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Abstract

The development of contemporary source code auto-
completion tools have significantly boosted productivity
and efficiency of developers. In 2021, the GPT-2-based
Transformer CodeGPT was developed to support code
completion and text-to-code generation. Similarly to most
code models however, CodeGPT was trained on a lim-
ited set of widely-used languages (Java, Python) - lead-
ing to constrained efficacy in lower-resource languages.
This motivated us to research CodeGPT’s performance
on the token-level code completion task across high- and
low-resource languages. We investigate in which scenarios
CodeGPT predicts incorrect tokens with high certainty
using a tuned lens, followed by studying attention pat-
terns that underlie the observed behaviour. Our findings
indicate that CodeGPT is most competent in Java and
Python code (Top-1 accuracies: 69.2% and 68.2% respec-
tively). It generates false predictions with highest confi-
dence when it encounters unfamiliar constructs in low-
resource languages, or code structures that cannot be pre-
dicted from left context only. Moreover, we find a positive
correlation between null attention and model confidence.
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1 Introduction

Ever since the first Transformer-based LLMs GPT [1] and
BERT [2] were introduced in 2018, multiple efforts have been
made to train language models on code to support program-
ming tasks. Earlier works have indeed demonstrated that the
Transformer’s self-attention mechanism - allowing for learn-
ing valuable contextual relationships across input tokens - is
effective in the context of source code [3, 4]. In fact, the in-
corporation of code completion tools such as GitHub Copilot'
within IDEs and online editors has led to a substantial boost
in productivity and efficiency of developers [5].

Multiple studies have attempted to explain why these code
models are successful. By structurally analyzing Code-
BERT [2] and GraphCodeBERT [6], Wan et al. [3] revealed
that the syntax structure of code is preserved in the hidden
model layers. Furthermore, Chen et al. [4] invented CAT-
probing to demonstrate that attention scores relate to dis-
tances between AST nodes. Despite the state-of-the-art per-
formance exhibited by LLMs across a diverse range of code
intelligence tasks [7], it is crucial to acknowledge that these
models are predominantly trained on limited sets of widely-
used programming languages. Consequently, their efficacy
may be constrained when applied to lesser-known languages
- such as Objective-C and Julia. However, none of the earlier
works have shed light onto performance of code models on
low-resource languages.

Thttps://github.com/features/copilot

Hence, in this work we aim to analyze the cross-lingual
performance of the GPT-2-based model CodeGPT? - whilst
performing the single-token code completion task on both
high-resource languages (Java, Python, C++) and low-
resource languages (Kotlin, Go, Julia). By identifying cross-
lingual disparities, we aspire to establish a foundation of
knowledge upon which to construct models for low-resource
languages in the future.

The main research question this paper aims to answer is:
How does CodeGPT perform on the token-level code
completion task across multiple languages?

To guide this research, two sub-questions will be addressed:

1. In what scenarios does CodeGPT predict incorrect
tokens with high confidence?

2. Are there patterns in CodeGPT’s attention mecha-
nism across different languages?

The main contributions of this work can be summarized as:

* A cross-lingual investigation of weak areas of CodeGPT
during code completion, demonstrating it generates false
predictions with high confidence (RQ1) when encoun-
tering unfamiliar constructs or those that cannot be pre-
dicted from left context only. (Sections 3.3, 5.1)

* An attention investigation, revealing a positive cor-
relation between null attention and model confidence
(RQ2). (Sections 3.4, 5.2)

* An evaluation of CodeGPT’s cross-lingual performance
on the code completion task (main RQ), showing it per-
forms most accurately and confidently for Java, thereby
achieving Top-1 accuracy 69.2% and MRR 16.9% (Sec-
tion 6).

2 Background and Related Work

In this section, we outline background work within the area
of code completion and Transformer-based LLMs for code
intelligence tasks.

2.1 Automatic Code Completion

Automatic code completion, or auto-completion, refers to
the task of predicting subsequent tokens based on an input
code sequence, serving as the context for given language
model [8]. Various types of predictions exist:

* Token-level predictions (TLP): single tokens of code
 Statement-level predictions (SLP): lines of code
* Block-level predictions (BLP): methods or functions

In the scope of this two-months research project, token-level
code completion will be investigated.

More generally, code completion falls under the umbrella
of code generation - along with code repair and code trans-
lation [2]. Another growing category of code intelligence is
code understanding, which includes tasks such as code search
and code clone detection.

INote that we have used a multilingual version of CodeGPT
trained on Java, Python, JavaScipt, PHP, Go and Ruby.
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In 2019, Svyatkovskiy et al. introduced Pythia [9] - a
LSTM-based code completion tool generating ranked sug-
gestions for methods and APIs in Python. Later, the
Transformer-based IntelliCode Compose [10] was presented
as a general-purpose, multilingual version capable of predict-
ing entire sequences of arbitrary code tokens. It had been
trained on the widely-used languages JavaScipt, TypeScript,
C# and Python.

In June 2021, GitHub Copilot’ was made publicly avail-
able as code completion tool developed by OpenAl and
GitHub. It was built on top of Codex [5] - a descendant of
Transformer GPT-3 that was mostly trained on Python code.
Other successful, commercial code completion tools are Tab-
nine* and ChatGPT".

All of the above tools have been integrated to VSCode IDE
extensions to enhance developer productivity. Yet, the fact
that they have been predominantly trained on popular lan-
guages may lead to limited performance on lesser-known lan-
guages.

2.2 Transformers: from Natural Language to
Code

The Transformer [11] is a widely-researched deep learning
model architecture that has repeatedly achieved promising re-
sults across a range of NLP tasks [12, 13]. It fully relies on
its self-attention mechanism to attend to different parts of the
input sequence and thus raise more apt predictions. In con-
trast to the existing RNNs and LSTMs, Transformers have
the ability to process full input sequences by exploiting par-
allel computation. Moreover, they introduced an alternative
to recurrence: positional embeddings can now be learned to
encode information specific to a token position.

