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Abstract

Optical flow is a representation of projected real-world
motion of the object between two consecutive images. The
optical flow measures the pixel displacement on the image
coordinate plane. However, it does not reveal the motion
in depth explicitly, which could be useful as input in some
tasks such as vehicle tracking. To extend the original op-
tical flow approach, we model the depth change of the ob-
ject as the scale change of object in the image and present
an approach to estimate the scale change and optical flow
jointly. Considering the scenario that obvious scale change
occurs between two images, the traditional convolution net-
work fails because it lacks the scale invariance. According
to the Scale-space theory and the idea of learning a com-
bination of Gaussian derivative basis to approximate arbi-
trary filters, we build a Basis Convolution layer that allows
the network to see the scale change between two images
and make use of it to better capture the same feature with
various scales on two images.

We test our models on our own optical flow datasets
which involve obvious scale change. According to the ex-
perimental results, our method is capable of estimating the
scale change between images, and it significantly improves
the optical flow estimation by modelling the scale change
explicitly.

1. Introduction
Optical flow estimation is an old problem in computer

vision field and it has been widely used in many motion
analysis tasks [11, 19, 20, 23]. Recently, the rise of con-
volution neural network(CNN) brings the optical flow es-
timation into new era. Many works have been introduced
to estimate optical flow by training a network end-to-end
[3, 9, 17, 22]. With the help of sufficient synthetic dataset,
the CNN-based method reaches the state-of-art result on op-
tical flow estimation problem [22]. However, the current
CNN-based methods do not consider large scale change be-
tween images, which is frequently seen in the real world

when large motion in depth occurs.
In the optical flow estimation problem, most of the CNN-

based methods [3, 9, 15, 17, 22] rely on correspondences
matching between images, and this matching behaviour is
performed on the feature maps extracted from two images
through the same convolution channel. In this feature ex-
traction module, the convolution layer extracts the feature
just by calculating the in-product of image batch and spe-
cific filter. In other words, the convolution layer is sensitive
to scale change [8], which makes it hard to capture the same
pattern with significant scale change in the next frame. Thus
current CNN-based methods suffer degradation in perfor-
mance on optical flow estimation in present of large scale
change.

At the same time, the optical flow is the projection of
real-word 3D motion on the image plane. Optical flow mea-
sures the pixel displacement between image pairs, however,
it cannot directly tell the object motion in the direction of
camera view. This motion in depth could be useful in mo-
tion analysis task involves large depth motion like on-board
and handle camera analysis. It is obvious that the depth
motion of rigid object brings scale changes in images. so
the estimation of scale changes can be regarded as a supple-
ment to optical flow, which implies depth motion between
images.

In this paper, we explore a CNN-based model to estimate
optical flow in presence of large scale change and to provide
the scale change estimation from image pairs. Traditional
convolution layer have poor scale-invariant property. To en-
able the network to perceive the scale change, we replace
the conventional convolution layer with our Basis Convolu-
tion layer which is inspired by the idea of approximating fil-
ter through the linear combination of Gaussian derivatives
[10][1]. The Basis Convolution layer learns the combina-
tions of Gaussian derivative rather than the pixel weights in
filters. If the scale change is known, the Basis Convolution
layer is able to change the filter scale for each location in
feature map by simply adjusting the scale of the Gaussian
derivatives. In this way, the network is capable of capturing
the same features appearing on images with different scales
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and hence improve the optical flow estimation. Consider-
ing the strong relationship between optical flow and scale
change in images, in our model, we add an additional out-
put channel to estimate the scale changes, along with the
optical flow.

The availability of sufficient dataset is crucial for training
the neural network in a supervised manner. The current op-
tical flow datasets [3, 16, 18] is sufficiently large. However,
they generally contain little scale change of object between
images. Therefore, in this paper, we introduce our own op-
tical flow datasets with scale change ground truth available.
Each of our optical flow datasets contains 20k training im-
ages showing some random moving digits in front of a pure
color background.

In this work, we have made the following contributions.
i) We identify the performance degradation of current CNN-
based method on optical flow estimation in presence of
large scale change. ii) We evaluate the effectiveness of Ba-
sis Convolution layer which can perceive the scale change
between images and efficiently adjust the filter scale for ev-
ery pixel location. iii) We introduce a scale-aware model
that estimates optical flow and scale change jointly from
image pairs.

2. Related Work

2.1. Estimate Optical Flow with CNN

Traditionally, optical flow estimation is solved by op-
timizing an objective function that formularizes the con-
stancy of some image properties and the local smoothness
[7][25][21]. With the rise of the convolutional neural net-
work(CNN) in computer vision field, recently, many ef-
forts have been made to estimate optical flow with CNN.
FlowNet [3] is the first CNN that directly learns the optical
flow from two images. In this work, the author proposed
two models, FlowNetSimple and FlowNetCorr. The differ-
ence between these two models is how they extract features
from two images in the encoder part. In FlowNetSimple,
two images input are concatenated as a six channels input,
as shown in figure 1a. In FlowNetCorr, two images are first
encoded separately through two shared-weight convolution
channels, then the obtained feature maps are passed to a
correlation layer to realize matching mechanism explicitly,
as shown in figure 1b. After encoding, the rich feature rep-
resentation of two images is input to the decoder part to
provide optical flow estimations from coarse to fine. In
the decoder part, several de-convolution layers of increas-
ing size are used to upsample the feature maps. Several
recent network architectures are proposed that surpass the
FlowNet or even achieve state-of-art optical flow estimation
[22]. Flownet 2.0 [9] connects multiple models in FlowNet
by stacking, and get much better performance. SPy-net [17]
and PWC-net [22] use the spatial-pyramid architecture that

allows to refine the optical flow estimation at each pyramid
level and greatly reduce the number of model parameters.
In SPy-net and PWC-net, the researchers made use of the
coarse optical flow estimation explicitly by warping the fea-
ture map with it. To avoid the occlusion problem in warp-
ing, The author in [15] calculated the cost volume from the
feature map which is shifted by the pre-estimated optical
flow. Despite the steady improvement of results, the ex-
traction module in these models keeps the similar structure:
passing two images through the same convolution chan-
nel separately and fusing the obtained two feature maps by
a correlation layer. However, this weight-shared channel
could fail when the features appearing with different scales
in two images, which brings degradation in performance.

(a) FlowNetSimple.

(b) FlowNetCorr.

