specific cases some other parameters arise which are not directly derived from the Hankin method. It is the 
case of the “Sabz Pushan”, where the generating vectors do not part from the centre of the polygons’ sides. It is also 
the case of many of the historic patterns where the pentagons can be filled up either with “stars”, “arrows” or 
“Bayezid” type. This shows the great amount of design possibilities and will only be treated punctually in those patterns 
that require it. 
 
 

3.3. SELECTION OF HISTORIC GEOMETRIC ISLAMIC PATTERNS  
A first selection was originally carried out with the help of the book Islamic Geometric Patterns19, but a closer look on 
showed that many of the most spread patterns were not included in that book and pictures of some of the patterns 
from the book were not easily available on the internet (as pattern L. Ben Yusuf madrasa). The final selection comes 
from browsing thousands of pictures on the internet and choosing those that seemed the most representative. The 
names are given after the location where the attached picture was taken, not meaning that that is the only or first 
place where that pattern was used. It is worth noting that some of the patterns in this document have different names 
than the ones from the book Islamic Geometric Patterns19 due to the pictures’ availability (as E. Palace of the 
Shirvanshahs or H. Generalife). The variations are the result of changing one of the parameters involved in the 
implementation of the Hankin method. A total of 20 different historic geometric Islamic patterns are studied and 
presented in growing complexity, together with 6 parametric variations.  
 

 

A) YESLI MOSQUE 
FIG 3.7. Bursa, Turkey (AD 1421/ AH 823)11 

 
FIG 3.8. Tessellation 3.6.3.6. directly (no variations) 
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B) GREAT MOSQUE OF DAMASCUS 
FIG 3.9 Damascus, Syria (AD 709 / AH 90)12 

 
FIG…3.10. Tessellation 6.6.6. θ =60º 

 

 
θ= 45º 

 
θ= 50º 

 
θ= 55º 

 
θ= 60º 

 
θ = 65º 

 
θ = 70º 

 
θ = 75º 

FIG 3.11. Tessellation 6.6.6. parametric variations 
 

 

C) SABZ PUSHAN 
FIG 3.12. Nishapur, Iran (AD 960 / AH 348)13

 

 

FIG 3.13. Tessellation 6.6.6 θ =60º, opening distance 35% 
 

 
D = 20% 

 
D = 25% 

 
D = 30% 

 
D = 35% 

 
D = 40% 

 
D = 45% 

 
D = 50% 

FIG 3.14. Tessellation 6.6.6. parametric variations 
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D) LAHORE FORT COMPLEX 
FIG 3.15. Punjab, Pakistan (AD 1566 / AH 973)14 

 

FIG 3.16. Tessellation 4.8.8. θ =67.5º 
 

 
θ = 45º 

 
θ = 50º 

 
θ = 55º 

 
θ =60º 

 
θ = 65º 

 
θ = 67.5º 

 
θ = 70º 

FIG 3.17. Tessellation 4.8.8. parametric variations 
 

 
 

 

E) PALACE OF THE SHIRVANSHAHS 
FIG 3.18. Baku, Azerbaijan (AD 845 / AH 230)15 

 

FIG 3.19. Tessellation 4.8.8. θ =45º, with number of crossings = 0 
       

 
θ = 45º 

 
θ = 50º 

 
θ = 55º 

 
θ = 60º 

 
θ = 65º 

 
θ = 70º 

 
θ = 75º 

FIG 3.20. Tessellation 4.8.8.. parametric variations 
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F) MUSTANSIRIYA MADRASA 
FIG 3.21. Baghdad, Iraq (AD 1227/ AH 624)16 

 
FIG 3.22. Tessellation 3.6.3.6. θ =30º 

 

 
θ= 30º 

 
θ= 35º 

 
θ= 40º 

 
θ= 45º 

 
θ = 50º 

 
θ = 55º 

 
θ = 60º 

FIG 3.23. Tessellation 3.6.3.6. parametric variations 
 

 

 

G) TOMB OF SALIM CHISHTI 
FIG 3.24. Agra, India (AD 1580 / AH 974)17 

 

FIG 3.25. Tessellation 6.6.6. D = 65%, θ =75º 
       

 

 
θ = 60º 

 
θ = 65º 

 
θ = 70º 

 
θ = 75º 

 
θ = 80º 

 
θ = 85º 

 
θ = 90º 

FIG 3.26. Tessellation 6.6.6. D=75%.. parametric variations 
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H) GENERALIFE 
FIG 3.27. Granada, Spain (AD 1200 / AH 596)18 

 

FIG 3.28. Tessellation 3.12.12. θ =60º 
 

 
θ = 45º 

 
θ = 50º 

 
θ = 55º 

 
θ = 60º 

 
θ = 65º 

 
θ = 70º 

 
θ = 75º 

FIG 3.29. Tessellation 3.12.12. parametric variations 
 
 

 

I) HASHT BEHESHT  
FIG 3.30. Safavid, Iran (AD 1660 / AH 1054)19 

 

FIG 3.31. Tessellation I-6.10.10. θ =54º 
       

 

 
θ = 36º 

 
θ = 42º 

 
θ = 48º 

 
θ = 54º 

 
θ = 60º 

 
θ = 66º 

 
θ = 72º 

FIG 3.32. Tessellation I-6.101.10.  parametric variations 
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J) MODARI-KHAN MADRASH 
FIG 3.33. Bukhara, Uzbekistan (AD 1567 / AH 948)20 
 

 
 

FIG 3.34. Tessellation ROS-I-6.10.10. θ1 = 45º, θ2 = 60º, type Star 
 

 
θ1 = 30º 

 
θ1 = 35º 

 
θ1 = 40º 

 
θ1 = 45º 

 
θ1 = 50º 

 
θ1 = 55º 

 
θ1 = 60º 

FIG 3.35. Tessellation ROS-I-6.10.10. parametric variations 
 
 
 

 

 

K) COMPLEX OF SULTAN BAYEZID II 
FIG 3.36. Edirne, Turkey (AD 1488 / AH 893)21 

 
FIG 3.37. Tessellation ROS-3.4.3.12_3.12.12. θ =60º, type Bayezid 

 

 
θ = 55º 

 
θ = 60º 

 
θ = 65º 

 
θ = 67.5º 

 
θ = 70º 

 
θ = 75º 

 
θ = 80º 

FIG 3.38. Tessellation ROS-3.4.3.12_3.12.12. parametric variations 
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L) BEN YUSUF MADRASA 
FIG 3.39. Marrakesh, Morocco (AD 1564 / AH 971)22 

 
FIG 3.40. Tessellation ROS-3.4.3.12_3.12.12. θ1 =78.5º, type Arrow 

 

 
θ2 = 45º 

 
θ2 = 50º 

 
θ2 = 55º 

 
θ2 = 60º 

 
θ2 = 65º 

 
θ2 = 70º 

 
θ2 = 75º 

FIG 3.41. Tessellation ROS-3.4.3.12_3.12.12. parametric variations 
 

 

M) MOSQUE OF AL-NASIR MUHAMMAD’S MINBAR 
FIG 3.42. Cairo, Egypt (AD 1318 / AH 717)23 

 
FIG 3.43. Tessellation ROS-I-6.12.8.12. θ =75º, L =20%, type Arrow 

 

 
L = 20% 

 
L = 25% 

 
L = 30% 

 
L = 35% 

 
L = 40% 

 
L = 45% 

 
L = 50% 

FIG 3.44. Tessellation ROS-I-6.12.8.12.  parametric variations 
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N) MOSQUE OF AL-NASIR MUHAMMAD 
FIG 3.45. Cairo, Egypt (AD 1318 / AH 717)24 

 
FIG 3.46. Tessellation ROS-3.12.12. θ =75º, type Arrow 

 

 
θ2 = 50º 

 
θ2 = 55º 

 
θ2 = 60º 

 
θ2 = 65º 

 
θ2 = 70º 

 
θ2 = 75º 

 
θ2 = 80º 

FIG 3.47. Tessellation ROS-3.12.12 parametric variations 
 

 

O) GREAT MOSQUE OF HERAT 
FIG 3.48. Herat, Afghanistan (AD 1200 / AH 596)25 

 
FIG 3.49. Tessellation ROS-4.8.8. θ =67.5º, L =30% 

 

 
L = 10% 

 
L = 15% 

 
L = 20% 

 
L = 22.5% 

 
L = 25% 

 
L = 30% 

 
L = 35% 

FIG 3.50. Tessellation ROS-4.8.8. parametric variations 
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P) MOSQUE OF AL-SALIH TALA’I     FIG 3.51. Cairo (AD 1160/AH 554)26 

 

FIG 3.52. Tessellation ROS-3.4.3.8_3.8.8. θ =75º, L = 25%  type Star 
 

 
L = 10% 

 
L = 15% 

 
L = 20% 

 
L = 25% 

 
L = 30% 

 
L = 35% 

 
L = 40% 

FIG 3.53.Tessellation ROS-3.4.3.8_3.8.8. parametric variations 
 

 

Q) MOSQUE OF IBN TULUN    FIG 3.54. Egypt (AD 884/AH 278)27 

 

FIG 3.55. Tessellation ROS-3.4.3.12_3.12.12. θ1=75º, θ2=65º, Star 
       

 

 
θ2 = 50º 

 
θ2 = 55º 

 
θ2 = 60º 

 
θ2 = 65º 

 
θ2 = 70º 

 
θ2 = 75º 

 
θ2 = 80º 

FIG 3.56. Tessellation ROS-3.4.3.12_3.12.12.  parametric variations 
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R) FATEHPUR SIKRI COMPLEX 
FIG 3.57. Agra, India (AD 1580 / AH 974)28 

 
FIG 3.58. Tessellation ROS-I-6.10.10. θ =72º type Star 

 

 
θ = 48º 

 
θ = 52º 

 
θ = 56º 

 
θ = 60º 

 
θ = 64º 

 
θ = 68º 

 
θ = 72º 

FIG 3.59. Tessellation ROS-I-6.10.10. parametric variations 
 

 

S) JAMEH MOSQUE 
FIG 3.60. Yazd, Iran (AD 1324 / AH 729)29 

 
FIG 3.61. Tessellation ROS-I-6.12.8.12. θ=67.5º, L=20%, Type Star 

 

 
L = 20% 

 
L = 25% 

 
L = 30% 

 
L = 35% 

 
L = 40% 

 
L = 45% 

 
L = 50% 

FIG 3.62. Tessellation ROS-I-6.12.8.12. parametric variations 
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T) ALHAMBRA 
FIG 3.63. Granada, Spain (AD 889 / AH 284)30 

 
FIG 3.64. Alhambra. Tessellation ROS-I-6.9.12.9.θ=70º, L=35% 

 

 

 
L = 20% 

 
L = 25% 

 
L = 30% 

 
L = 35% 

 
L = 40% 

 
L = 45% 

 
L = 50% 

       

 
L = 20% 

 
L = 25% 

 
L = 30% 

 
L = 35% 

 
L = 40% 

 
L = 45% 

 
L = 50% 

FIG 3.65. Tessellation ROS-I-6.9.12.9.  parametric variations 
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3.4. TESSELLATION DEFINITION AND APPLICATION 
Regular tiling: The tessellations in this group are characterized by being composed of only one regular polygon that is 
repeated symmetrically edge-to-edge to fill the plane. There must be six equilateral triangles, four squares or three 
regular hexagons at a vertex. In this document only the tessellation 6.6.6. is used for the patterns Great Mosque of 
Damascus variation (B75), Sabz Pushan (C) and Tomb of Salim Chishti (N). 
 

   
FIG 3.66. Tessellation 6.6.6. for Great Mosque of Damascus (B)  

 

   
FIG 3.67. Tessellation 6.6.6. for Sabz Pushan (C)  

 

   
FIG 3.68. Tessellation 6.6.6. for Tomb of Salim Chishi (N)  

 
See that the patterns Sabz Pushan (C) and Tomb of Salim Chisthi (N) are obtained from the tessellation 6.6.6. applying 
a variation of the Hankin method in which the opening angle is not applied at the same point in the centre of the 
polygon sides but with a gap. 
 
Semiregular tiling: The tessellations in this group are characterized by being composed of more than one regular 
polygon that are disposed around a common vertex. There are 8 different semiregular tiling, but in this document it is 
only used the tessellations 3.6.3.6. for the pattern Mustansiriya Madrasa (F), the tessellation 3.12.12. for the 
tessellation Generalife (H) pattern and 4.8.8. for Lahore Fort Complex (D) and Palace of the Shirvanshahs (E) patterns. 
See that Palace of the Shirvanshahs (E) pattern uses a variation of the Hankin method in which not all the polygons (in 
this case the squares) are filled.  
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FIG 3.69. Tessellation 3.6.3.6. for Mustansiriya Madrasa (F)  

 

   
FIG 3.70. Tessellation 3.12.12. for Generalife (H) 

 

   
FIG 3.71. Tessellation 4.8.8. for Lahore Fort Complex (D)  

 

   
FIG 3.72.Tessellation 4.8.8. for Palace of the Shirvanshahs (E)  
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Irregular tiling: Characterized by one or more irregular polygons disposed around a common vertex. Only tessellations 
with regular polygons combined with concave hexagons have been studied. Several irregular tessellations are used 
indirectly with Rosette transforms, but only the tessellation I-6.10.10 is used unaltered for Hasht Behesht (I) pattern. 
The prefix “I-“ in the tessellation’s name is introduced to indicate that it contains irregular polygons. 
 

   
FIG 3.73. Tessellation I-6.10.10. for Hasht Behesht (I)  

 
Periodic tiling: characterized by regular polygons whose disposition varies depending on the vertex under 
consideration. In this document such tilings are not directly applied but are used in conjunction with the Rosette 
transform to obtain other higher order tessellations. The periodic tilings employed are 1-orbit periodic, meaning that 
the polygons disposition is repeated in alternative vertices. Depending on the considered vertex, there are two 
possible names for the given tessellation. Both possibilities are included in the complete name, as in P-3.4.3.8_3.8.8. 
and P-3.4.3.12_3.12.12. The prefix “P-“ is introduced to indicate that it is a periodic tessellation. 
 
Rosette transform: It is an algorithm applied to other tessellations in order to modify them and generate new 
tessellations. The transformation consists on adding pentagons or hexagons in the perimeter of the polygons to create 
a higher order tessellation. The following pictures show the application of the rosette transform to the tessellations 
3.12.12. 4.8.8., I-6.9.12.9., I-6.10.10. I-6.12.8.12., P-3.4.3.8_3.8.8. and P-3.4.3.12_3.12.12. 
 

   
FIG 3.74. Rosette transform applied to tessellation 3.12.12. 

 

   
FIG 3.75. Rosette transform applied to tessellation 4.8.8. 
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FIG 3.76. Rosette transform applied to tessellation I-6.9.12.9. 

 

   
FIG 3.77.  Rosette transform applied to tessellation I-6.10.10. 

 

   
FIG 3.78. Rosette transform applied to tessellation I-6.12.8.12. 

 

   
FIG 3.79.Rosette transform applied to tessellation P-3.4.3.8_3.8.8. 
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FIG 3.80. Rosette transform applied to tessellation P-3.4.3.12_3.12.12. 

 

ROS-3.12.12. for Mosque of Al-Nasir Muhammad (N), ROS-4.8.8. for Great Mosque of Herat (O), ROS-I-6.9.12.9. for 
Alhambra (T), ROS-I-6.10.10 for Modari-Khan Madrash (J) and Fatehpur Sikri(R), ROS-I-6.12.8.12. for Al-Nasir 
Muhammad’s Minbar (M) and Jameh Mosque (S), ROS-P3.4.3.8_3.8.8. for Mosque of Al-Salih Tala’I (P), ROS-
P3.4.3.12_3.12.12. for Sultan Bayezid II (K), Ben Yusuf Madrasa (L) and Mosque of Ibn Tulun (Q). 
 

   
FIG 3.81. ROS- I-6.9.12.9. for Alhambra (T) 

 

   
FIG 3.82. ROS- I-6.10.10. for Modari-Khan Madrash (J) 

 

   
FIG 3.83. ROS- I-6.10.10. for Fatehpur Sikri (R) 
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FIG 3.84. ROS- I-6.12.8.12. for Al-Nasir Muhammad’s minbar (M) 

 

   
FIG 3.85. ROS- I-6.12.8.12. for Jameh Mosque (S) 

 

   
FIG 3.86. ROS-3.12.12. for Mosque of Al-Nasir Muhammad (N) 

 

   
FIG 3.87. ROS-4.8.8. for Great Mosque of Herat (O) 
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FIG 3.88. ROS-P-3.4.3.8_3.8.8. for Mosque of Al-Salih Tala’i (P) 

 

   
FIG 3.89. ROS-P-3.4.3.12_3.12.12. for Sultan Bayezid II (K) 

 

   
FIG 3.90. ROS-P-3.4.3.12_3.12.12. for Ben Yusuf Madrasa (L) 

 

   
FIG 3.91. ROS-P-3.4.3.12_3.12.12. for Mosque of Ibn Tulun (Q) 
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3.5. SATURATION AND RELATIVE BEAM DEPTH. 
As the beam depth increases, the façade becomes opaquer and more material is used. It is an important parameter 
in the design stage that will affect the solar gain in the interior spaces, the overall appearance of the building, the 
mechanical properties obtained and the amount of material employed. However, the information regarding the 
beam depth is only representative when it is expressed in relative terms with respect the module size. A beam depth 
of 1m can be either big or small depending on the module size and the specific pattern. To address this and provide 
a benchmark for comparison of the different pattern, the following concepts are introduced: 

 
- Saturation (Sat.): it is defined as the percentage of the panel surface that is covered by the structure.  This 

concept leads a more accurate comparison of the relative performance of the different patterns, as the 
equivalent mechanical properties will be compared for the same amount of material. The saturation times the 
façade surface, times its thickness, results in the volume of material employed. It is very useful for the 
pretended design tables, as the designer will have a tool to rapidly estimate the amount of material required 
and will know visually the final appearance. 

 
- Relative beam depth (rbd): it is defined as the relation between the beam depth and the module size in the 

x-direction (horizontal direction for the pattern oriented as in Chapter 3.3. Selection of historic geometric 
Islamic patterns).  A specific relative beam depth always leads to the same grade of saturation for a given 
variation independently of the panel size.  

 
- Module: it corresponds to the minimum rectangular module that can reproduce the whole pattern by its 

orthogonal repetition. As mentioned in the literature review, in this document there is not a geometric 
difference between module, unit cell and representative volume element (RVE) as it is customary for the 
homogenization process. Instead, for easiness of use of the results and automation of the analysis process, 
the minimum rectangular module is defined as “the module” for all cases. To prevent misunderstandings, a 
panel with a clear identification of the module will be provided for each pattern.  

 

 
FIG 3.92. Module as per Montuori 

 
FIG 3.93. Unit cell as per Montuori 

 
FIG 3.94. Module edges in this doc. 

 
FIG 3.95.Unit cell and RVE in this doc. 

 
 

3.5.1. HOW TO USE THE SATURATION TABLES.  

As an example, imagine a square tall building with a height of 200m and a base of 25m, for which the Lahore Fort 
Complex pattern has been chosen (tessellation 4.8.8. θ=67.5º). Applying the predesign method developed in this 
document, required equivalent mechanical properties are needed to meet the target displacement at the top floor. 
There are three parameters that can be adjusted for that purpose, namely the base material, the façade (panel) 
thickness and the saturation. After adjusting those parameters and taking into consideration other aspects such as 
desired opacity and aesthetic appearance, a conclusion could be for instance that the desired saturation is 25%.  
 
Making use of the already linearly extrapolated saturation tables, for that specific pattern a saturation of 25% 
corresponds to a relative beam depth of 3.69%. 
 
The last step would be to choose the number of modules composing the panel (the whole façade). As this precise 
pattern is square, the façade can be populated by 5x40 modules of 5m, by 2x16 modules of 12.5m, by 1x8 modules 
of 25m, etc. If a module size in the x-direction of 5m is chosen (5x40 modules), the equivalent beam depth would be 
18.45cm (5m,3.69/100 = 0.1845m).  
 
This is a predesign method to have an order of magnitude of the expected results and a starting cross-section for the 
analysis. Later, it will be proven that this predesign method provide more accurate results than modelling the pattern 
with beam elements. 
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3.5.2. SATURATION TABLES.  

Appendix I. Design Guide: It includes the following information regarding the historic Islamic patterns under study as 
well as two of their parametric variations for each case: 
 

 
FIG 3.96.Typical saturation table in Appendix I. Design guide 

Module identification: This picture allows the 
designer to easily identify what is the pattern 
module as its length in the x-direction is 
required to get the absolute beam depth from 
the relative beam depth in the tables.  
 
Saturation table: The saturation values are 
obtained varying the beams depth in 
Grasshopper and retrieving the saturation 
value. This table gives the corresponding 
saturation (Sat. %) for a given relative beam 
depth (rbd %).  
 
Linearly interpolated saturation table; To 
facilitate the comparison between patterns 
and in order to give more tools to the 
designer, the saturation table’s values are 
linearly interpolated. This table gives the 
corresponding relative beam depth (rbd %) 
for a given saturation (Sat. %). Note that the 
values in this table are less accurate. 
 
Extruded patterns: Those pictures display 
how the pattern and saturation would look 
like for different relative beam depths. It is 
intended to help the designer visualize the 
resulting appearance in order to take 
informed decisions and limit the range of the 
desired relative beam depth (rbd) or 
saturation (Sat) 

 

In this chapter just the historical patterns are displayed for 15%, 25%, 35% and 45% saturations: 
 
A) YESLI MOSQUE 
 

 

rbd 4.58% - Sat. 15% 

 

rbd 7.95% - Sat. 25% 

 

rbd 11.68% - Sat. 35% 

 

rbd 15.91% - Sat. 45% 
 

FIG 3.97. A) Yesli Mosque pattern with 15%, 25%, 35% and 45% saturations  
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B) GREAT MOSQUE OF DAMASCUS  
 

    
rbd 2.26% - Sat. 15% rbd 3.87% - Sat. 25% rbd 5.60% - Sat. 35% rbd 7.46% - Sat. 45% 

 

FIG 3.98. B) Great Mosque of Damascus pattern with 15%, 25%, 35% and 45% saturations 
 

C) SABZ PUSHAN  
 

    
rbd 1.75% - Sat. 15% rbd 3.02% - Sat. 25% rbd 4.41% - Sat. 35% rbd 5.93% - Sat. 45% 

 

FIG 3.99. C) Sabz Pushan pattern with 15%, 25%, 35% and 45% saturations 
 

D) LAHORE FORT COMPLEX  
 

    
rbd 2.13% - Sat. 15% rbd 3.69% - Sat. 25% rbd 5.39% - Sat. 35% rbd 7.27% - Sat. 45% 

 

FIG 3.100.  D) Lahore Fort complex pattern with 15%, 25%, 35% and 45% saturations 
 

E) PALACE OF THE SHIRVANSHAHS 
 

    
rbd 3.11% - Sat. 15% rbd 5.28% - Sat. 25% rbd 7.56% - Sat. 35% rbd 9.95% - Sat. 45% 

 

FIG 3.101. E) Palace of the Shirvanshahs pattern with 15%, 25%, 35% and 45% saturations 
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F) MUSTANSIRIYA MADRASA 
 

    

rbd 3.16% - Sat. 15% rbd 5.49% - Sat. 25% rbd 8.03% - Sat. 35% rbd 10.90% - Sat. 45% 
 

FIG 3.102. F) Mustansiriya madrasa pattern with 15%, 25%, 35% and 45% saturations 
 

G) TOMB OF SALIM CHISHTI 
 

    
rbd 1.61% - Sat. 15% rbd 2.76% - Sat. 25% rbd 3.96% - Sat. 35% rbd 5.26% - Sat. 45% 

 

FIG 3.103. G) Tomb of Salim Chisthi  pattern with 15%, 25%, 35% and 45% saturations 
 

H) GENERALIFE  
 

    

rbd 1.78% - Sat. 15% rbd 3.08% - Sat. 25% rbd 4.52% - Sat. 35% rbd 6.13% - Sat. 45% 
 

FIG 3.104. H) Generalife pattern with 15%, 25%, 35% and 45% saturations 
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I) HASHT BEHESHT  
 

    
rbd 1.73% - Sat. 15% rbd 3.00% - Sat. 25% rbd 4.41% - Sat. 35% rbd 5.98% - Sat. 45% 

 

FIG 3.105. I) Hasht Behesht pattern with 15%, 25%, 35% and 45% saturations 
 

J) MODARI-KHAN MADRASH 
 

    
rbd 1.12% - Sat. 15% rbd 1.93% - Sat. 25% rbd 2.81% - Sat. 35% rbd 3.78% - Sat. 45% 

 

FIG 3.106. J) Modari-Khan madrash pattern with 15%, 25%, 35% and 45% saturations 
 

K) COMPLEX OF SULTAN BAYEZID II 
 

    
rbd 1.10% - Sat. 15% rbd 1.90% - Sat. 25% rbd 2.77% - Sat. 35% rbd 3.73% - Sat. 45% 

 

FIG 3.107.  K) Complex of Sultan Bayezid II pattern with 15%, 25%, 35% and 45% saturations 
 

L) BEN YUSUF MADRASA  
 

    
rbd 1.14% - Sat. 15% rbd 1.97% - Sat. 25% rbd 2.89% - Sat. 35% rbd 3.91% - Sat. 45% 

 

FIG 3.108.  L) Ben Yusuf madrasa pattern with 15%, 25%, 35% and 45% saturations 
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M) AL-NASIR MUHAMMAD’S MINBAR 
 

    
rbd 0.69% - Sat. 15% rbd 1.19% - Sat. 25% rbd 1.74% - Sat. 35% rbd 2.35% - Sat. 45% 

 

FIG 3.109.  M) Al-Nasir Muhammad´s minbar pattern with 15%, 25%, 35% and 45% saturations 
 

N) MOSQUE OF AL-NASIR MUHAMMAD   
 

    
rbd 1.13% - Sat. 15% rbd 1.95% - Sat. 25% rbd 2.85% - Sat. 35% rbd 3.84% - Sat. 45% 

 

FIG 3.110.  N) Mosque of Al-Nasir Muhammad pattern with 15%, 25%, 35% and 45% saturations 
 

O) GREAT MOSQUE OF HERAT  
 

    
rbd 1.62% - Sat. 15% rbd 2.79% - Sat. 25% rbd 4.05% - Sat. 35% rbd 5.47% - Sat. 45% 

 

FIG 3.111. O) Great Mosque of Herat pattern with 15%, 25%, 35% and 45% saturations 
 

P) MOSQUE OF AL-SALIH TALA’I  
 

    
rbd 1.28% - Sat. 15% rbd 2.21% - Sat. 25% rbd 3.23% - Sat. 35% rbd 4.38% - Sat. 45% 

 

FIG 3.112. P) Mosque of Al-Salih Tala’i pattern with 15%, 25%, 35% and 45% saturations 
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Q) MOSQUE OF IBN TULUN 
 

    
rbd 1.16% - Sat. 15% rbd 2.00% - Sat. 25% rbd 2.93% - Sat. 35% rbd 3.98% - Sat. 45% 

 

FIG 3.113.  Q) Mosque of Ibn Tulun pattern with 15%, 25%, 35% and 45% saturations 
 

R) FATEHPUR SIKRI 
 

    
rbd 1.09% - Sat. 15% rbd 1.88% - Sat. 25% rbd 2.75% - Sat. 35% rbd 3.70% - Sat. 45% 

 

FIG 3.114.  R) Fatehpur Sikri pattern with 15%, 25%, 35% and 45% saturations 
 

S) JAMEH MOSQUE 
 

    
rbd 0.70% - Sat. 15% rbd 1.20% - Sat. 25% rbd 1.75% - Sat. 35% rbd 2.35% - Sat. 45% 

 

FIG 3.115.  S) Jameh Mosque pattern with 15%, 25%, 35% and 45% saturations 
 

T) ALHAMBRA 
 

    
rbd 0.71% - Sat. 15% rbd 1.23% - Sat. 25% rbd 1.79% - Sat. 35% rbd 2.40% - Sat. 45% 

 

FIG 3.116.  T) Alhambra pattern with 15%, 25%, 35% and 45% saturations 
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4. RESEARCH QUESTION 1. METHOD LEVEL 
The main objective of this thesis is to provide insight into the structural behaviour and design of geometric Islamic 
patterns as alternative to conventional diagrid systems for tall buildings. This research objective is articulated at three 
levels: method level, pattern level and building level.  
 
Each of the three research questions addresses one of those levels and they are further developed in a series of sub-
questions described in the following document structure: 
 
METHOD LEVEL: 
Can a simple tool be developed for the design of geometric Islamic patterns as a non-conventional diagrid system? 

- Method chosen and methodology for its adoption 
- Development of a pre-design tool. 
- Assessment of the developed tool 

 
PATTERN LEVEL: 
How do geometric Islamic patterns behave and compare when loaded in their plane? 

- Selection of historic Islamic patterns and their parametric variations 
- Characterization of the patterns’ structural behaviour 
- Performance comparison of the different patterns 
- Proposals for their improvement 

 
BUILDING LEVEL: 
Can Islamic inspired patterns become a feasible alternative to traditional diagrid systems for tall buildings? 

- Performance comparison of the different patterns and the conventional diagrids 
- Overview practical applications of best performing patterns 
- Special cases in tall buildings 

 
 

4.1. METHOD ADOPTED 

4.1.1. HOMOGENIZATION METHOD 

Generally speaking, it can be stated that in tall buildings, fulfilling the global Service Limit State limitations indirectly 

leads to the fulfilment of the Ultimate Limit State limitations as they tend to be more restrictive. This premise is valid 

only for the predesign and all the limitations must be later verified, especially those concerning the global stability of 

the building overturning as a rigid body In the stiffness-based design approach, the structural elements are disposed 

and sized so the overall stiffness of the structure is enough to fulfil the required displacement limitation. This approach 

is widely used for the preliminary design of tall buildings and is applied by Moon11 for his diagrid optimization. Applying 

Timoshenko beam theory to a prismatic cantilever beam under uniform distributed load:  

𝑢𝑥(𝐻) =
𝑞𝑤𝐻4

8𝐸𝐼
+

𝑞𝑤𝐻2

2𝐺𝐴𝑠
≤ 𝑢𝑥(𝐻)𝑚𝑎𝑥                                                                                                 (1.2) 

The top displacement is compared with the drift limitation and the mechanical properties chosen to meet that 

limitation.  

In the case of geometric Islamic patterns, we do not have mechanical properties properly speaking as the pattern is 

not a material but a framed structure. The homogenization method finds analytically or numerically the ‘equivalent’ 

or ‘homogenized’ mechanical properties of a continuous metamaterial that represents the periodic structure that 

conforms it. In the context of non-conventional diagrids, the diagrid would be substituted by an equivalent 

homogenized material whose homogenized mechanical properties would lead to the same displacements with 

stiffness-based design equations. 

G.M. Montuori14 uses this method in his hexagrid structural assessment research: “(…) the idea is to idealize whichever 

grid as a continuous depleted medium, characterized by penalized mechanical properties, according to the classical 

micromechanical approach based on homogenization methods. In fact a plane periodic structure made up of an 
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isotropic linearly elastic material and possessing a certain degree of symmetry behaves macroscopically as an isotropic 

material; the macroscopic properties of the structure are called the effective properties, and depend on both the 

mechanical properties of the solid matrix and on the microstructural features of the grid, namely topology, density 

and orientation.”  

This document diverges from the above definitions provided by G.M. Montuori14. The modules do not overlap, the 

unit cells are not the minimum possible unit and the representative volume elements are the direct structural 

idealization of the unit cells. For simplicity of the proposed design method and systematization of the analysis, only 

the terminology “module” is employed to refer to the three of them, that in all cases have the exact same geometry. 