The potential of Transformers for unsupervised, multitask
learning became evident when OpenAl introduced the LLM
GPT-2 [14], which outperformed other language models on
a diverse range of downstream NLP tasks in a zero-shot set-
ting. This adaptability inspired researchers to train language
models on large-scale code corpora, leading to the support for
software engineering tasks such as code summarization [15],
code search [16] or code completion [17]. Through trans-
fer learning, general models were fine-tuned to predict future
tokens given some input code sequence - also referred to as
causal language modelling.

For instance, BERT (Bidirectional Encoder Repre-
sentations from Transformers) [13] and its descendant
RoBERTa [ 18] demonstrated the power of exploiting left and
right context whilst performing NLP tasks such as question
answering. In fact, both LLMs achieved state-of-the-art per-
formance on the GLUE and SQuAD test benches. Inspired
by their success, CuBERT [19] - pre-trained on 7.4M Python
source files - was presented as BERT-like model for code
understanding tasks. Later, Feng et al. presented Code-
BERT [20], which supported natural language code search
tasks as well as code completion.

*https://github.com/features/copilot
*https://www.tabnine.com/
Shttps://openai.com/chatgpt

GPT (Generative Pre-trained Transformer) [!] diverged
from the BERT-like architecture by adopting a uni-
directional, decoder-only design which suffices for code com-
pletion - where the goal is to predict the next token or se-
quence given the preceding context only. The effective-
ness of this architecture has been demonstrated by vari-
ous GPT-based code models including CodeFill [21] and
CodeGPT [7], both having achieved superior results on token-
and statement-level code completion tasks.

2.3 Transformers for Code: Analyzing their Inner
Mechanisms

Given the widespread technological advances invoked by
Transformer-based LLMs, more recent studies have focused
on interpreting their inner mechanisms.

In an attempt to find out why code models are successful,
Wan et al. [3] performed structural analysis on CodeBERT [2]
and GraphCodeBERT [6] - thereby using Python, Java and
PHP as target languages. They discovered that self-attention
weights align with the syntax structure of code, implying that
they capture the motif structure in code ASTs. This was espe-
cially apparent in the deeper layers of the model. In addition,
there exists position-based heads that do not take into account
context. Through structural probing they also demonstrated
that the syntax structure of code is preserved in the contex-
tual word embedding vectors learned across hidden layers. In
fact, these pre-trained code models are capable of inducing
syntax trees of code without training, to a certain extent.

Given the lack of quantitative measures on the performance
of models on code representation learning in previous stud-
ies, Chen et al. [4] proposed a novel technique called CAT-
probing. Specifically, they measured how attention scores
relate to distances between AST nodes whilst performing
code summarization in Python, Java, JavaScript and Go. Af-
ter having conducted layer-wise probing on RoBERTa [18],
CodeBERT [2], GraphCodeBERT [6] and UniXCoder [22],
they figured that the specific token types code models focus
on vary across languages. In fact, attention distribution on
Python code differed from other languages, due to Python
having fewer token types.

Furthermore, they discovered that the ability to capture
code structure dramatically differs with layers, as attention
heads start focusing on special tokens in deeper layers. They
also noted that the middle layers may be contributing signif-
icantly to the transfer of general structural knowledge into
task-specific structural knowledge. These findings were con-
firmed by Vig et al. [23], whom investigated the structure of
attention in GPT-2 and found that attention aligns with de-
pendency relations most strongly in the middle layers - where
attention distances are the lowest.

Clearly, there has been limited research on the perfor-
mance and internal workings of code models when applied
to low-resource languages. Hence, we aim to fill this gap
in knowledge by examining the cross-lingual performance of
CodeGPT on the token-level code completion task.
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Model parameters No. or size

No. of layers 12
Max. context length 1,024
Embedding size 768
No. of attention heads | 12
Attention head size 64
Vocabulary size 50,261
No. of parameters 124M

Table 1: Model parameters of CodeGPT (GPT-2-based).

3 Approach

To investigate how CodeGPT performs on the code comple-
tion task across different programming languages, a tuned
lens investigation (Section 3.3) followed by an attention in-
vestigation (Section 3.4) will be conducted. Figure 2 depicts
the overall experiment pipeline, which is elaborated on after
Section 3.1 has presented the multilingual CodeGPT model
assessed in this work.

3.1 CodeGPT

CodeGPT, a GPT-2-based [14] Transformer model released
in 2021 by Microsoft for research on source code generation,
supports code completion and text-to-code generation® tasks.
Inherently, it shares natural language understanding ability
and model parameters with GPT-2 as displayed in Table 1.

Given an input sequence (see Figure 1), the model gener-
ates predictions auto-regressively, i.e. one token at a time.
Before input is fed to its stack of decoder blocks hg — h11,
positional embedding and tokenization is applied. Specifi-
cally, the Byte-Pair Encoding (BPE) tokenization algorithm is
used, which merges frequently occurring pairs of bytes to ef-
fectively handle out-of-vocabulary token combinations [24].

Each transformer decoder layer consists of a multi-head
self-attention block, enabling the model to learn contextual
relationships between input tokens [25, 26]. Due to the fact
that attention is masked, the model is unable to ’cheat” by
attending to future input tokens. Attention is followed by a
feedforward neural network, which applies non-linear trans-
formations to each token allowing the model to understand
more sophisticated features and thus make better predictions.
Layer normalization and residual connections are added to
each block to mitigate vanishing gradients [27].

After all decoder layers have processed the input, the lan-
guage model head applies an unembedding matrix to project
the final hidden state back to human-readable vocabulary,
thereby assigning logits (unnormalized probabilities) to each
token. The final softmax layer ultimately normalizes these
logits to produce a finite probability distribution over the vo-
cabulary. Generally, the token associated with the highest
probability is chosen as output prediction - also referred to
as greedy decoding.

To assess CodeGPT’s cross-lingual performance, we use a
multilingual CodeGPT model’ that was initialized as GPT-2,
but fine-tuned on the CodeSearchNet dataset [28] containing

SRefers to generating code via a natural language desciption.
Thttps://huggingface.co/ AISE-TUDelft/Code GPT-Multilingual
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Figure 1: Model architecture of CodeGPT (GPT-2-based).

open-source Github projects in the following six program-
ming languages: Java, Python, Javascript, Go, Ruby and PHP.