Figure 1: Network architectures of FlowNetSimple and
FlowNetCorr. The dark blue squares are feature maps of
different sizes. The blue and green squares on the left
are two image inputs, frame 1 and frame 2, respectively.
The red squares are the multi-scale optical flow estima-
tions. Dark and yellow arrows denote convolution and de-
convolution, respectively. Pink arrows represent the corre-
lation operation. Dash lines imply how the feature maps are
connected to others by concatenation. These two networks
use similar encoder-decoder architecture, and they are capa-
ble of producing optical flow estimation at multiple scales.

2.2. Multi-Scale CNN

Recently, CNN has proven to be very successful in many
computer vision tasks [5, 14, 24, 26]. A key advantage

2



of convolution layer over fully connected layer is its shift-
invariance property due to the weight sharing at each loca-
tion in the feature map. Unlike this architecture hard-coded
shift-invariance property, CNN can hardly capture the same
features with varying scales [6]. In last years, many ef-
forts have been made to derive a multi-scale CNN and there
are two main strategies. i) Single image multiple filters.
This strategy utilizes multiple filters with different scales
to capture features in a single image. Inception [24] used
two sets of filters with different kernel sizes at each layer,
learning the multi-scale filters in a brute force manner. In
[28], the author derived multi-scale filters by transforming
the canonical filter and proposed a network with predefined
multi-scale filter columns. ii) Presenting the image to the
network at multiple scales. Other works like [6, 12] use
the fixed set of filter but provide multiple feature outputs
for scaled images. Generally, these methods require multi-
ple convolutions and resize operation on image or filter at
different scales, leading to heavy computation and memory
cost. Similar to single image multiple filters strategy, our
network receives input at one scale and captures multi-scale
features. However, unlike [28] who involves complex filter
transformation in runtime, we obtain the filter of the desired
scale by simply adjusting the scale of the Gaussian deriva-
tives. In our work, this process is done offline which makes
it more efficient.

3. Modelling the Scale in CNN

3.1. Scale-Space Theory and N-jet

Scale-space theory offers a model to represent the deep
structure of an image by convolving the image with Gaus-
sian filters of different scales [27]. The uniqueness of the
Gaussian filter is that it will not introduce new structure in
the signal after filtering [2]. For a image signal f(x) , its
scale-space representation is defined as

L(x;σ) = g(x;σ) ∗ f (1)

where g(x;σ) is the Gaussian kernel with scale σ, and ∗
represents the convolution operator. To obtain a local de-
scription of the signal in scale-space representation, we take
the Taylor approximation around x0 up to order N ,

L(x;σ) =
N�

n=1

Ln(x0;σ)

n!
(x− x0)

n (2)

Note that, due to the linearity of convolution,
Ln(x0;σ) = gn(x0;σ) ∗ f(x0) and we have,

L(x;σ) =
N�

n=0

gn(x0;σ) ∗ f(x0)

n!
(x− x0)

n (3)

Equation (3) shows that to get the local approximation of
an image at scale σ, we only need to convolve the original
image f(x) with the corresponding Gaussian derivatives.
The set of responses to the derivative filters describing the
local patch is called the N-jet [4].

3.2. Filters Approximation by Gaussian Derivatives

N-jet [4] shows how the complete base locally approx-
imate any image, as it is explained in equation 3. Consid-
ering the filters in CNN as this local patch, we can derive
the approximation of arbitrary filters in CNN as the linear
combination of Gaussian derivatives up to order N [10].

F =

i+j=N�

i=0,j=0

wi,j ∗ gi,j(x, y;σ) (4)

where gi,j(x, y;σ) is the Gaussian derivative in 2D form,
i and j are the derivative order of x and y dimension re-
spectively, and wi,j is the weight of corresponding Gaussian
derivative. For the sake of simplicity, this set of weights of
derivatives is denoted as α. It is worth noting that this filter
approximation disentangles filter’s shape and scale. More
specifically, the parameter α determines the shape of the
filter and parameter σ determines the scale separately, as
shown in figure 2.

When utilize this filter approximation in the convolution
layer, the layer tries to optimize the weights of Gaussian
derivatives, unlike the traditional convolution layer that di-
rectly learns the pixel weights of the filters.

Figure 2: Linear combination of Gaussian derivatives up to
order 2. σ and wi,j determine the shape and scale of the
filter respectively. The figure is adopted from [1].

4. Scale-Aware Basis Convolution Layer
To solve the problem that the convolution layer cannot

capture the same pattern with various scales, we introduce
our Basis Convolution layer that can efficiently adjust the
scale of filters for every location in the image.
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4.1. Implementation of Basis Convolution Layer

The idea of using the linear combination of Gaussian
derivatives to approximate arbitrary filters [10][4] enables
us to easily model the scale of the filter as the width of its
Gaussian derivative. By simply adjusting σ, one can ob-
tain filter with arbitrary scale, surviving from complex filter
transformation [28].

Furthermore, the filter approximation through Gaussian
derivatives disentangles the scale and shape of the filter.
Therefore, we can calculate the derivative basis with the
possible discrete scales before the convolution and construct
a derivative basis bank. To construct this basis bank, the
continuous scale is discretized into N discrete values and we
calculate the Gaussian derivatives of these discrete scales
up to a predefined maximum order. Normally, the scale
change between two frames is limited. A comparatively
small N can easily meet the precision requirement in scale
discretization.

Apart from the feature map input, this Basis Convolu-
tion layer accepts additional scale map input. Before doing
the convolution, we calculate the desire scale for each po-
sition by multiplying the default scale with the input from
the scale map. Then the derivative basis with the closest
scale is fetched from the basis bank to construct the filter,
rather than calculating the derivative basis of proper scale
in runtime. This precalculated derivatives bank greatly re-
duces the computation burden of calculating unique Gaus-
sian derivatives for tons of locations, which makes the Basis
Convolution layer practical. Figure 3 shows the details of
the Basis Convolution layer.