Their geometric definition is derived from the minimum rectangle standing in the x- and y-axis, whose replication leads 

to the complete pattern. These definitions are applied to Great Mosque of Damascus pattern in the following pictures:  

 

 
FIG 4.1. Module as per Montuori 

 
FIG 4.2. Unit cell as per Montuori 

 
FIG 4.3. Module edges here 

 
FIG 4.4. Unit cell and RVE here 

 
The choice of these methodology is based on their extended use in other similar papers and their clear applicability 

for this study.  The method proposed consists in the determination of an equivalent metamaterial for any of the chosen 

historic mechanical properties. The saturation serves as representation of the amount of material employed in each 

case and the homogenized mechanical show its structural performance. The predesign tool consist on a series of 

tables, graphs and pictures that show and compare the aesthetic image, the structural mechanical properties and 

amount of material employed for different beams sizes in each pattern.   

 

4.1.2. PLANE-STRESS ANALYSIS 

Geometric Islamic patterns can be applied to shell structures such as domes, where the mechanical out-of-plane 

properties are at least as relevant as the mechanical in-plane properties. Nevertheless, other shell structures such as 

hypars are designed so the out-of-plane stresses are minimal and their in-plane mechanical properties are enough to 

properly define the overall performance of the structure. This is the case of diagrid systems in tall buildings, where the 

structure can be approximated as a thin-shell cantilever beam. In this research only the in-plane structural behaviour 

is studied, leaving the further out-of-plane characterization to future studies.  

 
 

4.1.3. BEAM SIZE EFFECTS 

As with Vierendeel trusses, the bars’ layout is not triangular and modelling the nodes as pinned would lead to a 

mechanism. Thus, the bars are modelled clamped to each other in fully bending-resisting nodes. As the bars are no 

longer subjected just to axial forces but also to bending moments, their size and shape affect the overall response. The 

homogenized mechanical properties are not directly proportional to the beam sizes or the saturation of the panel, so 

a full range of different beam sizes must be tested for each pattern.  

 

4.1.4. ORTHOTROPIC BEHAVIOUR  

In his study about the structural performance of hexagrids, Montuori et al in 20156 characterize the hexagrid in-plane 

structural behaviour as isotropic and then some empirical coefficients are included to calibrate the analytical expected 

values with the actual results obtained with a FEM analysis.   

A priori it is not possible to know how the chosen historic Islamic patterns will behave when loaded in their plane as 

there is not previous research into that. While considering them as isotropic is an over simplification, considering them 
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as anisotropic introduces a series of complications that go against the systematization of the analysis and the simple 

use of the predesign tool. Finally, it is decided to study the patterns behaviour considering them as orthotropic. This 

allows to systematize the analysis by using rectangular panels in all cases for the tests and it simplifies the design tool 

by providing just the homogenized mechanical properties in two orthogonal directions.  

 
The results will later prove that the pattern actual behaviour comes from the planes of symmetry of its geometry.  It 
will be further discussed in Chapter 5.1. Directional mechanical properties. 

 

  

 

 

 

  
FIG 4.5. 90º. Square symmetry FIG 4.6.72º. Pentagonal symmetry  FIG 4.7. 60º. Hexagonal symmetry 

 

Symmetry Square Pentagonal Hexagonal 

Pattern D, E, K, L, M, O, P, Q, S I, J, R A, B, C, F, G, H, N, T 

 
- Square symmetry:    Perpendicular isotropy.  Symmetry directions form 90ª. 
- Pentagonal symmetry:  Orthotropic   Symmetry directions form 72º 
- Hexagonal symmetry:   Pure isotropic.    Symmetry directions form 60º  

 
 
The formulation of the constitutive matrix of 2D orthotopic behaviour is detailed in the literature review, specifically 
in Chapter 2.6. Constitutive matrix for 2D orthotropic behaviour and it is as follows: 
 

 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 } =

[
 
 
 
 
 

  

𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝜈𝑥𝑦 𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0   

𝜈𝑦𝑥 𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0   

0 0 𝐺  ]
 
 
 
 
 

{ 

𝜀𝑥𝑥 

𝜀𝑦𝑦 
𝛾𝑥𝑦 

}                                                                         (1.13) 

 
 
 

4.1.5. HOMOGENIZATION PROCESS 
 

 

 

The length of the panel in the x-direction is called 𝐿𝑥 and its height 𝐿𝑦. As the in-

plane behaviour of the panel with respect to its thickness 𝐿𝑧 will be linear, a unitary 
value has been assigned in all cases for the tests.  
 

Strains are indirectly imposed, in the sense that in the FEM what are actually 
assigned to the nodes are displacements not strains. The magnitude of the assigned 
displacement does not play any role in this chapter as the analysis carried out is 
linear elastic and hereby it will be referred to as ∆𝑙. 
 

FIG 4.8. Panel geometry 
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As aforementioned, the imposed strains are not assigned directly but derived from the specified imposed 
displacement: 
 

𝜀𝑥𝑥
ℎ = ∆𝑙/𝐿𝑥 𝜀𝑦𝑦

𝑣 = ∆𝑙/𝐿𝑦 𝛾𝑥𝑦 = ∆𝑙/𝐿𝑥 𝛾𝑦𝑥 = ∆𝑙/𝐿𝑦             (4.01)  
     

In the notation used, when there are two indexes (𝑁𝑥𝑦), the first index (x) corresponds to the axis normal to the 

plane in which the force is applied and the second (y) to the positive direction in which that force is acting. In this 
particular case (𝑁𝑥𝑦), the force is acting in a vertical edge (normal to x-direction) with positive values in the positive 

y-direction (vertical force, follows the y-direction). When only one index is used, that means that it is no longer 
referred to a vector. In such cases, the index corresponds to the axis in which directions that value is measured (𝐿𝑥 
is the length of the panel in the x-direction). 
 
Forces are directly measured in the nodes belonging to the same edge with the structural software and added up. 
Here it is emphasized that the nodes belong to the same edge, because in some case the forces in opposite edges 
compensate each other to keep the equilibrium (such as 𝑁𝑦𝑦

ℎ ). Equilibrium is the first requisite when verifying the 

accuracy and applicability of the test. 
 
The geometric Islamic patterns are considered orthotropic in their plane, for which the previous constitutive matrix 
stands. Nevertheless, as the values obtained in the FEM model are forces instead of stresses, so the matrix is modified 
to simplify its writing (coefficients Q instead of rational expressions) and to allow the input of the values retrieved 
from the FEM analysis.: 
 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 } = { 

𝑁𝑥𝑥/(𝐿𝑦 · 𝐿𝑧)

𝑁𝑦𝑦/(𝐿𝑥 · 𝐿𝑧)

𝑁𝑥𝑦/(𝐿𝑦 · 𝐿𝑧)

 } = [  
𝑄11 𝑄12 0   
𝑄21 𝑄22 0   
0 0 𝑄33  

] { 

𝜀𝑥𝑥 

𝜀𝑦𝑦 
𝛾𝑥𝑦 

}                       (4.02) 

 

The Poisson ratios cannot be directly obtained from the tests. As the material is not homogeneous, leaving one or 
two edges free and then measuring the transversal displacement would lead to different values depending on the 
node chosen. Even measuring the transversal displacement in all nodes and getting the average value would lead to 
incoherencies with the results obtained with other methods. Therefore, the test proposed in this research only allows 
a displacement (strain) at the time, getting directly an element of the constitutive matrix. The homogenized 
mechanical properties will later be derived from their equations. 
 

  

 

IMPOSED HORIZONTAL STRAIN. 
 

{ 

𝜎𝑥𝑥
ℎ

𝜎𝑦𝑦
ℎ

𝜏𝑥𝑦
ℎ

 } = { 

𝑁𝑥𝑥
ℎ /(𝐿𝑦 · 𝐿𝑧)

𝑁𝑦𝑦
ℎ /(𝐿𝑥 · 𝐿𝑧)

𝑁𝑥𝑦
ℎ /(𝐿𝑦 · 𝐿𝑧)

 } = [  
𝑄11 𝑄12   0   
𝑄21 𝑄22   0   
0 0 𝑄33  

] { 
𝜀𝑥𝑥

ℎ  
0 
0

} 

 

𝜎𝑥𝑥
ℎ = 𝑄11 ·  𝜀𝑥𝑥

ℎ  →  𝑄11 = 𝑁𝑥𝑥
ℎ · 𝐿𝑥/(𝐿𝑦 · 𝐿𝑧 · ∆𝑙)    (4.03) 

𝜎𝑦𝑦
ℎ = 𝑄21 · 𝜀𝑥𝑥

ℎ  →  𝑄21 = 𝑁𝑦𝑦
ℎ /(𝐿𝑧 · ∆𝑙)                      (4.04) 

 
FIG 4.9. Imposed horizontal strain 
 

 

IMPOSED VERTICAL STRAIN. 
 

{ 

𝜎𝑥𝑥
𝑣

𝜎𝑦𝑦
𝑣

𝜏𝑥𝑦
𝑣

 } = { 

𝑁𝑥𝑥
𝑣 /(𝐿𝑦 · 𝐿𝑧)

𝑁𝑦𝑦
𝑣 /(𝐿𝑥 · 𝐿𝑧)

𝑁𝑥𝑦
𝑣 /(𝐿𝑦 · 𝐿𝑧)

 } = [  
𝑄11 𝑄12   0   
𝑄21 𝑄22   0   
0 0 𝑄33  

] { 
0 

𝜀𝑦𝑦
𝑣  

0

} 

 

𝜎𝑥𝑥
𝑣 = 𝑄12 ·  𝜀𝑦𝑦

𝑣  →  𝑄12 = 𝑁𝑥𝑥
𝑣 /(𝐿𝑧 · ∆𝑙)                    (4.05) 

𝜎𝑦𝑦
𝑣 = 𝑄22 · 𝜀𝑦𝑦

𝑣  →  𝑄22 = 𝑁𝑦𝑦
𝑣 · 𝐿𝑦/(𝐿𝑥 · 𝐿𝑧 · ∆𝑙)     (4.06) 

 
FIG 4.10. Imposed vertical strain 
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IMPOSED TRANSVERSE VERTICAL STRAIN. 
 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

 } = { 

𝑁𝑥𝑥/(𝐿𝑦 · 𝐿𝑧)

𝑁𝑦𝑦/(𝐿𝑥 · 𝐿𝑧)

𝑁𝑥𝑦/(𝐿𝑦 · 𝐿𝑧)

 } = [  
𝑄11 𝑄12   0   
𝑄21 𝑄22   0   
0 0 𝑄33  

] { 

0 
0 

𝛾𝑥𝑦 

} 

 

𝜏𝑥𝑦 = 𝑄33 ·  𝛾𝑥𝑦  →  𝑄33 = 𝑁𝑥𝑦 · 𝐿𝑥/(𝐿𝑦 · 𝐿𝑧 · ∆𝑙)    (4.07) 
 

 
FIG 4.11. Imposed transverse vertical strain 

 
 

 

 
IMPOSED TRANSVERSE HORIZONTAL STRAIN. 

 

{ 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑦𝑥

 } = { 

𝑁𝑥𝑥/(𝐿𝑦 · 𝐿𝑧)

𝑁𝑦𝑦/(𝐿𝑥 · 𝐿𝑧)

𝑁𝑦𝑥/(𝐿𝑥 · 𝐿𝑧)

 } = [  

𝑄11 𝑄12   0   
𝑄21 𝑄22   0   
0 0 𝑄33  

] { 

0 
0 

𝛾𝑦𝑥 

}  

 

𝜏𝑦𝑥 = 𝑄33 ·  𝛾𝑦𝑥  →  𝑄33 = 𝑁𝑦𝑥 · 𝐿𝑦/(𝐿𝑥 · 𝐿𝑧 · ∆𝑙)   (4.08) 
 

 
FIG 4.12. Imposed transverse horizontal strain 

 
 

The angular distortion is applied by means of a transverse strain in one of the edges, called here imposed transverse 
vertical or horizontal strain. In each case, 𝑄33 can be obtained after retrieving the reactions 𝑁𝑥𝑦 or 𝑁𝑦𝑥, according to 

Cauchy 𝜏𝑥𝑦 = 𝜏𝑦𝑥  resulting to the same 𝑄33 independently of the one chosen. AS long as 𝑁𝑥𝑦 in the imposed 

transverse vertical strain is equal to 𝑁𝑦𝑥  in the imposed transverse horizontal strain, the two tests will lead to the 

same result as well. To test the integrity of the experiment, 𝑄33 is calculated in those four different ways and in all 
cases the results are equivalent. The homogenized mechanical properties follow the system of equations: 
 
 

[
 
 
 
 
 

     

𝑄11 =
𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
     𝑄12 =

𝜈𝑥𝑦𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
    0     

𝑄21 =
𝜈𝑦𝑥𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
     𝑄22 =

𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
     0     

0  0  𝑄33 = 𝐺       ]
 
 
 
 
 

                                              (4.09) 

 
 

𝐸𝑥 = 𝐸𝑥 → 𝑄11 · (1 − 𝜈𝑥𝑦𝜈𝑦𝑥) = 𝑄21 · (1 − 𝜈𝑥𝑦𝜈𝑦𝑥)/𝜈𝑦𝑥  →  𝜈𝑦𝑥 = 𝑄21/𝑄11                               (4.10)  
 

𝐸𝑦 = 𝐸𝑦 → 𝑄22 · (1 − 𝜈𝑥𝑦𝜈𝑦𝑥) = 𝑄12 · (1 − 𝜈𝑥𝑦𝜈𝑦𝑥)/𝜈𝑥𝑦  →  𝜈𝑥𝑦 = 𝑄12/𝑄22                               (4.11)  
 

𝐸𝑥 = 𝑄11 · (1 − 𝜈𝑥𝑦𝜈𝑦𝑥) →  𝐸𝑥 = 𝑄11 − 𝑄21 · 𝑄12/𝑄22                                                                         (4.12)  
 

𝐸𝑦 = 𝑄22 · (1 − 𝜈𝑥𝑦𝜈𝑦𝑥) →  𝐸𝑦 = 𝑄22 − 𝑄21 · 𝑄12/𝑄11                                                                         (4.13)  
 

𝐺 = 𝑄33                                                                                                                                                               (4.14)  
 
 

As final step, those results are normalized diving them by the modulus of elasticity of the base material (𝐸𝑏). The 
tables will present the results as percentages. A percentage of 20% indicates that the homogenized modulus of 
elasticity is a fifth of the modulus of elasticity of the base material.  
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4.1.6. BOUDARY CONSTRAINS REGARDING ROTATION 

Those boundary conditions refer to the displacement degrees of freedom but nothing has been stated regarding the 
rotation degree of freedom of the beam elements on the panel perimeter as that parameter is decoupled in the 
constitutive matrix. There are two possibilities regarding the rotation in the z-direction of the bars end in the panel 
perimeter, they can be either be pinned or fixed. The moments distribution changes slightly: 

 

 
 

FIG 4.13. Bars pinned in the perimeter     

 
 

FIG 4.14. Bars fixed in the perimeter 
  

The reactions obtained in both cases are different as the corresponding homogenized mechanical properties. This local 
effect has less influence in the global homogenized mechanical properties as the number of modules in the panel 
increases. A panel of infinite modules will have ideal homogenized mechanical properties regardless of the rotation 
constrain in the perimeter. That phenomenon is called Representative Element Volume effect and it will be further 
studied with a sensitivity assessment. In all cases, constraining the bars rotation at the perimeter provide exact results 
for all mechanical properties exept for the shear modulus, while the opposite is true when the tests are done with the 
rotation dof left free. In other words, symmetric boundary conditions provide the ideal vaues for the symmetric 
mechanical properties,  while antisymmetric boundary conditions provide the ideal vaues for the antisymmetric 
mechanical properties: 

 

   
FIG 4.15. Homogenized mechanical properties obtained with symmetric (blue) and antisymmetric (orange) boundary conditions for different panel sizes 

 
Symmetric boundary conditions (rotation constrained) result in ideal values for the symmetric homogenized 
mechanical properties (homogenized moduli of elasticity and Poisson ratios): 

  

   
 FIG 4.16. Symmetric boundary conditions 

 
Antisymmetric boundary conditions (rotation free) result in ideal values for the antisymmetric homogenized 
mechanical properties (shear modulus): 
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  FIG 4.17. Antisymmetric boundary conditions 

 
The least cost-effective approach would be to automate the process so the panel is tested with the rotation dof 
constrained to retrieve the reactions for the Poisson ratios and moduli of elasticity. Then, automatically release the 
rotation dof in the supports so the panel can be tested again to retrieve the reactions for the shear modulus. This 
approach provides directly ideal results and it keeps at minimum the number of models to be exported and tested. 

 
However, this is only suitable for the tests done with beam elements that are, on the other hand, done very fast. When 
analyzing the patterns with membrane elements, the rotation dof at the supports is indirectly restrained as the 
imposed displacements are the same at different points of the beam depth.  

 
One of the objectives is to systematize the analysis, to do so, in all cases the rotation dofs at the supports are restrained 
and a Representative Element Volume refinement is done to take into account that effect. The use of identical 
boundary conditions for the beam and membrane elements analyses will allow to obtain the 2D correction factors by 
analyzing panels of just 1x1 modules.  

 
The possibility of using periodic boundary conditions to obtain directly the ideal homogenized mechanical properties 
analyzing just one size panel has been discarded in Chapter 2.5. Periodic boundary conditions due to its complexity of 
implementation as a systematic analysis in patterns with different generating symmetries. 

 
 
 

4.2. HOMOGENIZATION METHODOLOGY 
The homogenization of the chosen historic geometric Islamic patterns is performed in accordance with the procedure 
and formulation described in Chapter 4.1.5. Homogenization process. There are, nevertheless, three important 
phenomena that must be taken into account in order to have an accurate homogenization: 
 

- Representative Element Volume: Difference in the homogenized mechanical properties due to the size of 
the sample. In this case, difference in the results due to the number of modules that compose the panel. 
It is directly related to the effect that the boundaries have in the global behaviour. As the number of 
modules used increases, the effect of the boundary conditions diminishes. A Representative Element 
Volume refinement is done with the beam elements to get the ideal behaviour of an infinite by infinite 
modules panel. The result of this exercise is the pattern 1D ideal behaviour. 
 

- Mesh refinement: In the case of the geometric Islamic patterns, it is found that the results are very 
sensitive to the mesh size probably because they are full of sharp openings leading to numerous 
concentrations of stresses. The result of this refinement is the 2D ideal behaviour of a 1x1 panel. 

 
- Membrane correction factor: As the beam depth increases and the slenderness of the beams decreases, 

the beam theory ceases to be applicable. It will also lead to overlapping and other effects that are not 
included when modelling with beam elements. An analysis with membrane elements is necessary to take 
into account those effects that have a great importance in all the geometric Islamic patterns. The result of 
this exercise is the membrane correction factors. 
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All those effects are addressed for each chosen historic geometric Islamic pattern and for different beam sizes. At 
the end, approximately 10 000 analyses have been necessary to define all the homogenized mechanical properties 
of all the patterns and beam sizes, in accordance with the following scheme: 
 
 
 

1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

      

   

  

 

1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

 
FIG 4.18. Homogenization methodology. Step 1 

 
 
 

1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

      

   

  

 

1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

 
FIG 4.19. Homogenization methodology. Step 2 
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1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

          Determination of  
       the membrane  

       correction factor 

 

    

1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

 
FIG 4.20. Homogenization methodology. Step 3 

 
 
 

1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

                     Application of  
                the membrane  
               correction factor 

 

    
1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

 
FIG 4.21. Homogenization methodology. Step 4 
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4.3. REPRESENTATIVE ELEMENT VOLUME (REV)  
For the analysis, the tessellation ROS-I-6.10.10. θ =72º, type Star, with a relative beam depth of 4%, has been chosen. 
To observe the effect due to the variation of modules in the x--, y-direction and a combination of both, the following 
models have been tested: 
 

y 
=

 8
 

    
 

y 
=

 4
 

    
 

   
 y

 =
 2

 

    
 

   
   

   
y 

= 
1

 

 
 

x = 1 

 
 

x = 2 

 
 

x = 4 
 

 

x = 8 
 

FIG 4.22. Panels under study for the Representative Element Volume assessment. 
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Homogenized mechanical properties for rotation dof not constrained at the supports: 
 

  
 

  
TABLE 4.1. Homogenized mechanical properties for rotation dof not constrained at the supports. 

 
There is convergence, an increment of the number of modules leads to more accurate results in all cases. A deviation 
from the square shape does not affect negatively the results obtained as long as that deviation is obtained by means 
of an increment of modules in the panel. Panels 1x8 and 2x8 are good examples of how a façade of a tall building could 
look like with this system. However, the application is not direct. These tests are aimed to characterize the 
homogenized material, they are not aimed to search a direct application since the boundary conditions of the tests 
(restrained edges) differ to those of the built tower (cantilever beam). 

 
The chosen number of modules in x- and y-direction for the tests follow the rule that each one is twice as big as the 
precedent one (namely 1. 2. 4. 8). This, allows to estimate the convergence ratio and have a better insight.  

 
Rotation dof not constrained at the supports: 

 

PINNED 
 Lx (m) Ly (m) 

𝐸𝑥  
Diff % 

𝐸𝑦 
Diff % 

𝜈𝑥𝑦 
Diff % 

𝜈𝑦𝑥 
Diff % 

𝐺 
Diff % 

1x1 5.0 6.9 0.02691 - 0.03335 - 0.42582 - 0.5277 - 0.01441 - 
2x2 10.0 13.8 0.02714 0.829 0.03432 2.900 0.421187 -1.087 0.53268 0.945 0.01441 0.000 
4x4 20.0 27.5 0.02725 0.416 0.03482 1.455 0.418897 -0.544 0.53527 0.486 0.01441 0.000 
8x8 40.0 55.1 0.02731 0.208 0.03507 0.728 0.41776 -0.272 0.53659 0.246 0.01441 0.000 

TABLE 4.2.  REV assessment with free rotation at the supports 
 

Rotation dof constrained at the supports 
 

FIXED 
 Lx (m) Ly (m) 𝐸𝑥  Diff % 𝐸𝑦 Diff % 𝜈𝑥𝑦 Diff % 𝜈𝑦𝑥 Diff % 𝐺 Diff % 

1x1 5.0 6.9 0.02736 - 0.03533 - 0.41663 - 0.5379 - 0.01509 - 
2x2 10.0 13.8 0.02736 0.000 0.03533 0.000 0.416628 0.000 0.53792 0.000 0.01476 -2.205 
4x4 20.0 27.5 0.02736 0.000 0.03533 0.000 0.416628 0.000 0.53792 0.000 0.01458 -1.164 
8x8 40.0 55.1 0.02736 0.000 0.03533 0.000 0.416628 0.000 0.53792 0.000 0.01450 -0.598 

TABLE 4.3. REV assessment with constrained rotation at the supports 
 

   
 

 

 

 

 
 
 

Clamp bars directly give exact results 
for all homogenized mechanical 
properties except for the shear 
modulus G. The opposite happens 
when in the tests the patterns are 
pinned at the perimeter 

 
FIG 4.23. Homogenized mechanical properties obtained with symmetric (blue) and antisymmetric (orange) boundary conditions for different panel sizes 
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As explained in Chapter 4.1.6. Boundary constrains regarding rotation, symmetric boundary conditions provide the 
ideal values for the symmetric mechanical properties,  while antisymmetric boundary conditions provide the ideal 
values for the antisymmetric mechanical properties. Symmetric boundary conditions are used in combination with 
Representative Element Volume refinement to allow direct relationship between the 1x1 panels with beam and 
membrane elements for the membrane correction factors determination. The patterns present an order of 
convergence of two O(h2), meaning that twice the number of modules leads to half the error. In each case, the 
difference between the 4x4 and 2x2 panel results are added to the result of the 4x4 panel to calculate the ideal 
behaviour. It is verified that the same convergence ratio is valid for all historic patterns studied, but is shown for 3 
representative patterns: 
 

 

D) LAHORE FORT COMPLEX  
(Tessellation 4.8.8. θ =67.5º) Square symmetry. Relative beam depth = 5% 

D 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

1x1 7.05% - 7.05% - 0.221 - 0.221 - 1.19% - 
2x2 7.05% 0.00 7.05% 0.00 0.221 0.00 0.221 0.00 1.08% -8.65 
4x4 7.05% 0.00 7.05% 0.00 0.221 0.00 0.221 0.00 1.02% -5.52 

TABLE 4.4. REV. Convergence for pattern D 
 

F) MUSTANSIRIYA MADRASA  
(Tessellation 3.6.3.6. θ =30º). Hexagonal symmetry. Relative beam depth = 6% 

F 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

1x1 0.84% - 0.84% - 0.914 - 0.914 - 0.30% - 
2x2 0.84% 0.00 0.84% 0.00 0.914 0.00 0.914 0.00 0.25% -16.41 
4x4 0.84% -0.01 0.84% -0.01 0.914 0.00 0.914 0.00 0.24% -7.57 

TABLE 4.5. REV. Convergence for pattern F 
 

R) FATEHPUR SIKRI  
 (Tessellation ROS-I-6.10.10. θ =72º type Star) Hexagonal symmetry. Relative beam depth = 3% 

R 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

1x1 1.49% - 2.00% - 0.458 - 0.615 - 0.91% - 
2x2 1.49% 0.00 2.00% 0.00 0.458 0.00 0.615 0.00 0.88% -2.61 
4x4 1.49% 0.00 2.00% 0.00 0.458 0.00 0.615 0.00 0.87% -1.38 

TABLE 4.6. REV. Convergence for pattern R 
 
 

VARIATION IN SIZE 
This point is aimed to verify that changing the panel’s size won’t have any effect in the obtained equivalent mechanical 
properties. The chosen pattern is Alhambra (tessellation ROS-I-6.9.12.9. θ =70º, L =35%) due to its high complexity and 
hexagonal symmetry. The sizes under study will be 5m, 10m and 20m in the x-direction. The beam depth chosen is 4%, 
corresponding to 20cm, 40cm and 80cm. The panel thickness is 1m.  

 

 

Alhambra, 𝐿𝑥 = 5𝑚, rel. beam depth = 4% (20cm) 
 

 
 

Alhambra, 𝐿𝑥 = 10𝑚, rel. beam depth = 4% (40cm) 
 

 
 

Alhambra, 𝐿𝑥 = 20𝑚, rel. beam depth = 4% (80cm) 
 

 
 

FIG 4.24. ROS-I-6.9.12.9. θ =70º, L =35% 
 

TABLE 4.7. Homogenized mechanical properties for same pattern with different sizes. 
 

The results are exactly identical independently of the module size or the imposed strain (linear elastic analysis) 
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4.4. FEM BEAM ELEMENTS  
These homogenized equivalent properties are obtained using beam elements and refining the results to take into 
account the Representative Element Volume for an order of converge of 2 as per Chapter 4.3. Representative Element 
Volume (REV). It corresponds to the first stage in the scheme described in Chapter 4.2. Homogenization methodology, 
named “- X - BEAM”: 
 

 
1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

      

   

  

 

1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

FIG 4.25. Homogenization methodology. Step 1 
 

The information included in each case from left to right is: 
 

- Given name to the pattern and the tessellation and parameters to draw it with the Hankin method. 
 

- Picture of the pattern displaying what is considered as its module. The module length in the x-direction 
(horizontally in the picture) is needed for the relative beam depth (rbd %) definition.   

 

- Table of homogenized mechanical properties taking into account the Representative Element Volume  
 

- Graphs with the evolution of the homogenized mechanical properties as the rbd increases.  
 

In this chapter, only three representative results are included (Square, pentagonal and hexagonal symmetries).  For 
the complete set of tables for historic and parametric variations, see Appendix I. Design guide. 
 

The numerical results for 2x2 and 4x4 panels, leading to the obtained homogenized mechanical properties are 
collected in Appendix II. Numerical results. 
 
 

D) LAHORE FORT COMPLEX. Tessellation 4.8.8. θ =67.5º. Square symmetry.  
 

 

D67.5 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] Sat [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 7.23 0.18% 0.18% 0.191 0.191 0.01% 

2 14.12 1.10% 1.10% 0.197 0.197 0.08% 

3 20.69 2.76% 2.76% 0.207 0.207 0.25% 

4 26.93 4.82% 4.82% 0.215 0.215 0.55% 

5 32.83 7.05% 7.05% 0.221 0.221 0.96% 

6 38.41 9.36% 9.36% 0.224 0.224 1.49% 

7 43.66 11.69% 11.69% 0.225 0.225 2.12% 

8 48.58 14.04% 14.04% 0.225 0.225 2.82% 

9 53.17 16.41% 16.41% 0.223 0.223 3.58% 
 

 
 

 
 

 

FIG 4.26. Pattern D. Homogenized mechanical properties with beams FE. 
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F) MUSTANSIRIYA MADRASA. Tessellation 3.6.3.6. θ =30º. Hexagonal symmetry. 
 

 

F30 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] Sat [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 9.68 0.03% 0.03% 0.973 0.973 0.01% 

3 14.28 0.11% 0.11% 0.963 0.963 0.03% 

4 18.72 0.26% 0.26% 0.949 0.949 0.07% 

5 23.00 0.50% 0.50% 0.933 0.933 0.13% 

6 27.12 0.84% 0.84% 0.914 0.914 0.22% 

7 31.08 1.28% 1.28% 0.893 0.893 0.33% 

8 34.88 1.84% 1.84% 0.870 0.870 0.49% 

9 38.52 2.51% 2.51% 0.846 0.846 0.67% 

10 42.00 3.29% 3.29% 0.822 0.822 0.89% 

11 45.32 4.17% 4.17% 0.798 0.798 1.15% 

12 48.48 5.14% 5.14% 0.774 0.774 1.44% 
 

 
 

 
 

FIG 4.27. Pattern F. Homogenized mechanical properties with beams FE. 
 

R) FATEHPUR SIKRI. Tessellation ROS-I-6.10.10. type Star. Pentagonal symmetry. 
 

 

 

R72 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] Sat [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 13.86 0.07% 0.10% 0.517 0.730 0.04% 

2 26.49 0.50% 0.69% 0.493 0.680 0.30% 

3 37.90 1.49% 2.00% 0.458 0.615 0.86% 

4 48.08 3.06% 3.99% 0.420 0.548 1.68% 

5 57.03 5.11% 6.50% 0.382 0.486 2.72% 

6 64.76 7.52% 9.37% 0.348 0.433 3.94% 

7 x x x x x x 

8 x x x x x x 
 

 

 
FIG 4.28. Pattern R. Homogenized mechanical properties with beams FE. 

 
The homogenized mechanical properties are normalized dividing the results by the base material modulus of 
elasticity (𝑬𝒃𝒂𝒔𝒆).  A fully continuous opaque panel has a homogenized modulus of elasticity of 1 (100%), so a value of 
5.69% for the homogenized modulus of elasticity (E) means that it will have a modulus of elasticity that is 5.69% of a 
fully filled panel with the same thickness. The results ae obtained with beam elements in a linear elastic analysis. 
Therefore, it does not have into account effects such as overlaps as the pattern grows opaquer or non-linear effects 
derived from the different stress levels inside the pattern. 

 
The patterns are generated with Grasshopper and then exported to Autocad files (dxf). Then, they are imported in 
SAP2000 and analysed for a series of rectangular cross-sections. In all cases, the panel thickness is kept in 1m as the 
beam depth varies not to affect the results. All the panels are generated with a module size in the x-direction of 5m. 
It is to say, 1x1 panels measure 5m in the x-direction, 2x2 panels 10m and 4x4 panels 20m. This way, 5cm always 
corresponds to a relative beam depth (rbd) of 1% and the varying relative beam depth input can be automated. 
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4.5. FEM MEMBRANE ELEMENTS. 
So far, the patterns’ behaviour and their homogenized mechanical properties have been obtained in static linear 
analyses using beam elements. Those frame elements provide an approximate response with a small computational 
effort. Thus, their use is justified to assess the applicability of the homogenization method for the bearing system of 
tall building as the number of elements required in façade surpass greatly the computational capacity of the laptop 
used for the analysis in this research. In the case of characterizing the patterns, it also becomes handy to broaden the 
range of patterns under study by the inclusion of alternatives. And finally, it facilitates the refinement study of the 
Representative Volume Element for the shear modulus, so the analysis with membrane elements are required just for 
1x1 panels. 
 