3.2 Pre-processing

Prior to our experiments, a pre-processing phase (see Fig-
ure 2) starts off by removing comments and documentation
within source files across all languages. Despite the fact that
CodeGPT was trained on source code containing comments
and documentation, we are merely interested in performance
on code. Furthermore, files containing fewer than 1,024 to-
kens (max. context length) were filtered out to ensure suffi-
cient left context for reliable predictions. At the same time,
files having more than 1,024 + C' tokens - where C' is the
number of token predictions to make - were randomly sliced
to reduce overhead. Afterwards, the processed input code is
tokenized into numeric identifiers using BPE, which can be
fed to the model.

3.3 Experiment 1: Tuned Lens Investigation

The model’s hidden states are passed to a tuned lens®, to in-
spect how intermediate model predictions vary across lan-
guages whilst performing code completion. This lens trains
a translator (see Figure 1) that maps intermediate layers h; -
h1o to the final layer hy;. Ultimately, this leads to smooth
transition between hidden states h; and the unembedding
layer [29].

For each hidden layer h;, the tuned lens outputs logits over

the model vocabulary. By greedily picking the highest logit,

8https://github.com/jkatzy/tuned-lens
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Figure 2: Data pipeline used for our lens and attention experiments.

we obtain human-readable token predictions. The final de-
coder layer hy1; produces the resulting token prediction made
by the model. Hence, we can compare these final predictions
against the ground truth (i.e. subsequent input token) to ex-
amine the overall accuracy of CodeGPT.

More importantly however, the intermediate layer-by-layer
predictions provide us with information about the model’s
confidence. For instance, token predictions that were correct
from the first layer hg (highest depth) are the most confident
and correct model predictions. We consider these predictions
the "best”.

In our cross-lingual study of CodeGPT, we aim to exam-
ine in which scenarios it predicts incorrect tokens with high
confidence. We refer to these as the “worst” predictions, as
the model emits unjustly high confidence. For comparison
purposes, we locate the top-10 worst and best predicted to-
kens - serving as areas of interest for our follow-up attention
experiment.

3.4 Experiment 2: Attention Investigation

As demonstrated by earlier works [3, 4, 23], analyzing atten-
tion is helpful for understanding how the model focuses on
various input tokens - despite the fact that they may not pro-
vide full explanations for individual predictions [30].

Specifically, the self-attention mechanism allows every to-
ken x; within input sequence x of size N to assign an atten-
tion score «; ;(x) € [0,1] to some preceding token x; - as
summarized in (1).

A(Iz) = (Oliyo(l'),ahl(l’),...,Oéi,i(x)) (1)

where 3., a; j(x) = 1. This set of attention weights A(z;)
is uniquely learned by all 12 x 12 heads, in the form of a
lower-triangular matrix of size NV x IV (see example in Fig-
ure 3).

Using the attention visualization tool Bertviz [31], one
could infer a subtle triangular pattern captured by this atten-
tion head (see Figure 4), implying that a high proportion of
attention is assigned to the first token request. In previous
work carried out by Vig et al. [23], attention assigned to the
first token was referred to as “null attention”. As the first to-
ken is attended to by default when no useful tokens are found
in the input, it is considered uninformative.

Inspired by his work, the aim of our attention investiga-
tion is to correlate cross-lingual proportions of null attention
with differences in behavior exhibited by CodeGPT. Given

Attention head 7 in layer 9 Lo

i
El 0 0 0 0 0 0 0
o
1
0.02 0 0 0 0 0 0 0.8
i
% 0.03 0017 0 0 0 0 0
E e
= - 0.6
g 0.063 0.024 0.027 0 0 0 0
z
a
b=}
: ~ 0.16 0.075 0.092 0.043 0 0 0
i -04
e
.- 026 0.029 0.073 0.091 0.0072 0 0
5 0.85 0.02 0.016 0.037 0.059 0.0043 0.0096 0 -0.2
=- 0.15 0.07 0.017 0.013 (WERN 0.0029 0.0035 0.018
| ' ' ' I | -0.0
request request () ? . url )
Tokens attended to
Figure 3: Heatmap depiction of attention matrix in
head 7, layer 9 - given example input sequence
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Figure 4: Bertviz visualization of attention matrix displayed
in Figure 3, in which thickness of token-to-token lines indi-
cate intensity of attention scores.

a language, we compute these ratios across attention heads
associated with the top-10 best and worst predicted tokens -
capturing the setting in which the model was most confident.
To compare this with average model behavior, we also ana-
lyze attention heads involved in arbitrary predictions. Given
that multiple earlier findings [3, 23, 31] have demonstrated
that attention distribution varies across layers, we conduct a
layer-by-layer breakdown of null attention in order to detect
latent patterns within the model.



4 Experimental Setup

This section presents the test bench we have utilized to inves-
tigate CodeGPT’s cross-lingual performance on code com-
pletion, as well as the setup used during both our lens and at-
tention experiments. Moreover, we describe the chosen met-
rics to evaluate model performance.

4.1 Test Datasets

All input source files have been adapted from the Stack [32],
a 3.1 TB pre-training dataset for code LLMs. It covers
permissively-licensed open-source Github projects across 30
different programming languages, gathered from 137.4M
unique repositories published between 1 January 2015 and
31 March 2022.

For our study, we have randomly selected 512 files for three
high-resource (*Java, *Python, C++) and three low-resource
(Kotlin, *Go, Julia) languages. Throughout this paper, * is
used to indicate languages CodeGPT was fine-tuned on.

It may be noteworthy to mention that the CodeSearchNet
corpus used for fine-tuning contains 1.6M, 1.2M and 0.7M
functions for Java, Python and Go respectively. This implies
that the latter low-resource language we assess the model on
is underrepresented by approximately 50%.

4.2 Model Inference

To ensure that all intermediate predictions generated by the
tuned lens are based on left context only (i.e. unbiased), all
input files to be fed to CodeGPT were split into C' windows of
1,024 tokens (max. content length). Essentially, each window
corresponds to a single token prediction out of the total C'
predictions to be made’.