4.2. Scale-Invariant Property

The pattern that a filter wants to capture is fixed by the
weights of Gaussian derivatives, the α, as it is shown in
equation (4). By changing σ, we expect the filter to capture
the same pattern but being downscaled or upscaled. There-
fore, the filters must maintain the invariant-by-scaling prop-
erty as it is discussed in [28]. Suppose we have a filter F
of scale σ that detects specific feature in image I by the
convolution conv(I, F (σ)). S is the resize operation and
S(I, k) represents the scaled image I by a factor k. To
capture the scaled feature in image S(I, k), we adjust the
scale of filter F to kσ, generating the convolution result
conv(S(I, k), F (k × σ)). These two convolution results
should be equivalent, except being scaled by the factor k,
and this relationship is formalized as

S(conv(I, F (σ)), k) = conv(S(I, k), F (k × σ)) (5)

In other words, this invariant-by-scaling property means
when the scaled filter captures the feature which is scaled by
the same factor, the convolution should give the same acti-
vation value in the output feature map. However, it is known

Figure 3: An illustration of the Basis Convolution layer.
Unlike the traditional convolution layer, it takes an addi-
tional Scale Map as input, which denotes the scale change
at each position in the feature map input. Before doing
the convolution, it receives the scale change information
of each position and chooses the Gaussian derivative basis
with proper sigma from the derivatives bank. After convolv-
ing the feature map with the Gaussian derivatives, a tradi-
tional 1×1 convolution is utilized to provide the linear com-
bination of these activations. And the learnable parameters
in this depth-wish convolution are the weights in equation
4. The Basis Convolution layer is implemented on CUDA
for speed up.

that the amplitude of Gaussian derivative decreases expo-
nentially with scale [13], which does not hold this prop-
erty. To solve this problem, we normalize the Gaussian
derivatives using γ-normalized method introduced by Lin-
deberg [13], as shown in figure 4. For the sake of simplic-
ity, we choose the γ equals to 1. In this case, the gamma-
normalized is equivalent to L1 normalization. Finally, we
can write the filter as a weighted sum of normalized Gaus-
sian derivatives in equation 6.

F =

i+j=N�

i=0,j=0

wi,j ∗ gi,jL1−norm(x, y;σ) (6)

Figure 4: An example of the second order Gaussian deriva-
tives with different σ. After normalization the amplitude
is inversely proportional to σ, and the invariant-by-scaling
property is preserved
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Other implementation details of the Basis Convolution
layer is available in the Appendix.

5. Proposed Networks
In this section, we propose several networks to achieve

the goal of estimating the scale-aware optical flow and scale
change from images.

5.1. Baseline Method

FlowNetCorr [3] has a simple network architecture and
it is proved to be effective in optical flow estimation prob-
lem [3]. Furthermore, it implements a two-channel extrac-
tion module, which is generally used in CNN-based meth-
ods of estimating optical flow. So, we derive our baseline
method from FlowNetCorr by deleting some layers of it to
fit our own dataset. This baseline method is a light version
of FlowNetCorr, and thus we call it FlowNet Light. More
details are provided in the Appendix.

5.2. Replacing Traditional Convolution Layer

To enable the network to perceive the scale change be-
tween images, we replace the first three traditional convolu-
tion layers in the FlowNet Light with our Basis Convolution
layers and obtain the network called FlowNet Basis.

The FlowNet Basis accepts additional scale map input
to adjust the scale of filters in two channels. The channel
for frame 2 is treated as the reference channel. It accepts
a constant scale map of ones and convolves the input fea-
ture map with filters of the default scales. If the scale ratio
of frame 1 to frame 2 is available, the channel 1 can adjust
the filter scale for every pixel location accordingly. In this
way, the features with various scales in two images are cor-
rectly captured by two channels. The network architecture
of FlowNet Basis is shown in figure 6.

The encoder channel consists of three convolution lay-
ers with stride 2, which means the size of feature map is
reducing as the representation level goes up, as shown fig-
ure 5. So, we downsample the scale map through bilinear
interpolation to fit the reducing size of feature map.

Training Loss. We apply the same multi-scale training
loss introduced in FlowNet [3]. It is a weighted sum of the
average endpoint errors defined on multi-scale optical flow
estimations. As an adjustment for our own dataset, we sep-
arate the loss on background and foreground and normalize
them with the ground truth optical flow range, as it is shown
in equation 7.

LossF =
�

i

Wi

AEE F i
f +AEE F i

b

max
x

(F i(x))−min
x

(F i(x))
(7)

AEE F i
f = avg

x
(|F i

f (x)− F̂ i
f (x)|2) (8)

Figure 5: An illustration of the feature extraction of
FlowNet Light.It contains three convolution layers and
each layer have stride of 2.

Figure 6: Network architecture of FlowNet Basis. Its net-
work architecture is the same as FlowNet Light, except that
the first three traditional convolution layers are replaced by
the Basis Convolution layers. f1 and f2 represent two input
frames. S denotes that two convolution channels share the
α parameter. C represents the correlation layer. The trian-
gles represent the encoder or decoder. The second convolu-
tion channel is the reference channel, and channel 1 accepts
scale ratio map ground truth to adjust the scale of the filters.

AEE F i
b = avg

x
(|F i

b (x)− F̂ i
b (x)|2) (9)

F i(x) is the ith scale level flow field with location vari-
able x. The subscript f and b denote foreground and back-
ground, respectively. AEE F i

f and AEE F i
b represent the

average endpoint error of foreground and background opti-
cal flow at ith scale level. | · |2 represents the L2 norm. The
parameter Wi is the weight for multi-scale flow estimations.
We assign higher weight to the estimation of the finest scale
level, and the values for Wi are [1, 1, 1, 2], from coarse to
fine.

5.3. Estimating the Scale Change

The Basis Convolution layer is capable of adjusting the
scale of filter for each location by receiving the scale ra-
tio map from frame 1 to frame 2. However, in the optical
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flow estimation problem, this scale ratio map is generally
not available and the only input to the model is the image
pairs. So we propose a network that estimates the scale ratio
of object directly from the image pair and makes use of it
to better capture feature with various scales in two frames.
Since it estimates flow and scale ratio jointly, we called this
model FlowNet FlowScale.

The scale ratio estimation and optical flow estimation
both rely on feature extraction and feature matching mech-
anism, so we follow the similar encoder-decoder architec-
ture in FlowNet Basis. The scale change and optical flow
between two frames have a strong relationship because they
are all the observations of object motion from different per-
spectives. So we add an additional channel in output to
give the dense scale ratio estimation, and the optical flow
and scale ratio estimation can be refined jointly in the train-
ing process. Now, the prediction output has three channels.
Two channels for the 2D flow field and one channel for the
1D scale ratio map.