Nevertheless, this simple analysis with beam elements leaves aside some rather important aspects. As the relative 
beam depth increases the beam’s theory becomes less and less applicable becoming D-regions. In the nodes, the actual 
node stiffness and the effects introduced by the bars overlapping are neglected.  Confinement effects do not appear 
with beam elements as the base material Poisson ratio plays no role in 1D elements. 
 
For those reasons, it becomes clear the convenience to carry an in-plane analysis with membrane elements to get 
more realistic values for the homogenized mechanical properties. 
 
This chapter is aimed to highlight in a simple model the differences in the results from using beam elements (1D) and 
membrane elements (2D). This will help to better understand the differences in the results when applied to a complex 
pattern. The material used for the tests is a 30MPa concrete with mechanical properties in accordance with EC2 (𝐸 =

28.576 ∗ 791
𝑘𝑁

𝑚2 , 𝑣 = 0.2.  𝐺 = 11 ∗ 906 ∗ 996 𝑘𝑁/𝑚2 ) 

 
 
FULL PANEL 
The tested panel has a length of 10m in the x-direction and 5m in the y-direction. In the case of bar elements, it is 
model just by 5 horizontal bars of 1m depth. 
 

Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 5.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Bars [m] 100.00 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth Sat. 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

1.00 100 14,288,396 0 0 57,153,582 8,929,107 3,227,987 3,227,987 2,074,626 
 

TABLE 4.8. Reactions from full panel modelled with beam FE 
 

 

 

The grid opening and the beam depth are both 1m, 
resulting in a full panel in the x- and y-direction. This leads 
to a real modelled saturation of 200%, but not considering 
the overlaps the saturation is 100%. 
 

TABLE 4.9. Homogenized mechanical properties model full panel with beam FE 
FIG 4.29.Full panel with beam FE 

10x5m HOMOGENIZED MECHANICAL PROPERTIES 

Sat. [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

100 100.00% 100.00% 0.000 0.000 13.18% 

 
In the analysis the Poisson ratio of the base material plays no role. The bars in the imposed deformation direction do 
not change their cross-section and the transversal bars move as rigid bodies. As result, the confinement effect is not 
included in the results and the obtained Poisson ratio is zero. On the other hand, the Young’s modulus in the x- and 
y-direction are accurately obtained, but the shear modulus is greatly underestimated as it should be in the order of 
40% of the base modulus of elasticity.  
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The same panel modelled with membrane elements: 
 

Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 5.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Bars [m] 0.00 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

Thick. Sat. 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣  𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

1.00 100 14,883,745 5,953,498 5,953,498 59,534,981 23,813,993 11,906,996 11,906,996 5,953,498 
 

TABLE 4.10. Reactions from full panel modelled with membrane FE 
 

 

 

The same results are obtained regardless of the mesh size. The 
amount of material modelled corresponds exactly with the 
saturation as no overlapping occurs.  
 

TABLE 4.11. Homogenized mechanical properties model full panel with membrane FE 
FIG 4.30. Full panel with membrane FE 

10x5m HOMOGENIZED MECHANICAL PROPERTIES 

Sat. [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

100 100.00% 100.00% 0.200 0.200 41.67% 

In this case, the Poisson ratio of the base material plays a role. There is a confinement effect that can be observed in 

the measured reactions (𝑄11 = 14 ∗ 883.745𝑘𝑁 instead of 𝑄11 = 14 ∗ 288.396𝑘𝑁) but that does not deviate the 

homogenized mechanical properties from their actual values. All the obtained properties (Young’s modulus in x- and 

y-direction, Poisson ratios and shear modulus) are accurately obtained and have the same values as the base material. 

 

GRID 
The same analysis is repeated with a varying relative beam depth: 

Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 5.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Bars [m] 100.00 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth Sat. 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.1 19.00 1,428,840 0 0 5,715,358 33,940 14,719 14,719 7,684 

0.3 51.00 4,286,519 0 0 17,146,075 737,972 314,335 314,335 167,591 

0.5 75.00 7,144,198 0 0 28,576,791 2,473,828 1,018,767 1,018,767 564,883 

0.7 91.00 10,001,877 0 0 40,007,507 4,843,386 1,905,166 1,905,166 1,113,456 

0.9 99.00 12,859,556 0 0 51,438,224 7,521,469 2,801,273 2,801,273 1,741,472 
 

TABLE 4.12. Reactions from grid modelled with membrane FE 
 

 

 

TABLE 4.13.  Homogenized mechanical properties modelling grid with beam FE 
FIG 4.31. Grid with beam FE 

Beam depth HOMOGENIZED MECHANICAL PROPERTIES 

[m] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.1 10.00% 10.00% 0.000 0.000 0.05% 

0.3 30.00% 30.00% 0.000 0.000 1.17% 

0.5 50.00% 50.00% 0.000 0.000 3.85% 

0.7 70.00% 70.00% 0.000 0.000 7.40% 

0.9 90.00% 90.00% 0.000 0.000 11.24% 

 

Young’s modulus directly proportional to beam depth. Contrary to observations for the full panel experiment, in this 

case there is a small difference on the results depending on the mesh size. The following results are obtained with a 

mesh size of 10cm, producing an error smaller than 1% 
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Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 5.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Bars [m] 0.00 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth Sat.  𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.1 19.00 1,510,726 82,016 82,016 6,044,273 113,401 56,700 56,700 28,350 

0.3 51.00 4,731,860 797,348 797,348 18,816,140 1,617,977 808,989 808,989 404,494 

0.5 75.00 8,251,526 2,429,771 2,429,771 32,881,589 7,470,909 3,735,454 3,735,454 1,867,727 

0.7 91.00 12,034,572 4,560,757 4,560,757 48,018,369 17,328,413 8,664,207 8,664,207 4,332,103 

0.9 99.00 14,628,367 5,827,369 5,827,369 58,597,359 23,357,899 11,678,950 11,678,950 5,839,475 
 

TABLE 4.14. Reactions from full panel modelled with membrane FE 
 

 

 

TABLE 4.15. Homogenized mechanical properties model grid with membrane FE 
FIG 4.32. Grid with membrane FE. Beam depth 50cm, Sat. 75% 

 

Mesh 10cm HOMOGENIZED MECHANICAL PROPERTIES 

Depth [m] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.1 10.57% 10.57% 0.027 0.027 0.20% 

0.3 32.88% 32.69% 0.085 0.084 2.83% 

0.5 56.49% 56.28% 0.148 0.147 13.07% 

0.7 81.19% 80.99% 0.190 0.189 30.32% 

0.9 98.32% 98.46% 0.199 0.199 40.87% 

The small difference in the homogenized mechanical properties in the x- and y-direction shows that the result obtained 

depends on the Representative Volume Element. 

The Membrane Correction Factors (C2D) are defined as the relation between the homogenized mechanical properties 

obtained from using membrane elements and 1D beam elements in the analysis. This way it is possible to simulate 

more accurately the pattern performance. Correction Factors with 10cm mesh 

 

 
Beam depth Saturation C2D CORRECTION FACTORS 

[m] [%] C2D_EX C2D_EY C2D_V C2D_G 

0.1 19 1.056 1.057 - 3.65 

0.3 51 1.095 1.089 - 2.41 

0.5 75 1.129 1.125 - 3.38 

0.7 91 1.159 1.156 - 4.09 

0.9 99 1.092 1.094 - 3.64 

1.0 100 1.000 1.000 - 3.16 
 

FIG 4.33. Mechanical properties grid with beam and membrane FE. 
 

TABLE 4.16. Membrane correction factors for the grid 
 

As could be expected, the membrane correction factors (C2D) for the modulus of elasticity are slightly bigger than 1. 

increasing as the relative beam depth increases. The same phenomenon is to be expected for the other properties, 

however, in this particular case the shear modulus was underestimated by a factor around 3 and the Poisson ratio was 

zero as the beams were aligned with the imposed deformations. As a result, it can be stated that these results 

satisfactorily verify the analysis procedure. 

 
GEOMETRIC ISLAMIC PATTERN 
The patterns included in this research are much complex than the above models and deserve a closer look themselves. 
For that purpose, the F Mustansiriya Madrasa pattern (Tessellation 3.6.3.6. θ =30º) is chosen.  The analysis done with 
beam elements had an order of convergence of 2 or O(h2) regarding the effect introduced by the Representative 
Element Volume. It is expected that the same behaviour will occur when the beam elements are substituted by 
membrane elements. The following reactions are obtained for the study pattern for 1x1. 2x2 and 4x4 panels with a 
relative mesh size of beam depth divided by 6. 
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Lx [m] 5.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 8.66 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 1x1 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERT. DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.2 4.00 1,656,823 901,454 901,454 551,594 15,972 27,665 27,665 47,917 

0.4 8.00 4,943,060 2,311,587 2,311,587 1,651,324 156,942 271,832 271,832 470,827 

0.6 12.00 9,449,799 3,278,438 3,278,438 3,142,868 628,962 1,089,395 1,089,395 1,886,887 

0.8 16.00 15,247,388 3,692,923 3,692,923 5,061,042 1,505,628 2,560,822 2,560,822 4,469,074 
TABLE 4.17. Analysis numerical results for pattern F, 1x1 panel, membrane elements 

 

Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 17.32 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 2x2 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERT. DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.2 4.00 1,655,331 900,415 900,415 550,832 17,081 28,647 28,647 50,340 

0.4 8.00 4,955,297 2,317,188 2,317,188 1,653,658 165,430 281,199 281,199 490,371 

0.6 12.00 9,412,864 3,282,074 3,282,074 3,135,943 643,005 1,101,285 1,101,285 1,912,296 

0.8 16.00 15,164,148 3,701,167 3,701,167 5,056,671 1,491,389 2,558,384 2,558,384 4,441,271 
TABLE 4.18.Analysis numerical results for pattern F, 2x2 panel, membrane elements 

 

Lx [m] 20.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 34.64 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 4x4 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERT. DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.2 4.00 1,654,665 900,272 900,272 550,899 16,604 28,240 28,240 49,218 

0.4 8.00 4,958,530 2,319,273 2,319,273 1,653,587 161,799 278,059 278,059 483,093 

0.6 12.00 9,413,039 3,281,698 3,281,698 3,138,598 638,079 1,098,647 1,098,647 1,904,869 

0.8 16.00 15,182,705 3,694,873 3,694,873 5,054,831 1,471,087 2,536,375 2,536,375 4,400,342 
TABLE 4.19. Analysis numerical results for pattern F, 4x4 panel, membrane elements 

 

The comparison of their respective homogenized mechanical properties is as follows: 

rbd 4% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

1x1 0.37% - 0.37% - 0.944 - 0.942 - 0.10% - 
2x2 0.37% -0.07 0.37% -0.12 0.944 0.02 0.942 -0.03 0.10% 4.77 
4x4 0.37% -0.01 0.37% 0.04 0.943 -0.03 0.942 0.02 0.10% 1.97 

TABLE 4.20. Comparison homogenized mechanical properties with different panel sizes for pattern F, rbd 4% 
 
 

rbd 8% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

1x1 3.45% - 3.46% - 0.808 - 0.810 - 0.67% - 
2x2 3.45% 0.07 3.46% -0.04 0.810 0.22 0.810 -0.01 0.57% -15.41 
4x4 3.45% -0.16 3.45% -0.23 0.810 -0.02 0.810 0.02 0.53% -7.11 

TABLE 4.21. Comparison homogenized mechanical properties with different panel sizes for pattern F, rbd 8% 
 

rbd 12% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

1x1 12.18% - 12.16% - 0.602 - 0.601 - 3.81% - 
2x2 12.08% -0.86 12.07% -0.69 0.604 0.33 0.604 0.50 3.87% 1.44 
4x4 12.09% 0.06 12.09% 0.15 0.604 -0.10 0.604 -0.01 3.85% -0.41 

TABLE 4.22. Comparison homogenized mechanical properties with different panel sizes for pattern F, rbd 12% 
 

Despite modelling the edge nodes as pinned, the displacement is constrained at different heights of the beam, leading 

to an indirect rotation constrain at the supports. As seen for the 1D beam elements, the shear modulus has an order 

of convergence of 2 while the other mechanical properties are accurate enough with 1x1 panels. 
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4.6. MESH REFINEMENT 
This chapter corresponds to the second stage in the scheme described in Chapter 4.2. Homogenization methodology. 
By mesh refinement it is referred to study of the effect that the mesh size employed in the analysis will have in the 
final results. The objective is to find the ideal homogenized mechanical properties of the geometric Islamic patterns 
with membrane stress FE for 1x1 panels. In this chapter the order of convergence and sensitivity of the results on the 
mesh size is studied. 

 
1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

      

   

  

 

1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

 
FIG 4.34. Homogenization methodology. Step 2 

 

 
Normally, the mesh size has importance when dealing with peak values as singularities may develop locally, but this 

influence is limited when dealing with the global behaviour.  In the case of the full panel, the mesh size played no role 

and in the case of the grid the effect of the mesh refinement was below 1%. The displacements are imposed in some 

nodes and the force reactions measured in other nodes. The behaviour to study is global and linear elastic and the 

previous experiments shows a negligible influence of the mesh size. For those reasons, it could seem that the mesh 

size effect should be very limited. Nevertheless, that is not the case. The mesh size has a big influence in the results, 

making it necessary to perform a mesh refinement. Here, the mesh size effect on the results will be studied for the F 

Mustansiriya Madrasa pattern (Tessellation 3.6.3.6. θ =30º) for a 1x1 panel. Homogenized mechanical properties are 

obtained from the reactions included in Appendix II. Numerical results. 

As the patterns are very sensitive to the mesh size, it is necessary to test the pattern for different mesh sizes to identify 

the ideal behaviour to which it converges. In addition, different beam depths can be assigned to each pattern, 

increasing the complexity of the analysis. There are two main practical approaches to define the mesh size: 

- Absolute mesh size: The mesh size has a determined value for all cases to run. All the models are tested 

for a given mesh size of for instance of 5cm, 2.5cm and 1.25cm. It is convenient when all the models have 

similar geometry and size. Its application to this research would lead to an exponential increment of 

computational requirements as the beam depth increases. It would lead to inaccurate results for small 

beam depths and big computational efforts for big beam depths.  
 

- Relative mesh size: The mesh size increases with the beam depth. What it is defined is the needed number 

of elements in the beam depth to have a good discretization. For instance, a mesh size of d/5 means that 

the mesh size is the beam depth divided by 5. The level of accuracy is kept constant as the beam size 

increases and the required computational effort decreases.  
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The analysis is linear elastic with an imposed displacement of 1m and triangular membrane elements: 

d/1 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.12% 0.12% 0.956 0.956 0.04% 

4 0.96% 0.96% 0.883 0.883 0.30% 

6 3.26% 3.26% 0.769 0.769 1.03% 

8 7.42% 7.43% 0.646 0.647 2.47% 

10 12.91% 12.91% 0.529 0.528 4.55% 

12 19.67% 19.65% 0.424 0.424 7.21% 

14 27.09% 27.15% 0.340 0.341 10.48% 

16 34.04% 34.03% 0.292 0.292 13.48% 

18 40.18% 40.19% 0.260 0.260 16.25% 
 

d/2 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.08% 0.08% 0.969 0.962 0.03% 

4 0.70% 0.70% 0.912 0.908 0.23% 

6 2.30% 2.30% 0.830 0.829 0.75% 

8 5.99% 6.04% 0.693 0.699 1.92% 

10 10.74% 10.73% 0.591 0.590 3.75% 

12 17.79% 17.73% 0.469 0.467 6.43% 

14 24.11% 24.21% 0.393 0.395 8.91% 

16 30.73% 31.77% 0.327 0.338 12.30% 

18 37.82% 38.03% 0.286 0.287 15.01% 
 

 

TABLE 4.23. Homog. mech. properties pattern F, mesh size beam depth/1 
 

TABLE 4.24. Homog. mech. properties pattern F, mesh size beam depth/2 
 

d/3  HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.05% 0.05% 0.973 0.969 0.02% 

4 0.48% 0.48% 0.933 0.933 0.15% 

6 1.73% 1.73% 0.867 0.866 0.54% 

8 4.31% 4.30% 0.772 0.770 1.33% 

10 8.47% 8.55% 0.658 0.664 2.78% 

12 14.40% 14.46% 0.542 0.545 4.90% 

14 21.19% 21.23% 0.450 0.451 7.66% 

16 28.68% 28.42% 0.370 0.367 10.55% 

18 35.21% 35.23% 0.321 0.321 13.62% 
 

d/4 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.05% 0.05% 0.972 0.972 0.01% 

4 0.41% 0.41% 0.939 0.938 0.13% 

6 1.52% 1.52% 0.878 0.880 0.45% 

8 3.84% 3.84% 0.793 0.793 1.17% 

10 7.80% 7.84% 0.682 0.685 2.48% 

12 13.05% 13.03% 0.579 0.579 4.32% 

14 19.81% 19.65% 0.477 0.473 6.76% 

16 27.11% 27.02% 0.393 0.392 9.84% 

18 33.52% 33.68% 0.340 0.341 12.79% 
 

 

TABLE 4.25. Homog. mech. properties pattern F, mesh size beam depth/3 
 

TABLE 4.26. Homog. mech. properties pattern F, mesh size beam depth/4 
 

 

d/5  HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04% 0.973 0.972 0.01% 

4 0.39% 0.38% 0.942 0.941 0.11% 

6 1.42% 1.42% 0.885 0.885 0.42% 

8 3.60% 3.60% 0.803 0.804 1.07% 

10 7.28% 7.28% 0.702 0.702 2.29% 

12 12.53% 12.54% 0.592 0.592 4.06% 

14 18.84% 18.86% 0.493 0.494 6.52% 

16 25.85% 25.77% 0.413 0.412 9.36% 

18 32.70% 32.82% 0.351 0.352 12.35% 
 

d/6 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04% 0.973 0.973 0.01% 

4 0.37% 0.37% 0.944 0.942 0.11% 

6 1.36% 1.36% 0.888 0.889 0.40% 

8 3.45% 3.46% 0.808 0.810 1.01% 

10 7.03% 7.04% 0.708 0.710 2.13% 

12 12.19% 12.16% 0.602 0.601 3.93% 

14 18.19% 18.22% 0.507 0.508 6.22% 

16 25.36% 25.25% 0.421 0.420 9.02% 

18 32.09% 32.09% 0.361 0.361 11.95% 
 

 

TABLE 4.27. Homog. mech. properties pattern F, mesh size beam depth/5 TABLE 4.28. Homog. mech. properties pattern F, mesh size beam depth/6 

  
d/8 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04% 0.973 0.973 0.01% 

4 0.35% 0.35% 0.944 0.944 0.10% 

6 1.30% 1.30% 0.892 0.892 0.37% 

8 3.30% 3.31% 0.815 0.817 0.96% 

10 6.68% 6.69% 0.720 0.721 2.02% 

12 11.57% 11.62% 0.615 0.618 3.68% 

14 17.68% 17.66% 0.518 0.517 5.91% 

16 24.44% 24.43% 0.435 0.435 8.65% 

18 31.20% 31.18% 0.371 0.371 11.47% 
 

d/12 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04% 0.973 0.973 0.01% 

4 0.34% 0.34% 0.945 0.945 0.09% 

6 1.26% 1.25% 0.895 0.895 0.35% 

8 3.18% 3.18% 0.821 0.821 0.91% 

10 6.46% 6.45% 0.729 0.728 1.91% 

12 11.19% 11.19% 0.627 0.627 3.51% 

14 17.05% 17.05% 0.531 0.530 5.65% 

16 23.71% 23.71% 0.446 0.446 8.27% 

18 30.51% 30.50% 0.380 0.380 11.12% 
 

 

TABLE 4.29. Homog. mech. properties pattern F, mesh size beam depth/8 
 

TABLE 4.30. Homog. mech. properties pattern F, mesh size beam depth/12 
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d/16 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04% 0.973 0.973 0.01% 

4 0.34% 0.34% 0.945 0.946 0.09% 

6 1.24% 1.24% 0.896 0.895 0.34% 

8 3.12% 3.12% 0.823 0.823 0.88% 

10 6.37% 6.38% 0.731 0.731 1.88% 

12 11.00% 11.00% 0.631 0.631 3.43% 

14 16.78% 16.80% 0.536 0.536 5.53% 

16 23.32% 23.33% 0.453 0.453 8.11% 

18 30.07% 30.09% 0.386 0.387 10.93% 
  

TABLE 4.31. Homog. mech. properties pattern F, mesh size beam depth/16. 
 

FIG 4.35.Comparison homog modulus elasticity pattern F for different mesh sizes 
 

  
FIG 4.36.. Comparison homog. Shear modulus pattern F for different mesh sizes FIG 4.37. Comparison homog. Poisson ratio pattern F for different mesh sizes 
 
 
The mesh refinement presents an order of convergence of two O(h2), meaning that half the mesh size leads to half 
the error.  It is clearly shown in the next tables for the relative beam depths of 10% and 16%, but that is not the case 
for the relative beam depth of 4%: 
 

rbd 4% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

d/3 0.48% - 0.48% - 0.933 - 0.933 - 0.15% - 
d/6 0.37% -21.96 0.37% -22.06 0.944 1.18 0.942 1.04 0.11% -28.72 

d/12 0.34% -7.52 0.34% -7.41 0.945 0.18 0.945 0.29 0.09% -13.43 
 

TABLE 4.32. Comparison homogenized mechanical properties with different mesh sizes for pattern F, rbd 4% 
 

rbd 10% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

d/3 8.47% - 8.55% - 0.658 - 0.664 - 2.78% - 
d/6 7.03% -17.08 7.04% -17.67 0.708 7.62 0.710 6.86 2.13% -23.31 

d/12 6.46% -8.07 6.45% -8.34 0.729 2.89 0.728 2.59 1.91% -10.43 
 

TABLE 4.33. Comparison homogenized mechanical properties with different mesh sizes for pattern F, rbd 10% 
 

rbd 16% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

d/3 28.68% - 28.42% - 0.370 - 0.367 - 10.55% - 
d/6 25.36% -11.57 25.25% -11.15 0.421 13.86 0.420 14.40 9.02% -14.48 

d/12 23.71% -6.50 23.71% -6.10 0.446 5.90 0.446 6.35 8.27% -8.33 
 

TABLE 4.34. Comparison homogenized mechanical properties with different mesh sizes for pattern F, rbd 16% 

 
If the mesh refinement is done such that each step has a mesh size that is half the size the previous step, O(h2) has the 
property that the difference with the previous step is the error with respect to the exact solution. This property can 
be used to get the ideal solution by adding the difference between two consecutives steps to the most accurate one. 
Despite being an ideal behaviour in the sense that the mesh size effect has been taken into account, it is still not 
completely accurate as there will be a small error derived from the mesh sizes used in the process. The last step is to 
define the biggest relative mesh size to get an accurate enough ideal behaviour.  
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For that purpose, the ideal behaviour obtained from different mesh sizes are compared: 
 

d/4 to d/8 IDEAL HOMOG. MECH. PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.03% 0.03% 0.974 0.974 0.01% 

4 0.29% 0.29% 0.950 0.950 0.07% 

6 1.09% 1.08% 0.906 0.904 0.30% 

8 2.77% 2.78% 0.838 0.841 0.75% 

10 5.56% 5.54% 0.759 0.758 1.56% 

12 10.09% 10.21% 0.650 0.657 3.04% 

14 15.54% 15.67% 0.558 0.561 5.05% 

16 21.77% 21.84% 0.476 0.477 7.47% 

18 28.88% 28.68% 0.403 0.401 10.15% 
 

d/5 to d/10 IDEAL HOMOG. MECH. PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04% 0.973 0.974 0.01% 

4 0.31% 0.31% 0.948 0.948 0.08% 

6 1.12% 1.13% 0.902 0.903 0.29% 

8 2.89% 2.88% 0.835 0.833 0.77% 

10 5.86% 5.86% 0.748 0.748 1.64% 

12 10.12% 10.10% 0.655 0.654 3.10% 

14 15.81% 15.80% 0.556 0.556 5.11% 

16 22.04% 22.10% 0.472 0.473 7.41% 

18 29.05% 29.12% 0.399 0.400 10.39% 
 

 

TABLE 4.35. Ideal homog. mech. prop. pattern F, mesh refinement d/4 and d/8 
 

TABLE 4.36. Ideal homog. mech. prop. pattern F, mesh refinement d/5 and 
d/10 

 

d/6 to d/12 IDEAL HOMOG. MECH. PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04% 0.973 0.973 0.01% 

4 0.32% 0.32% 0.947 0.948 0.08% 

6 1.15% 1.15% 0.902 0.900 0.30% 

8 2.91% 2.91% 0.834 0.833 0.81% 

10 5.89% 5.87% 0.749 0.746 1.69% 

12 10.20% 10.22% 0.651 0.652 3.09% 

14 15.91% 15.87% 0.554 0.553 5.07% 

16 22.06% 22.17% 0.471 0.473 7.52% 

18 28.93% 28.92% 0.399 0.399 10.30% 
 

d/8 to d/16 IDEAL HOMOG. MECH. PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 0.04% 0.04%      0.973        0.973  0.01% 

4 0.32% 0.32%      0.946        0.947  0.08% 

6 1.18% 1.18%      0.899        0.899  0.31% 

8 2.95% 2.94%      0.832        0.830  0.80% 

10 6.07% 6.06%      0.741        0.741  1.73% 

12 10.44% 10.38%      0.648        0.645  3.18% 

14 15.89% 15.93%      0.554        0.555  5.15% 

16 22.20% 22.24%      0.471        0.472  7.56% 

18 28.94% 29.00%      0.401        0.402  10.40% 
 

 

TABLE 4.37. Ideal homog. mech. prop. pattern F, mesh refinement d/6 and 
d/12 

 

TABLE 4.38.Ideal homog. mech. prop. pattern F, mesh refinement d/8 and d/16 

 

Considering the ideal homogenized mechanical properties obtained from the extrapolation of the results with a 

relative mesh size of 1/8 and 1/16 beam depth (d/8 to d/16) as the reference value, the accuracy of the other 

idealization can be measured comparing their results: 

rbd 4% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

d/8 to d/16 0.32% - 0.32% - 0.946 - 0.947 - 0.08% - 

d/4 to d/8 0.29% -9.80 0.29% -9.74 0.950 0.33 0.950 0.36 0.07% -10.00 
d/5 to d/10 0.31% -4.09 0.31% -4.06 0.948 0.15 0.948 0.16 0.08% 0.93 

d/6 to d/12 0.32% -2.64 0.32% -2.56 0.947 0.05 0.948 0.12 0.08% -4.49 
TABLE 4.39. Comparison of ideal homog. mech. prop. pattern F, depending on how the mesh refinement is done, for rbd 4% 

 

rbd 10% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

d/8 to d/16 6.07% - 6.06% - 0.741 - 0.741 - 1.73% - 

d/4 to d/8 5.56% -8.32 5.54% -8.57 0.759 2.36 0.758 2.25 1.56% -9.57 
d/5 to d/10 5.86% -3.40 5.86% -3.30 0.749 1.07 0.748 0.97 1.64% -4.94 
d/6 to d/12 5.89% -2.87 5.87% -3.23 0.749 1.07 0.746 0.75 1.69% -2.57 

TABLE 4.40. Comparison of ideal homog. mech. prop. pattern F, depending on how the mesh refinement is done, for rbd 10% 

rbd 16% 𝑬𝒉,𝒙 Diff % 𝑬𝒉,𝒚 Diff % 𝝂𝒉,𝒙𝒚 Diff % 𝝂𝒉,𝒚𝒙 Diff % 𝑮𝒉 Diff % 

d/8 to d/16 22.20% - 22.24% - 0.471 - 0.472 - 7.56% - 

d/4 to d/8 21.77% -1.94 21.84% -1.77 0.476 1.19 0.477 1.25 7.47% -1.30 
d/5 to d/10 22.04% -0.71 22.10% -0.62 0.472 0.23 0.473 0.26 7.41% -2.00 
d/6 to d/12 22.06% -0.60 22.17% -0.27 0.471 0.03 0.473 0.26 7.52% -0.62 

TABLE 4.41. Comparison of ideal homog. mech. prop. pattern F, depending on how the mesh refinement is done, for rbd 16%  
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   FIG 4.38. Comparison of ideal homog. modulus of elasticity pattern F, 

depending on how the mesh refinement is done, for increasing rbd  

       FIG 4.39.Comparison of ideal homog. Poisson ratio pattern F, depending 
on how the mesh refinement is done, for increasing rbd 

 

Choosing a relative mesh size of 1/6 and 1/12 beam depth for the obtention of the ideal behaviour, the error is limited 

approximately to the range from 0% to 3%.  

 

4.7. MEMBRANE CORRECTION FACTOR (𝑪𝟐𝑫). 
The membrane correction factor (𝐶2𝐷) is defined as the relation between the homogenized mechanical properties 

obtained with membrane elements (2D) and those obtained with beam elements (1D). It takes into account the 

effect that bars overlaps have on the nodes’ stiffness and on the reduction of the effective bars’ length. These effects 

stiffen the structure, so their values are expected to be bigger than 1. increasing with the relative beam depth for 

shear and Young’s modulus and decreasing for the Poisson ratio. It corresponds to the third stage in the scheme 

described in Chapter 4.2. Homogenization methodology. 

 

1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

          Determination of  
       the membrane  

       correction factor 

 

    

1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

 
FIG 4.40. Homogenization methodology. Step 3 

 
In the analysis with membrane elements, the rotation of the bars at the supports is indirectly constrained as the 

differential displacement is impeded at different heights of the beam. As aforementioned, the homogenized 

mechanical properties obtained are exact regardless of the number of modules composing the panel, except for the 

shear modulus that has an order of convergence of two. To calculate the membrane correction factors (𝐶2𝐷), the 
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results of the 1x1 membrane elements panel is divided by the results of the 1x1 1D beam elements panel with the 

rotation constrained. That way, the Representative Volume Element effect in the shear modulus is indirectly solved 

with 1D beam element analysis.   

If the designer prefers to model the tower without making use of the predesign method developed in this research, 

the designer is warned to use an appropriate mesh size due to the patterns’ sensitivity to the mesh refinement. In 

this document, it is only included the Membrane correction factors (C2D) for the same 3 historic patterns chosen in 

Chapter 4.4. FEM beam elements. For the rest of the historic geometric Islamic patterns, see Appendix I. Design guide. 

D) LAHORE FORT COMPLEX. Tessellation 4.8.8. θ =67.5º. Square symmetry.  
 

 

D67.5 C2D CORRECTION FACTORS 

rbd [%] C2D_EX C2D_EY C2D_VXY C2D_VYX C2D_G 

1 1.02 1.02 1.07 1.07 0.71 

2 1.08 1.08 1.18 1.18 0.94 

3 1.15 1.15 1.28 1.29 0.98 

4 1.19 1.19 1.34 1.34 1.16 

5 1.23 1.23 1.38 1.38 1.34 

6 1.25 1.25 1.40 1.40 1.53 

7 1.27 1.27 1.40 1.40 1.66 

8 1.30 1.30 1.41 1.41 1.78 

9 1.32 1.32 1.41 1.41 1.86 
 

TABLE 4.42. Membrane correction factors pattern D FIG 4.41.  Membrane correction factors pattern D 
 
F) MUSTANSIRIYA MADRASA. Tessellation 3.6.3.6. θ =30º. Hexagonal symmetry. 
 

 

F30 C2D CORRECTION FACTORS 

rbd [%] C2D_EX C2D_EY C2D_VXY C2D_VYX C2D_G 

2 1.01 1.01 1.00 1.00 0.70 

3 1.06 1.06 1.00 1.00 0.73 

4 1.14 1.14 1.00 1.00 0.80 

5 1.20 1.20 1.00 1.00 0.84 

6 1.30 1.30 0.99 0.99 0.93 

7 1.37 1.37 0.99 0.99 0.97 

8 1.47 1.48 0.97 0.97 1.08 

9 1.58 1.58 0.96 0.96 1.20 

10 1.69 1.69 0.94 0.93 1.28 

11 1.79 1.78 0.91 0.91 1.40 

12 1.90 1.91 0.87 0.88 1.53 
 

TABLE 4.43. Membrane correction factors pattern F FIG 4.42. Membrane correction factors pattern F 
 
R) FATEHPUR SIKRI. Tessellation ROS-I-6.10.10. θ =72º type Star. Pentagonal symmetry. 
 