Within a file we only start predictions from token index
1,024 onward, to ensure optimal left context and equally sized
input as expected by the model. More importantly, this guar-
antees all attention matrices are of size 1,024 x 1,024.

To make model inference more efficient, these windows
were fed to the model in batches - thereby exploiting parallel
computation. As prior work [33] has shown that batch size
affects prediction results, we ensured the same size across all
source files and languages.

4.3 Gathering Attention Heads

As initial step towards our attention investigation, we feed
CodeGPT with 60 (out of 512) randomly sampled source files
of a given language - associated with the top-10 best and
worst predicted tokens. To ensure diversity in input context
fed to the model, we sample files in such a way that each
token of interest is represented by three distinct files.
Subsequently, for each file, we let the model perform
single-token prediction on the corresponding token of inter-
est (C' = 1). Out of the resulting 12 x 12 attention heads of
each prediction, we arbitrarily select 12 - one head per model
layer'®. This approach yields diversity in terms of attention

For our tuned lens experiment, we set C' to the maximal no. of
predictions possible from token 1,024 onward.

%Due to limited memory resources for handling large amounts of
1024 x 1024 matrices.

heads, which is crucial as the capturing of long-distance re-
lationships across tokens varies significantly between heads -
especially in deeper model layers [23].

A similar methodology was followed for collecting atten-
tion heads associated with arbitrary predictions. Thus, in to-
tal 2 sets x 60 files x 12 heads = 1440 attention heads of size
1,024 x 1,024 have been assessed for each language.

4.4 Evaluation Metrics

For assessing CodeGPT’s overall performance on the token-
level code completion task across languages, the following
metrics were used:

Top-1 Accuracy = % 2)

where @ is the set of correctly predicted tokens and C' is the
number of tokens to be predicted within an input sequence of
size N.

Ll
MRR= — Y — 3)
Q| ; depth

The top-1 accuracy (2) provides a decent indication of accu-
racy across the cross-lingual input files, but this metric does
not consider the confidence of the model - or depth of predic-
tions. Hence, the Mean Reciprocal Rank (MRR) is included
to take into account intermediate predictions as well. Essen-
tially, we have defined the MRR as the reciprocal of the av-
erage depth of correct predictions (3). This implies that the
lower the depth, the more confident the model is about a cor-
rectly predicted token - making it a more reliable prediction.

To compute the ratio of null attention within a given atten-
tion matrix A, we consider the proportion of attention scores
from all IV tokens z; to the first token x( being at least 0.9 as
can be seen in (4).

N
. . 1
Null Attention Ratio = N ZZ; a;o(z) > 0.9 ()

where N is the total number of input tokens, i.e. the length
and width of A.

In the example attention head depicted in Figure 3, this
ratio would be 3/8, or 37.5%.

4.5 Implementation and Configuration

Access to our CodeGPT model and its corresponding lens'!
was facilitated by Huggingface. Additionally, the open-
source PyTorch framework provided the backbone that en-
ables efficient inference of transformer models.

Expensive computations were delegated to DelftBlue’s'?
servers, providing 32GB Tesla V100S GPUs.

"https://huggingface.co/AISE-TUDelft/CodeGPT-Multilingual-
lens
Phttps://www.tudelft.nl/dhpc/system
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Top-1 Accuracy (%) MRR (%)
*Java 69.2 16.93
*Python 68.22 14.74
C++ 64.52 11.55
*Go 67.94 12.35
Kotlin 58.25 11.76
Julia 65.06 11.24

Table 2: Cross-lingual performance of CodeGPT on the
single-token code completion task, averaged over 512 input
files per language.

5 Results

Below, we present our findings obtained by the lens- and at-
tention experiments conducted. These results are evaluated
later in Section 6.

5.1 Results Experiment 1: Tuned Lens
Investigation

The overall cross-lingual performance of CodeGPT on the
token-level code completion task is presented in Table 2,
based on the Top-1 accuracy and MRR averaged over 512
source code files per language.

Next, Table 3 displays the top-10 best and worst predicted
tokens by CodeGPT across all languages. Here, best” entails
correctly predicted with the highest confidence possible, i.e.
the model was able to generate the correct token from the
very first layer. The same notion can be applied to “worst”
predictions, which are associated with incorrect predictions
however.

All tokens have been categorized into one of the following
types: user-defined elements (transparent), language-defined
elements (yellow), common code structures (blue) and punc-
tuation (orange). Moreover, we have excluded a defined set of
commonly over-dominating tokens: newlines, underscores,
tabs, parentheses, commas, and dots. This facilitated the ex-
ploration of novel patterns across programming languages.

Finally, Figure 5 visualizes the cross-lingual spread of pre-
diction depths across all 12 network layers - separately for
correct'? and false predictions. In both cases holds that depth
d = 1 is associated with the ”best” and “worst” predictions.
Higher depths signify lower model certainty, since more hid-
den layers were required to generate the output prediction -
which could be either correct or incorrect.

In our work, the notion of “model confidence” revolves
around prediction depths. Nonetheless, one could also con-
sider the probability assigned to the resulting token generated
by the output layer of the model: Ppyipys € [0,1]. In Fig-
ure 5, each depth d is annotated with the obtained Py tput (%)
averaged over all (correct or false) predictions of depth d. To
illustrate, P,y ¢put = 69% for d =1 in 5b implies that the worst
token predictions (false with highest confidence) had an aver-
age probability of 0.69.

This histogram corresponds to the reciprocal of MRR scores
displayed in Table 2.
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(a) Cross-lingual spread of depths of correct token predictions.
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Figure 5: The cross-lingual spread of confidence levels of
predictions by CodeGPT. Each depth d is annotated with
Poutput (%) averaged over predictions of depth d.

5.2 Results Experiment 2: Attention Investigation

We depict the cross-lingual, layer-by-layer ratios (%) of null
attention as heatmap in Figure 6. For each language, the
layer-specific ratios are averaged over 60 randomly sampled
attention heads of size 1,024 x 1,024 found in that layer.