The FlowNet FlowScale is composed of two sub-
networks. The estimation of scale ratio from the first net-
work is presented to the next sub-network. By receiving
the scale ratio input, the second network is expected to
give better flow estimation. The network architecture of
FlowNet FlowScale is shown in figure 7.

Figure 7: An illustration of the architecture of
FlowNet FlowScale. Basically, It is formed by stack-
ing FlowNet Light and FlowNet Basis. By adding an extra
channel in the output, these two sub-networks produce both
flow and scale ratio estimation. The output scale ratio from
the first sub-network is input to the Basis Convolution layer
in the second sub-network, helping to capture features with
different scales in two images. Note that an exponential
function is used to make sure that the predicted scale
ratio is within range (0, ∞). The loss for the scale ratio
estimation is defined on the its logarithm.

Applying Exponential Function. The Scale Ratio Map

is calculated as the ratio of the object’s scale at the first
frame to its corresponding at the second frame. Its value
is within range (0, ∞). As shown in figure 7, the Scale Ra-
tio Map output of the first network is the input to the second
network, and during the training phase the value of Scale
Ratio is unpredictable and does not likely fit the physical
range of scale ration, which is especially true for non-ReLU
activation. To avoid this problem, we apply an exponential
function on the network’s scale ratio output. It means the
network is trying to estimate the logarithm of ground truth
scale ratio. Since the scale ratio between two frames would
typically locate in a small range like 0.5 to 2, so the scale
ratio should be updated smoothly and a small base, 1.1, is
used in the exponential function, as it is shown in figure 8.

What is more, the mapping from depth change to scale
ratio is not linear. A traditional regression loss directly de-
fined on scale ratio would be biased in favour of the esti-
mation accuracy of scale ratio which is bigger than 1 and
overlook those smaller than 1, while the loss defined on the
logarithm would treat them equally.

Figure 8: The effectiveness of applying exponential func-
tion to network’s output, it limits the arbitrary network’s
output value to range (0, ∞).

Training Loss. Compared to FlowNet Basis, the model
FlowNet FlowScale produces additional scale ratio estima-
tion. Like the training loss for optical flow in equation 7 we
define a similar training loss for the scale ratio estimation,
as it is shown in equation 10

LossS =
�

i

Wi

AEE Si
f +AEE Si

b

max
x

(Si(x))−min
x

(Si(x))
(10)

AEE Si
f = avg

x
(|Si

f (x)− Ŝi
f (x)|2) (11)

AEE Si
b = avg

x
(|Si

b(x)− Ŝi
b(x)|2) (12)

The denotations in this equation are the same as equation
7, except that S denotes scale ratio estimation. The train-
ing loss of one sub-network combines these two loss terms,
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LossF and LossS . Finally, the sum of losses in two net-
works forms the final training loss for the whole model.

6. Training Datasets and Details

6.1. Training Datasets

It is hard to obtain the large optical flow dataset of the
scene in the real world, since the dense displacement mo-
tion field has to be measured for every pixel. Recent work
on optical flow estimation using learning method heavily
relies on synthetic datasets [3, 16], where the motion field
is easy to generate in picture synthesis. However, in gen-
eral, there is no obvious scale change between images in
these datasets. Therefore, to evaluate our methods, we cre-
ate our own datasets with obvious scale change. These
datasets show some random translation of digits in front of
a pure background. Apart from the position, the size of dig-
its in the next frame can also be quite different, indicating
the motion toward or backward the camera. All the digits
are randomly sampled from MNIST dataset but with heavy
noise applied to them. For the detailed evaluation of our
methods, we create 3 datasets considering different scenar-
ios, and each dataset contains 20k training samples and 4k
testing samples.

OF Big dataset. This dataset considers a scenario where
digits become far away from the camera. The image has a
size of 192 × 192 , and it contains a group of four digits in
the matrix arrangement. All the digits have the same colour
differing from the background. After the translation which
is uniformly distributed from -20 to 20, the digits appear in
another position in the next frame and the arrangement of
digits in the matrix is also shuffled. Because the digit moves
further away from the camera, its size in the first frame is
bigger than that in the second frame. Each digit in the same
group has the similar size change. The size ratio of the digit
in frame 1 to frame 2 is randomly distributed from 1.65 to
2.42. Figure 9 provides and example of OF Big dataset.

OF Small dataset. This dataset is very similar to the
OF Big dataset, but it assumes the group of digits moves
closer toward the camera, resulting smaller digits in the first
frame. This dataset can be treated as a reverse version of
OF Big dataset by simply swapping frame 1 and frame 2.
The scale ratio of frame 1 to frame 2 now is randomly dis-
tributed from 0.4 to 0.6.

OF Normal dataset. This dataset does not contain ob-
vious scale change in images. Apart from the obvious scale
change, the other settings are the same as the OF Big and
OF Small dataset. Figure 10 provides an example of two
frames in OF Normal dataset. The scale ratio from frame 1
to frame 2 is randomly distributed from 0.9 to 1.1.

(a) Frame1. (b) Frame2.

(c) Optical flow. (d) Size ratio.

Figure 9: Example of OF Big dataset, the size ratio is cal-
culated as the ratio of digit in frame 1 to frame 2. In this
paper we use the common Hue Saturation colour space for
flow visualization. More details are in the Appendix.

(a) Frame1. (b) Frame2.

Figure 10: Example of OF Normal dataset. The digits stay
almost the same size in the next frame.

6.2. Training Details

In our experiments, even though the size of training sam-
ples is quite large, we found that data augmentation is very
crucial to avoid overfitting. We implement the same data
augmentation process as the original FlowNet [3]. The data
augmentation is performed online. During train phrase it
applies random translation, rotation, zooming and noise to
the image pairs. Not only the variety of images, the variety
of flow is also achieved by adding extra transformation to
frame 2 [3]. To further improve the generalization of our
methods, we implement dropout layer of possibility 0.7 in
the first three convolution layers. We used the Adam opti-
mizer with β1 and β2 equal to 0.9 and 0.999 respectively.
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(a) Ex1: Testing accuracy of FlowNet Light on
different datasets.

(b) Ex2:Testing accuracy of FlowNet Light and
FlowNet Basis on OF Big datasets.

(c) Ex2:Testing accuracy of FlowNet Light and
FlowNet Basis on OF Small datasets.

(d) Ex3: Testing accuracy of three models on OF Big
datasets.