 

R72 C2D CORRECTION FACTORS 

rbd [%] C2D_EX C2D_EY C2D_VXY C2D_VYX C2D_G 

0.5 1.08 1.08 1.01 1.01 1.00 

1.0 1.24 1.24 1.02 1.03 1.16 

2.0 1.68 1.68 1.05 1.05 1.50 

3.0 2.31 2.25 1.05 1.02 1.93 

4.0 3.07 2.85 0.99 0.92 2.41 

5.0 3.67 3.26 0.87 0.78 2.76 

6.0 3.90 3.34 0.82 0.71 2.85 
 

TABLE 4.44. Membrane correction factors pattern R FIG 4.43. Membrane correction factors pattern R 
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4.8. IDEAL HOMOGENIZED MECHANICAL PROPERTIES.  
This is last step in the homogenization process described in Chapter 4.2. Homogenization methodology. The application 
of the Membrane correction factors (C2D) to the homogenized mechanical properties introduce effects such as 
overlaps, reduction of effective beam length or transversal shortening of the beams in the homogenized mechanical 
properties obtained with beam elements with Representative Element Volume refinement.  
 

 
1. REPRESENTATIVE ELEMENT VOLUME 
 
2. MESH REFINEMENT 
 
3. MEMBRANE CORRECTION FACTOR 
 
4. IDEAL BEHAVIOUR 

    
  1X1 BEAM 2X2 BEAM 4X4 BEAM - X - BEAM  

                     Application of  
                the membrane  
               correction factor 

 

    
1X1 MESH 
 DEPTH/6 

1X1 MESH 
DEPTH/12 

1X1 MESH  
MESH REFINEM. 

  - X - MESH  
MESH REFINEM. 

 
FIG 4.44. Homogenization methodology. Step 4 

 

This ideal behaviour is what will allow a fair comparison of the chosen historic patterns’ performance. The saturation 
is a comparable parameter as it indicates the amount of material used, so the following tables are linearly interpolated 
to present the ideal homogenized mechanical properties with regards a varying saturation.  
 

The information included in each case is (from left to right): 
 

- Given name to the pattern and the tessellation and parameters to draw it with the Hankin method. 
 

- Picture of the pattern displaying what is considered as its module. The module length in the x-direction 
(horizontally in the picture) is needed for the relative beam depth (rbd %) definition.   

 

- Table of homogenized mechanical properties taking into account the Representative Element Volume  
 

- Graphs with the evolution of the homogenized mechanical properties as the rbd increases.  
 
In this chapter, only three representative results are included (square, pentagonal and hexagonal symmetries).  For 
the complete set of tables for historic patterns, see Appendix I. Design guide. 
 
 
 

D) LAHORE FORT COMPLEX. Tessellation 4.8.8. θ =67.5º. Square symmetry.  
 

 

D67.5 HOMOGENIZED MECHANICAL PROPERTIES 

Sat [%] rbd [%] 𝐸ℎ,𝑥  𝐸ℎ,𝑦  𝜈ℎ,𝑥𝑦  𝜈ℎ,𝑦𝑥 𝐺ℎ 

10 1.40 0.59% 0.59% 0.216 0.216 0.03% 
20 2.90 2.96% 2.96% 0.262 0.263 0.23% 
30 4.52 7.25% 7.25% 0.297 0.297 0.98% 
40 6.30 12.68% 12.67% 0.314 0.314 2.65% 
50 8.31 19.31% 19.31% 0.315 0.315 5.52% 
60 10.66 27.47% 27.47% 0.309 0.309 9.56% 

  
 

FIG 4.45. Pattern D. Ideal homogenized mechanical properties. 
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F) MUSTANSIRIYA MADRASA. Tessellation 3.6.3.6. θ =30º. Hexagonal symmetry. 
 

 

F30 HOMOGENIZED MECHANICAL PROPERTIES 

Sat [%] rbd [%] 𝐸ℎ,𝑥  𝐸ℎ,𝑦 𝜈ℎ,𝑥𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

10 2.07 0.04% 0.04% 0.973 0.973 0.01% 
20 4.30 0.41% 0.42% 0.941 0.941 0.07% 
30 6.73 1.69% 1.69% 0.877 0.878 0.32% 
40 9.43 4.95% 4.93% 0.774 0.772 1.03% 
50 12.52 11.61% 11.62% 0.626 0.626 2.74% 
60 16.21 22.76% 22.87% 0.464 0.465 6.23% 

  
 

FIG 4.46. Pattern F. Ideal homogenized mechanical properties. 
 

R) FATEHPUR SIKRI. Tessellation ROS-I-6.10.10. type Star. Pentagonal symmetry. 
 

 

R72 HOMOGENIZED MECHANICAL PROPERTIES 

Sat [%] rbd [%] 𝐸ℎ,𝑥 𝐸ℎ,𝑦 𝜈ℎ,𝑥𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

10 0.69 0.04% 0.05% 0.529 0.752 0.02% 
20 1.49 0.45% 0.62% 0.524 0.733 0.25% 
30 2.31 1.64% 2.18% 0.506 0.689 0.83% 
40 3.21 4.67% 5.91% 0.467 0.602 2.15% 
50 4.21 11.39% 13.46% 0.399 0.476 4.80% 
60 5.38 22.80% 25.07% 0.316 0.349 8.94% 

 

 
 

FIG 4.47. Pattern R. Ideal homogenized mechanical properties. 
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5. RESEARCH QUESTION 2. PATTERN LEVEL 
The main objective of this thesis is to provide insight into the structural behaviour and design of geometric Islamic 
patterns as alternative to conventional diagrid systems for tall buildings. This research objective is articulated at three 
levels: method level, pattern level and building level. Each of the three research questions addresses one of those 
levels and they are further developed in a series of sub-questions described in the following document structure: 
 

METHOD LEVEL: 
Can a simple tool be developed for the design of geometric Islamic patterns as a non-conventional diagrid system? 

- Method chosen and methodology for its adoption 
- Development of a pre-design tool. 
- Assessment of the developed tool 

 
PATTERN LEVEL: 
How do geometric Islamic patterns behave and compare when loaded in their plane? 

- Selection of historic Islamic patterns and their parametric variations 
- Characterization of the patterns’ structural behaviour 
- Performance comparison of the different patterns 
- Proposals for their improvement 

 
BUILDING LEVEL: 
Can Islamic inspired patterns become a feasible alternative to traditional diagrid systems for tall buildings? 

- Performance comparison of the different patterns and the conventional diagrids 
- Overview practical applications of best performing patterns 
- Special cases in tall buildings 

 

The objective “Selection of historic Islamic patterns and their parametric variations” is already fulfilled in Chapter 3. 

Geometric Islamic patterns. 

 

 

5.1. DIRECTIONAL MECHANICAL PROPERTIES 
Up to this point, all the patterns have been tested in two perpendicular directions for a given orientation. However, 
a deep understanding of the pattern’s behaviour requires to assess their performance for other orientations. This 
way it will be possible to know if any given pattern is isotropic, orthotropic, anisotropic or anisotropic with certain 
symmetries at 60 or 90 degrees as a simple glimpse into the patterns suggest. This rotation will also allow to better 
compare the pattern’s performance as the orientation can be chosen for their maximum stiffness in all cases. Finally, 
it will also provide of more freedom to the designer applying this Design Guide as he will be able to apply the proposed 
patterns rotated for mechanical, constructive or aesthetic reasons. 
 

5.1.1. FORMULATION 

The formulation has been already explained in Chapter 2.7. Rotation of the constitutive matrix. Based on the use of 
direction cosines to a second order tensor, the resulting equations to be applied are as follows: 

 

𝑄̅11 = 𝑄11𝑚
4 + 2(𝑄12 + 2𝑄33)𝑚

2𝑛2 + 𝑄22𝑛
4                                                                             (1.33) 

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄33)𝑚
2𝑛2 + 𝑄12(𝑛

4 + 𝑚4) = 𝑄̅21                                                          (1.34) 

𝑄̅13 = (𝑄11 − 𝑄12 − 2𝑄33)𝑚
3𝑛 + (𝑄12 − 𝑄22 + 2𝑄33)𝑛

3𝑚 = 𝑄̅31 → 0                               (1.35) 

𝑄̅22 = 𝑄11𝑛
4 + 2(𝑄12 + 2𝑄33)𝑚

2𝑛2 + 𝑄22𝑚
4                                                                             (1.36) 

𝑄̅23 = (𝑄11 − 𝑄12 − 2𝑄33)𝑚𝑛3𝑛 + (𝑄12 − 𝑄22 + 2𝑄33)𝑛𝑚3 = 𝑄̅32 → 0                             (1.37) 

𝑄̅33 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄33)𝑚
2𝑛2 + 𝑄33(𝑛

4 + 𝑚4)                                                        (1.38) 
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5.1.2. ASSESSMENT OF THE FORMULATION APPLICABILITY 

SQUARE SYMMETRY 
Pattern D Lahore Fort Complex (Tessellation 4.8.8. θ =67.5º) has apparently an 
isotropic behaviour since the homogenized mechanical properties are the 
same in the x- and y-direction. However, a visual inspection suggests that those 
mechanical properties will change when the pattern is rotated to other 
orientation. 
 
Another issue of interest is the accuracy of the approximation, especially for 
the planes that deviate from the principal directions. And how that accuracy 
relates to the relative beam depth as the relation axial strain energy / bending 
strain energy is not constant for a varying saturation. 
 

FIG 5.1. Pattern D. Directions of symmetry at 0º and 90º.  
 

It is to be expected that once the pattern is rotated 90º, the homogenized mechanical properties in the x- and y-
direction will swap. The pattern is analysed, then it is rotated 90º with the formulation, and finally the results are 
compared to see the differences for that specific rotation: 
   

Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 10.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 2x2 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.05 1.0 52,028 9,914 9,914 52,028 3,868 3,698 3,698 3,868 

0.15 3.0 823,482 170,257 170,257 823,482 87,831 83,608 83,608 87,831 

0.25 5.0 2,117,984 467,753 467,753 2,117,984 318,424 300,999 300,999 318,424 

0.35 7.0 3,519,686 792,422 792,422 3,519,686 679,134 636,393 636,393 679,134 

0.45 9.0 4,934,525 1,100,091 1,100,091 4,934,525 1,135,475 1,053,332 1,053,332 1,135,475 
TABLE 5.1. Numerical results for pattern D, 2x2 panel, beam FE 

 
Lx [m] 20.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 20.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 4x4 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.05 1.0 52,028 9,914 9,914 52,028 3,422 3,336 3,336 3,422 

0.15 3.0 823,482 170,257 170,257 823,482 79,850 77,752 77,752 79,850 

0.25 5.0 2,117,984 467,753 467,753 2,117,984 296,899 288,360 288,360 296,899 

0.35 7.0 3,519,686 792,422 792,422 3,519,686 641,870 621,117 621,117 641,870 

0.45 9.0 4,934,525 1,100,091 1,100,091 4,934,525 1,079,254 1,039,616 1,039,616 1,079,254 
TABLE 5.2. Numerical results for pattern D, 4x4 panel, beam FE 

 

Ideal coefficients derived for a continuous panel: 
GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.05 1.0 52,028 9,914 9,914 52,028 2,976 2,974 2,974 2,976 

0.15 3.0 823,482 170,257 170,257 823,482 71,869 71,896 71,896 71,869 

0.25 5.0 2,117,984 467,753 467,753 2,117,984 275,375 275,722 275,722 275,375 

0.35 7.0 3,519,686 792,422 792,422 3,519,686 604,606 605,842 605,842 604,606 

0.45 9.0 4,934,525 1,100,091 1,100,091 4,934,525 1,023,032 1,025,901 1,025,901 1,023,032 
TABLE 5.3. Representative Element Volume refinement for pattern D at constitutive coefficients level 

 

To normalize the results, they are divided by the base material modulus of elasticity (𝐸𝑏 = 28.576 ∗ 791 𝑘𝑁/𝑚2), 
the panel side and the imposed strain as explained in Chapter 4.1.5. Homogenization process. 
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67.5º (-x-) CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

1 0.0018 0.0003 0.0003 0.0018 0.0001 

3 0.0288 0.0060 0.0060 0.0288 0.0025 

5 0.0741 0.0164 0.0164 0.0741 0.0096 

7 0.1232 0.0277 0.0277 0.1232 0.0212 

9 0.1727 0.0385 0.0385 0.1727 0.0358 
 

67.5º (-x-) HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 0.18% 0.18% 0.191 0.191 0.01% 

3 2.76% 2.76% 0.207 0.207 0.25% 

5 7.05% 7.05% 0.221 0.221 0.96% 

7 11.69% 11.69% 0.225 0.225 2.12% 

9 16.41% 16.41% 0.223 0.223 3.58% 
 

TABLE 5.4. Normalized constitutive coefficients pattern D  TABLE 5.5. Homogenized mechanical properties pattern D  
 

Results from rotating the constitutive matrix 90º with the transform matrix: 
Rot. 90º CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

1 0.0018 0.0003 0.0003 0.0018 0.0001 

3 0.0288 0.0060 0.0060 0.0288 0.0025 

5 0.0741 0.0164 0.0164 0.0741 0.0096 

7 0.1232 0.0277 0.0277 0.1232 0.0212 

9 0.1727 0.0385 0.0385 0.1727 0.0358 
 

Rot. 90º HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 0.18% 0.18% 0.191 0.191 0.01% 

3 2.76% 2.76% 0.207 0.207 0.25% 

5 7.05% 7.05% 0.221 0.221 0.96% 

7 11.69% 11.69% 0.225 0.225 2.12% 

9 16.41% 16.41% 0.223 0.223 3.58% 
 

TABLE 5.6. Rotated constitutive coefficients pattern D  
 

TABLE 5.7.  Rotated homogenized mechanical properties pattern D 
Error: 

Rot. 90º DIFFERENCE IN CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

1 0.00% 0.00% 0.00% 0.00% 0.00% 

3 0.00% 0.00% 0.00% 0.00% 0.00% 

5 0.00% 0.00% 0.00% 0.00% 0.00% 

7 0.00% 0.00% 0.00% 0.00% 0.00% 

9 0.00% 0.00% 0.00% 0.00% 0.00% 
 

Rot. 90º DIFFERENCE IN MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 0.00% 0.00% 0.00% 0.00% 0.00% 

3 0.00% 0.00% 0.00% 0.00% 0.00% 

5 0.00% 0.00% 0.00% 0.00% 0.00% 

7 0.00% 0.00% 0.00% 0.00% 0.00% 

9 0.00% 0.00% 0.00% 0.00% 0.00% 
 

TABLE 5.8. Difference in constitutive coeff pattern D rotated 0º and 90ª TABLE 5.9. Difference in mech. properties pattern D rotated 0º and 90ª 
 

The pattern presents the same homogenized mechanical properties in the x- and y-direction. The applicability of this 
transform matrix for the principal directions is verified and no influence of the relative beam depth has been observed. 
 
So far, the verification has consisted in retrieving 𝑄𝑖𝑗  coefficients from the tests, in applying the transformation matrix 

and finally verifying that the rotated 𝑄𝑖𝑗  coefficients and their respective homogenized mechanical properties are as 

expected. However, for a rotation of 45º we only have a qualitative idea of the expected results (same properties in 
the rotated x- and y-direction), but no quantitative values. For this reason and in other to quantify the errors 
introduced by the approximation, the pattern has been tested with a rotation of 0º and 45º 
 
 

      
FIG 5.2. Pattern D, rotation 0º. rbd 5%, Sat. 32.83% FIG 5.3. Pattern D, rotation 45º. Rbd 3.54%, Sat. 32.83% 

 

The first picture displays 4.8.8. tessellation in a 2x2 panel. The second picture corresponds to D Lahore Fort Complex 
pattern and it is the result of applying the Hankin method with a contact angle θ =67.5º and a number of crossings for 
each polygon as specified in Chapter 3.2. Drawing of geometric Islamic patterns to that tessellation. The third picture 
corresponds to a relative beam depth of 5% of that pattern. In this research, a modulus size of 5m in the x-direction 
has been used in all tests. As the panel is composed of 2 modules in the x-direction (2x2), the total length of the panel 
in the x-direction is 10m. However, the relative beam depth is defined with regard the module size in the x-direction 
(5m), so a relative beam depth of 5% will be modelled with a beam whose depth is 25cm (5cm = 1%). 
 
The three pictures in the right are the same with the 4.8.8. tessellation being rotated 45º. The rotation has influence 
in the definition of the module. Before the rotation, each module comprised 1 octagon (four fourths) and 1 square. 
However, after the rotation of 45º, the new module is comprised of 2 octagons (one complete plus four fourths) and 
2 squares (four halves). As the relative beam depth is defined as a relation with the module size in the x-direction, 
using the same relative beam depth would lead to a coarser drawing.  
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It is expected that once the pattern is rotated 45ª, the homogenized mechanical properties in the new x- and y-
direction are the same, but different to the values obtained before the rotation. For this verification, 2x2 and 4x4 
panels with a relative beam depth of 5% (25cm for a module size of 5m in the x-direction) are tested 
 

 

The new module length in the x-direction (𝑳′𝒙) can be seen as a projection of the 
old module length (𝑳𝒙)  into the new x-direction.  
 
As the relative beam depth is directly proportional to the module length in x-
direction, to get the same saturation the new relative beam depth will be old one 
times the cosine of the rotated angle. For an angle of 90º, this approach is not 
applicable and the relation between Ly and Lx has to be used instead. 

𝑳′𝒙 = 𝑳𝒙 𝒄𝒐𝒔(𝜶)                                                    (5.1) 
 

FIG 5.4. Difference in the module length in the x-direction before and after the rotation. 
 

In this particular case where the rotated angle is 45ª and the relative beam depth 5%, the new relative beam depth to 
get the same saturation (32.83%) is 5 ∗ 𝑐𝑜𝑠(45) = 3.54% 
 
The process to assess the results for a rotation of 45º is as follows: 
 

1. Test a 2x2 and a 4x4 panel of the pattern without rotation (0º). 
2. Get the ideal 𝑄𝑖𝑗  coefficients of the pattern without rotation (0º) as the result from the 4x4 panel plus the 

difference with the 2x2 panel and the homogenized mechanical properties derived from it. 
3. Test the 2x2 and a 4x4 panel of the pattern rotated 45º. 
4. Get the ideal 𝑄𝑖𝑗  coefficients of the pattern rotated (45º) as the result from the 4x4 panel plus the difference 

with the 2x2 panel and the homogenized mechanical properties derived from it. 
5. Apply the transform formulation to rotate analytically 45º the ideal 𝑄𝑖𝑗  coefficients. 

6. Compare the results obtained from testing the rotated pattern and from rotating analytically to assess the 
error introduced by the approximation in the formulation. 

 
1. Test of the 2x2 and 4x4 panel of the original pattern (rotated 0º) 
   

Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 10.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 2x2 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.05 1.0 52,028 9,914 9,914 52,028 3,868 3,698 3,698 3,868 

0.15 3.0 823,482 170,257 170,257 823,482 87,831 83,608 83,608 87,831 

0.25 5.0 2,117,984 467,753 467,753 2,117,984 318,424 300,999 300,999 318,424 

0.35 7.0 3,519,686 792,422 792,422 3,519,686 679,134 636,393 636,393 679,134 

0.45 9.0 4,934,525 1,100,091 1,100,091 4,934,525 1,135,475 1,053,332 1,053,332 1,135,475 
 

TABLE 5.10. Numerical results for pattern D, 2x2 panel rotated 0º, beam FE 
 

Lx [m] 20.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 20.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 4x4 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.05 1.0 52,028 9,914 9,914 52,028 3,422 3,336 3,336 3,422 

0.15 3.0 823,482 170,257 170,257 823,482 79,850 77,752 77,752 79,850 

0.25 5.0 2,117,984 467,753 467,753 2,117,984 296,899 288,360 288,360 296,899 

0.35 7.0 3,519,686 792,422 792,422 3,519,686 641,870 621,117 621,117 641,870 

0.45 9.0 4,934,525 1,100,091 1,100,091 4,934,525 1,079,254 1,039,616 1,039,616 1,079,254 
 

TABLE 5.11. Numerical results for pattern D, 4x4 panel rotated 0º, beam FE 
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2. Ideal homogenized mechanical properties of the original pattern (rotated 0º) 
 

Ideal coefficients derived for a continuous panel: 
 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.05 1.0 52,028 9,914 9,914 52,028 2,976 2,974 2,974 2,976 

0.15 3.0 823,482 170,257 170,257 823,482 71,869 71,896 71,896 71,869 

0.25 5.0 2,117,984 467,753 467,753 2,117,984 275,375 275,722 275,722 275,375 

0.35 7.0 3,519,686 792,422 792,422 3,519,686 604,606 605,842 605,842 604,606 

0.45 9.0 4,934,525 1,100,091 1,100,091 4,934,525 1,023,032 1,025,901 1,025,901 1,023,032 
 

TABLE 5.12. Representative Element Volume refinement for pattern D, rotated 0º, at constitutive coefficients level 
 
To normalize the results, they are divided by the base material modulus of elasticity (𝐸𝑏 = 28.576 ∗ 791 𝑘𝑁/𝑚2), 
the panel side and the imposed strain as explained in Chapter 4.1.5. Homogenization process. 
 

67.5º (-x-) CONSTITUTIVE COEFFICIENTS 

rbd[%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

1 0.0018 0.0003 0.0003 0.0018 0.0001 

3 0.0288 0.0060 0.0060 0.0288 0.0025 

5 0.0741 0.0164 0.0164 0.0741 0.0096 

7 0.1232 0.0277 0.0277 0.1232 0.0212 

9 0.1727 0.0385 0.0385 0.1727 0.0358 
 

67.5º (-x-) HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 0.18% 0.18% 0.191 0.191 0.01% 

3 2.76% 2.76% 0.207 0.207 0.25% 

5 7.05% 7.05% 0.221 0.221 0.96% 

7 11.69% 11.69% 0.225 0.225 2.12% 

9 16.41% 16.41% 0.223 0.223 3.58% 
 

 

TABLE 5.13. Normalized constitutive coefficients pattern D, rotated 0º 
 

 

TABLE 5.14. Homogenized mechanical properties pattern D, rotated 0º  

 
 
3. Test of the 2x2 and 4x4 panel of the pattern rotated 45º 
 

Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 10.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 2x2 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.0354 0.71 33,946 27,995 27,995 33,946 21,952 21,829 21,829 21,952 

0.1061 2.12 568,600 425,139 425,139 568,600 338,819 335,727 335,727 338,819 

0.1768 3.54 1,567,772 1,017,965 1,017,965 1,567,772 855,990 842,977 842,977 855,990 

0.2475 4.95 2,760,339 1,551,768 1,551,768 2,760,339 1,418,794 1,386,346 1,386,346 1,418,794 

0.3182 6.36 4,040,902 1,993,713 1,993,713 4,040,902 2,001,970 1,938,991 1,938,991 2,001,970 
 

TABLE 5.15. Numerical results for pattern D, 2x2 panel rotated 45º, beam FE 
 

Lx [m] 20.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 20.00 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 4x4 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.0354 0.71 33,946 27,995 27,995 33,946 21,496 21,433 21,433 21,496 

0.1061 2.12 568,600 425,139 425,139 568,600 332,624 331,058 331,058 332,624 

0.1768 3.54 1,567,772 1,017,965 1,017,965 1,567,772 840,341 833,830 833,830 840,341 

0.2475 4.95 2,760,339 1,551,768 1,551,768 2,760,339 1,390,808 1,374,708 1,374,708 1,390,808 

0.3182 6.36 4,040,902 1,993,713 1,993,713 4,040,902 1,958,894 1,927,850 1,927,850 1,958,894 
 

TABLE 5.16. Numerical results for pattern D, 4x4 panel rotated 45º, beam FE 
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4. Ideal homogenized mechanical properties for pattern rotated 45º from tests 
 

Ideal coefficients derived for a continuous panel: 
 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣 𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.0354 0.71 33,946 27,995 27,995 33,946 21,040 21,036 21,036 21,040 

0.1061 2.12 568,600 425,139 425,139 568,600 326,429 326,390 326,390 326,429 

0.1768 3.54 1,567,772 1,017,965 1,017,965 1,567,772 824,692 824,683 824,683 824,692 

0.2475 4.95 2,760,339 1,551,768 1,551,768 2,760,339 1,362,821 1,363,070 1,363,070 1,362,821 

0.3182 6.36 4,040,902 1,993,713 1,993,713 4,040,902 1,915,819 1,916,709 1,916,709 1,915,819 
 

TABLE 5.17. Representative Element Volume refinement for pattern D, rotated 45º, at constitutive coefficients level 
 
To normalize the results, they are divided by the base material modulus of elasticity (𝐸𝑏 = 28 ∗ 576 ∗ 791 𝑘𝑁/𝑚2), 
the panel side and the imposed strain as explained in Chapter 4.1.5. Homogenization process. 
 

 CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

0.71 0.0012 0.0010 0.0010 0.0012 0.0007 

2.12 0.0199 0.0149 0.0149 0.0199 0.0114 

3.54 0.0549 0.0356 0.0356 0.0549 0.0289 

4.95 0.0966 0.0543 0.0543 0.0966 0.0477 

6.36 0.1414 0.0698 0.0698 0.1414 0.0671 
 

67.5º (- x -) HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.71 0.04% 0.04% 0.825 0.825 0.07% 

2.12 0.88% 0.88% 0.748 0.748 1.14% 

3.54 3.17% 3.17% 0.649 0.649 2.89% 

4.95 6.61% 6.61% 0.562 0.562 4.77% 

6.36 10.70% 10.70% 0.493 0.493 6.71% 
 

 

TABLE 5.18. Normalized constitutive coefficients pattern D, rotated 45º 
 
 

 

TABLE 5.19. Homogenized mechanical properties pattern D, rotated 45º  

 
5. Analytical rotation of 45º with matrix transform  
 

Rot. 45º CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

0.71 0.0012 0.0010 0.0010 0.0012 0.0007 

2.12 0.0199 0.0149 0.0149 0.0199 0.0114 

3.54 0.0549 0.0356 0.0356 0.0549 0.0289 

4.95 0.0966 0.0543 0.0543 0.0966 0.0477 

6.36 0.1414 0.0697 0.0697 0.1414 0.0671 
 

Rot. 45º HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.71 0.04% 0.04% 0.825 0.825 0.07% 

2.12 0.88% 0.88% 0.747 0.747 1.14% 

3.54 3.18% 3.18% 0.649 0.649 2.89% 

4.95 6.61% 6.61% 0.562 0.562 4.77% 

6.36 10.71% 10.71% 0.493 0.493 6.71% 
 

 

TABLE 5.20. Constitutive coefficients pattern D analytically rotated 45º  
 

TABLE 5.21.Mechanical properties pattern D, analytically rotated 45º 
 

Note that the relative beam depth also changes as the pattern rotates, to maintain the reference to the same 
saturation (amount of material used). The new value is obtained multiplying the reference relative beam depth times 
the cosine of the rotated angle.  
 
 
 
6. Comparison of results from essayed tests and rotation transformation. 
 

TESTS CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

0.71 0.0012 0.0012 0.0012 0.0012 0.0012 
2.12 0.0199 0.0199 0.0199 0.0199 0.0199 
3.54 0.0549 0.0549 0.0549 0.0549 0.0549 
4.95 0.0966 0.0966 0.0966 0.0966 0.0966 
6.36 0.1414 0.1414 0.1414 0.1414 0.1414 

 

FORMUL. CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

0.71 0.0012 0.0012 0.0012 0.0012 0.0012 
2.12 0.0199 0.0199 0.0199 0.0199 0.0199 
3.54 0.0549 0.0549 0.0549 0.0549 0.0549 
4.95 0.0966 0.0966 0.0966 0.0966 0.0966 
6.36 0.1414 0.1414 0.1414 0.1414 0.1414 

 

 

TABLE 5.22. Constitutive coefficients, pattern D rotated 45º in tests 
 
 
 

 

 

TABLE 5.23. Constitutive coefficients pattern D rotated 45º with formulation 
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TESTS HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.71 0.04% 0.04% 0.825 0.825 0.07% 
2.12 0.88% 0.88% 0.748 0.748 1.14% 
3.54 3.17% 3.17% 0.649 0.649 2.89% 
4.95 6.61% 6.61% 0.562 0.562 4.77% 
6.36 10.70% 10.70% 0.493 0.493 6.71% 

 

FORMUL. HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.71 0.04% 0.04% 0.825 0.825 0.07% 
2.12 0.88% 0.88% 0.747 0.747 1.14% 
3.54 3.18% 3.18% 0.649 0.649 2.89% 
4.95 6.61% 6.61% 0.562 0.562 4.77% 
6.36 10.71% 10.71% 0.493 0.493 6.71% 

 

 

TABLE 5.24. Mechanical properties, pattern D rotated 45º in tests 
 

 

TABLE 5.25. Mechanical properties, pattern D rotated 45º with formulation 
 

ERROR CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

0.71 0.0% 0.0% 0.0% 0.0% 0.1% 
2.12 0.0% 0.0% 0.0% 0.0% 0.1% 
3.54 0.0% -0.1% -0.1% 0.0% 0.1% 
4.95 0.0% -0.1% -0.1% 0.0% 0.1% 
6.36 0.0% 0.0% 0.0% 0.0% 0.0% 

 

ERROR HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.71 0.0% 0.0% 0.0% 0.0% 0.1% 
2.12 0.2% 0.2% -0.1% -0.1% 0.1% 
3.54 0.2% 0.2% -0.1% -0.1% 0.1% 
4.95 0.1% 0.1% -0.1% -0.1% 0.1% 
6.36 0.1% 0.1% -0.1% -0.1% 0.0% 

 

 

TABLE 5.26. Difference in constitutive coefficients, pattern D rotated 45º 
 

 

TABLE 5.27. Difference in mechanical properties, pattern D rotated 45º 
 

In conclusion, the error is negligible, so this simplified formulation can be applied as described with complete 
guarantee of the accuracy obtained. 
 
 

Now that it has been verified the applicability of this analytical rotation, the pattern is rotated 90º in steps of 10º to 
have a better insight into its behaviour. The relative beam depth considered for this purpose is 5%.  
 

  
FIG 5.28. Pattern D. Rotation of the homogenized mechanical properties obtained with beam FE 

 

The graphs demonstrate that this pattern has a type of anisotropy (different mechanical properties in different 
directions) with isotropy for axes under 90º (𝐸𝑥 = 𝐸𝑦  and 𝑣𝑥𝑦 = 𝑣𝑦𝑥 in all cases). It also shows that the chosen 

orientation is the stiffest. 
 
 
 
PENTAGONAL SYMMETRY 
Pattern R Fatehpur Sikri (Tessellation ROS-I-6.10.10. type star, θ =72º) has a marked 
orthotropic behaviour with planes of symmetry at 54º, 126º, 234º and 306º, making it a 
good candidate to assess the applicability of the formulation obtained. For that purpose, 
a 2x2 panel with a relative beam depth of 4% (20cm for a module size of 5m in the x-
direction) is tested and its 𝑄𝑖𝑗  coefficients retrieved. A rotation of 90º in steps of 6º is 

included. It is to be expected that Ex rotated 54ª equals Ey rotated 36ª. 
 
Note that if derived, the homogenized mechanical properties would differ slightly from 
the properties included in the homogenized properties tables as they are the direct result 
from testing a 2x2 panel, affected by the Representative Elementary Volume and not the 
ideal behaviour. 

FIG 5.29. Pattern R. Directions of symmetry at 54º and 126º. 
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It has been explained theoretically in Chapter 4.1.6. Boundary constrains regarding rotation and it has been proved 
numerically in Chapter 4.3. Representative Element Volume, that constraining the rotation dof at the supports provide 
exact results for the Poisson ratio and modulus of elasticity, but the shear modulus presents an order of converge 2.  
 