Additionally, we display the mean (%) and standard devi-
ation (SD) of null attention ratios per language - computed
over the last model layers 6-12. We deem the first layers
negligible due to the relatively uniform values across all lan-
guages. This choice can be justified by Vig et. al [23], who
found that attention heads in the initial model layers typically
assign small attention scores to the first token.

Furthermore, we have computed average ratios of null at-
tention for the top-10 best and worst predicted tokens (see
Table 3) across all languages. In Appendix B we display for
each individual token, the mean (%) and SD over ratios com-
puted across layers 6-12. Tokens that are among both the best
and worst predictions of a language have not been consid-
ered, as we aim to study tokens that are consistently being
predicted correctly or incorrectly by the model.
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als if 0 : n -> for ! s get t @

\\ @ 1 = 0 return n < ator " [ [
Exception VK if if 1 # 1! case n get ices

String private n @ HE son < els " [ [

or assert ’ [ int case s is point get n {

of this format 2 or void n java 1 function ] else
adata { args 0 r log ert to els var estamp ]

Table 3: Top-10 tokens predicted correctly (best) or incorrectly (worst) by CodeGPT with highest confidence - obtained by per-
forming the token-level code completion task across 512 files per language. Tokens are categorized into user-defined elements
(transparent), language-defined elements (yellow), common code structures (blue), and punctuation (orange).
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Figure 6: Cross-lingual ratios of null attention for arbitrary
attention heads of size 1,024 x 1,024, broken down by layer.

6 Discussion

Below we will present our interpretation to the results
presented previously, thereby evaluating the limitations of
CodeGPT’s performance on the token-level code completion
task across high- and low-resource languages.

6.1 Strong and Weak Areas

As can be seen by the Top-1 accuracy and MRR scores in
Table 2, CodeGPT performs most reliably for Java and
Python input - the two high-resource languages the model
was primarily trained on. The slightly better performance
in Java can be attributed to the fact that the CodeSearch-
Net corpus contains 1.6M Java methods, whereas it covers
1.2M Python functions. Similarly, the number of Go func-
tions was only 0.7M, which probably explains its third rank.
Low-resource languages that the model was not trained on,
Kotlin and Julia, obtain the worst performance.

Overall, the best predictions for languages the model
was not trained on seem to be endings of user-defined

conjunction literals such as mbol (Table 3). The fact that
this is natural language related suggests that CodeGPT does
not comprehend code syntax specifics of these (mostly low-
resource) languages. Instead, the model appears to be rely-
ing on its uni-directional architecture as well as its inherited
natural language understanding through GPT-2. In contrast,
the best token predictions for Java and Python mostly contain
common code structures and language specific elements.

The worst predictions for languages CodeGPT was not
fine-tuned on involve language-specific constructs. For
languages it was trained on, most of the worst predictions
are constructs that cannot be predicted from left context only.
Hence, this is due to the inherent limitations of CodeGPT’s
architecture'* rather than lack of knowledge on language-
specifics.

6.2 Model Confidence

The spread of model confidence levels appears to be con-
sistent across all six languages. Specifically, it can be ob-
served that a high proportion of correct predictions have
depths between 6 and 8 (see Figure 5a), implying mediocre
model confidence. In fact, this observation aligns with pre-
vious findings [4, 23] suggesting that attention aligns most
strongly with dependency relations in the middle layers.

Interestingly, the spread of confidence levels for false pre-
dictions follows a rather left-skewed pattern: 50-60% of all
false predictions had depth 12, i.e. the lowest model con-
fidence possible. This observation backs findings by Halawi
et al. [34] who revealed that given inaccurate contexts, lan-
guage models seem to produce accurate predictions up until
some “critical” layer - after which it changes its mind and
replaces this with an incorrect prediction that is more fitting
given the “false” context.!

Furthermore, for all languages it became evident that the
average probabilities assigned to predicted tokens Py py: de-
crease as the prediction depths increase. Thus, confidence in
terms of prediction depths and probabilities correlate posi-
tively.

!“This also explains why ’}’ is the number one worst predicted
token across most languages.
'5This phenomenon can be seen in Appendices A.2 to A.6.



6.3 Null Attention Patterns

When considering the average ratios of null attention within
CodeGPT (Figure 6), a common pattern can be observed
across all languages. Namely, the deeper model layers have
the highest null attention ratios on average. Whereas this
trend was presented in an earlier study by Vig et al. [23] into
LMs for NLP tasks, the relation between null attention and
capturing code syntax has not been analyzed so far.'®

Moreover, we observe a correspondence between this
distribution of null attention ratios and confidence lev-
els of correct predictions (Figure 5a). In both cases, there
is a noticeable shift from layer 6 onward, which can be at-
tributed to earlier revelations [3, 4] that deeper layers are in-
volved in targeting specific code constructs and longer-range
dependency relations. Meanwhile, most attention heads in
the lower layers attend to token position without consider-
ing content. Intuitively, the model no longer has to occupy”
all attention heads from the middle layers onward, leading to
higher null attention ratios.

We can also infer a positive correlation between vari-
ance of null attention ratios across layers and model con-
fidence when considering the ratios associated with the best
and worst predicted tokens.!” 1In this setting in which the
model is most confident, the SDs are far higher18 than those
presented in Figure 6. This variation can be explained by the
finding that construct-specific attention heads cluster by layer
depth [23].

Overall, the proportion of null attention is highest for
the languages CodeGPT was trained on (Java, Python,
Go), as well as C++ which has similarities with Java in terms
of syntax. These are also the languages having the highest SD
across layers. Whereas this observation seems to suggest that
CodeGPT is most confident and accurate in these languages,
we cannot deduce a causal relationship from the correlations
revealed above.

To substantiate the above statement - within a language,
the highest means and SDs of null attention do not neces-
sarily correspond to correctly predicted tokens. In fact, the
overall magnitude and variance null attention ratios are sim-
ilar between the best and worst tokens, as well as between
token categories.

6.4 Threats to Validity

Threats to Internal Validity: Relate to the threshold we have
set for defining null attention to 0.9 - inspired by earlier re-
search [23]. Moreover, we have excluded a predefined set
of frequently-occurring punctuation tokens, leading to lower
performance statistics when compared to earlier findings [7]
on CodeGPT’s performance.'® However, we applied the same
methodology across all languages under investigation, giving
grounds for our cross-lingual evaluation.