Figure 11: Experimental results of optical flow estimation. (a) shows that on the dataset with large scale changes, the
FlowNet light suffers severe degradation performance. (b) shows that on OF Big dataset, FlowNet Basis significantly out-
performs FlowNet Light. (c)shows that on OF Small dataset, FlowNet Basis has similar performance with FlowNet Light.
(d) shows the two scale-aware networks have better performance than the original FlowNet Light on OF Big dataset.

The learning rate is initialized as 0.0002 and becomes two
times smaller after 100k steps.

Weight Decay The weight decay is set to be 0.0001
for all learnable parameters in FlowNet Light. However,
the FlowNet Basis and FlowNet FlowScale contain Basis
Convolution Layer whose variables, α, are quite different
from the other layers. In filter approximation, the α is multi-
plied by the L1 normalized derivatives that have fairly small
constant values. So to construct an effective filter the Basis
Convolution layer requires much bigger parameter than the
other layers. In other words, the regularization on α should
be smaller than other parameters. In our experiment, we
found this special adjustment of weight decay parameter is
decisive to train the our model successfully. The weight de-
cay of α we use is about 30 times smaller than conventional
parameters.

7. Experiments and Results
7.1. Ex1: Evaluating baseline method

In this experiment, we train the FlowNet Light with
OF Normal, OF Small and OF Big dataset separately, and
figure 11a shows the optical flow average endpoint error of
digits in the testing phase. The errors on OF Big dataset
and OF Small dataset are significantly higher than the error
on OF Normal dataset, which proves that the current archi-
tecture with two weight-shared extracting channels suffers
from performance degradation in presence of large scale
change.

7.2. Ex2: Evaluating of Basis Convolution layer

To enable the network to perceive the scale change be-
tween images, we propose our Basis Convolution layer
and create the network called FlowNet Basis that accepts

8



(a) Frame 1. (b) Frame 2. (c) Optical flow GT. (d) FlowNet Light. (e) FlowNet Basis.

Figure 12: Comparison of FlowNet Basis between FlowNet Light on OF Big datasets. The flow estimation of FlowNet Basis
is better than FlowNet Basis.

(a) Learned Filters of default scales. (b) Filters that downscaled by the factor 2.

Figure 13: Visualization of learned filters of the first convolution of FlowNet Basis which is trained on OF Small datasets.
The filters are not smooth, and the downscaling introduces obvious distortion due to the discretization error. The full set of
filters is available in the Appendix.

(a) Frame 1. (b) Frame 2. (c) Optical flow GT. (d) Scale ratio GT. (e) Pred Flow. (f) Pred scale ratio.

Figure 14: An example of estimated result of FlowNet FlowScale on OF Big dataset. (e) and (f) show the predicted optical
flow and scale ratio respectively. It is able to produce correct scale ratio and optical flow estimation.

additional scale map ground truth input. In this exper-
iment, we train the FlowNet Basis on our OF Big and
OF Small dataset separately and compare its performance
with FlowNet Light.

According to the estimation error in the testing phase,
shown in figure 11b, the FlowNet Basis significantly out-
performs FlowNet Light on OF Big dataset, which proves
the effectiveness of Basis Convolution layer. The estimated
result of a random test example is provided in figure 12.
More testing examples are available in the Appendix.

Unfortunately, these two networks have similar perfor-
mance on OF Small dataset, as it is shown in figure 11c.
The Basis Convolution layer is not effective when it tries to
adjust the filters with smaller scale. The reason might due
to the information loss in the downscaling operation, espe-
cially for filter with small kernel size, as it is shown in figure
13.

7.3. Ex3: Evaluating final network

In this experiment, we train our final Network
FlowNet FlowScale on the OF Big dataset. Unlike
FlowNet Basis that requires scale map ground truth as in-
put, FlowNet FlowScale estimates the scale map by it-
self. Figure 11d shows the flow error comparison of
FlowNet FlowScale, FlowNet Light and FlowNet Basis.
Even though FlowNet FlowScale is slightly worse than
FlowNet Basis, it still shows a big improvement over
FlowNet Light. Figure 15 shows the average endpoint er-
ror of scale ratio estimation. The scale ratio estimation is
not quite accurate and the error is about 0.4. That could be
the reason why FlowNet FlowScale performs worse than
FlowNet Basis who accepts the scale ratio ground truth.
Figure 15 shows the result of a random testing example of
FlowNet FlowScale. More examples are available in the
Appendix.
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Figure 15: The average endpoint error of scale ratio estima-
tion from FlowNet FlowScale trained on OF Big dataset.
The estimation error is about 0.4, which is not quite accu-
rate.

8. Conclusion and Future Work

In this work, we propose the Basis Convolution layer that
can introduce the scale-ware capability to the network, and
it can be easily integrated by replacing the traditional con-
volution layer. By using this Basis Convolution layer, we
construct a network that focuses on the optical flow estima-
tion in presence of scale change. The experiment shows that
it provides much better optical flow estimation result and
correct scale change estimation directly from image pairs.

However, this Basis Convolution layer suffers filter dis-
tortion when it try to downscale the filter, especially for
those filters with small kernel size. Thus, our network is
not effective when it is test on the OF Small dataset. In-
stead of taking frame 2 as the reference, an alternative ap-
proach would be taking the feature of smaller scale as the
reference, so that the filter downscaling is avoided. Fur-
ther more, the dataset where we evaluate our methods is
fairly simple. More experiments on complex dataset are still
needed.
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2
Introduction

Powered by the massive amount of available data and rapid growth of computing performance, in recent
years, the convolutional neural network (CNN) has achieved impressive success in many vision-oriented
tasks like image classification [29], action recognition [33], image reconstruction [23], segmentation [2].

In optical flow estimation problem given two consecutive images, there is also a noticed shift from energy-
based method to the learning-based method with CNN recently. In 2015, Dosovitskiy et al . [5] made the first
attempt to train the CNNs end-to-end that learn the optical flow directly from image pairs. The model they
proposed is called FlowNet which has an encoder-decoder architecture. Although at that time the traditional
energy-based method [19] was still dominating with regard to optical flow accuracy, the FlowNet shows that
the optical flow estimation can be treated as a learning problem. Many other efforts have been made to esti-
mate optical flow with CNN since the work of FlowNet. Ilg et al . improve the estimation result significantly by
stacking multiple FlowNets. In SPy-net[18] and PWC-net [27], large motions are dealt by the spatial-pyramid
architecture. This network architecture greatly simplifies the network since it only needs to estimate small
displacement at each pyramid level.