 

   
FIG 5.30. Homogenized mechanical properties obtained with symmetric (blue) and antisymmetric (orange) boundary conditions for different panel sizes 

 
 

The shear modulus (G) is the only mechanical property whose constitutive coefficients (𝑄𝑖𝑗) are not coupled which the 

other mechanical properties. In other words, the Representative Volume Element effect can be refined at the level of 
the constitutive coefficients (𝑄𝑖𝑗) or at the level of the mechanical property (G).   

 
 

2x2 panel, 4% relative beam depth: 
Lx [m] 10.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 13.76 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Panel 398.38 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣  𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.20 4.0 1,562,203 621,542 621,542 1,075,003 359,310 481,027 481,027 699,601 
TABLE 5.28. Numerical results for pattern R, 2x2 panel, rbd 4%, beam FE 

 

4x4 panel, 4% relative beam depth: 
Lx [m] 20.00 LONGITUDINAL ANALYSIS TRANSVERSAL ANALYSIS 

Ly [m] 27.53 dx=1 Nx≠0 dx=0 Nx≠0 dx,up=1 Nxy≠0 dx=0 Nxy≠0 

Bars [m] 398.38 dy=0 Ny≠0 dy=1 Ny≠0 dy=0 Nyx≠0 dy,right=1 Nyx≠0 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣  𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.20 4.0 1,562,203 621,542 621,542 1,075,003 354,080 480,769 480,769 680,166 
TABLE 5.29. Numerical results for pattern R, 4x4 panel, rbd 4%, beam FE 

 

Ideal coefficients derived for a continuous panel: 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣  𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.20 4.0 1,562,203 621,542 621,542 1,075,003 348,849 480,511 480,511 660,731 
TABLE 5.30. Representative Element Volume refinement for pattern R, rbd 4%, at constitutive coefficients level 

 
To normalize the results, they are divided by the base material modulus of elasticity (𝐸𝑏 = 28 ∗ 576 ∗ 791 𝑘𝑁/𝑚2), 
the panel side and the imposed strain as explained in Chapter 4.1.5. Homogenization process.  
 
 

72º (-x-) CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

4 0.03972 0.02175 0.02175 0.05178 0.01681 
 

72º (-x-) HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

4 3.06% 3.99% 0.420 0.548 1.68% 
 

TABLE 5.31. Normalized constitutive coefficients pattern R, rbd 4%  
 

 

TABLE 5.32. Homogenized mechanical properties pattern R, rbd 4%  
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The results of applying the formulation for the rotation to the pattern R constitutive coefficients in steps of 6º is: 
 

Rotation CONSTITUTIVE COEFFICIENTS 

[º] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

0 0.0397 0.0217 0.0217 0.0518 0.0168 
6 0.0401 0.0215 0.0215 0.0519 0.0166 

12 0.0410 0.0210 0.0210 0.0521 0.0160 
18 0.0425 0.0201 0.0201 0.0523 0.0151 
24 0.0444 0.0191 0.0191 0.0524 0.0142 
30 0.0463 0.0181 0.0181 0.0524 0.0132 
36 0.0482 0.0174 0.0174 0.0520 0.0125 
42 0.0499 0.0170 0.0170 0.0511 0.0121 
48 0.0511 0.0170 0.0170 0.0499 0.0121 
54 0.0520 0.0174 0.0174 0.0482 0.0125 
60 0.0524 0.0181 0.0181 0.0463 0.0132 
66 0.0524 0.0191 0.0191 0.0444 0.0142 
72 0.0523 0.0201 0.0201 0.0425 0.0151 
78 0.0521 0.0210 0.0210 0.0410 0.0160 
84 0.0519 0.0215 0.0215 0.0401 0.0166 
90 0.0518 0.0217 0.0217 0.0397 0.0168 

 

Rotation HOMOGENIZED MECHANICAL PROPERTIES 

[º] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0 3.06% 3.99% 0.420 0.548 1.68% 
6 3.11% 4.03% 0.415 0.538 1.66% 

12 3.26% 4.14% 0.403 0.511 1.60% 
18 3.48% 4.28% 0.384 0.472 1.51% 
24 3.74% 4.42% 0.364 0.430 1.42% 
30 4.01% 4.53% 0.346 0.392 1.32% 
36 4.24% 4.57% 0.335 0.361 1.25% 
42 4.42% 4.53% 0.332 0.341 1.21% 
48 4.53% 4.42% 0.341 0.332 1.21% 
54 4.57% 4.24% 0.361 0.335 1.25% 
60 4.53% 4.01% 0.392 0.346 1.32% 
66 4.42% 3.74% 0.430 0.364 1.42% 
72 4.28% 3.48% 0.472 0.384 1.51% 
78 4.14% 3.26% 0.511 0.403 1.60% 
84 4.03% 3.11% 0.538 0.415 1.66% 
90 3.99% 3.06% 0.548 0.420 1.68% 

 

 

TABLE 5.33. Rotated constitutive coefficients pattern R, rbd 4%,  
 

TABLE 5.34. Rotated homogenized mechanical properties pattern R, rbd 4% 

 
Observation of the results: 
Rotation of 90º. The homogenized mechanical properties in x- and y-direction swap as the pattern is rotated 90º 
 

Rotation of 54º and 36ª. It was expected that the modulus of elasticity in the x-direction (𝐸𝑥) rotating 54º and in the 
y-direction (𝐸𝑌) rotating 36ª would be the same. This verification is satisfied, but it is also shown that for the rest of 
mechanical properties x- and y-direction swap, which was not foreseen. 
 

  
FIG 5.31. Pattern R. Rotation of the homogenized mechanical properties obtained with beam FE 

 
 
 
 
HEXAGONAL SYMMETRY 
Finally, pattern F Mustansiriya madrasa (tessellation 3.6.36. θ =30º) is studied as 
representative of the patterns with hexagonal symmetry. The steps followed are the same 
as explained for the “square symmetry” and just used for the “pentagonal symmetry” in this 
chapter.  
 
The directions of symmetry in hexagonally symmetric patterns are at steps of 60º (0º, 60º, 
120º, 180º, 240º, 300º and 360º). A priori it is expected that the homogenized mechanical 
properties will be the same for the symmetry directions. However, in this exercise it is also 
proved numerically that the homogenized mechanical properties will be the same for any 
direction, behaving as pure isotropic. 
 

 
FIG 5.32.  Pattern F. Directions of symmetry at 0º, 60º and 120º.  
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Ideal coefficients derived for a continuous panel: 

GEOMETRY HORIZONTAL VERTICAL HORIZ. DISTORTION VERTICAL DISTORTION  

depth rbd 𝑁𝑥ℎ = 𝑄11 𝑁𝑦ℎ = 𝑄21 𝑁𝑥𝑣 = 𝑄12 𝑁𝑦𝑣 = 𝑄22 𝑁𝑥𝑦,ℎ 𝑁𝑦𝑥,ℎ 𝑁𝑥𝑦,𝑣  𝑁𝑦𝑥,𝑣 

[m] [%] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

0.30 6.0 2,510,263 1,324,209 1,324,209 836,754 35,347 62,023 62,023 106,528 
TABLE 5.35. Representative Element Volume refinement for pattern F, rbd 6%, at constitutive coefficients level 

 
To normalize the results, they are divided by the base material modulus of elasticity (𝐸𝑏 = 28 ∗ 576 ∗ 791 𝑘𝑁/𝑚2), 
the panel side and the imposed strain as explained in Chapter 4.1.5. Homogenization process.  
 
 

30º (-x-) CONSTITUTIVE COEFFICIENTS 

rbd [%] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

6 0.05072 0.04634 0.04634 0.05072 0.00216 
 

30º (-x-) HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

6 0.84% 0.84% 0.914 0.914 0.22% 
 

TABLE 5.36. Normalized constitutive coefficients pattern F, rbd 6%  
 

TABLE 5.37.Homogenized mechanical properties pattern F, rbd 6% 
 
 

The results of applying the formulation for the rotation to the pattern R constitutive coefficients in steps of 6º is: 
 

Rotation CONSTITUTIVE COEFFICIENTS 

[º] 𝑄11 𝑄12 𝑄21 𝑄22 𝑄33 

0 0.0507 0.0463 0.0463 0.0507 0.0022 
10 0.0507 0.0463 0.0463 0.0507 0.0022 
20 0.0507 0.0464 0.0464 0.0507 0.0022 
30 0.0507 0.0464 0.0464 0.0507 0.0022 
40 0.0507 0.0464 0.0464 0.0507 0.0022 
45 0.0507 0.0464 0.0464 0.0507 0.0022 
50 0.0507 0.0464 0.0464 0.0507 0.0022 
60 0.0507 0.0464 0.0464 0.0507 0.0022 
70 0.0507 0.0464 0.0464 0.0507 0.0022 
80 0.0507 0.0463 0.0463 0.0507 0.0022 
90 0.0507 0.0463 0.0463 0.0507 0.0022 

 

Rotation HOMOGENIZED MECHANICAL PROPERTIES 

[º] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0 0.84% 0.84% 0.914 0.914 0.22% 
10 0.84% 0.84% 0.914 0.914 0.22% 
20 0.83% 0.83% 0.914 0.914 0.22% 
30 0.83% 0.83% 0.915 0.915 0.22% 
40 0.83% 0.83% 0.915 0.915 0.22% 
45 0.83% 0.83% 0.915 0.915 0.22% 
50 0.83% 0.83% 0.915 0.915 0.22% 
60 0.83% 0.83% 0.915 0.915 0.22% 
70 0.83% 0.83% 0.914 0.914 0.22% 
80 0.84% 0.84% 0.914 0.914 0.22% 
90 0.84% 0.84% 0.914 0.914 0.22% 

 

 

TABLE 5.38. Rotated constitutive coefficients pattern F, rbd 6%,  
 

TABLE 5.39. Rotated homogenized mechanical properties pattern F, rbd 6% 

 
The pattern is pure isotropic as the mechanical properties are the same regardless of the orientation under study. The 
small differences in the results cannot be attributed to the simplification in the formulation as the constitutive 
coefficients made zero in the approximation are actually zero in isotropic materials. It is, therefore, produced by the 
errors in the Representative Element Volume refinement. 
 

 
 

FIG 5.33. Pattern f. Rotation of the homogenized mechanical properties obtained with beam FE 
 
 
The analytical rotation makes use of all the constitutive coefficients in its formulation. That is the reason why it is so 
important to take into account the Representative Element Volume in order to work with ideal values. The refinement 
is done at the level of the constitutive coefficients instead of the level of the mechanical properties, so the results from 
beam FE are used. In order to rotate the results with membrane elements, the designer must take into account the 
Representative Element Volume, for instance by getting a correction factor between the ideal behaviour results with 
beam FE and the results for 1x1 panel with beam FE. 
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5.1.3. ROTATION FACTOR 

It has been proved that the derived formulation for rotating analytically any pattern, is suitable and very accurate 
when working with ideal behaviours (when the Representative Element Volume has been taken into account). In this 
point, the previous steps are repeated for all patterns to have a better insight into their behaviour, to choose the 
appropriate orientation for the comparison tables and to provide an extra tool for the designer to freely choose the 
orientation that best meets his needs. 
 
The first thing is to realize that the rotation factors are defined as the relationship between the rotated and the 
original pattern and vary for with the relative beam depth. Using as an example the values obtained previously for the 
D Lahore Fort Complex pattern for a rotation of 45º: 
   

(-x-) HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1.00 0.18% 0.18% 0.191 0.191 0.01% 
3.00 2.76% 2.76% 0.207 0.207 0.25% 
5.00 7.05% 7.05% 0.221 0.221 0.96% 
7.00 11.69% 11.69% 0.225 0.225 2.12% 
9.00 16.41% 16.41% 0.223 0.223 3.58% 

 

 

(-x-) HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0.71 0.04% 0.04% 0.825 0.825 0.07% 
2.12 0.88% 0.88% 0.747 0.747 1.14% 
3.54 3.18% 3.18% 0.649 0.649 2.89% 
4.95 6.61% 6.61% 0.562 0.562 4.77% 
6.36 10.71% 10.71% 0.493 0.493 6.71% 

TABLE 5.40. Pattern D, ideal behaviour original pattern, rotation 0º TABLE 5.41. Pattern D, ideal behaviour pattern rotated 45º 

 
Relationship between the homogenized mechanical properties of the pattern rotated 45º and those of the original 
pattern before the rotation, for varying relative beam depth: 
 

TABLE 5.42. Rotation factors for a rotation of 45º of pattern D 
FIG 5.34. Rotation factors for a rotation of 45º of pattern D 

(-x-) CR45. RELATIONSHIP MECH. PROP.  45º / 0º  

rbd [%] CR45_EX CR45_EY CR45_VXY CR45_VYX CR45_G 

1.00 0.22 0.22 4.33 4.33 7.08 

3.00 0.32 0.32 3.61 3.61 4.54 

5.00 0.45 0.45 2.94 2.94 2.99 

7.00 0.57 0.57 2.49 2.49 2.25 

9.00 0.65 0.65 2.21 2.21 1.87 

 
 

The rotation coefficients vary with the relative beam depth, meaning that if a pattern is rotated a certain angle, the 
relation between the mechanical properties of the rotated pattern and the original pattern depends on the relative 
beam depth. For the homogenized modulus of elasticity and Poisson ratios, the variation is linear and can be defined 
by linear interpolation from two points. However, the variation of the shear modulus is curved and requires of three 
points if considered parabolic.  For this reason, the rotation coefficients are provided for three different relative beam 
depths, so the designer can derive the approximate value for other relative beam depths. However, to get more 
accurate results and to rotate the variation patterns which are not included in this chapter, it is strongly recommended 
to retrieve the 𝑸𝒊𝒋  coefficients and repeat the rotation process that has been shown step by step.  The test results 

for 2x2 and 4x4 panels to enable the calculation of the ideal behaviour are included in Appendix II. Numerical results. 
 
 

The information included in each case from top to bottom is: 
- Given name to the pattern and the tessellation and parameters to draw it with the Hankin method. 
- Picture of the pattern displaying what is considered as its module. The module length in the x-direction 

(horizontally in the picture) is needed for the relative beam depth (rbd %) definition.  
- Graph of the variation of the mechanical properties with a varying rotation, for a given relative beam depth 
- Tables of the rotation factors of each mechanical property for a varying rotation, for a given saturation. 

 
Only three representative results are included (square, pentagonal and hexagonal symmetries).  For the complete set 
of historic geometric Islamic patterns, see Appendix I. Design guide. 
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D) LAHORE FORT COMPLEX. Tessellation 4.8.8. θ =67.5º. Square symmetry. 
 

   

FIG 5.35. Homogenized mechanical properties pattern D, for different pattern orientations. 

 

2% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 0.94 0.94 1.24 1.24 1.56 

20 0.76 0.76 1.96 1.96 2.97 

30 0.51 0.51 3.01 3.01 4.58 

40 0.29 0.29 3.88 3.88 5.63 

45 0.26 0.26 4.01 4.01 5.78 

50 0.29 0.29 3.88 3.88 5.63 

60 0.51 0.51 3.01 3.01 4.58 

70 0.76 0.76 1.96 1.96 2.97 

80 0.94 0.94 1.24 1.24 1.56 

90 1.00 1.00 1.00 1.00 1.00 
 

5% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 0.95 0.95 1.17 1.17 1.23 

20 0.81 0.81 1.66 1.66 1.82 

30 0.62 0.62 2.34 2.34 2.50 

40 0.47 0.47 2.86 2.86 2.93 

45 0.45 0.45 2.94 2.94 2.99 

50 0.47 0.47 2.86 2.86 2.93 

60 0.62 0.62 2.34 2.34 2.50 

70 0.81 0.81 1.66 1.66 1.82 

80 0.95 0.95 1.17 1.17 1.23 

90 1.00 1.00 1.00 1.00 1.00 
 

8% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 0.96 0.96 1.13 1.13 1.12 

20 0.86 0.86 1.48 1.48 1.43 

30 0.73 0.73 1.95 1.95 1.78 

40 0.63 0.63 2.29 2.29 2.00 

45 0.61 0.61 2.34 2.34 2.03 

50 0.63 0.63 2.29 2.29 2.00 

60 0.73 0.73 1.95 1.95 1.78 

70 0.86 0.86 1.48 1.48 1.43 

80 0.96 0.96 1.13 1.13 1.12 

90 1.00 1.00 1.00 1.00 1.00 
 

 

TABLE 5.43. Rotation factors pattern D, for different pattern orientations and saturations of 2%, 5% and 8%. 

 
 
F) MUSTANSIRIYA MADRASA. Tessellation 3.6.3.6. θ =30º. Hexagonal symmetry 
 

 

  

FIG 5.36. Homogenized mechanical properties pattern F, for different pattern orientations. 
 

2% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 

20 1.00 1.00 1.00 1.00 1.00 

30 1.00 1.00 1.00 1.00 1.00 

40 1.00 1.00 1.00 1.00 1.00 

45 1.00 1.00 1.00 1.00 1.00 

50 1.00 1.00 1.00 1.00 1.00 

60 1.00 1.00 1.00 1.00 1.00 

70 1.00 1.00 1.00 1.00 1.00 

80 1.00 1.00 1.00 1.00 1.00 

90 1.00 1.00 1.00 1.00 1.00 
 

6% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 

20 1.00 1.00 1.00 1.00 1.00 

30 1.00 1.00 1.00 1.00 1.00 

40 1.00 1.00 1.00 1.00 1.00 

45 1.00 1.00 1.00 1.00 1.00 

50 1.00 1.00 1.00 1.00 1.00 

60 1.00 1.00 1.00 1.00 1.00 

70 1.00 1.00 1.00 1.00 1.00 

80 1.00 1.00 1.00 1.00 1.00 

90 1.00 1.00 1.00 1.00 1.00 
 

10% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 

20 1.00 1.00 1.00 1.00 1.00 

30 1.00 1.00 1.00 1.00 1.00 

40 1.00 1.00 1.00 1.00 1.00 

45 1.00 1.00 1.00 1.00 1.00 

50 1.00 1.00 1.00 1.00 1.00 

60 1.00 1.00 1.00 1.00 1.00 

70 1.00 1.00 1.00 1.00 1.00 

80 1.00 1.00 1.00 1.00 1.00 

90 1.00 1.00 1.00 1.00 1.00 
 

 

TABLE 5.44. Rotation factors pattern F, for different pattern orientations and saturations of 2%, 6% and 10% 
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R) FATEHPUR SIKRI. Tessellation ROS-I-6.10.10. θ =72º type Star. Pentagonal symmetry 
 

   

FIG 5.37. Homogenized mechanical properties pattern R, for different pattern orientations. 
 

2% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 1.07 1.05 0.97 0.95 0.96 

20 1.25 1.15 0.90 0.82 0.85 

30 1.47 1.23 0.82 0.69 0.72 

40 1.65 1.25 0.79 0.60 0.64 

45 1.70 1.23 0.80 0.58 0.63 

50 1.73 1.19 0.83 0.57 0.64 

60 1.70 1.07 0.95 0.60 0.72 

70 1.58 0.91 1.13 0.65 0.85 

80 1.44 0.78 1.31 0.70 0.96 

90 1.38 0.72 1.38 0.72 1.00 
 

4% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 1.05 1.03 0.97 0.95 0.97 

20 1.17 1.09 0.90 0.84 0.88 

30 1.31 1.14 0.82 0.71 0.79 

40 1.43 1.14 0.79 0.63 0.72 

45 1.47 1.13 0.80 0.61 0.71 

50 1.49 1.10 0.82 0.61 0.72 

60 1.48 1.00 0.93 0.63 0.79 

70 1.42 0.89 1.09 0.69 0.88 

80 1.34 0.80 1.24 0.74 0.97 

90 1.30 0.77 1.30 0.77 1.00 
 

6% ROTATION FACTORS 

Rot [º] 
CR_EX 

 
CR_EY 

 
CR_VX 

 
CR_VY 

 
CR_G 

 

0 1.00 1.00 1.00 1.00 1.00 

10 1.03 1.02 0.97 0.95 0.97 

20 1.12 1.05 0.90 0.85 0.91 

30 1.22 1.08 0.82 0.73 0.83 

40 1.30 1.08 0.78 0.65 0.78 

45 1.33 1.07 0.78 0.63 0.78 

50 1.35 1.05 0.81 0.63 0.78 

60 1.35 0.98 0.91 0.66 0.83 

70 1.31 0.90 1.05 0.72 0.91 

80 1.27 0.83 1.19 0.78 0.97 

90 1.25 0.80 1.25 0.80 1.00 
 

 

TABLE 5.45. Rotation factors pattern R, for different pattern orientations and saturations of 2%, 4% and 6% 
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5.2. WIRE PATTERNS PERFORMANCE 
The saturation is the best parameter to use as reference as it is an indirect way of expressing the amount of material. 

A 45% saturation is used as it is a representative saturation for the filled patterns as well. Results are obtained for this 

document orientation. Patterns E, J and P have strong orientation at 45 degrees and patterns I and R at 54 degrees. 

 
FIG 5.38.Performance comparison of historic patterns. Wire variation, saturation 45% 

 

BEST PERFORMING PATTERNS 
 

     
A) YESLI MOSQUE I) HASHT BEHESHT D) LAHORE FORT COMPLEX J) MODARI-KHAN MADRASH H) GENERALIFE 

 

FIG 5.39.Best performing historic patterns. Wire variation, saturation 45%  
 

WORST PERFORMING PATTERNS 
 

     
E) SHIRVANSHAHS PALACE C) SABZ PUSHAN G) TOMB OF SALIM CHISHTI T) ALHAMBRA K) SULTAN BAYEZID II 

 

FIG 5.40. Worst performing historic patterns. Wire variation, saturation 45% 
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5.3. STAR FILLING 
When there is a sharp turn in the force path, bending moments develop in the internal bars to get equilibrium. As axial 

stiffness is much bigger than bending stiffness, the most efficient and best performing patterns are those that 

maximize the ratio between their axial and bending strain energy. From this conclusion, a new set of solutions is 

proposed. Filling the stars will lead to much more efficient solutions since continuity in the force path is reestablished, 

minimizing the bending strain energy. The picture below shows the tessellation 6.6.6. θ =75º, Sat. = 40%, for the wired 

and filled variations. The continuity in the force path of the fill solution will increase extraordinary the stiffness and 

performance of the pattern. 

  

FIG 5.41. Tessellation 6.6.6. θ =75º Sat. = 40%, wire variation FIG 5.42. Tessellation 6.6.6. θ =75º Sat. = 40%, filled variation 

The stars of the historic Islamic patterns studied in this document are filled to increase their continuity and stiffness. 
They cannot be modelled with bar elements so they are directly analysed with membrane elements. The star-filled 
patterns are named after the original patterns with an asterisk to indicate that their stars are filled.  
 
It is possible to reach much higher saturation grades filling the stars, however, the pattern blurs very fast as the relative 
beam depth increases, limiting the range to very small relative beam depths so the pattern can still be recognized. 
For comparison purposes, it is more useful to have the mechanical properties expressed in terms of the saturation. 
The saturation and the mechanical properties have an exponential evolution. So far, the intermediate values have 
been obtained by the means of linear interpolation, considering that the results would be accurate enough because 
the control points were very close to each other. In this chapter however, a more precise and short approach is 
followed. Instead of providing a large amount of control points, just 3 points are given, so any intermediate value can 
be accurately calculated by quadratic interpolation. 
 

In this case, linking the mesh size with the beam depth does not have that much sense so the absolute mesh size is 
adopted instead of a relative mesh size, in the terms that they have been defined in Chapter 4.6. Mesh refinement. 
The mesh refinement is done in the same manner as described for the membrane elements assuming an order of 
converge O(h2), with a mesh size of 1cm and 2cm with a modulus size in the x-direction of 5m. On the other hand, 
the Representative Element Volume is not taken into account as the bars behave as clamped in the perimeter, 
providing exact solutions for all the mechanical properties with exception of the shear modulus with a 1x1 panel. 
Reactions from tests used for the homogenization process are included in Appendix II. Numerical results. For the 
complete set of pictures and tables for historic patterns, see Appendix I. Design guide. 
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D*) LAHORE FORT COMPLEX  
 

D67.5, HOMOG. MECHANICAL PROPERTIES 

Sat [%] rbd [%] 𝐸ℎ,𝑥  𝐸ℎ,𝑦 𝜈ℎ,𝑥𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

35 1.58 5.90% 5.89% 0.589 0.589 2.86% 
40 3.02 9.32% 9.32% 0.521 0.521 4.31% 
45 4.52 13.08% 13.08% 0.465 0.465 5.92% 

   
TABLE 5.46. Homogenized mechanical properties, pattern D* FIG 5.43. Homogenized mechanical properties, pattern D* 

 

   
FIG 5.44. Pattern D*. Saturation 35% FIG 5.45. Pattern D*. Saturation 40% FIG 5.46. Pattern D*. Saturation 45% 

 

F*) MUSTANSIRIYA MADRASA 
 

F30, HOMOG. MECHANICAL PROPERTIES 

Sat [%] rbd [%] 𝐸ℎ,𝑥 𝐸ℎ,𝑦 𝜈ℎ,𝑥𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

35 1.53 9.80% 9.82% 0.349 0.349 3.68% 
40 3.66 13.79% 13.79% 0.349 0.349 5.15% 
45 5.92 17.45% 17.45% 0.348 0.348 6.50% 

 

  
TABLE 5.47. Homogenized mechanical properties, pattern F* FIG 5.47. Homogenized mechanical properties, pattern F* 

 

   
FIG 5.48. Pattern F*. Saturation 35% FIG 5.49. Pattern F*. Saturation 40% FIG 5.50. Pattern F*. Saturation 45% 

 

R*) FATEHPUR SIKRI 
 

R72, HOMOG. MECHANICAL PROPERTIES 

Sat [%] rbd [%] 𝐸ℎ,𝑥  𝐸ℎ,𝑦 𝜈ℎ,𝑥𝑦  𝜈ℎ,𝑦𝑥  𝐺ℎ 

40 1.31 8.94% 9.01% 0.531 0.535 2.59% 
45 2.06 12.98% 13.09% 0.465 0.469 3.90% 
50 2.86 17.39% 17.64% 0.411 0.417 5.49% 

 
  

TABLE 5.48. Homogenized mechanical properties, pattern R* FIG 5.51. Homogenized mechanical properties, pattern R* 
 

   
FIG 5.52. Pattern R*. Saturation 40% FIG 5.53. Pattern R*. Saturation 45% FIG 5.54. Pattern R*. Saturation 50% 
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5.4. FILLED PATTERNS PERFORMANCE 

 
FIG 5.55. Performance comparison of historic patterns. Filled variation, saturation 45% 

 

BEST PERFORMING PATTERNS (SAT. 45%) 
 

     
P*) MOSQUE OF AL-SALIH 

TALA’I 
F*) MUSTANSIRIYA 

MADRASA 
A*) YESLI MOSQUE E*) SHIRVANSHAHS PALACE I*) HASHT BEHESHT 

FIG 5.56. Best performing historic patterns. Filled variation, saturation 45%  
 

WORST PERFORMING PATTERNS (SAT. 45%) 
 

     
L*) BEN YUSUF MADRASA M*) AL-NASIR 

MUHAMMAD MINBAR 
N*) AL-NASIR MUHAMMAD S*) JAMEH MOSQUE T*) ALHAMBRA 

FIG 5.57. Best performing historic patterns. Filled variation, saturation 45%  
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5.5. FROM WIRE TO FILLED PATTERNS 
Providing continuity leads to an increment in the stiffness and resistance, but also of material use. The effect that 

filling the patterns has on the pattern performance can be grouped in three categories: 

- Great improvement. There is a considerable gain in the continuity of the load path so the axial strain 

energy increases to the detriment of the bending strain energy. Patterns A, B, E, P, Q and R.  

- Moderate effect. Under this category can be found either starred patterns with a high degree of continuity 

such as o patterns or classic geometric patterns such as patterns H and I. 

- Worsening of the pattern performance in the case of patterns with arrows. Filling the arrows goes at the 

expense of making slenderer the already very weak arrows points. It is the case of patterns L, N and M. 

 
FIG 5.58. Change of mechanical properties for historic patterns, Sat. 45%, from wire to filled patterns  

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

A 19.93% 0.303 7.59% 
A* 17.18% 0.406 6.30% 

A*/A 0.86 1.34 0.83 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

D 15.80% 0.316 3.92% 
D* 13.08% 0.465 5.92% 

D*/D 0.83 1.47 1.51 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

E 2.28% 0.782 1.69% 
E* 17.52% 0.050 1.71% 

E*/E 7.70 0.06 1.02 

  

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

F 7.76% 0.703 1.71% 
F* 17.45% 0.348 6.50% 

F*/F 2.25 0.49 3.80 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

H 13.24% 0.240 5.21% 
H* 13.93% 0.385 5.02% 

H*/H 1.05 1.60 0.96 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

I 15.99% 0.323 5.80% 
I* 14.67% 0.395 4.89% 

I*/I 0.92 1.22 0.84 
  

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

L 8.07% 0.304 2.61% 
L* 6.57% 0.536 1.38% 

L*/L 0.81 1.77 0.53 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

M 10.48% 0.389 2.69% 
M* 7.81% 0.626 3.88% 

M*/M 0.74 1.61 1.44 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

N 9.27% 0.259 3.61% 
N* 8.67% 0.534 2.89% 

N*/N 0.94 2.06 0.80 
        

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

O 9.86% 0.415 1.74% 
O* 10.81% 0.560 4.97% 

O*/O 1.10 1.35 2.85 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

P 8.21% 0.430 2.14% 
P* 17.71% 0.345 6.44% 

P*/P 2.16 0.80 3.01 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

Q 10.70% 0.333 3.86% 
Q* 14.57% 0.410 3.59% 

Q*/Q 1.36 1.23 0.93 

    

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥 𝐺ℎ 

R 9.28% 0.541 3.33% 
R* 13.09% 0.469 3.90% 

R*/R 1.41 0.87 1.17 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

S 8.12% 0.321 2.70% 
S* 9.09% 0.606 5.11% 

S*/S 1.12 1.89 1.90 
 

Sat. 45% 𝐸ℎ,𝑦 𝜈ℎ,𝑦𝑥  𝐺ℎ 

T 7.17% 0.458 2.46% 
T* 11.25% 0.533 3.77% 

T*/T 1.57 1.17 1.54 
 

TABLE 5.49. Change of mechanical properties for historic patterns, Sat. 45%, from wire to filled pattern 
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6. RESEARCH QUESTION 3. BUILDING LEVEL 
The main objective of this thesis is to provide insight into the structural behaviour and design of geometric Islamic 
patterns as alternative to conventional diagrid systems for tall buildings. This research objective is articulated at three 
levels: method level, pattern level and building level. Each of the three research questions addresses one of those 
levels and they are further developed in a series of sub-questions described in the following document structure: 
 

METHOD LEVEL: 
Can a simple tool be developed for the design of geometric Islamic patterns as a non-conventional diagrid system? 

- Method chosen and methodology for its adoption 
- Development of a pre-design tool. 
- Assessment of the developed tool 

 
PATTERN LEVEL: 
How do geometric Islamic patterns behave and compare when loaded in their plane? 

- Selection of historic Islamic patterns and their parametric variations 
- Characterization of the patterns’ structural behaviour 
- Performance comparison of the different patterns 
- Proposals for their improvement 

 
BUILDING LEVEL: 
Can Islamic inspired patterns become a feasible alternative to traditional diagrid systems for tall buildings? 

- Performance comparison of the different patterns and the conventional diagrids 
- Overview practical applications of best performing patterns 
- Special cases in tall buildings 

 

 
 

6.1. CONVENTIONAL DIAGRIDS 
In this research, it is considered that the conventional diagrid system is made of equilateral triangles as it is the most 

widespread use as introduced in Chapter 2.2. Diagrid systems. This corresponds directly with the tessellation 

3.3.3.3.3.3.  

In complex volumes the triangles can be distorted to adapt to the building surface, as in the Museum of the future8 in 

Dubai. In tall buildings, the equilateral triangle has also been used in several buildings such as 30st Mary Axe9 in 

London. However, the current tendency in tall buildings is to go to more acute triangles that develop higher mechanical 

properties in y-direction making them more optimal for that building typology as the Hearst Tower10 in New York. In 

this chapter, the homogenization method will be applied to the conventional diagrid system in the same manner as it 

was applied to the historic geometric Islamic patterns in the previous chapters so their relative performance can be 

qualitatively and quantitatively compared with the same reference framework.  