'5In fact, Vig et al. filtered out null attentions in his study.

"Displayed in Appendix B for optional inspection.

18The average SD over all languages and layers in a regular setting
(Figure 6) is 3.2, whereas this is 10.2 in the setting corresponding to
highest confidence (Appendix B).

19 At least, for Java and Python - the two languages CodeGPT was
assessed on in earlier work.

Threats to External Validity: Our results can be general-
ized to the “real world”, as the test corpus used (the Stack)
contains permissively licensed source code collected from
Github repositories. Whereas it contains varying numbers
of source files across languages, we have arbitrarily sampled
512 files for all six languages - thus ensuring equal repre-
sentation across languages. Given the currently available lit-
erature, it cannot be concluded whether there is overlap be-
tween the Stack and CodeSearchNet dataset used for fine-
tuning CodeGPT. Future studies can improve generalizabil-
ity by using more input files across languages. Similarly, one
may benefit from inspecting all attention heads - rather than
randomly selecting a few per layer.

Threats to Construct Validity: The performance metrics
we use, Top-1 accuracy and MRR, ensure diversity in the
sense that we consider both the model’s output layer and hid-
den layers. Both metrics occur frequently in literature [21,

—37]. Also, our finding that confidence in terms of predic-
tion depth and probability correlate positively, signifies the
suitability of MRR - which we have defined in terms of depth.

7 Conclusions and Future Work

Most current code language models are predominantly
trained on widely-known programming languages, which
limits their performance when applied to lower-resource lan-
guages. In this work, we have evaluated the GPT-2-based
CodeGPT on the token-level code completion task, across
both high- (*Java, *Python, C++) and low-resource lan-
guages (*Go, Kotlin, Julia).

Through our funed lens investigation, we found that
CodeGPT generates most confident and accurate token pre-
dictions for the two high-resource languages it was mainly
fine-tuned on: Java and Python. It achieves Top-1 accuracies
(69.2%, 68.2%) and MRR scores (16.9, 14.7) respectively.

Moreover, the type of tokens being predicted incorrectly
with highest certainty differs across languages depending on
whether or not the model was fine-tuned on it. For languages
familiar to CodeGPT, these “worst” tokens are primarily con-
stucts that cannot be predicted from left context only - which
can be attributed to the inherent uni-directional model archi-
tecture. In contrast, the worst predicted tokens for languages
the model was not fine-tuned on involve language-specific el-
ements which do not occur in the other languages.

From our attention investigation, it became evident that
there is a positive correlation between model accuracy and
magnitude of null attention ratios. Moreover, model con-
fidence correlates positively with variance of null attention
across layers. However, investigating null attention is not suf-
ficient to explain cross-lingual differences between the best
and worst predictions, nor token categories. Future research
may perform clustering on attention heads to inspect com-
mon or unique patterns beyond null attention. Additionally,
as we have encountered limitations of CodeGPT’s unidirec-
tional architecture, future studies can benefit from analyzing
bidirectional models as well. Finally, this study can be ex-
tended by also investigating statement- and block-level code
completion performance.



8 Responsible Research

Below we will reflect on the ethical aspects of this research,
including reproducibility and transparency regarding the ex-
periment methodology adopted.

8.1 Transparency

In this paper, we have ensured to be transparent about what
external test corpus was used to evaluate the performance of
CodeGPT on the token-level code completion task across dif-
ferent programming languages. We have also documented
and visualized how this raw data was pre-processed before
being fed to the model.

Furthermore, we have clearly indicated the number of in-
put source files and attention heads that were involved in our
investigation. Earlier in Section 6.4, we had noted that gen-
eralizability of this study can be improved by incorporating
larger amounts of data.

We have also made sure to critically assess secondary
sources of input data. It may be noteworthy to mention that
the datasets used for fine-tuning and evaluating the model in
this work both contain source files from open-source Github
repositories. From available literature on these datasets, it
is not clear whether these two datasets are overlapping - as
mentioned in Section 6.4.

Additionally, we have clarified how CodeGPT’s perfor-
mance was measured - including what exact metrics we used
and what experimental settings were adopted to obtain the
results presented. We also believed it was crucial to be trans-
parent about the way we have interpreted these results.

Overall, by being transparent we strive to make evident to
peers how the research was conducted and what the various
phases of the process were.

8.2 Reproducibility

Firstly, ensuring reproducibility extensively relies on safe-
guarding transparency regarding our research methodology.

Moreover, we made sure that all processes involving ran-
dom sampling were done so using a random seed based on
the corresponding sample identifier - defined by the original,
publicly-available test corpus the Stack.

Finally, we have open-sourced our Github reposi-
tory used for this study at: https://github.com/AISE-
TUDelft/CodeShop. Other resources required to reproduce
this study have been made public via Huggingface:

* The multilingual CodeGPT model assessed in this work
* CodeGPT-specific lens

 Java dataset adapted from the Stack

» Python dataset adapted from the Stack

e C++ dataset adapted from the Stack

¢ Go dataset adapted from the Stack

 Kotlin dataset adapted from the Stack

* Julia dataset adapted from the Stack
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A Tuned Lens Visualizations and Model Confidence

In this section, we depict results obtained by applying the funed lens on hidden states of CodeGPT involved in the token-
level code completion task across six languages: *Java, *Python, C++, Kotlin, *Go, Julia (see Section 3.3 for more details).
Essentially, below is displayed a layer-by-layer visualization of the model’s intermediate token predictions given some input>
- indicated in blue at the bottom.