The CNN-based method has been proved to provide accurate and robust estimation in synthetic datasets
or real-world video [9, 27]. However, the situation that involves big scale change in images is not well studied.
In this work, we focus on the optical flow estimation with CNN in this situation and attempt to estimate the
scale change between images as well.

2.1. Motivation
The scale matters in estimating optical flow with CNN because of the poor scale-invariance property of the
convolution layer. In other words, convolution layer can hardly capture pattern appearing with various scales.
The convolution layer captures the desired pattern by convolving the image input with the filter. This con-
volution is calculated as the inner product of filter and image batch, and it would not preserve the same
activation when the scale of image changes. The current CNN-based methods rely on extracting features
from two images through the same convolution channel. Given two image with obvious scale change, the
CNN-based method is likely to suffer severe performance degradation since it is not able to identify the same
feature with various scales in the beginning.

The scale change is very common in image sequence especially in those scenarios where obvious mo-
tion occurs in the direction of the camera, like video from handle camera and onboard camera. The motion
analysis tasks in images generally use optical flow as a fundamental input. Optical flow represents the pixel
displacement on the image plane. However, it does not reveal the depth motion of the observed object di-
rectly. The scale change in images implies the depth motion of the rigid object in images, which could be the
supplementary measurement to optical flow in motion analysis tasks.

2.2. Research Questions
• Do the existing CNN-based methods suffer performance degradation while estimating optical flow

from image pairs in presence of larger scale change?

• In the convolutional neural network, how to efficiently model the scale change in images pair and make
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14 2. Introduction

the network capable of detecting the feature of various scale?

• Is it possible to build a model that can estimate scale change from image pair and receive this scale
change to improve the optical flow estimation?

2.3. Outline
The following Chapters are the supplementary materials to the scientific paper above. In Chapter 3, we in-
troduce the background knowledge about optical flow and artificial neural network. The details of our model
are given in Chapter 4. Chapter 5 allows a closer look the experimental results. Finally, Chapter 6 provides a
reference to an unpublished paper.



3
Preliminaries

3.1. Introduction to Optical Flow
3.1.1. Definition of Optical Flow
The motion in the image sequence is brought by the relative motion between the objects of the observed
scene and the observer. Optical flow is a common representation to describe the motion between images
since it is the lowest-level characterization of motion in consecutive image frames. It measures the displace-
ment of each visual pixel in the image. Once this displacement motion field of images is measured, it can
be used as an black-box input in comprehensive motion analysis tasks, like object tracking [25], boundary
detection [28], action recognition [24], Ego-Motion estimation [11].

Figure 3.1 gives an example of the 2D displacement vector of one pixel. Assume that there is an image
coordinate (u,v). At time t1, a point is captured in the image at the 2D location (u1, v1). At t2 it moves to other
position due to the camera motion or the motion itself. Then the optical flow of this pixel point is a vector
calculated as (u2 −u1, v2 − v1).

Figure 3.1: The pixel displacement in the image coordinate. (u1, v1) and (u2, v2) is the pixel location at t1 and t2. The arrow denotes the
2D displacement vector.

To better visualize the 2D motion field, this paper uses the common HS color space to encode the optical
flow field. Figure 3.2 provides an example of visualization of optical flow from Scene Flow Dataset [15]. The
hue and saturation represent the direction and magnitude of the motion vector, respectively.

3.1.2. Optical Flow Estimation
Optical flow estimation is an old problem and many methods have been introduced to improve the estima-
tion result since the work of Horn and Schunck [8]. The original HS method assumes that the pixel brightness
is preserved between images and the optical flow is smooth over the whole image. The optical flow estima-
tion problem then is converted to the objective function optimization problem which considers these two
constraints, as it is shown in equation 3.1.

�

i , j
(I1(i , j )− I2(i +u, j + v))2 +α(�2u +�2v) (3.1)
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16 3. Preliminaries

Figure 3.2: Optical flow example from Scene Flow dataset[15].
It describes the scene that monkey is putting its hand into the
mouth.

Figure 3.3: The optical flow coding in this paper. The hue and
saturation represent the direction and magnitude of the motion
vector, respectively.

I1 and I2 is the brightness of frame 1 and frame 2 respectively. α is the balance parameter and (u, v) is the
2D motion field. The classic methods following HS method keep the similar structure but introduce many
improvements. Different forms of data constraint [26, 30] and smooth constraint [6, 31] were considered.
Since the quadratic loss function in HS formula suffers a lot from outliers, many other robust loss functions
are presented [3, 21, 26].

Recently, artificial neural networks have greatly improved the state of art result of many computer vision
tasks including optical flow estimation problem [4]. In the learning-based method with the neural network,
the optical flow estimate problem is solved in an end-to-end manner. By defining the loss between the optical
flow estimation and ground truth, the neural network is able to update its variables to provide better estima-
tion through the gradient descent method. After thousands of training steps, the neural network learns to
estimate the final smooth optical flow directly from two images input. Nowadays these CNN-based method
is dominating in optical flow estimation problem with regard to speed and accuracy [27].

3.2. Background about Artificial Neural Networks
Artificial Neural Networks(ANN) is a part of machine learning method, which learns the representation of
data through multiple connected layers. It is inspired by the biological neural networks in the human brain,
and it intends to imitate the way how a human learns. Recent years, the methods based on the neural network
reach state-of-art result in many fields like computer vision, machine translation, bioinformatics [14].

3.2.1. Neurons and Multilayer Perceptron
A simple ANN is composed of three layers, one input layer, one hidden layer, and one output layer, as it is
shown in figure 3.4. This simple ANN is called Multilayer Perceptron (MLP). The input layer represents the
input data to the ANN and each layer following the input layer is formed by one or some artificial neurons.
An artificial neuron is the elementary unit in ANN. What it does is just provide the weighted sum of all the
received inputs. Its mathematical model is illustrated in figure 3.5. Usually, to introduce non-linearity, the
output of a neuron is passed to a nonlinear activation function, and the most common activation functions
are TanH and ReLU [16].

Figure 3.4: A simple example of ANN. It consists of three layers,
input layer, hidden layer and output layer.