FIG 6.1. Museum of the future FIG 6.2. 30st Mary Axe FIG 6.3. Hearst Tower 
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SATURATION TABLES (Ch. 3.5.2.) 
 

     
rbd 6% - Sat.19.70%  rbd 12% - Sat. 37.25% rbd 18% - Sat. 52.63% rbd 24% - Sat. 65.86% rbd 30% - Sat. 76.92% 

 
 

FIG 6.4.  Z) Conventional diagrid pattern with 15%, 25%, 35% and 45% saturations 
 
FE BEAM HOMOGENIZED MECHANICAL PROPERTIES (Ch 4.4.) 
 

 

Z60 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] Sat [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

3 10.12 3.47% 3.47% 0.333 0.330 1.30% 
6 19.70 6.94% 6.95% 0.332 0.329 2.61% 
9 28.75 10.45% 10.46% 0.330 0.327 3.93% 

12 37.25 13.99% 14.00% 0.327 0.325 5.27% 
15 45.21 17.57% 17.58% 0.324 0.322 6.63% 
18 52.63 21.20% 21.21% 0.320 0.318 8.03% 
21 59.52 24.88% 24.90% 0.316 0.314 9.45% 
24 65.86 28.62% 28.64% 0.311 0.309 10.91% 
27 71.66 32.42% 32.44% 0.307 0.305 12.40% 
30 76.92 36.27% 36.30% 0.302 0.300 13.92% 

  
FIG 6.5. Pattern Z. Homogenized mechanical properties with beams FE. 

 
 

MEMBRANE CORRECTION FACTOR (Ch 4.7.) 
 

 

Z60 C2D CORRECTION FACTORS 

rbd [%] C2D_EX C2D_EY C2D_VXY C2D_VYX C2D_G 

3 1.013 1.01 1.01 1.01 1.01 

6 1.03 1.03 1.01 1.01 1.03 

9 1.05 1.05 1.01 1.01 1.05 

12 1.07 1.07 1.00 1.00 1.07 

15 1.10 1.10 0.99 0.99 1.10 

18 1.13 1.13 0.97 0.97 1.14 

21 1.16 1.16 0.94 0.94 1.18 

24 1.20 1.19 0.92 0.92 1.22 

27 1.24 1.24 0.88 0.88 1.26 

30 1.28 1.28 0.85 0.84 1.32  
TABLE 6.1. Membrane correction factors pattern Z FIG 6.6. Membrane correction factors pattern Z 

 
 

IDEAL HOMOGENIZED MECHANICAL PROPERTIES (Ch 4.8.)  
 

 

Z60 HOMOGENIZED MECHANICAL PROPERTIES 

Sat [%] rel [%] Ex Ey Vxy Vyx G 

10 2.96 3.47% 3.47% 0.335 0.335 1.30% 
20 6.10 7.27% 7.27% 0.335 0.335 2.72% 
30 9.44 11.56% 11.56% 0.331 0.331 4.34% 
40 13.04 16.48% 16.47% 0.325 0.325 6.22% 
50 16.94 22.24% 22.24% 0.314 0.314 8.47% 
60 21.23 29.33% 29.29% 0.298 0.297 11.28% 

 

 
 

FIG 6.7. Pattern Z. Ideal homogenized mechanical properties. 
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6.2. DIAGRID VS HISTORIC PATTERNS PERFORMANCE 
All the studied patterns can be either built up with bars (empty stars, named wired patterns) or carved in a continuous 

wall (filled stars, named filled patterns). Some patterns perform better when their stars are filled while others perform 

better keeping the stars empty. For this chart, the best performing solution for each pattern is chosen and compared 

against the conventional diagrid systems. One more time the orientation is not taken into account so the patterns´ 

mechanical properties might be slightly improved finding a better orientation that the one used or worsened when 

applied with another orientation to meet construction requirements. 

 
FIG 6.8.. Performance comparison of historic patterns against conventional diagrid system, saturation 45% 

 

In general terms, diagrid systems perform better than the historic Islamic geometric patterns. The triangulation 

minimizes the bending strain to axial strain energy ratio making them more efficient. However, the following patterns 

have a great performance so their feasibility will be assessed alternatives in Chapter 6.3. Overview of best performing 

patterns 

FEASIBLE ALTERNATIVES TO CONVENTIONAL DISAGRIDS (SAT. 45%) 
 

      
A) YESLI MOSQUE P*) MOSQUE OF AL-

SALIH TALA’I 
F*) MUSTANSIRIYA 

MADRASA 
E*) SHIRVANSHAHS 

PALACE 
I) HASHT BEHESHT D) LAHORE FORT 

COMPLEX 
FIG 6.9. Best performing historic patterns, saturation 45%  
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6.3. OVERVIEW OF BEST PERFORMING PATTERNS 
Specific issues related to the best performing patterns are succinctly addressed in this chapter to assess their 

applicability and feasibility as alternatives to conventional diagrid systems: 

 

A) YESLI MOSQUE  

From the structural point of view, it is the best performing pattern and therefore the best candidate to become a 

feasible alternative to conventional diagrids. It can be seen as a variation of the conventional diagrid as it can be 

obtained by erasing diagonals from the conventional diagrid layout.  

From the constructive point of view, it has a horizontal continuous line that can be used as part of the floor slab. This 

line is equidistant, allowing to connect the façade regularly.  All the nodes connect just 4 beams and the angles in all 

nodes are the same, leading to an easy and economic prefabrication. 

This is an excellent solution from the economic, construction and structural point of view. Nevertheless, developers in 

Arabic countries may be reluctant to adopt this pattern for their buildings as it can be seen as composed of David stars. 

In fact, traditionally Yesli Mosque pattern always appear with its “filled pattern” variation. The structural performance 

of the filled pattern version is a bit lower, but it is similar to patterns P, Mosque of Al-Salih Tala’i and F, Mustansiriya 

madrasa, see Chapter 5.5. From wired to filled patterns. 

 
FIG 6.10. Application of pattern A to 4m inter-story building. Sat. 35% 

 
FIG 6.11. Application of pattern A, to 4m inter-story building. Sat. 35% 

 

In conclusion, this is an excellent solution from the economic, construction and structural point of view. The wired 

variation could become a feasible alternative to conventional diagrids in non-Muslim countries whereas the filled 

variation would be more suitable in Muslim countries. 

 

P*) MOSQUE OF AL-SALIH TALA’I 

This is a much more complex pattern that conveys what is commonly understood when speaking about geometric 

Islamic star patterns. Due to its complexity there are several possibilities when applying it to a building. 

One possibility is to connect the horizontal strand to every floor as done in the previous patterns. The left solution 

corresponds to making coincide the horizontal brand every two floors. With a 45% saturation and a floor height of 4m, 

the floor slab depth can be up to 24cm. In this solution the floor height is same at each level. On the other hand, the 

right solution corresponds to making coincide the horizontal brand every three floors. With a 45% saturation and a 

floor height of 4m, the floor slab depth can be up to 35cm. This option simplifies the construction as it reduces the 

number of modules and connections but at the same time there are two different floor heights (4.24m and 3.88m). 

Finally, all possibilities are considered unsatisfactory.  
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FIG6.12. Application of pattern P* to 4m inter-story building. Sat. 45% 

 
FIG 6.13. Application of pattern P* to 4m inter-story building. Sat. 45% 

 

From the structural point of view, this pattern homogenized mechanical properties can compete with the 

homogenized mechanical properties of the conventional diagrid, insofar the resistance and non-linear effects due to 

the concentration of stresses are verified. It presents a square symmetry leading to a perpendicular isotropic 

behaviour, so the orientation and principal stress directions have to be taken into consideration when designing with 

this pattern. 

However, from the constructive point of view its complexity is a big obstacle to overcome. Several modules can be 

found consisting of various stars but it will inevitably to complex unions and cladding systems.  

In conclusion, this pattern meets all theoretical structural requirements to become a feasible alternative to 

conventional diagrids, but lacks the practical constructive applicability. Therefore, it can become a feasible 

alternative to conventional diagrids when that constructive limitation is overcome, for instance being applied to 3D 

printed shell structures. 

 

F*) MUSTANSIRIA MADRASA  

From the structural point of view, this pattern is as well suited as the previous patterns. It presents a hexagonal 

symmetry leading to an isotropic behaviour, so it can be directly rotated to find the best fitting orientation.  

 
FIG 6.14. Application of pattern F* rotated 30º, to 4m inter-story building. Sat. 40% 

The picture displays how the elevation of 

the building would look like with the 

pattern rotated 30º and each module 

spanning four floors.   

The values correspond to a saturation of 

40% so the original pattern is not blurred 

and a floor height of 4m that can be 

considered standard for tall buildings. In 

this case, a slab depth of 59cm can be 

embedded in the façade, which is enough 

for deep floor systems.  

The mega-structure can be easily built 

with traditional construction means, 

pouring one-story tall concrete walls.  

In conclusion, this pattern has a structural performance similar to conventional diagrid systems. It works 

functionally, it gives a strong aesthetic image and it is easy to build.  
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E*) PALACE OF THE SHIRVANSHAHS  

Palace of the Shirvanshahs pattern (E*) can be seen as a variation of the frames constituting the external tube of the 

traditional tube-in-tube system. When acting as lateral load bearing system, the frames resist by bending and have a 

considerable shear deformation. The beams in the tube-in-tube system must be very deep to provide of enough 

rotation stiffness to the nodes. This pattern excels precisely in this, it takes the material from the less stressed sections 

(centre of the van) to concentrated in the sections where shear and bending are maximum (near the nodes).  

From the structural point of view, this pattern can be considered an improvement of the frame solution for the tube-

in-tube system. Its performance is similar to the conventional diagrid with a higher shear deformation that is 

secondary. The cross-section variation introduces a weak point at the narrowest section that must checked for 

Ultimate Limit State. These stress concentrations might cause local yielding and second order effects that reduce the 

overall stiffness and that are not included in this linear elastic analysis. Also, a strut-and-tie model would show that 

transverse stresses will appear inside the beams as the stress path opens. Finally, the pattern presents a square 

symmetry leading to a perpendicular isotropic behaviour. 

From the constructive point of view, it has horizontal and vertical continuity. Those lines are equidistant, allowing to 

connect the façade regularly with the front of the floor slabs at each level. The floor height can be the same for the 

whole building and the vertical equidistant lines can become very handy when designing the lay out in plan to define 

the rooms. If prefabricated, only one cross module is needed. If the window panes are located in the wall openings, 

just a star module is needed too.    

 
FIG 6.15. Application of pattern E* to 4m inter-story building. Sat. 55% 

The picture displays how the elevation of 

the building would look like, with a 

horizontal brand that travels around the 

front of the floor slabs. The floor height is 

the same at each level. 

The values correspond to a saturation of 

55% which is representative for this 

solution and a floor height of 4m that can 

be considered standard for tall buildings. In 

this case a slab depth of 49cm can be 

embedded in the pattern, which is enough 

for deep floor systems.  

It is possible to visually reconstruct a 

conventional frame inside the pattern. 

 

In conclusion, this pattern meets all the requirements to become a feasible alternative to conventional diagrids in 

emblematic towers in Muslim countries and it could be considered an improvement of the frame solution for the 

tube-in-tube system. 

 

I) HASHT BEHESHT  

From the structural point of view, this pattern presents a pentagonal symmetry, leading to an orthotropic behaviour. 

The steps and tables provided in Chapter 5.1 Directional mechanical properties, can be directly applied. The orthotropy 

is very small in this case and the effect is negligible for the modulus of elasticity in the y-direction for relative beam 

depths over 5%. With a homogenized modulus of elasticity in the y-direction of 16% of the equivalent full wall, this 

pattern performs 20% worse than the conventional diagrid regarding that mechanical property. Nevertheless, it is still 

a suitable value to be considered a feasible alternative in justified cases.  
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FIG 6.16. Application of pattern I rotated 54º, to 4m inter-story building. Sat. 45% 

From the constructive point of view, 

rotating the pattern 54º provides a 

continuous horizontal brand that can 

collect the front of the slab floors. 

Despite the possibility of constructing it 

with bars, due to its complexity the 

structure is likely to be built of 

prefabricated panels.   

The values correspond to a saturation of 

45% and a floor height of 3.6m and 5.8m. 

This alternation in the floor height is 

precisely the main problem of this 

pattern. In this case, a slab depth up to 

70cm can be embedded in the façade.  

In conclusion, this pattern performs well from the structural point of view but its application in tall buildings comes 

at the expense of having two considerable different floor heights. For this reason, it can only be considered a feasible 

alternative to conventional diagrids in other applications such as iconic shell structures. 

 

D) LAHORE FORT COMPLEX (EMPTY) 

From the structural point of view, it has a square symmetry, entailing an orthogonal isotropic behaviour. For this form, 

the tables from Chapter 5.1 Directional mechanical properties can be directly applied. In order to get horizontal strips 

that are not even continuous in all the panel length, the pattern has to be rotated 22.5º. That leads to a rotated 

homogenized modulus of elasticity in the y-direction of 13% due to the corresponding rotation factor of around 0.8. 

Therefore, it is not worth it to rotate the pattern. 

 
FIG 6.17. Application of pattern D, to 4m inter-story building. Sat. 40% 

From the constructive point of view, the 

pattern is very complex and hard to build. 

There are no continuous horizontal 

strands to receive the front of the floor 

slabs, but on the other hand it is not 

indispensable.   

The attached values correspond to a 

saturation of 40% and a floor height of 4m, 

which can be considered a standard height 

for tall buildings.  

The load path is not straight, introducing 

bending moments in the internal bars. An 

Ultimate Limit State analysis will be 

required to check the resistance and non-

linear effect of stress concentrations. 

In conclusion, this pattern has a good structural performance but on the other hand it is quite complex and involves 

some construction deficiencies. It can become a suitable alternative for conventional diagrids for other shell 

structures where the constructive issues can be addressed such as steel shells. 
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B75*) GREAT MOSQUE OF DAMASCUS (θ =75º VARIATION) 

In this research, the Great Mosque of Damascus (B) pattern has been defined as the Hankin method applied to the 

tessellation 6.6.6 with a contact angle of 60 degrees (θ =60º). This choice is made based on the graphic evidence of 

the ceramic tilling on its walls as shown in Chapter 3.3. Selection of historic geometric Islamic patterns. However, Eric 

Broug, in his book Islamic Geometric Pattern19. assigns the Great Mosque of Damascus label to the Hankin method 

applied to the same tessellation with a contact angle of 75 degrees (θ =75º). That indicates that both patterns are 

present inside the same building. Both alternatives (θ =60º and θ =75º) perform structurally rather poorly but their 

mechanical properties improve greatly when their stars are filled. The comparison graph in Chapter 6.2. Diagrid vs 

historic patterns performance is assembled with all the patterns with a 45% saturation. As the smallest possible 

saturation for pattern B60, is 55% (see Appendix I. Design Guide), it is left outside the comparison. Nevertheless, 

pattern B75, can have a 45% saturation and therefore it is included instead of pattern B60 or B60*.  

From the structural point of view, it performs similarly to the conventional diagrid system. It can be seen as a variation 

of the conventional diagrid system as it can be obtained by applying a varying cross-section to its beams. Despite 

having the same mechanical properties, the variation of the cross-section entails some structural complications. The 

cross-section variation introduces a weak point at the narrowest section that must checked for Ultimate Limit State. 

These stress concentrations might cause local yielding and second order effects that reduce the overall stiffness and 

that are not included in this linear elastic analysis. Also, a strut-and-tie model would show that transverse stresses will 

appear inside the beams as the stress path opens. Finally, the pattern presents a hexagonal symmetry leading to an 

isotropic behaviour so it can be directly rotated at wish.  

From the constructive point of view, it is possible to obtain a horizontal continuous line by rotating the pattern 30º. 

This line is equidistant, allowing to connect the façade regularly with the front of the floor slabs. If prefabricated, only 

one a six-star module is needed. If the window panes are located in the wall openings, just a module is needed too.    

 
FIG 6.18. Application of pattern B75* rotated 30º, to 4m inter-story building. Sat. 45% 

The picture displays how the elevation of the 

building would look like when the pattern is 

rotated 30º in order to create a horizontal 

brand that travels around the front of the 

floor slabs. The floor height is the same at 

each level. 

The values correspond to a saturation of 45% 

which is quite low for this solution and a floor 

height of 4m that can be considered standard 

for tall buildings. In this case a slab depth of 

27cm can be embedded in the pattern.  

It is possible to visually reconstruct a 

conventional diagrid inside the pattern. The 

engineer might be tempted to go all the way 

around and build a conventional diagrid and 

then cover it to simulate this pattern.  

In conclusion, this pattern meets all the requirements to become a feasible alternative to conventional diagrids in 

emblematic towers in Muslim countries. 

Due to its good performance and applicability, and bearing in mind that other authors consider pattern B75 as a historic 

Islamic pattern, it has been included in all steps in Appendix I. Design guide.  
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6.4. ACCURACY ASSESSMENT. 
The predesign tool consists in the predesign process described in Chapter 7.1.1. RQ1 Summary, and the graphs, 

pictures and tables gathered in the Appendix I. Design Guide. The application of both resources together leads to 

results in a fast and simple way, useful for the study of alternatives in early stages of the project. The purpose of this 

chapter is to assess how accurate those results would actually be in the case of tall building,  

The homogenized beam mechanical properties were obtained by testing the panels modelled with beam elements in 

from Chapter 4.4. FEM Beam elements. Ideally, testing a building modelled with beam elements or walls with beam 

homogenized mechanical properties should provide the same results. That difference in the results is a measure of 

the error introduced by the method and the assumptions adopted. 

The drift at top floor under wind load will be the parameter of comparison as it is the variable that is latter employed 

in the stiffness-based design. The variation between the three experiments is the pattern employed. It is specified in 

each case the relative beam depth, saturation and corresponding homogenized mechanical properties used. The 

façade and the floor slabs are the only elements modelled so there will be no distortion in the compassion introduced 

by third elements such as columns or core walls.  

The model analysed consist in all cases in a prismatic 50-storeys tower with 30m base length. The patterns chosen are 

the three best performing patterns from Chapter 5.2. Wire patterns performance as they are the ones most likely to 

be used by the designer and they have square, pentagonal and hexagonal symmetries. 

 

      

FIG 6.19. Pattern D ETABS models. FIG 6.20. Pattern I ETABS models FIG 6.21. Pattern A ETABS models 

 

6.4.1. SQUARE SYMMETRY 

D) LAHORE FORT COMPLEX. Tessellation 4.8.8. θ =67.5º. Square symmetry.  
 

  

D67.5 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] Sat [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 7.23 0.18% 0.18% 0.191 0.191 0.01% 

2 14.12 1.10% 1.10% 0.197 0.197 0.08% 

3 20.69 2.76% 2.76% 0.207 0.207 0.25% 

4 26.93 4.82% 4.82% 0.215 0.215 0.55% 

5 32.83 7.05% 7.05% 0.221 0.221 0.96% 

6 38.41 9.36% 9.36% 0.224 0.224 1.49% 

7 43.66 11.69% 11.69% 0.225 0.225 2.12% 

8 48.58 14.04% 14.04% 0.225 0.225 2.82% 
 

FIG 6.22. Pattern D. Module definition and rbd 6% appearance. TABLE 6.2. Pattern D. Homogenized mechanical properties with beam FE. 
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D67.5  
DIV6 

HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

4 6.24% 6.24% 0.296 0.296 0.94% 

5 9.25% 9.26% 0.308 0.308 1.82% 

6 12.49% 12.48% 0.315 0.315 3.03% 

7 15.89% 15.90% 0.317 0.317 4.59% 

8 19.24% 19.24% 0.315 0.315 6.36% 
 

D67.5 
DIV12 

HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

4 5.71% 5.71% 0.287 0.287 0.82% 

5 8.68% 8.68% 0.305 0.305 1.59% 

6 11.72% 11.72% 0.314 0.314 2.72% 

7 14.88% 14.88% 0.316 0.316 4.08% 

8 18.26% 18.26% 0.316 0.316 5.73% 
 

TABLE 6.3. Pattern D. Homog. mech. properties with mesh size depth/6 TABLE 6.4. Pattern D. Homog. mech. properties with mesh size depth/12 

 

D67.5 
HOMOGENIZED MECHANICAL 

PROPERTIES FROM BEAM ELEMENTS 

rbd 
[%] 

Sat 
[%] 

𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

6 38.41 9.36% 9.36% 0.224 0.224 1.49% 
 

D67.5 
IDEAL HOMOGENIZED MECHANICAL 

PROPERTIES AFTER MESH REFINEMENT 

rbd 
[%] 

Sat 
[%] 

𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

6 38.41 11.72% 11.72% 0.314 0.314 2.72% 
 

TABLE 6.5. Pattern D. Homogenized mechanical properties with beam FE TABLE 6.6.  Pattern D. Ideal homogenized mechanical properties 

 
BEAM MODEL 
Floor height:         3.75m 
Number of floors:50 
Total height:         187.5m 
Base length:          30m 
Modules in the base: 8 
Module size x-direction: 3.75m 
Relative beam depth: 6% 
Beam depth:         22.5cm  
Beam geometry:  225x250 mm 
Base beam material: C70/85 
Base density:        25.00 kN/m3 

𝑬𝒃:                          41 000 MPa 
𝝂𝒃:                          0.2 
𝑮𝒃:                         17 080 MPa 
Drift top Ux: 836mm 

MEMBRANE WITH BEAM PROP. 
Floor height:         3.75m 
Number of floors:50 
Total height:         187.5m 
Base length:          30m 
Relative beam depth: 6%  
Saturation: 38.41% 
Homog. density: 9.60 kN/m3 

Pattern rotation: 0º 
𝑬𝒉,𝒚:            9.36% (3 838 MPa) 

𝑬𝒉,𝒙:            9.36% (3 838 MPa) 

𝝂𝒉,𝒚𝒙:           0.224 

𝝂𝒉,𝒙𝒚:           0.224 

𝑮𝒉:               611 MPa 
Thickness:  250mm 
Drift top Ux: 897mm  

MEMBRANE WITH IDEAL PROP. 
Floor height:         3.75m 
Number of floors:50 
Total height:         187.5m 
Base length:          30m 
Relative beam depth: 6%  
Saturation: 38.41% 
Homog. density: 9.60 kN/m3 

Pattern rotation: 0º 
𝑬𝒉,𝒚:           11.72% (4 805 MPa) 

𝑬𝒉,𝒙:           11.72% (4 805 MPa) 

𝝂𝒉,𝒚𝒙:          0.314 

𝝂𝒉,𝒙𝒚:          0.314 

𝑮𝒉:              1 115 MPa 
Thickness:  250mm 
Drift top Ux: 647mm  

 

   
FIG 6.23. Displacement, beam model FIG 6.24. Drift, walls with beam mech prop FIG 6.25 Drift, walls with ideal mech prop 

   

   
FIG 6.26. Overturning moment, beam model FIG 6.27.  Moment, walls with beam mech prop FIG 6.28. Moment, walls with ideal mech prop 
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FIG 6.29. Pattern D, one floor in ETABS beam model 

 

 

6.4.2. PENTAGONAL SYMMETRY 

I) HASHT BEHESHT. Tessellation I-6.10.10., θ =54º. Pentagonal symmetry.  
 

  

I54 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] Sat [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

1 8.89 0.34% 0.40% 0.263 0.312 0.14% 

2 17.23 1.89% 2.14% 0.279 0.317 0.78% 

3 25.03 4.27% 4.68% 0.290 0.317 1.75% 

4 32.27 6.98% 7.46% 0.295 0.315 2.85% 

5 38.96 9.80% 10.29% 0.296 0.311 3.98% 

6 45.10 12.66% 13.13% 0.295 0.306 5.13% 

7 50.69 15.55% 15.97% 0.293 0.301 6.29% 

8 55.74 18.45% 18.82% 0.290 0.296 7.48% 
 

FIG 6.30. Pattern I. Module definition and rbd 5% appearance. TABLE 6.7. Pattern I. Homogenized mechanical properties with beam FE. 

 
I54 DIV6 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

3 5.41% 5.84% 0.303 0.327 2.14% 

4 9.00% 9.42% 0.310 0.325 3.50% 

5 12.80% 13.12% 0.315 0.323 4.93% 

6 16.71% 16.92% 0.316 0.320 6.40% 

7 20.74% 20.81% 0.316 0.317 7.94% 
 

I54 DIV12 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

3 5.20% 5.63% 0.302 0.326 2.06% 

4 8.70% 9.13% 0.311 0.326 3.39% 

5 12.40% 12.78% 0.315 0.325 4.79% 

6 16.22% 16.48% 0.317 0.322 6.22% 

7 20.14% 20.30% 0.317 0.319 7.72% 
 

TABLE 6.8. Pattern I. Homog. mech. properties with mesh size depth/6 TABLE 6.9.  Pattern I. Homog. mech. properties with mesh size depth/12 
 

I54 
HOMOGENIZED MECHANICAL PROPERTIES 

FROM BEAM ELEMENTS 

rbd 
[%] 

Sat 
[%] 

𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

5 38.96 9.80% 10.29% 0.296 0.311 3.98% 
 

I54 
IDEAL HOMOGENIZED MECHANICAL 

PROPERTIES AFTER MESH REFINEMENT 

rbd 
[%] 

Sat 
[%] 

𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

5 38.96 11.99% 12.45% 0.314 0.326 4.65% 
 

TABLE 6.10. Pattern I. Homogenized mechanical properties with beam FE TABLE 6.11.  Pattern I. Ideal homogenized mechanical properties 

 
BEAM MODEL 
Floor height:         3.63m 
Number of floors:50 
Total height:         181.6m 
Base length:          30m 
Modules in the base: 6 
Module size x-direction: 5.00m 
Relative beam depth: 5% 
Beam depth:         18.16cm (90º) 
Beam geometry:  182x250 mm 
Base beam material: C70/85 
Base density:        25.00 kN/m3 

𝑬𝒃:                          41 000 MPa 
𝝂𝒃:                          0.2 
𝑮𝒃:                         17 080 MPa 
Drift top Ux: 600mm 

MEMBRANE WITH BEAM PROP. 
Floor height:         3.63m 
Number of floors:50 
Total height:         181.6m 
Base length:          30m 
Relative beam depth: 5%  
Saturation: 38.96% 
Homog. density: 9.74 kN/m3 

Pattern rotation: 90º 
𝑬𝒉,𝒚′:           9.80% (4 018 MPa) 

𝑬𝒉,𝒙′:           10.29% (4 219 MPa) 
𝝂𝒉,𝒚𝒙′:          0.311 

𝝂𝒉,𝒙𝒚′:          0.296 

𝑮𝒉:               1 631 MPa 
Thickness:   250mm 
Drift top Ux: 703mm 

MEMBRANE WITH IDEAL PROP. 
Floor height:         3.63m 
Number of floors:50 
Total height:         181.6m 
Base length:          30m 
Relative beam depth: 5%  
Saturation: 38.96% 
Homog. density: 9.74 kN/m3 

Pattern rotation: 90º 
𝑬𝒉,𝒚′:           11.99% (4 915 MPa) 

𝑬𝒉,𝒙′:           12.45% (5 104 MPa) 
𝝂𝒉,𝒚𝒙′:          0.314 

𝝂𝒉,𝒙𝒚′:          0.326 

𝑮𝒉:               1 907 MPa 
Thickness:   250mm 
Drift top Ux: 575mm  
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FIG 6.31. Displacement, beam model FIG 6.32. Drift, walls with beam mech prop FIG 6.33. Drift, walls with ideal mech prop 

   

   
FIG 6.34. Overturning moment, beam model FIG 6.35. Moment, walls with beam mech prop FIG 6.36. Moment, walls with ideal mech prop 

 

 
FIG 6.37. Pattern I, one floor in ETABS beam model 

 

6.4.3. HEXAGONAL SYMMETRY 

A) YESLI MOSQUE. Tessellation 3.6.3.6. Hexagonal symmetry.  
 

  

A0 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] Sat [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

2 6.77 2.31% 2.31% 0.333 0.333 0.87% 

4 13.24 4.63% 4.63% 0.332 0.332 1.74% 

6 19.34 6.96% 6.96% 0.330 0.330 2.62% 

8 25.15 9.31% 9.31% 0.328 0.328 3.51% 

10 30.66 11.69% 11.69% 0.325 0.325 4.41% 

12 35.82 14.10% 14.10% 0.322 0.322 5.33% 

14 40.67 16.54% 16.54% 0.318 0.318 6.28% 

16 45.20 19.02% 19.02% 0.314 0.314 7.24% 
 

FIG 6.38. Pattern A. Module definition and rbd 8% appearance. TABLE 6.12. Pattern A. Homogenized mechanical properties with beam FE. 
 

A DIV6 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

4 4.73% 4.72% 0.329 0.329 1.78% 

6 7.16% 7.16% 0.326 0.326 2.71% 

8 9.67% 9.66% 0.322 0.322 3.67% 

10 12.24% 12.24% 0.318 0.318 4.67% 

12 14.94% 14.91% 0.313 0.313 5.72% 
 

A DIV12 HOMOGENIZED MECHANICAL PROPERTIES 

rbd [%] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

4 4.71% 4.71% 0.329 0.329 1.77% 

6 7.13% 7.13% 0.326 0.326 2.69% 

8 9.62% 9.61% 0.322 0.322 3.65% 

10 12.15% 12.16% 0.318 0.318 4.62% 

12 14.76% 14.76% 0.314 0.314 5.63% 
 

TABLE 6.13. Pattern A. Homog. mech. properties with mesh size depth/6 TABLE 6.14. Pattern A. Homog. mech. properties with mesh size depth/12 
 

A0 
HOMOGENIZED MECHANICAL PROPERTIES 

FROM BEAM ELEMENTS 

rbd 
[%] 

Sat 
[%] 

𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

8 25.15 9.31% 9.31% 0.328 0.328 3.51% 
 

A0 
IDEAL HOMOGENIZED MECHANICAL 

PROPERTIES AFTER MESH REFINEMENT 

rbd 
[%] 

Sat 
[%] 

𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

8 25.15 9.56% 9.56% 0.323 0.323 3.62% 
 

TABLE 6.15. Pattern A. Homogenized mechanical properties with beam FE TABLE 6.16. Pattern A. Ideal homogenized mechanical properties 
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BEAM MODEL 
Floor height:         3.71m 
Number of floors:50 
Total height:         185.6m 
Base length:          30m 
Modules in the base: 14 
Module size x-direction: 2.14m 
Relative beam depth: 8% 
Beam depth:         17.1cm  
Beam geometry:  171x250 mm 
Base beam material: C70/85 
Base density:        25.00 kN/m3 

𝑬𝒃:                          41 000 MPa 
𝝂𝒃:                          0.2 
𝑮𝒃:                         17 080 MPa 
Drift top Ux: 804mm 

MEMBRANE WITH BEAM PROP 
Floor height:         3.71m 
Number of floors:50 
Total height:         185.6m 
Base length:          30m 
Relative beam depth: 8%  
Saturation:            25.15% 
Homog. density:  6.29 kN/m3 

Pattern rotation: 0º 
𝑬𝒉,𝒚:           9.31% (3 817 MPa) 

𝑬𝒉,𝒙:           9.31% (3 817 MPa) 

𝝂𝒉,𝒚𝒙:          0.328 

𝝂𝒉,𝒙𝒚:          0.328 

𝑮𝒉:               1 439 MPa 
Thickness:   250mm 
Drift top Ux: 800mm 

MEMBRANE WITH IDEAL PROP 
Floor height:         3.71m 
Number of floors:50 
Total height:         185.6m 
Base length:          30m 
Relative beam depth: 8%  
Saturation:           25.15% 
Homog. density:  6.29 kN/m3 

Pattern rotation: 0º 
𝑬𝒉,𝒚:           9.56% (3 919 MPa) 

𝑬𝒉,𝒙:           9.56% (3 919 MPa) 

𝝂𝒉,𝒚𝒙:          0.323 

𝝂𝒉,𝒙𝒚:          0.323 

𝑮𝒉:               1 484MPa 
Thickness:   250mm 
Drift top Ux: 782mm  

 

   
FIG 6.39.  Displacement, beam model FIG 6.40. Drift, walls with beam mech prop FIG 6.41. Drift, walls with ideal mech prop 

   

   
FIG 6.42. Overturning moment, beam model FIG 6.43. Moment, walls with beam mech prop FIG 6.44. Moment, walls with ideal mech prop 

 

 
FIG 6.45. Pattern A, ETABS beam model 

 

6.5. SPECIAL CASES IN TALL BUILDINGS 
In practice, the application of the developed predesign tool to real life projects leads to more complex situations than 

the studied prismatic case. The accuracy of the method has already been assessed in the previous chapter, the aim 

of this chapter is just to identify possible sources of deviations in the results that the engineer will face when 

applying the method to tall buildings. Some of the most important effects are addressed in this chapter in increasing 

complexity, for the same patterns and saturations as in Chapter 6.4. Accuracy assessment: 
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- Squeezing: The number of modules in each floor are kept constant to provide continuity regardless of any 

variation of the floor size. A smaller perimeter with the same number of modules would lead to smaller 

panels. However, as the floor height is kept constant, it finally leads to a “squeezing” of the pattern. This 

has an important effect on the saturation and its relationship with module size in the x-direction. 
 