Al *]Java

I (E9988 - null) {\n
Bl (nin != -1 R&BEYPES.1length < min) {\n
throw_new_IllegalArgumentexception("columnTypes S than_" + min);l
_}\n
Bl (wex != -1 8& types.length_> max) {\n
I rev TllegalArgumentException(“columnTypes isgfeater than " + max);\n
H\n

Figure 7: Java code snippet containing the input sequence fed to the tuned lens, for which the results are displayed below. All
incorrectly predicted tokens are highlighted using a color indicating the depth (or confidence level) of the model. Here, bright
red corresponds to the highest confidence level (lowest depth and worst), whereas yellow signifies the lowest confidence level
(highest depth).

output
11

10

8 _should
74 Type _should _not
E 6 s is not
7 i i
5 S _not
4 s . _not
3 s . _not
2 A s _not
11 s _not
input { column Types _s _greater

Token

Figure 8: Layer-by-layer visualization of funed lens output. Green and orange colors are used to indicate depths of correct and
false token predictions respectively. Note that the ground truth (i.e. the next input token to predict) can be obtained by looking
at the blue cell one column to the right.

Since this is merely a toy visualization, the inputs used are rather short. In our study, we assessed inputs of size 1,024.
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A.2 *Python

class_Artificielle2@18Serializer(serializers.GeoFeatureModelSerializer):§ii
_ I verturel® s.SerializerMethodrield ()Nl

I zet _couverture(self, obj):\n
I -t 1:bel(code=obj.couverture, label=obj.couverture label)§R

Figure 9: Python code snippet containing the input sequence fed to the tuned lens, for which the results are displayed below.
All incorrectly predicted tokens are highlighted using a color indicating the depth (or confidence level) of the model. Here,
bright red corresponds to the highest confidence level (lowest depth and worst), whereas yellow signifies the lowest confidence
level (highest depth).

output
114

10

Layer
(=]

input

Token

Figure 10: Layer-by-layer visualization of tuned lens output. Green and orange colors are used to indicate depths of correct and
false token predictions respectively. Note that the ground truth (i.e. the next input token to predict) can be obtained by looking
at the blue cell one column to the right.
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A3 C++

I anecer: :BIBEE 211 windows();\n
\n

- ::player_add_upgrade(button_event) ;.
\n
_ W :complete_contract();\n

Figure 11: C++ code snippet containing the input sequence fed to the tuned lens, for which the results are displayed below. All
incorrectly predicted tokens are highlighted using a color indicating the depth (or confidence level) of the model. Here, bright
red corresponds to the highest confidence level (lowest depth and worst), whereas yellow signifies the lowest confidence level
(highest depth).

Layer

Token

Figure 12: Layer-by-layer visualization of funed lens output. Green and orange colors are used to indicate depths of correct and
false token predictions respectively. Note that the ground truth (i.e. the next input token to predict) can be obtained by looking
at the blue cell one column to the right.
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A4 *Go

B8,06K := variable.Grouping.(model.ClU8€eredGrouping)\n
N FIBR && cg.cGetClustercol(H)[I= "" {Xn
clustervareExjll, err :=_meta.DoesvariableEexist(dataset, cg.GetClustercol())
i f err _!'= nil {\n
[ handleError(w, err)\n
B -cturn\n

Figure 13: Go code snippet containing the input sequence fed to the tuned lens, for which the results are displayed below. All
incorrectly predicted tokens are highlighted using a color indicating the depth (or confidence level) of the model. Here, bright
red corresponds to the highest confidence level (lowest depth and worst), whereas yellow signifies the lowest confidence level
(highest depth).

output
114

10 A

Layer
[=3]

input

Token

Figure 14: Layer-by-layer visualization of tuned lens output. Green and orange colors are used to indicate depths of correct and
false token predictions respectively. Note that the ground truth (i.e. the next input token to predict) can be obtained by looking
at the blue cell one column to the right.
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A.5 Kotlin

internal_fun_newThrowable(message: JSEFiINg?, cause: Throwable?): Throwable {\n
Il throwable = js("new Error()E\n

_ b 1c.message = message ?:JR.tostring() ? : NGSEENEE \n

b 1c.cause = cause\n

____throwable.name = "Throwable"\n

____returnBlf@lable . unsafeCast<Throwable>()\n

Figure 15: Kotlin code snippet containing the input sequence fed to the funed lens, for which the results are displayed below.
All incorrectly predicted tokens are highlighted using a color indicating the depth (or confidence level) of the model. Here,
bright red corresponds to the highest confidence level (lowest depth and worst), whereas yellow signifies the lowest confidence

level (highest depth).

output
11 _ _function
104 function _function
94 function _function _Object
84 function _function _add _Object
74 public _function _set _Object
i 6 _function _test _Object
. 5 _ _Object
4 _ _ _Object
3 A _ _ _Array
24 _ _ _File
14 _ _ _String
input A \n internal _fun _hew
Token

Figure 16: Layer-by-layer visualization of funed lens output. Green and orange colors are used to indicate depths of correct and
false token predictions respectively. Note that the ground truth (i.e. the next input token to predict) can be obtained by looking
at the blue cell one column to the right.
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A.6 Julia

_1s_= basis(p1)\n
grad = transform_gradient(gradient(basis, p2), jac)\n

I - normals[:, gpidx]\n
IR - components[:, gpidx]\n
=_componentl® componentfi\n

Figure 17: Julia code snippet containing the input sequence fed to the funed lens, for which the results are displayed below. All
incorrectly predicted tokens are highlighted using a color indicating the depth (or confidence level) of the model. Here, bright
red corresponds to the highest confidence level (lowest depth and worst), whereas yellow signifies the lowest confidence level
(highest depth).

output

B
i
)
' .

_normal

Layer
(=]

input

Token
Figure 18: Layer-by-layer visualization of tuned lens output. Green and orange colors are used to indicate depths of correct and

false token predictions respectively. Note that the ground truth (i.e. the next input token to predict) can be obtained by looking
at the blue cell one column to the right.
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B Null Attention Ratios for Best and Worst Tokens

For all of the six investigated languages (*Java, *Python, C++, Kotlin, *Go, Julia), we have randomly sampled attention heads
across 60 distinct source files - corresponding to the best and worst predicted tokens as presented in Table 3.

Over these attention heads, we have calculated the mean and SD of null attention ratios across layers 6 up until 12 >'. The
maximum and minimum values are in boldprint.

As explained in Section 3.4, these null attention ratios denote the proportion of tokens (out of all 1024 input tokens) that
assign an attention score of at least 0.9 to the first token in given input sequence. As the first token is attended to by default,
null attention is not deemed informative.