Figure 3.5: Model of a neuron. It pass the weighted sum of re-
ceived inputs to the activation function and output the final re-
sult.
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The final output of ANN is used to define a task-determined loss function. In general, mean square error
(MSE) for regression problem and cross entropy loss for classification problem. The learnable variables of
ANN are the weights and bias inside each neuron. During the training phase, these learnable variables are
updated through the gradient descent method by taking the derivatives of loss function[22]. TanH is a zero-
center function and it restricts the output from -1 to 1, as it is shown in figure 3.6. However, it saturates when
the input is far away from 0, in which case the gradient is very close to 0 and the learnable variable will not get
effective update, leading to gradients vanish problem. Therefore Tanh usually converges slower than ReLU
[12].

(a) TanH activation function. (b) ReLU activation function.

Figure 3.6: The Tanh and ReLU activation function. Tanh suffers from gradient vanishing problem.

3.2.2. Convolutional Neural Network
The fully connected layer described above takes all the outputs of the previous layer as inputs. So it is im-
practical to apply this architecture while analyzing the image which has tons of input pixels. Unlike the fully
connected layer, the neuron in convolution layer receives inputs only from a restricted square area of the pre-
vious layer, and this area is called receptive field. Another key difference is that when the neurons calculate
their outputs, they share the same weights and bias among all the locations. This share-weights architecture
not only reduces the number of learnable variables greatly but also provides the crucial translation-invariant
property in image analyzing. An example of convolution layer is shown in figure 3.7

Figure 3.7: Visualization of convolutional layer. The kernel size is 3, stride is 3.

Figure 3.8 shows the typical CNN architecture that receives image input. After several convolution and
pooling layers, the high-level representation of the image is obtained, and this high-level representation is
passed through the fully connected layers for final reasoning like recognition [13].

3.2.3. Convolutional Encoder-Decoder
In many computer vision tasks, like image segmentation, depth estimation, the desired output has the same
size as the input image. To solve this problem in CNN ending with fully connected layers, the convolutional
encoder-decoder architecture is introduced. The convolutional encoder-decoder contains an encoder part
and a decoder part, as it is shown in figure 3.9. The encoder part follows the typical architecture of the con-
volutional neural network in figure 3.8. It transforms the input image to high-level feature map. To gradually
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Figure 3.8: Typical CNN architecture. It contains several convolution and sub-sampling layers to extract high-level feature map. Fully
connected layer is used to produce final output in the end.

increase the resolution of feature map from encoder part and finally produce the output, an inverse version
of encoder part is supplemented, called decoder part, where unpooling and de-convolution layers are just
the reverse operation of pooling and convolution layer respectively. Additionally, it is possible to introduce
shortcut from the encoder part to decoder part, like U-Net [20], so that the high-resolution feature maps from
encoder part help to generate precise output in the expanding part.

Figure 3.9: The network architecture of convolutional encoder-decoder [17]. The encoder part is the same as the typical CNN. The
decoder part consists of several de-convolution and unpooling layers to perform refinement.



4
Network Details

4.1. Network Architecture of FlowNetCorr
This paper is based on the work of FlowNet [5], and FlowNetCorr is chosen as the baseline method, so it is
necessary to introduce its architecture into details. The FlowNetCorr consists of two parts, the contractive
part and the refinement part, as it is shown in figure 4.1.

(a) Contractive part

(b) Refinement part

Figure 4.1: Architecture of FlowNetCorr. In the contractive part, two images are passed through two weight-shared convolution channels.
The outputs then are fused by the correlation layer to perform feature matching. The refinement part mainly consists of de-convolution
layers. It is worth noting that the coarse estimation is concatenated to its next feature map.

Contractive part is mainly used to extract feature and perform feature matching between two images.
Two input images are passed through two share-wight channels to contract meaningful representations.
Each channel contains three convolutional layers of stride 2 and their kernel size are 7,5 and 5, respectively.
Then the outputs of these two streams are combined by a correlation layer that performs multiplicative batch
matching between two feature maps. Given feature maps f1 and f2 from two channels, the single comparison
between two batch centered at x1 in f1 and centered at x2 in f2 is calculated as

Cor r (x1, x2) =
�

o∈[−k,k]×[−k,k]
< f1(x1 +o), f2(x2 +o) > (4.1)

where, k is the batch radius and <> represents the inner product of two vectors.
The batch correlation measures the similarity of batches between f1 and f2. In theory, the corresponding

pixel point can go everywhere in f2. Thus, we need to do (H ∗W )2 comparisons for all the combination of
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batches. To save the computation burden, the batch comparison is only performed within a square region
center at x1 instead of searching in the whole image. Given the maximum displacement d, for every location
x1 in frame 1, the batch location x2 in f2 is limited to be x1’s neighbour such that x1 − x2 ∈ [−d ,d ]× [−d ,d ].
By defining the maximum displacement, the number of batch comparisons is reduced to H ×W × (2d +1).
The output of the correlation layer should be four dimensions, two dimensions for the x1 location and two
dimensions for the relative displacement. However, in practice, the 2D displacement is flatted into one di-
mension. Therefore, the output feature map has the same size of input feature map but with a different depth
of (2d +1). Then, the output of correlation layer is passed through several convolution layers to extract even
higher-level feature map.

Refinement part aims to recover the high-resolution feature map from the high-level output of the con-
tractive part. Like many other works [2, 17], it learns a deep de-convolutional network to perform the re-
finement. Additionally, the convolution layer is applied to different level feature maps in contractive part to
generate coarse to fine optical flow estimations. The coarse optical flow is upsampled and then copied to its
next stage by concatenation. Similar to UNet, FlowNet also introduces connection from contractive part to
refinement part, which preserves both the high-level information from coarser feature maps and local details
provided in lower layer feature maps [5].

As a trade-off between performance and computational complexity, only four de-convolution layers are
used in the refinement part, which means the size of the finest optical flow estimation is still 4 times smaller
than the original input, as shown in 4.1. To recover the full image resolution, a simple bilinear interpolation
is implemented in the end. Since it gives multi-level optical flow estimations, the final loss function is a
weighted sum of average endpoint errors between all these optical flow estimations and the downsampled
ground truths.

4.2. Light Version of FlowNetCorr
The original FlowNetCorr is evaluated on the MPI Sintel Flow [4] dataset and its own Flying Chairs dataset
where the image sizes are 1024×436 and 512×382, respectively. The model runs slow on the image of such
big size. More specifically, one training step with a batch size of 8 takes about 1.5 seconds, and it takes above
10 days to finish the whole training process, 600k steps (Tensorflow 1.2 + GTX1080 Ti + Intel Xeon CPU E5-
2620 v4 @ 2.10GHz).