- Distortion:  Patterns get distorted if a rotation is introduced into the building geometry. The panels in their 

undeformed shape are no longer square but rhomboid.   
 

- Intermediate supports: As the pattern grows bigger, each module will occupy more than floor at the same 

time. It changes the boundary conditions for which the pattern was tested, introducing intermediate 

support that constrain the pattern horizontal deformation at intermediate points.  

    
FIG 6.46. Homogenized pattern FIG 6.47. Squeezing effect FIG 6.48. Distortion effect             FIG 6.49. Intermediate supports 

 

The aim of this chapter is not to provide a quantitative estimation of the deviation of the results introduced by the 

above mentioned effects. In fact, in some cases not even a qualitative estimation would apply. The deviation of the 

performance depends ultimately on the magnitude of the squeezing and distortion applied and its location on the 

building, the number of intermediate supports modelled, and ultimately the pattern under consideration itself.  A 

qualitative estimation would require to test all patterns for those effects, and a quantitative estimation to test each 

one of them for different levels of squeezing, distortion and number of intermediate supports. Therefore, the aim 

of this chapter is just to highlight the existence of these effects to make the designer aware of the limitations of the 

developed method to tall buildings.  

Each of the following examples will have an increasing geometry complexity and a different pattern applied. Those 

patterns are the same as in the previous chapter and will have the same saturation to serve as comparison . All the 

beams are square so the wall thickness will be adapted to correspond to it. 

 

6.5.1. SQUEEZING 

PATTERN A) YESLI MOSQUE: 
 

Number of floors: 50 Floor height:  4.00 m Total height: 195.9 m 
Rel. beam depth: 8.00 % Saturation:  25.15 % Homog. Density: 6.29 kN/m3 
Pattern rotation: 0º Floor rotation: 0º  Rotated rbd: - 
Base material: C70/85 𝐸𝑏:   41 000 MPa 𝐺𝑏:  17 080 MPa 
      

Floor 01 03 05 07 09 11 13 15 17 19 21 23 25 
Perimeter (m) 110.8 110.8 110.8 110.8 110.8 110.7 110.6 110.4 110.1 109.8 109.3 108.7 108.0 

Module x-dir (m) 2.31 2.31 2.31 2.31 2.31 2.31 2.30 2.30 2.29 2.29 2.28 2.26 2.25 

Depth (mm) 185 185 185 185 185 185 184 184 184 183 182 181 180 
TABLE 6.17.  Wall width, beam width and depth definition for the ETABS beam model. Levels 00 to 

 

Floor 27 29 31 33 35 37 39 41 43 45 47 48 49 
Perimeter (m) 107.2 106.2 104.9 103.4 101.5 99.2 96.3 92.6 87.6 80.5 69.0 59.4 44.8 

Module x-dir (m) 2.23 2.21 2.19 2.15 2.11 2.07 2.01 1.93 1.83 1.68 1.44 1.24 0.93 

Depth (mm) 179 177 175 172 169 165 161 154 146 134 115 99 75 
TABLE 6.18. Wall width, beam width and depth definition for the ETABS beam model. Levels 20 to 38 
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BEAM MODEL 
Patter rotation:           0º 
Rotated rbd:                8.00 % 
Number of modules:  12 
Module x-direction:   2.31 m to 0.93 m 
Relative beam depth: 8.00% 
Beam depth:                75 mm to 185 mm  
Beam geometry:         depth x 300 mm 
Drift top Ux:                826 mm 
 
 

MEMBRANE WITH BEAM PROPERTIES 
Pattern rotation:         0º 
Relative beam depth: 8.00 % 
𝑬𝒉,𝒚:                              9.31 % (3 817 MPa) 

𝑬𝒉,𝒙:                              9.31 % (3 817 MPa) 
𝝂𝒉,𝒚𝒙:                            0.328 

𝝂𝒉,𝒙𝒚:                            0.328 

𝑮𝒉:                                3.51 % (1 439 MPa) 
Thickness:                    300 mm 
Drift top Ux:                746 mm  
 
 

MEMBRANE WITH IDEAL MECH. PROPERTIES 
Pattern rotation:         0º 
Relative beam depth: 8.00 % 
𝑬𝒉,𝒚:                              9.56 % (3 920 MPa) 

𝑬𝒉,𝒙:                              9.56 % (3 920 MPa) 

𝝂𝒉,𝒚𝒙:                             0.323 

𝝂𝒉,𝒙𝒚:                             0.323 

𝑮𝒉:                                 3.62 % (1 484 MPa) 
Thickness:                    300 mm 
Drift top Ux:                728 mm 
 

FIG 6.50.  ETABS model with beam elements 
FIG 6.51. ETABS model with membrane elements 

   

 

   

FIG 6.52. Displacement, beam model FIG 6.53. Drift, walls with beam mech prop FIG 6.54. Drift, walls with ideal mech prop 
   

   
FIG 6.55. Overturning moment, beam model FIG 6.56.  Moment, walls with beam mech prop FIG 6.57. Moment, walls with ideal mech prop 
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6.5.2. SQUEEZING + DISTORSION 

PATTERN D) LAHORE FORT COMPLEX. 
 

Number of floors: 50 Floor height:  4.00 m Total height: 200.0 m 
Rel. beam depth: 6.00 % Saturation:  38.41 % Homog. Density: 19.36 kN/m3 
Pattern rotation: 0º Floor rotation: 2.0º per floor Rotated rbd: 6.00 % 
Base material: S355 𝐸𝑏:   210 000 MPa 𝐺𝑏:  80 769 MPa 

 
 

  

BEAM MODEL 
Patter rotation:           0º 
Rotated rbd:                6.00 % 
Number of modules:  31 
Module x-direction:   3.17m to 4.73m 
Relative beam depth: 6.00% 
Beam depth:                190 mm to 284 mm  
Beam geometry:         Square 
Drift top Ux:                985 mm  

 
 

MEMBRANE WITH BEAM PROPERTIES 
Pattern rotation:         0º 
Relative beam depth: 6.00 % 
𝑬𝒉,𝒚:                              9.36 % (3 838 MPa) 

𝑬𝒉,𝒙:                              9.36 % (3 838 MPa) 
𝝂𝒉,𝒚𝒙:                            0.224 

𝝂𝒉,𝒙𝒚:                            0.224 

𝑮𝒉:                                1.49 % (611 MPa) 
Thickness:                    190 mm to 284 mm 
Drift top Ux:               836 mm  

 
 

MEMBRANE WITH IDEAL MECH. PROPERTIES 
Pattern rotation:         0º 
Relative beam depth: 6.00 % 
𝑬𝒉,𝒚:                             11.72 % (4 805 MPa) 

𝑬𝒉,𝒙:                             11.72 % (4 805 MPa) 

𝝂𝒉,𝒚𝒙:                            0.314 

𝝂𝒉,𝒙𝒚:                            0.314 

𝑮𝒉:                                2.72 % (1 115 MPa) 
Thickness:                   190 mm to 284 mm 
Drift top Ux:               601 mm  
 
 

FIG 6.58. ETABS model with beam elements 
FIG 6.59. ETABS model with membrane elements 

   
 

Floor 00 02 04 06 08 10 12 14 16 18 20 22 24 
Perimeter (m) 146.7 144.9 143.0 141.1 139.2 137.3 135.3 133.3 131.3 129.3 127.3 125.3 123.3 

Module x-dir (m) 4.73 4.67 4.61 4.55 4.49 4.43 4.36 4.30 4.24 4.17 4.11 4.04 3.98 

Width (mm) 284 280 277 273 269 266 262 258 254 250 246 243 239 
TABLE 6.19. Wall width, beam width and depth definition for the ETABS beam model. Levels 00 to 18 

 

Floor 26 28 30 32 34 36 38 40 42 44 46 48 50 
Perimeter (m) 121.3 119.3 117.3 115.3 113.3 111.4 109.4 107.5 105.6 103.8 102.0 100.2 98.4 

Module x-dir (m) 3.91 3.85 3.78 3.72 3.65 3.59 3.53 3.47 3.41 3.35 3.29 3.23 3.17 

Width (mm) 235 231 227 223 219 216 212 208 204 201 197 194 190 
TABLE 6.20.  Wall width, beam width and depth definition for the ETABS beam model. Levels 20 to 38 
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FIG 6.60. Displacement, beam model FIG 6.61. Drift, walls with beam mech prop FIG 6.62. Drift, walls with ideal mech prop 

   

   
FIG 6.63. Overturning moment, beam model FIG 6.64. Moment, walls with beam mech prop FIG 6.65. Moment, walls with ideal mech prop 

 

 

6.5.3. SQUEEZING + DISTORTION + INTERMEDIATE SUPPORTS 
 

PATTERN I) HASHT BEHESHT 
 

Number of floors: 60 Floor height:  3.91 m Total height: 236.0 m 
Rel. beam depth 5 % Saturation:  38.96 % Homog. Density: 9.74 kN/m3 
Pattern rotation: 18º Floor rotation: 0.5º per floor Rotated rbd: 4.76 % 
Base material: C70/85 𝐸𝑏:   41 000 MPa 𝐺𝑏:  17 080 MPa 

 

Floor 00 02 04 06 08 10 12 14 16 18 
Perimeter (m) 146.5 141.4 136.3 131.1 126.5 122.1 120.0 114.3 111.0 108.6 

Module x-dir (m) 13.32 12.85 12.39 11.94 11.50 11.10 10.91 10.39 10.09 9.87 

Width (mm) 633 611 589 568 547 528 519 494 480 469 
TABLE 6.21. Wall width, beam width and depth definition for the ETABS beam model. Levels 00 to 18 

 

Floor 20 22 24 26 28 30 32 34 36 38 
Perimeter (m) 106.2 104.7 103.9 103.6 104.1 105.2 106.9 109.2 112.0 115.4 

Module x-dir (m) 9.66 9.52 9.44 9.42 9.46 9.56 9.71 9.92 10.19 10.49 

Width (mm) 459 453 449 448 450 455 462 472 484 499 
TABLE 6.22. Wall width, beam width and depth definition for the ETABS beam model. Levels 20 to 38 

 

Floor 40 42 44 46 48 50 52 54 56 58 
Perimeter (m) 119.3 123.5 128.1 132.9 137.9 143.0 148.2 153.3 158.0 163.1 

Module x-dir (m) 10.84 11.23 11.64 12.08 12.54 13.00 13.47 13.94 14.37 14.83 

Width (mm) 516 534 554 575 596 618 641 663 683 705 
TABLE 6.23.  Wall width, beam width and depth definition for the ETABS beam model. Levels 40 to 58 

 
The beam sizes are modified every two floors. There are 11 modules in each floor. The 5% relative beam depth is 
substituted by 4.76% because of the 18ª rotation according to formula (5.1) 𝑳′𝒙 = 𝑳𝒙 𝒄𝒐𝒔(𝜶)  
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BEAM MODEL 
Patter rotation:           18º 
Rotated rbd:                4.76 % 
Number of modules:  11 
Module x-direction:   9.42m to 15.04m 
Relative beam depth: 4.76% (5% for rotation 18º) 
Beam depth:                448 mm to 715 mm  
Beam geometry:         Square 
Drift top Ux:                307 mm 
 
 

MEMBRANE WITH BEAM PROPERTIES 
Pattern rotation:         18º 
Relative beam depth: 5.00 % 
𝑬𝒉,𝒚′:                              10.29 % (4 219 MPa) 

𝑬𝒉,𝒙′:                              9.80 % (4 018 MPa) 

𝝂𝒉,𝒚𝒙′:                            0.302 

𝝂𝒉,𝒙𝒚′:                            0.293 

𝑮𝒉′:                                3.98 % (1 615 MPa) 
Thickness:                     448 mm to 715 mm 
Drift top Ux:                 586 mm 

 
 

MEMBRANE WITH IDEAL MECH. PROPERTIES 
Pattern rotation:        18º 
Relative beam depth: 5.00 % 
𝑬𝒉,𝒚′:                             12.45 % (5 105 MPa) 

𝑬𝒉,𝒙′:                             11.99 % (4 916 MPa) 

𝝂𝒉,𝒚𝒙′:                            0.316 

𝝂𝒉,𝒙𝒚′:                            0.291 

𝑮𝒉′:                                4.65 % (9 765 MPa) 
Thickness:                    448 mm to 715 mm 
Drift top Ux:                485 mm  
 

FIG 6.66. ETABS model with beam elements 
FIG 6.67. ETABS model with membrane elements 

 

   
FIG 6.68. Displacement, beam model FIG 6.69. Drift, walls with beam mech prop FIG6.70. Drift, walls with ideal mech prop 

   

   
FIG 6.71. Overturning moment, beam model FIG 6.72. Moment, walls with beam mech prop FIG 6.73. Moment, walls with ideal mech prop 
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7. CONCLUSIONS 
7.1. RESEARCH QUESTION 1. METHOD LEVEL 
Can a simple tool be developed for the predesign of geometric Islamic patterns as a non-conventional diagrid system? 

- Method chosen and methodology for its adoption 
- Development of a pre-design tool. 
- Assessment of the developed tool 
 
 

7.1.1. RQ1. SUMMARY 

The proposed predesign tool is based on the homogenization method at the pattern scale and the stiffness-based 
design at the building scale. In other words, the tall building is considered as a long cantilever whose SLS drift 
limitations govern over the ULS resistance limitations. The tube-in-tube distribution is adopted with the geometric 
Islamic pattern applied to the outer tube that works as a thin-wall hollow section braced against out-of-plane loading 
at each level by the floor slabs. The main objective is to obtain a continuous heterogeneous orthotropic material that 
simulates the behaviour that the geometric Islamic pattern would have when loaded in its plane. This method enables 
the performance assessment of different patterns by creating a common ground of comparison with their 
homogenized mechanical properties. 
 
METHODOLOGY 
Through the homogenization process the geometric Islamic patterns are transformed into an equivalent meta-material 
whose mechanical properties will vary depending on the pattern under study, the base material and its relative beam 
depth. The methodology is organized in four steps:  
 

1. Representative Element Volume. It takes into account the number of modules that make the panel 
2. Mesh refinement. It takes into account the mesh size employed with the membrane elements. 
3. Membrane correction factor. It links the results with beam FE and membrane FE. 
4. Ideal behaviour. The ideal homogenized mechanical properties are obtained after the whole process. 

 

  
  

  
FIG 7.1. Homogenization methodology.as per Chapter 4.2. Homogenization methodology 

 
The resulting design tables and pictures for all steps are collected in Appendix I. Design Guide. The numerical results 
from the tests are gathered in Appendix II. Numerical results.  
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THE PREDESIGN TOOL STEP BY STEP 
 

This method can be applied indistinctively of the building shape, size and base material. Furthermore, this tool is very 
simple to implement in the sense that the pattern itself does not need to be drawn nor its bars to be modelled in order 
to have a rough idea of its performance, aesthetic view and amount of used material. At the same time, it gives enough 
freedom to the designer to change a variety of parameters to meet the drift limitations. The most straight-forward 
approach to apply the method is: 
 

1. In Chapter 3.3 Selection of historic geometric Islamic patterns, there are displayed a series of historic geometric 
Islamic patterns and some parametric variations of them. The first step would be to choose the desired pattern. 
In order to make an informed choice, the designer should verify the suitability of the pattern in terms of 
structural performance with the help of the patterns performance comparison graphs included in Chapter 5.2. 
Wire patterns performance  and Chapter 5.4.Filled patterns performance. The resulting information of this step 
is the definition of the generating tessellation, number of crossings, contact angle and filled or wire variation. 
 

2. The number and size of modules is chosen for architectonic and structural purposes. For instance, if the pattern 
has regularly spaced horizontal lines it is convenient to make them coincide with the floor slabs. This step will 
define the module size in the x-direction. For instance, if the perimeter of the building façade measures 120m 
and 20 modules are chosen to cover horizontally that distance, each module will have a length in the x-direction 
of 120/20 = 6m.  
 

3. From the saturation tables introduced in Chapter 3.5.Saturation and relative beam depth  and fully collected in 
Appendix I. Design guide, the designer will be able to visually choose a desired saturation and its corresponding 
relative beam depth that fits his needs such a determined opacity for solar gain, material minimization or 
overall aesthetic appearance. If the chosen relative beam depth is 5%, for the previous example the beam 
depth will be 6,5/100 = 0.3m. It is suggested to choose a range of acceptable solutions instead of just one value 
to have a better insight on the possible solutions 
 

4. Obtain the homogenized mechanical properties of an equivalent metamaterial, there are two alternatives: 
a) For wire patterns (as they have appeared in this document so far, built up with assembled beams), use the 

ideal homogenized mechanical properties introduced in Chapter 4.8. Ideal homogenized mechanical 
properties and fully collected in Appendix I. Design guide.  

b) For filled-stars patterns use the homogenized mechanical properties introduced in Chapter 5.3. Stars 
filling.  
 

5. Rotate the pattern to its desired orientation. For historic Islamic geometric patterns with empty stars, it is 
done multiplying directly the mechanical properties times the rotation factors from Chapter 5.1. Directional 
mechanical properties. In case of the proposed variations and filled stars patterns, the designer has to calculate 
the rotation factor himself following the steps explained in that same chapter with the constitutive coefficients 
obtained from the tests and included in the Appendix II. Numerical results. 
 

6. Chose the structural base material, being it high strength concrete, steel, a composite or any other material. 
The homogenized mechanical properties times the modulus of elasticity of the base are the mechanical 
properties of the equivalent continuous material (except for the Poisson ratio that is taken directly) that will 
be inputted in the orthotropic material crated in a FEM software. 
 

7. Model the building with a FEM software, using continuous shear wall elements covering the whole façade. 
Apply the design loads and run the wind combination with a displacement limitation in the top floor.  
 

8. Run the model iteratively so the program can get the required wall thickness to meet the drift limitation. 
 

9. Saturation times the façade surface times the mean thickness, is an estimation of the required use of material 
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APPLICATION OF THE METHOD ASSESSMENT 
 

The homogenization method is assessed in Chapter 6.4. Accuracy assessment. For that purpose, a 50-storeys tall 
prismatic tower with a base length of 30m is analysed.  
 

      

FIG 7.2. Pattern D ETABS models. FIG 7.3. Pattern I ETABS models FIG 7.4. Pattern A ETABS models 

 

 Pattern D I A 

1 Beam model. Top displacement  836 mm 600 mm 804 mm 

2 Membrane model with beam mech. properties. Top displacement 897 mm 703 mm 800 mm 

3        Error introduced with the use of membrane elements (2/1 -100%) + 7.3 % + 17.1 % - 0.1 % 

4 Membrane model with ideal mech. properties. Top displacement 647 mm 575 mm 782 mm 

5        Effect of overlaps in final displacement (4/2 – 100%) -27.9 % -18.2 % -2.3 % 

6 Corrected top displacement ((1/2)*4 ) 603 mm 491 mm 786 mm 

7       Difference beam model with corrected top displ. (1/6 – 100%) + 38.6 % + 22.2 % + 2.3 % 

8       Difference predesign tool with corrected top displ. (4/6 – 100%) + 7.3% + 17.1 % - 0.1 % 
TABLE 7.1. Comparative beam model against predesign tool results   

 
Line 1 shows the top displacement when the diagrid is modelled with beam elements for a given pattern and 
saturation. Line 2 shows that top displacement when that same diagrid is modelled as a continuous wall with the 
corresponding homogenized mechanical properties obtained with beam elements. The error introduced with the 
substitution of the beam elements for a continuous wall is the difference between lines 1 and 2 and it stands below 
20% for the three patterns analysed and a relative beam depth in the middle of the design tables range. Line 4 shows 
the top displacement when the ideal homogenized mechanical properties are used and in all cases it is smaller as it 
takes into account overlaps that reduce the beams effective length. The effect of the overlaps is shown quantitatively 
in line 5  and it grows in importance with the relative bending strain energy present in each pattern.  
 
Assuming that the error introduced by the homogenization process is negligible in comparison with the error 
introduced by the stiffness-based design approach assumptions (accounted for with the substitution of the beam 
elements for a continuous wall), it is possible to estimate the expected top displacement of the structure. It has been 
done in line 6 by adding to the top displacement for the continuous wall with the ideal homogenized mechanical 
properties, the error introduced with the substitution of the beam elements for a continuous wall.  
 
Once the expected top displacement is obtained, it is possible to compare that value against the top displacement 
from modelling all the beams (line 1) and against the top displacement obtained by applying the predesign tool (line 
4). The estimation error incurred by modelling the building with beam elements is displayed in line 7 and the 
estimation for the error incurred by using the developed pre-design tool is displayed in line 8. As the error introduced 
in the homogenization process has been neglected, the predesign tool error (line 8) is the same as the error introduced 
with the substitution of the beam elements for a continuous wall (line 3) 
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7.1.2. RQ1. DISCUSSION  

It is possible to develop a methodology that automates and normalizes the study and comparison of any geometric 
Islamic patterns The result is a pre-design tool based on figures and tables with a satisfactory accuracy for pre-design 
and comparison of alternatives purposes. In fact, this fast and easy to apply pre-design tool is in some cases more 
accurate than modelling all the beam elements as it takes into account phenomena such as overlaps and mesh 
refinement. 

 
METHODOLOGY 
Each step of the methodology addresses a source of imperfection in the homogenized mechanical properties. The final 
result is an equivalent meta-material with an ideal behaviour corresponding to a panel of infinite by infinite modules 
restrained at its perimeter. The ideal homogenized mechanical properties obtained are a good benchmark for 
comparison of the different patterns and it is the best way to define  that equivalent meta-material. Deviations in the 
results inherent to the Finite Element Method such as singularities at the openings corners, the mesh size or the use 
of linear triangular elements (TRI3) instead of parabolic rectangular elements (QUAD8), are addressed in the mesh 
refinement.  
 
Conceptually, the homogenization errors are derived from the fact that in realty the structure will never be infinite, 
so the Representative Element Volume effect that has been accounted for in the refinement will appear again. 
However, the homogenization errors are smaller than the errors introduced by other assumptions derived from the 
stiffness-based design approach such as considering the façade as a thin-wall hollow section loaded in-plane. 
In some cases, the designer might be interested in applying this methodology for different patterns of his own creation, 
for variations from Chapter 3.3 Selection of historic geometric Islamic patterns or for the patterns already studied but 
with some distortions or modifications such as intermediate supports to assess their effects on the pattern 
performance. The designer willing to repeat this homogenization process, in a faster and more simple manner for 
practical purposes,  is encouraged to test 1x1 panels with an appropriate module definition and a mesh size of 
approximately beam depth divided by 12. 
 
In Chapter 4.3. Representative Element Volume (REV) it has been proved that symmetric boundary conditions provide 
an exact homogenization for symmetric mechanical properties (modulus of elasticity and Poisson ratio) whereas 
antisymmetric boundary conditions provide exact results for the antisymmetric mechanical properties (shear 
modulus). Thus, the symmetric mechanical properties are directly obtained when using membrane finite elements in 
the tests as the boundary conditions are in practice symmetric as the beams are restrained at different points of their 
depth. The antisymmetric mechanical properties can be addressed without the need of a refinement by choosing a 
module definition that goes from node to node without cutting any beam. Finally, in Chapter 4.6. Mesh refinement it 
has been observed that a mesh size  of beam depth divided by 12 is small enough to give an error or 2% in the results 
for a representative pattern.  
 
 
THE PREDESIGN TOOL STEP BY STEP 
The algorithm  for the predesign tool is fast and easy to apply in early stages of the project to compare the feasibility 
and relative performance of different building shapes and geometric Islamic patterns. The homogenization method 
was based on continuous linear elastic material shaping solid rectangular beam cross-sections, whose modulus of 
elasticity (Eb) is multiplied by some factors to retrieve the equivalent homogenized mechanical properties. This 
approach is well suited for concrete structures and it allows the use of different concrete grades. Nevertheless, this 
is approach is poorly suited for steel structures that is the material most likely to be used, as it will not have a 
rectangular solid cross-sections. Still, this method can be used for steel and composite structures identifying which 
cross-sections (with their corresponding saturations) have an equivalent area and in-plane inertia. The saturation will 
no longer provide a measure f the material employed, but the first chapter of the Appendix II. Numerical results, 
provides the bar lengths involved in a 1x1 panel for a given pattern.  
 
In the case of concrete structures, other effects such as creep for long-term deformations and cracking, can be 
estimated and applied indirectly via the base material modulus of elasticity. At any rate, the tool is labelled as “pre-
design” because the stress levels in the beams are unknown, making it impossible to perform strength checks or 
more exact deflection estimations based on stress levels and cracks such as time history analyses.  
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APPLICATION OF THE METHOD ASSESSMENT 
In the table 7.1 three different geometric Islamic patterns corresponding to square, pentagonal and hexagonal 
symmetries are applied to a prismatic 50-storeys tall building. When the diagrid is modelled with beam elements, the 
error introduced stands below 30% for the studied cases. In the model with beam elements, the reduced effective 
beam length from the overlaps is not taken into account, leading to increasing errors for patterns with increasing 
bending strain. In other words, the less efficient is the pattern, the less suitable is the modelling of the beam elements. 
In the case of the pre-design tool, the error is smaller as the overlaps are taken into account and it stands below 20% 
for the studied cases. As a conclusion, according to the three cases studied, the pre-design tool is actually more 
accurate than modelling all the elements of the diagrid with beam elements. 
 

 

But that level of accuracy is not homogeneous 
(it depends on each pattern) or continuous (it 
varies with the saturation). As the figure shows, 
as the saturation increases, the real behaviour 
is more susceptible to the overlaps effects, 
reducing the accuracy of the beam models. On 
the other hand as the saturation decreases, the 
beam theory applies better and the errors 
introduced by the predesign tool become more 
relevant.  FIG 7.5. Saturation effect on accuracy of pre-design tool against beam elements 

 
At the same time, the relative position of those curves will change for each pattern. The coarse patterns with a lot of 
short beams, with higher bending train energy ratio and more overlaps, will be prone to be more accurately designed 
with the pre-design tool whereas the patterns with triangular-shaped geometries and a few but slender elements will 
be more accurately designed with the beam model.  
 
As it does not depend just on the pattern but also the saturation and materiality of the structure, the engineer has to 
be able to judge whether the grid behaves as a wall or as a frame. The higher the relative beam depth in the provided 
tables, the more suitable will the pre-design tool be. 
 
The conclusion is that the developed pre-design tool is a success as it provides a level of accuracy higher than 
modelling all the beams. It is also faster and easier to implement to compare alternatives in early stages as the 
complexity of modelling the patterns is postponed to later stages. As the saturation decreases and the effective 
beam length influence in the beam model diminishes, the beam model will become more reliable than the pre-
design tool and vice versa.  
 
 

7.1.3. RQ1. FURTHER RESEARCH 

Further research can be carried out on the method level of the performance of structural grids inspired in historical 
geometric Islamic ornamental art: 
 

- Out-of-plane behaviour of the patterns for their application in domes and other shell structures with 
combined in- and out-of-plane behaviour. Interest: High 

 

- Assessment of the application to other materials such as steel and composite. Those materials are likely 
to be used in the design of tall buildings, but the accuracy of the pre-design tool is low for slender beams 
and the complexity of the nodes makes them economically inefficient. Interest: Moderate 

 

- Study of the effect of local high stresses on the strength, stability and long-term behaviour of the diagrid. 
In this research it is left to the engineers at later stages. Interest: Moderate 
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7.2. RESEARCH QUESTION 2. PATTERN LEVEL 
How do geometric Islamic patterns behave and compare when loaded in their plane? 

- Selection of historic Islamic patterns and their parametric variations 
- Characterization of the patterns’ structural behaviour 
- Performance comparison of the different patterns 
- Proposals for their improvement  

 

7.2.1. RQ2. SUMMARY 

SELECTION OF HISTORIC ISLAMIC PATTERNS 
The selection of the historic Islamic patterns and their parametric variation is done in Chapter 3.3.Selection of historic 
geometric Islamic Patterns. The patterns are generated from more basic geometric tessellation with an algorithm 
called Hankin method. 
  

 
FIG 7.6. Overview of some selected patterns  

 
CHARACTERIZATION OF THE PATTERNS´STRUCTURAL BEHAVIOUR 
The patterns are clustered in three main categories depending on their geometric symmetries: 
 

1. SQUARE SYMMETRY (Perpendicular isotropy) 
Patterns in this group are not isotropic as their homogenized mechanical properties vary depending on the direction 
under study.  However, those mechanical properties are always identical for two perpendicular axes. 𝐸𝑥 = 𝐸𝑦 and 

𝐸𝑥′ = 𝐸𝑦′, but 𝐸𝑥 ≠ 𝐸𝑥′. Patterns in this category have contact angles for dividers of 90º (45º 60º, 67.5º, 75º…) as 

those are the cases in which continuous straight lines can be formed.  
 

  

2% S) HOMOG.MECH. PROPERTIES 

Rot [º] 𝑬𝒉,𝒙 𝑬𝒉,𝒚 𝝂𝒉,𝒙𝒚 𝝂𝒉,𝒚𝒙 𝑮𝒉 

0 2.12% 2.12% 0.271 0.271 0.70% 
10 2.09% 2.09% 0.280 0.280 0.72% 
20 2.03% 2.03% 0.302 0.302 0.76% 

30 1.95% 1.95% 0.328 0.328 0.80% 

40 1.90% 1.90% 0.346 0.346 0.83% 
45 1.89% 1.89% 0.348 0.348 0.83% 
50 1.90% 1.90% 0.346 0.346 0.83% 
60 1.95% 1.95% 0.328 0.328 0.80% 
70 2.03% 2.03% 0.302 0.302 0.76% 
80 2.09% 2.09% 0.280 0.280 0.72% 

90 2.12% 2.12% 0.271 0.271 0.70% 
 

 

 
FIG 7.7. Mechanical properties rotated analytically for pattern S (square symmetry)  
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2. PENTAGONAL SYMMETRY (Orthotropy) 
Patterns in this group are orthotropic as their homogenized mechanical properties are different in the x- and y- 
direction. Those mechanical properties remain different for two perpendicular axes 𝐸𝑥′ ≠ 𝐸𝑦′, except for the 

particular case of 45º at which the pattern behaves as isotropic. It is called pentagonal symmetry because the two 
directions of symmetry are located under 72º, which is one fifth of the circle. Patterns in this category have contact 
angles for dividers of 72º (36º, 54º and 72º) as those are the cases in which continuous straight lines can be formed. 
 