B.1 *Java
Top-10 Best Tokens Mean (%) SD Top-10 Worst Tokens Mean (%) SD
‘get’ 10.4 97 Y 8.4 8.6
’y 8.9 8.3  ’public’ 11.7 9.2
< 9.6 119 ’return’ 8.5 7.8
“als’ 5.6 6.5 if’ 10.8 7.2
A\’ 2.73 14 ‘@ 11.12 9.14
"Exception’ 6.9 5.7 VK 22.0 15.8
’String’ 11.7 8.5  ’private’ 6.1 4.8
“or’ 8.7 9.0 “assert’ 154 12.2
“of”’ 16.8 10.8  ’this’ 9.6 10.7
’adata’ 13.7 9.5 {° 7.0 7.7
Average 9.5 8.1 Average 11.0 9.3

Table 4: Mean (%) and Standard Deviation (SD) of null attention ratios across layers 6-12, for the top-10 best and worst
predicted tokens in Java. Tokens are categorized into user-defined elements (transparent), language-defined elements (yellow),
common code structures (blue), and punctuation (orange).

B.2 *Python

Top-10 Best Tokens Mean (%) SD  Top-10 Worst Tokens Mean (%) SD

’self’ 8.6 9.2 ’def’ 7.6 7.8
’s’ 7.7 79 I - -
‘get’ 5.8 5.7 ’class’ 5.3 5.6
0’ - - > 4.3 4.8
1’ - - =’ 12.5 11.3
’if”? - - ’if”? - -
n’ 6.2 58 @’ 10.1 9.1
o 6.3 50 ' 11.5 11.0
*format’ 154 13.8 2 4.4 4.1
‘args’ 8.5 93 O - -
Average 8.4 8.1  Average 8.0 7.7

Table 5: Mean (%) and Standard Deviation (SD) of null attention ratios across layers 6-12, for the top-10 best and worst pre-
dicted tokens in Python. Tokens are categorized into user-defined elements (transparent), language-defined elements (yellow),
common code structures (blue), and punctuation (orange).

2! As mentioned earlier in Section 3.4, the first five model layers are roughly uniform across languages.
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B.3 C++

Top-10 Best Tokens Mean (%) SD Top-10 Worst Tokens Mean (%) SD

; 5.9 6.3 s 11.4 9.3
X’ 3.67 5.07 if? 5.8 7.1
‘get’ 9.9 6.8 ol 9.6 13.8
n’ 5.0 50 > 7.3 6.5
0 9.8 7.8 ’return’ 13.8 14.3
1 5.22 4.0 °# 9.2 8.3
’s’ 12.0 158 7 13.1 194
’int’ 10.6 7.67 ’case’ 10.1 9.1
>or’ 13.5 9.7 ’void’ 5.1 4.9
T’ 9.9 9.1 “else’ 15.7 15.0
Average 8.5 7.1 Average 10.1 10.8

Table 6: Mean (%) and Standard Deviation (SD) of null attention ratios across layers 6-12, for the top-10 best and worst
predicted tokens in C++. Tokens are categorized into user-defined elements (transparent), language-defined elements (yellow),
common code structures (blue), and punctuation (orange).

B4 *Go
Top-10 Best Tokens Mean (%) SD Top-10 Worst Tokens Mean (%) SD
X’ 5.1 5.1 g% 8.4 6.4
’s’ 12.2 12.4  ’return’ 9.3 9.9
’qual’ 8.0 9.7 if”? 7.8 6.3
0¥ 9.4 104 't 4.9 4.1
"pace’ 11.2 136 °{ 6.0 4.7
'n’ 9.4 6.1 “case’ 12.9 9.7
>ator’ 9.9 8.5 77 11.2 9.9
"point’ 13.5 12.9 ’for’ 4.9 4.4
1 5.3 5.7 "log’ 9.0 9.7
’els’ 53 4.0 ’var’ 7.5 7.4
Average 89 8.8 Average 8.2 73

Table 7: Mean (%) and Standard Deviation (SD) of null attention ratios across layers 6-12, for the top-10 best and worst
predicted tokens in Go. Tokens are categorized into user-defined elements (transparent), language-defined elements (yellow),
common code structures (blue), and punctuation (orange).
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B.5 Kotlin

Top-10 Best Tokens Mean (%) SD Top-10 Worst Tokens Mean (%) SD

‘get’ 6.1 5.3 s 3.6 3.2
“or’ 7.4 7.8 o 6.2 6.3
’ment’ 7.3 9.6 7 6.2 7.1
"als’ 10.1 8.9 T 10.4 9.3
ript’ 12.1 147 @’ 8.6 9.5
< - - e 5.7 4.4
"able’ 9.8 3.8 < - -

n’ 10.1 11.1  ’is’ 6.6 4.3
“son’ 7.8 94  java’ 7.2 5.8
“ert’ 7.0 7.3 "to’ 8.0 8.1
Average 8.6 8.7 Average 6.9 6.4

Table 8: Mean (%) and Standard Deviation (SD) of null attention ratios across layers 6-12, for the top-10 best and worst
predicted tokens in Kotlin. Tokens are categorized into user-defined elements (transparent), language-defined elements (yellow),
common code structures (blue), and punctuation (orange).

B.6 Julia

Top-10 Best Tokens Mean (%) SD Top-10 Worst Tokens Mean (%) SD
1 - - ’end’ 8.6 10.2
0’ 10.8 123 I’ - -

A - - 0’ - -

’s’ 11.0 10.0 2 9.7 11.8
’mbol’ 6.6 7.5 P 9.2 14.0
’ices’ 6.5 6.4 0 6.3 7.7
T - - T - -

n’ 6.3 5.6 Rl 7.6 8.9
T - - ’function’ 10.4 9.6
‘estamp’ 9.9 122 T - -
Average 8.5 9.0 Average 8.6 10.4

Table 9: Mean (%) and Standard Deviation (SD) of null attention ratios across layers 6-12, for the top-10 best and worst
predicted tokens in Julia. Tokens are categorized into user-defined elements (transparent), language-defined elements (yellow),
common code structures (blue), and punctuation (orange).
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