Considering the limited computational resource and time, in this paper, we are working on our own opti-
cal dataset with much smaller image size, for example, 192×192. Therefore, we need to modify the FlowNet-
Corr to fit the smaller image and derive the light version of FlowNetCorr, called FlowNet_Light. This is mainly
done by deleting two convolution layers in the contractive part and one de-convolution layer in the refine-
ment part, as it is shown in figure 4.2. After these modifications, some of the encoder-to-decoder connections
also need to be adjusted. In FlowNet_Light, the finest optical flow estimation is 2 times smaller than the orig-
inal input. Thus, the same bilinear upsampling operation is used to generate the full-resolution output.

(a) Architecture of Light Version FlowNetCorr (b) Architecture of Light Version FlowNetCorr

Figure 4.2: Comparison between FlowNetCorr and its light version, FlowNet_Light. The main change is the deletion of several layers.
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4.3. Implementation Details of Pixel-Wise Scale Adjusted Convolution Layer
Following Scale-space theory [32] and Njet [7] we are able to approximate the filter weight by the weighted
sum of a finite set of Gaussian derivatives [1] [10]. The biggest benefit brought by this approximation is that
the scale and the shape of the filter are decoupled, controlled by two separate parameters σ and α. σ repre-
sents the scale of the Gaussian derivatives and α is a set of weights determined the contribution of different
Gaussian derivatives. By combining the filter approximation and the traditional convolution layer, we ob-
tained the Basis Convolution layer that can easily model the scale of the filter. Apart from the input feature
map, the Basis Convolution Layer accepts a scale map that implies additional scale info from every pixel lo-
cation. Before doing the convolution, the Basis Convolution layer constructs the filter with the scale adjusted
for every pixel location based on the scale map, as it is shown in figure 4.3. So the Basis Convolution layer
can capture the feature of the desired scale at each location while the traditional convolution layer can only
capture feature of exactly the same size.

Figure 4.3: An illustration of the Basis Convolution layer. Before doing the convolution, it receives the scale input of each pixel position
and fetches the proper Gaussian derivative from the derivative bank. After the convolution with Gaussian derivatives, a traditional
depth-wise convolution is implemented to calculate the weighted sum, similar to [10].

Maximum Order of Gaussian derivatives. A finite set of Gaussian derivatives up to a maximum order are
used to approximate the filter. It has been proven [12] that 3r d or 4th order is sufficient to capture all the local
image variation perceivable by humans, so in the Basis Convolution layer we only consider the derivatives up
to order 4.

Learnable parameters. Unlike the traditional convolutional layer that directly learns the pixel weights
of the filters, the Basis Convolution layer learns the weight parameters for each unique Gaussian derivative.
The numbers of learnable parameters of Basis Convolution layer and traditional convolution layer are C ×
( (N+1)∗N

2 +N+1) , C×K 2, respectively. K is kernel size. C is the number of output channels of the convolutional

layer. (N+1)∗N
2 +N +1 is the total number of derivatives up to order N . The number of learnable parameters

in Basis Convolution layer remains the same as the maximum order is fixed, so the Basis Convolution layer
is less complex than convolution layer especially with large kernel size, with regard to the number of model
parameters.

Default scales. By default (in case the scale doesn’t need to be adjusted), the Basis Convolution layer
use derivatives of scales 1, 2 and 3 to approximate filters. Our experiment and [10] show that multi-scale
derivatives are crucial to enhance the encoding capability of the convolution layer with filter approximation
by Gaussian derivatives. When it is about to do the convolution it calculates the proper scale for each pixel
position by multiplication of default scale and the received input from scale map, so the location with scale
input of 1 will use the default scales.

Derivatives bank. Calculating the derivatives with proper scale for every pixel in feature map is extremely
computationally expensive. Fortunately, the precision requirement for scale is slow, which allows us to main-
tain a small derivative bank with possible discrete scales. Instead of calculating the derivative in runtime, the
Basis Convolution layer fetches the suitable derivative from this pre-calculated derivatives bank. The scale is
evenly discretized in the logarithmic scale of a small base 1.1, from -20 to 20 with step of 1. Which means the
derivative bank contains derivatives of 41 sigmas from σ= 0.15 (1.1−20) to σ= 6.7 (1.120).

Kernel size. If the scale increases or decreases, the Gaussian derivative will expands or shrinks accord-
ingly, as well as the kernel size. Therefore the kernel size should be adjustable for every pixel location depends
on its scale input. We choose the kernel size equals to 2× �1.3σ�+1, where � �is the roundup operation. The
range is sufficiently large to hold a big part of the Gaussian derivative and also keep the odd number kernel
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size. Thus, the kernel size of default scales 1, 2 and 3 are 5, 7 and 9 respectively.



5
Supplementary Results

5.1. Example of Data Augmentation

Before

After
Frame 1 Frame 2 optical flow GT

Figure 5.1: An example of data augmentation result. The data augmentation introduces variety to the images as well as the flow field.
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5.2. Results of Testing Examples

I

II
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IV
Frame 1 Frame 2 optical flow GT FlowNet_Light FlowNet_Basis

Figure 5.2: Testing result of optical flow of FlowNet_Light and FlowNet_Basis trained on OF_Big dataset. FlowNet_Basis provides more
accurate result generally.
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Figure 5.3: Testing results of FlowNet_Light and FlowNet_Basis trained on OF_Small dataset. No obvious difference between these two
methods.
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Figure 5.4: Testing results of FlowNet_FlowScale trained on OF_Big dataset. The FlowNet_FlowScale is capable of providing correct scale
ratio and optical flow estimation jointly. But its flow estimation is not as good as Flownet_Basis.
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5.3. Filters Visualization

(a) Default scale.

(b) With scale 2 times bigger.

Figure 5.5: The visualization of filters learned in the first layer of FlowNet_Basis on OF_Big dataset. The network learns zero, first and
second order filter of different color combinations. And the filter is nicely upsampled by changing to a bigger scale.
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(a) Default scale.

(b) With scale 2 times smaller.

Figure 5.6: The visualization of filters learned in the first layer of FlowNet_Basis on OF_Small dataset. when the scale becomes two times
smaller, obvious distortion can be found.
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