  

4% R) HOMOG.MECH. PROPERTIES 

Rot [º] 𝐸ℎ,𝑥 𝐸ℎ,𝑦 𝜈ℎ,𝑥𝑦  𝜈ℎ,𝑦𝑥  𝐺ℎ 

0 3.06% 3.99% 0.420 0.548 1.68% 

10 3.20% 4.09% 0.408 0.521 1.62% 

20 3.57% 4.33% 0.377 0.458 1.48% 
30 4.01% 4.53% 0.346 0.392 1.32% 
40 4.37% 4.55% 0.332 0.346 1.21% 
45 4.49% 4.49% 0.335 0.335 1.20% 

50 4.55% 4.37% 0.346 0.332 1.21% 

60 4.53% 4.01% 0.392 0.346 1.32% 

70 4.33% 3.57% 0.458 0.377 1.48% 
80 4.09% 3.20% 0.521 0.408 1.62% 
90 3.99% 3.06% 0.548 0.420 1.68% 

 

 

 
FIG 7.8. Mechanical properties rotated analytically for pattern R (pentagonal symmetry)  

 
3. HEXAGONAL SYMMETRY (Pure isotropy) 

Patterns in this group are pure isotropic as their homogenized mechanical properties are the same regardless on the 
direction under study. Those mechanical properties are always identical for two axes. 𝐸𝑥 = 𝐸𝑦 = 𝐸𝑥′ = 𝐸𝑦′  in all 

cases. Patterns in this category have contact angles for dividers of 60º (30º, 45º 60º, 75º…) as those are the cases in 
which continuous straight lines can be formed.  
 

  

2.5% T) HOMOG.MECH. PROPERTIES 

Rot [º] 𝐸ℎ,𝑥 𝐸ℎ,𝑦 𝜈ℎ,𝑥𝑦  𝜈ℎ,𝑦𝑥  𝐺ℎ 

0 3.19% 3.19% 0.397 0.397 1.14% 
10 3.19% 3.19% 0.397 0.397 1.14% 
20 3.19% 3.19% 0.397 0.397 1.14% 
30 3.19% 3.19% 0.397 0.397 1.14% 
40 3.19% 3.19% 0.397 0.397 1.14% 
45 3.19% 3.19% 0.397 0.397 1.14% 
50 3.19% 3.19% 0.397 0.397 1.14% 
60 3.19% 3.19% 0.397 0.397 1.14% 

70 3.19% 3.19% 0.397 0.397 1.14% 

80 3.19% 3.19% 0.397 0.397 1.14% 

90 3.19% 3.19% 0.397 0.397 1.14% 
 

 

 
FIG 7.9. Mechanical properties rotated analytically for pattern S (square symmetry)  

 

Symmetry Square Pentagonal Hexagonal 

Pattern D, E, K, L, M, O, P, Q, S I, J, R A, B, C, F, G, H, N, T 
TABLE 7.2. Type of symmetry of all patterns  

 

 

PERFORMANCE COMPARISON OF THE DIFFERENT PATTERNS 
As it is to be expected, the best performing patterns are those that present a higher continuity for the load path. 
Discontinuities and changes in the load path lead to higher bending strain energy that are less efficient. For “higher 
performance”, here it is understood that a great stiffness is achieved with the same amount of material, not taking 
into account other aspects as complexity or number of nodes and elements. The comparison graph is available in 
Chapter 5.2. Wire patterns performance. The following pictures show in order the best and worst performing patterns 
with 45% saturation.  
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BEST PERFORMING PATTERNS 
 

     
A) YESLI MOSQUE I) HASHT BEHESHT D) LAHORE FORT COMPLEX J) MODARI-KHAN MADRASH H) GENERALIFE 

 

FIG 7.10. Best performing historic patterns. Wire variation, saturation 45%  

 
WORST PERFORMING PATTERNS 
 

     
E) SHIRVANSHAHS PALACE C) SABZ PUSHAN G) TOMB OF SALIM CHISHTI T) ALHAMBRA K) SULTAN BAYEZID II 

 

FIG 7.11. Worst performing historic patterns. Wire variation, saturation 45% 
 
 
PROPOSALS FOR IMPROVEMENT 
The best performing patterns are those that present a shorter load path. The improvement proposed at pattern level 
to enhance the grid performance is to fill the stars to provide continuity to the load path.  
 

  

FIG 7.12. Tessellation 6.6.6. θ =75º Sat. = 40%, wire variation FIG 7.13. Tessellation 6.6.6. θ =75º Sat. = 40%, filled variation 

 
Contrary to intuition, filling the gaps does not always lead to stiffer solutions for the same amount of material. Despite 
providing a higher degree of continuity in the path load and reducing the bending to axial strain energy ratio, filling 
the stars also involves an increment of the material use. Comparing for the same amount of material, filling the gaps 
leads to more slender cross-sections at their weakest points, which are more heavily affected by the bending 
deformations and increase the risk of collapse.  
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7.2.2. RQ2. DISCUSSION 

SELECTION OF HISTORIC ISLAMIC PATTERNS 
A first selection was originally carried out with the help of the book Islamic Geometric Patterns19, but a closer look on 
showed that many of the most spread patterns were not included in that book and pictures of some of the patterns 
from the book were not easily available on the internet (as pattern L. Ben Yusuf madrasa). The final selection comes 
from browsing thousands of pictures on the internet and choosing those that seemed the most representative. The 
names are given after the location where the attached picture was taken, not meaning that that is the only or first 
place where that pattern was used. It is worth noting that some of the patterns in this document have different names 
than the ones from the book Islamic Geometric Patterns19 due to the pictures’ availability (as E. Palace of the 
Shirvanshahs or H. Generalife). The variations are the result of changing one of the parameters involved in the 
implementation of the Hankin method.  
 
Besides the identification from pictures of many of the patterns included here, the deduction of the generating 
tessellation and the implementation of the Hankin method to automate its drawing has been done in most of the 
cases by the first time by the author of this master thesis.  
 
In conclusion, it does not exist a defined directory that compiles all the existing geometric Islamic patterns, names 
them and provides rules for their generation. Some researchers as Y. Abdullahi and M. R. Bin Embi in their article 
Evolution of geometric Islamic patterns17 have been able to track their evolution in time and space and other authors 
as Eric Borough in his book Islamic Geometric Patterns19 provide a recipe for the drawing of many of them step by 
step. But still, the final selection, naming  and drawing methodology has been arbitrary and will differ in many cases 
with other authors.  
 
 

CHARACTERIZATION OF THE PATTERNS´STRUCTURAL BEHAVIOUR 
At early stages of the research it was not possible to know if the grids based on historic Islamic patterns were going to 
have an isotropic, orthotropic or anisotropic behaviour when loaded in their plane. The result of this research shows 
that the patterns can show a isotropic, orthotropic or perpendicular isotropic behaviour depending on the angles 
between their directions of symmetry. Just by testing the patterns in two different directions would have been not 
enough to appropriately define their behaviour as the perpendicular isotropy would have gotten mixed up with pure 
isotropy. Is it precisely the use of the direction cosines that allowed this identification. 
 
The directional structural behaviour definition of the patterns provides a tool to the designer to rotate the panels as 
best suited, but it also allows to identify the strong and weak directions for the patterns performance comparison.  
 
The structural grids inspired in historic Islamic patterns are treated here as continuous meta-materials but they are 
actually structural grids. This artificial assimilation done in the homogenization leads in some cases to uncommon 
situation such as negative Poisson ratios, Poisson ratios over 0.5, or in this cases to perpendicular isotropies. The 
perpendicular isotropy being defined as having the same mechanical properties for any two in-plane 
perpendicular directions, but different for other angles. 
 
The most important outcome from this point is that the patterns with square symmetry (symmetry directions at 
90º) display a perpendicular isotropic behaviour, the patterns with pentagonal symmetry (symmetry directions at 
72ª) display an orthotropic behaviour, and the patterns with hexagonal symmetry (symmetry directions at 60ª) 
display an isotropic behaviour 
 
 
PERFORMANCE COMPARISON OF THE DIFFERENT PATTERNS 
One of the first lessons in structural engineering is that triangles are the simplest self-stable structures. When a truss 
is loaded in its plane, the load distribution methods based on graphic statics will decompose the load into vectors in 
the elements directions, assigning to each one just an axial force. The geometric Islamic patterns are not trusses, in 
fact, most of them develop bending stresses that would lead to the collapse of the structure if the nodes were 
pinned. This has been an issue throughout the document as the patterns performance was not linear with the relative 
beam depth, due to the cubic increment of the cross-section inertia with its depth. This, has required the reiterative 
use of tables and the performance quantification of each pattern for different beam depths 
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FIG 7.14. A. Yesli mosque 

However, when it comes to assessing the patterns performance the 
principles are the same and they meet the basic engineering 
judgement: The patterns will perform better as the level of 
continuity and the level of triangularization increases. Or in other 
words: The patterns will perform better as the bending vs axial strain 
energy ratio decreases. 
 
It does not come as a surprise that the best performing pattern (A. 
Yesli mosque) is almost a truss composed of triangles and completely 
continuous, while the worse performing pattern (E. Shirvanshahs 
palace) with sharp turn in the load path leading to big bending 
moments. 

 
FIG 7.15. Shirvanshahs palace 

 
 
PROPOSALS FOR IMPROVEMENT 
Throughout history, the geometric Islamic patterns have been used ornamentally in a wide range of materials and 
artistic ways. In many cases, their contour has been carved in walls, painted or built up in sun blockers. However, in 
other cases the are the result of the wire idealization of the contact lines between different color tiles. In the case of  
the figure 7.16, it can be argued that the assembly of the full white stars is a more faithful representation of the 
composition than the mere outline of its silhouette with lines. 
 
The proposal for improvement at the pattern retakes this composition concept at the time that it addresses the key 
feature of a pattern performance: its load path. By filling the stars (or the gaps in those patterns that are not actually 
starred), the continuity in the load path is improved and reducing the bending to axial strain energy ratio. Filling the 
stars increases the gird stiffness in all cases, but it incurs on more material use. When the performance of the grid 
filled and unfilled is compared for the same use of material (or saturation) it might occur that the simplification of 
the load path does not compensate the extra material needed resulting in a worse performing solution. This 
phenomenon varies for each pattern. While some patterns´ performance increases significantly, in other cases they 
can be barely affected or they can even see their performance reduced as displayed in figure 7.17. 
 

 
FIG 7.16. Alhambra tiles30 

 
FIG 7.17. Change of mechanical properties for historic patterns, Sat. 45%, from wire to filled patterns 

 
A simplification of their behaviour would be to consider the filled stars as rigid bodies connected between them by 
pinned nodes.  The result is that the worse performing patterns are those with thin points of contact such as the 
arrows and star patterns whereas the best performing patterns are those with a balanced cross-section in all locations 
 
 



117 

 

The designer must bear in mind that the results provided in this document and the graphs derived from them are 
obtained from a linear elastic analysis. The contact points between the star will experience a concentration of stresses 
level that in many cases can lead to plastic hinges and other non-linear effects.  
 
Finally, the degree of opacity required for other design purposes such as solar gain in their application on domes in 
public spaces will affect the solution adopted. Whereas it is recommended to use the wire solutions with light and 
strong materials such as timber, steel or composite beams to accomplish low saturations, for a high saturation the 
filled patterns made of concrete or 3D printed cementious materials will be probably better suited.  
 
 

7.2.3. RQ2. FURTHER RESEARCH 

Further research can be carried out on the pattern level of the performance of structural grids inspired in historical 
geometric Islamic ornamental art: 
 

- Broadening of the scope to other historic patterns not included in this research, to the variations proposed 
or to new creations. The most important patterns have already been included and with 20 patterns the 
range is very large, however it might provide a very efficient pattern not considered so far. Interest: Low 

 

- Further studies on the stress levels reached and their effects on strength and stability of the grid. Special 
importance in the case of filled patterns with low saturations due to small cross-section at the contact 
points. Interest: Low 
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7.3. RESEARCH QUESTION 3. BUILDING LEVEL 
Can Islamic inspired patterns become a feasible alternative to traditional diagrid systems for tall buildings? 

- Performance comparison of the different patterns and the conventional diagrids 
- Overview of practical applicability best performing patterns 
- Special cases on tall buildings 

 
 

7.3.1. RQ3. SUMMARY 

PERFORMANCE COMPARISON AGAINST CONVENTIONAL DIAGRIDS 
In Chapter 6.2. Diagrids vs historic patterns performance, the wire and filled variations of the historic patterns are 
compared against the conventional diagrid (Z). The following graph is the result of that comparison and it shows that 
patterns F*, P*, I, D and E, could become a feasible alternative to conventional diagrids in punctual cases, whereas 
patter A (Yesli Mosque) actually overcomes the conventional diagrid performance. Pattern B75* is a variation of the 
filled pattern B (Great Mosque of Damascus), with similar homogenized mechanical properties to the conventional 
diagrid for a 45% saturation in both cases. That pattern is considered historic for other authors as E. Broug19. but it has 
not been included as such due to the difficulties to find a picture that justifies its spread use. 
 

 
FIG 7.18. Performance comparison of historic patterns against conventional diagrid system, saturation 45 

 
GRIDS WITH SIMILART PERFORMANCE TO CONVENTIONAL DISAGRIDS (SAT. 45%) 
 

      
A) YESLI MOSQUE P*) MOSQUE OF AL-

SALIH TALA’I 
F*) MUSTANSIRIYA 

MADRASA 
E*) SHIRVANSHAHS 

PALACE 
I) HASHT BEHESHT D) LAHORE FORT 

COMPLEX 
FIG 7.19. Best performing historic patterns 
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OVERVIEW APPLICABILITY  
Their suitability and applicability in practice is extensively discussed in Chapter 6.3. Overview of best performing 
patterns. The most suitable for tall building due to their simplicity, performance and possibility to integrate the floor 
slabs, are in order:  
 

1. A) Yesli Mosque wire and filled variations  
2. B75*) Great Mosque of Damascus filled variation 
3. E*) Palace of the Shirvanshahs filled variation 
4. F*) Mustansiriya Madrasa 
5. I) Hast Behesht wire variation 

 

 
FIG 7.20. Application of pattern A to 4m inter-story 
building. Sat. 35% 

 
FIG 7.21. Application of pattern A, to 4m inter-story 
building. Sat. 35% 

 
FIG 7.22. Application of pattern B75* rotated 30º, 
to 4m inter-story building. Sat. 45 
 

 
FIG 7.23. Application of pattern E* to 4m inter-
story building. Sat. 55% 
 

 

 
 

FIG 7.24. Application of pattern F* rotated 30º, to 
4m inter-story building. Sat. 40% 
 

 

 
 
FIG 7.23. Application of pattern I rotated 54º, to 
4m inter-story building. Sat. 45% 
 

 
 
SPECIAL CASES IN TALL BUILDINGS 
the three best performing wire patterns (A, I and D) have previously been used to assess the accuracy of the 
homogenization method and the pre- design tool providing satisfactory results in Research Question 1 Method level. 
The pre-design tool was estimated to have an approximate error of 10% for a middle of the range beam size. That 
error level is similar to the error estimated for beam model but less scattered for all patterns. 
 
The implementation of the pre-design tool in real projects can lead to geometries much more complex than the 
studied prismatic case, introducing distortions in the grid that have not been accounted for in the homogenization 
process. The quantification of those deviations will depend on the kind of effect, its location and extension in the 
building, the degree of misshape incurred and even on the pattern chosen. In order to have a quantitative estimation 
on the error introduced by the following effects, it would be necessary to test each pattern for each effect at 
different degrees individually and in combination, which is beyond the scope of this research. This chapter has been 
included to make the designer aware of the existence of those effects and what kind of influence in the results would 
be reasonable to be expected. The exercise has been designed to introduce and combine the following effects one by 
one in increasing complexity: 
 

- Squeezing: Patterns get squeezed as the floor extension reduces keeping the same storey height.  
- Distortion:  Patterns get distorted if a rotation is introduced between consecutive storeys.  

- Intermediate supports: As the panel size increases, each module will span more than one floor at the time.  
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The following pictures display the abovementioned three effects for pattern I. Hasht Behesht rotated 90º: 
-  

    
FIG 7.30. Homogenized pattern FIG 7.31. Squeezing effect FIG 7.32. Distortion effect FIG 7.33. Intermediate supports 
 
Those effects have been introduced gradually in 3 following examples, combining them in increasing complexity. It 
does not provide a quantitative estimation of the error introduced by each effect, it simply shows when and where 
those effects appear to make the designer aware of their existence and point out the need of further research. 

 

  

 

  

 

  
        

FIG 7.24.  ETABS models tower A       FIG 7.25. ETABS models tower D    FIG 7.26.  ETABS models tower I 
 
 

 Pattern A D I 

1 Beam model. Top displacement  826 mm 985 mm 307 mm 

2 Membrane model with beam mech. properties. Top displacement 746 mm 836 mm 586 mm 

3        Error introduced with the use of membrane elements (2/1 -100%) - 9.6 % - 15.1 % + 90.9 % 

4 Membrane model with ideal mech. properties. Top displacement 728 mm 601 mm 485 mm 

5        Effect of overlaps in final displacement (4/2 – 100%) - 2.4 % -28.1 % -17.2 % 

6 Corrected top displacement ((1/2)*4 ) 806 mm 708 mm 254 mm 

7       Difference beam model with corrected top displ. (1/6 – 100%) + 2.5 % + 39.1 % + 20.8 % 

8       Difference predesign tool with corrected top displ. (4/6 – 100%) - 9.6 % - 15.1% + 90.1 % 
TABLE 7.3. Comparative beam model against predesign tool results   
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Line 1 shows the top displacement when the diagrid is modelled with beam elements for a given pattern and 
saturation, whereas line 2 shows that top displacement when that same diagrid is modelled as a continuous wall with 
the corresponding homogenized mechanical properties obtained with beam elements. The error introduced with the 
substitution of the beam elements for a continuous wall is the difference between lines 1 and 2 and it is 10- 20% for 
towers A and D, and 90% for tower I. Line 4 shows the top displacement when the ideal homogenized mechanical 
properties are used and in all cases it is smaller as it takes into account overlaps that reduce the beams effective length. 
The effect of the overlaps is shown quantitatively in line 5  and it grows in importance with the relative bending strain 
energy present in each pattern. Assuming that the error introduced by the homogenization process is negligible in 
comparison with the error introduced by the stiffness-based design approach assumptions (accounted for with the 
substitution of the beam elements for a continuous wall), it is possible to estimate the expected top displacement of 
the structure. It has been done in line 6 by adding to the top displacement for the continuous wall with the ideal 
homogenized mechanical properties, the error introduced with the substitution of the beam elements for a continuous 
wall. Once the expected top displacement is obtained, it is possible to compare that value against the top displacement 
from modelling all the beams (line 1) and against the top displacement obtained by applying the predesign tool (line 
4). The estimation error incurred by modelling the building with beam elements is displayed in line 7 and the 
estimation for the error incurred by using the developed pre-design tool is displayed in line 8. As the error introduced 
in the homogenization process has been neglected, the predesign tool error (line 8) is the same as the error introduced 
with the substitution of the beam elements for a continuous wall (line 3) 
 
 

7.3.2. RQ3. DISCUSSION   

PERFORMANCE COMPARISON AGAINST CONVENTIONAL DIAGRIDS 
Triangulated  structural systems such as trusses and diagrid systems are commonly used in structural engineering 
as the stiffest structural systems. That is why it comes as a surprise that a structural grid based on geometric Islamic 
patterns has been found with a higher performance than the conventional diagrids (A. Yesli Mosque), another one 
with the same level performance (B75*. Great Mosque of Damascus) and a few more with smaller but close level of 
performance. 
  

   
FIG 7.27.  Pattern A (Yesli Mosque) FIG 7.28.  Pattern Z (Conventional diagrid) FIG 7.29.  Pattern B75* (Great Mosque of Damascus) 

 
Pattern A) Yesli Mosque. A closer look to Figure 7.27 and Figure 7.28 shows that both pattern are practically identical. 
They both are composed by crossing lines at 60º in the same orientation and have hexagonal geometry, so both are 
isotropic. The only difference is the location of the horizontal elements. In the diagrid system, the horizontal beams 
meet the diagonal beams at their intersecting node, whereas in the tessellation 3.6.3.6 the horizontal elements meet 
the diagonals at mid height. This results in shorter elements and therefore stiffer elements in pattern A. As the nodes 
have been modelled fixed, there is going to be bending moments that contribute to the panels deformation. That 
bending contribution to the deformation is secondary compared with the axial deformation, but it can make the 
difference especially since the nodes are modelled as fixed instead of pinned. Another effect not considered here as 
it is a linear elastic analysis, is that the horizontal elements reduce the effective length of the diagonals providing 
lateral stability against buckling. It comes at the cost of having more nodes but at the same time simpler connections. 
Other explanation would be to consider the deviation in the performance an error from the diagrid homogenization 
introduced by the horizontal top and bottom horizontal elements overlapping the panels boundary. 
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Pattern B75*) Great Mosque of Damascus. This is the other structural grid with a similar performance to conventional 
diagrids. Figure 29 is the superposition of this pattern with a conventional diagrid and it  shows that pattern B75* can 
be understood as a conventional diagrid with a varying beam depth along its elements. It is expected that this pattern 
would have a similar performance as a conventional diagrids in linear elastic regime. It displays a hexagonal symmetry 
so its structural behaviour is isotropic too. 
 
This research is based on the stiffness-based design approach, and since it only uses the modulus of elasticity in the y-
direction and the shear modulus as material parameters, those are the mechanical properties chosen to assess their 
relative performance. In real buildings there are out-of-plane, second order and non-linear effects, and specially 
horizontal forces that taken into account could disrupt the performance classification obtained. As an example, the 
pattern with the highest possible homogenized modulus of elasticity in the y-direction (and the smallest possible axial 
to bending strain energy) would be a striped pattern made of vertical lines. For a 45% saturation it would have an 
equivalent modulus of elasticity in the y-direction of 45%, twice as much as the conventional diagrid.  
 
Conventional diagrid has been proven isotropic due to their hexagonal symmetry, so a good performance is also to be 
expected when horizontal loads are introduced in combination with the main vertical loading. Patterns A, A*, B75* 
and P* are also isotropic due to their hexagonal symmetry as the conventional diagrids, so their relative 
performance compared to the conventional diagrid should stand even if horizontal loads are introduced in 
combination with the vertical loading.  
 

  

In the particular case of tall buildings, the 
current tendency is to move away from the 
equilateral triangles from the conventional 
diagrid systems towards more lender 
triangles that optimize the equivalent 
modulus of elasticity in the x- and y-direction 
relationship. A clear example is the Merdeka 
tower31 currently under construction and 
expected to be with a 664m height the 
world´s third tallest building. The optimum 
diagrid design would be based on the Michell 
truss, with pointy triangles at the building 
base and shallow triangles at the top levels.    FIG 7.30.  Merdeka tower31 

 
This is mentioned to point out that there are other diagrid systems besides the equilateral conventional diagrids that 
are better suited in the particular cases of tall buildings and are not included in the comparison table. 
The conclusion is that the response to research question is a clear yes. It possible to design structural grids inspired 
on historic Islamic patterns that have similar performance levels to conventional diagrids and therefore they can be 
used as an alternative to conventional diagrids in some cases for practical applications. 
 
 
OVERVIEW APPLICABILITY  
The geometric Islamic star patterns have been historically used as ornamentation elements. They have been carved, 
painted, cladded with tilling or ever built up in sun blockers, but historically they were never used as the building main 
bearing structural system. The new applications of the geometric Islamic patterns as bearing systems introduces a 
knowledge gap about their in-plane structural behaviour and relative performance. Thanks to the new 
computational drawing and analysis tools, this lack of previous experience is not being an impediment for architects 
to propose spectacular designs with some of the patterns studied in this document.  
 
A story of success would be the several buildings designed by the Japanese architect Shigeru Ban using the best 
performing pattern A. Yesli Mosque. Probably the architect was not inspired by the Islamic tradition when he came 
with this tessellation and it is simply its high structural performance, simplicity and aesthetics that led him to use it. 
Nevertheless, the conclusion rom this research allow the broader public to be aware of the suitability of this solution. 
An example of the many buildings proposed by Shigeru Ban with this structural grid is La Seine Musicale32 in France: 
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FIG 7.31. La Seine Musicale by Shigeru Ban 
 

Unfortunately, this knowledge gap has not been successfully overcome by other architects. In the next example, 
Moataz Faissal Farid33 use the pattern E. Shirvanshans Palace for his Islamic Centre structural façade. In this particular 
case, it is clear that the architect has been influenced by the Islamic tradition and he has used that seemed appropriate 
for its simplicity and aesthetics. Despite the beautiful looks of the project, this document has demonstrated that E. 
Shirvanshahs Palace is the worst performing pattern, it has been used with its weakest orientation that it would have 
benefited greatly of filling the crosses.  
 

  

FIG 7.32.Morataz Faissal Farid proposal for a new Islamic centre  

 

This document bridges that gap with comparative tables to identify the best performing patterns and their best 
orientation. In that sense, it is considered that this research successfully achieves the goal of providing a useful tool 
for the decision making in the design process of bearing geometric Islamic patterns.  
 

 
SPECIAL CASES IN TALL BUILDINGS 
The homogenization method used in this document has provided for each pattern the ideal homogenized 
mechanical properties of an infinite panel. This is the best approach to get the equivalent meta-material of a micro-
scale structural grid such as carbon nanotubes, but it has some disadvantages when it is applied to large structural 
grids. Its parametric implementation to objects with different geometry has an impact in the internal geometry of 
the used meta-material. This is especially true in the case of tall buildings, the floors constitute a series of 
equidistant planes that remain plane and in the same position regardless of the external geometry. The internal 
geometry of the meta-material cannot freely move, warp and adapt to the external geometry due the floors constrain, 
introducing the effects named here squeezing and distortion. The other effect of the floors in that they introduce a 
series of new supports every time they touch the diagrid. Due to the floor great in-plane stiffness and limited out-of-
plane stiffness, those intermediate supports prevent the nodes differential horizontal displacement in what is called a 
diaphragm action. Those intermediate supports can change the internal behaviour of the meta-material, making the 
homogenization done completely unsuitable in some particular cases.  
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Table 7.2 shows the results of the method accuracy assessment, applying three different patterns to the same 50-
storeys prismatic building. The relative beam depth has been chosen in the cases in the middle of the of the tables 
range, corresponding to a homogenized modulus of elasticity in the y-direction of approximately 10% Eb. The 
conclusion was the pre-design tool has a higher accuracy than modelling all the bars, but it was faster and easier to 
implement. Table 7.3 shows the results of applying the exact same procedure to other three examples with a different 
geometry. The patterns used are the same as well as their saturation and therefore their homogenized mechanical 
properties. The width differs but since it is a linear elastic analysis, the relative results in table 7.3 are comparable 
one on one with the values from table 7.2.   
 
The response change due to the alteration of the grid geometry could directly be observed by comparing the drifts 
from the model with all the beam elements and from the application of the predesign tool as the homogenization 
process does not take into account those effects. The intermediate supports and the distortion effects cannot be 
addressed using the predesign tool, however, the squeezing effect can be partly compensate by reducing the 
module size in the x-direction in each squeezed level.   
 
Tower A: Yesli Mosque pattern with squeezing effect at the top. This tower is very similar to the examples used in the 
method accuracy assessment with the difference that the top floors have been reduced introducing the squeezing 
effect in that region. This example tries to identify how effective would be to adapt the modulus size in the x-
direction to compensate the squeezing effect. The estimated error of modelling all the beam elements is +2.5%, 
similar to the +2.3% from table 7.2. The estimated error of the predesign tool is -9.6%, whereas it was just -0.1% in the 
method assessment in table 7.2. It has been observed a significant increment in the error from adapting the relative 
beam depth to the new definition of the module size in the x-direction. This approach is not is advisable as the relative 
beam depth has more influence in the stiffness than the change of geometry from the squeezing effect. This  
 
Tower D: Lahore Fort Complex pattern, squeezing effect increasing throughout its height with constant distortion at 
each level. The squeezing effect is addressed by increasing the saturation as the perimeter decreases (smaller modulus 
size in the x-direction implies that the same absolute beam depth has a bigger relative beam depth). It is assumed that 
most of the error incurred will correspond to the great distortion effect. The error introduced by the use of the 
membrane elements (line 3) is -15.1% instead of the +7.3% from the method accuracy assessment in table 7.2. If the 
squeezing effect is assumed mostly addressed by the saturation variation, the drift difference from -15.1% to +7.3% is 
caused mostly by the distortion effect. In other words, tower D should have deflected 775mm (7.3% less than the 
membrane model that does not take into account the distortion effect) but it deflected 985mm instead. Those 210mm 
are cause by the distortion effect. In this particular case, for this geometry, pattern and distortion level, the distortion 
effect has increased 27% the deflections in the beam model. As the predesign tool was providing 7.3% larger 
deflections than the expected top displacement, in this particular case the predesign tool would require a distortion 
factor of 1.2 to be applied to the obtained deflections with the predesign tool. This distortion factor can easily be 
increased to 1.3 if it´s considered that the way the squeezing effect was addressed provided an extra 10% of stiffness 
as in tower A. 
 
Tower I. Hasht Behseht pattern, squeezing effect at mid height of the tower combined with a small constant distortion 
and intermediate supports derived from modules bigger than then floor height. The squeezing effect is partly 
compensated by adapting the saturation with the module size in the x-direction corresponding to each level. The 
distortion introduced is much smaller than in tower D so qualitatively it is expected that the distortion effect will 
increase the beam model deflection below that 20%, although each pattern can respond differently. The error 
introduced with the use of membrane elements (line 3) is +90.9% instead of the +17.1% from the method accuracy 
assessment in table 7.2. As the membrane model with beam homogenized mechanical properties deflects 586mm, 
the beam model would be expected to deflect 485mm (17.1% less than 586mm) if the distortion effect is not 
considered or approximately 533m (10% more of 485mm) if the distortion effect is accounted for. However, the 
measured deflection in the beam model is 307mm, approximately 40% less of the expected defection if the 
intermediate supports were not taking place. In other words, the intermediate supports are stiffening the pattern by 
introducing transversal rigid planes inside the pattern module that can greatly alter the bending to axial strain 
energy ratio. In this particular case, the intermediate supports reduce expected deflections approximately 40%, but 
it will depend on the pattern under study and the relative distance of the planes rigid planes inside the pattern. In 
all cases, the intermediate supports will increase the structural grid performance and not taking it into consideration 
at the predesign stage will lead to conservative designs.  
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In conclusion, the homogenization process obtained an equivalent ideal material corresponding to a plane infinite 
panel that will not correspond with the built structural grid. The use of complex geometries and its application to 
tall buildings introduce effects not considered in the homogenization that will disrupt the expected structural 
performance. Those effects are minimized in the case of other shells structures such as does but can be important 
in the case of tall buildings. It is not advisable to take into account the squeezing effect by adapting the saturation 
with the change of the modulus size in the x-direction as the relative beam depth affects the overall stiffness more 
than the geometry change derived from the squeezing effect. The distortion effect cannot be accounted for and 
depends on the angle of the distortion and the pattern. However, in a representative case it has been found a 
required correction factor of approximately 1.2-1.3 that is in line with other uncertainty factors used in practice. 
Finally, the intermediate supports can have a great influence in the final drift. Its quantity depends on the pattern 
used and the number of diaphragms inside the module. Nevertheless, the introduction of intermediate supports is 
always beneficial and not considering them will always lead to more conservative solutions.  
 
 

7.3.3. RQ3. FURTHER RESEARCH 

Further research can be carried out on the building level of the performance of structural grids inspired in historical 
geometric Islamic ornamental art: 
 

- Study cases and practical comparison of the application of tessellation 3.6.3.6. (here named pattern A. 
Yesli Mosque) against conventional diagrid systems in a variety of materials. One important conclusion is 
that this pattern can become a feasible alternative to conventional diagrids. This finding can have an 
impact on industry, so a more in depth assessment and further research of that specific pattern  is 
recommended. Interest: Very high 
 

- Further studies on the pattern size effect on the Islamic structural grid behaviour applied to tall buildings. 

As the module grows, the pattern can span several levels at the same time, introducing intermediate 

supports at the grid intersection with the floor slabs. This diaphragm effect provides a higher stiffness to 

the bearing system and it can alter significantly the pattern behaviour. Interest: High. 
 

- Further studies on the squeezing and distortion effects on the Islamic structural grids behaviour. 

Characterization and quantification for different angles and levels of implementation. Interest: High 
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